4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
14 #include "internals.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/host-utils.h"
17 #include "qemu/main-loop.h"
18 #include "qemu/timer.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
25 #include "semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "qemu/range.h"
30 #include "qapi/qapi-commands-machine-target.h"
31 #include "qapi/error.h"
32 #include "qemu/guest-random.h"
35 #include "exec/cpu_ldst.h"
36 #include "semihosting/common-semi.h"
40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
42 static void switch_mode(CPUARMState *env, int mode);
44 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
46 assert(ri->fieldoffset);
47 if (cpreg_field_is_64bit(ri)) {
48 return CPREG_FIELD64(env, ri);
50 return CPREG_FIELD32(env, ri);
54 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
56 assert(ri->fieldoffset);
57 if (cpreg_field_is_64bit(ri)) {
58 CPREG_FIELD64(env, ri) = value;
60 CPREG_FIELD32(env, ri) = value;
64 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
66 return (char *)env + ri->fieldoffset;
69 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
71 /* Raw read of a coprocessor register (as needed for migration, etc). */
72 if (ri->type & ARM_CP_CONST) {
73 return ri->resetvalue;
74 } else if (ri->raw_readfn) {
75 return ri->raw_readfn(env, ri);
76 } else if (ri->readfn) {
77 return ri->readfn(env, ri);
79 return raw_read(env, ri);
83 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
86 /* Raw write of a coprocessor register (as needed for migration, etc).
87 * Note that constant registers are treated as write-ignored; the
88 * caller should check for success by whether a readback gives the
91 if (ri->type & ARM_CP_CONST) {
93 } else if (ri->raw_writefn) {
94 ri->raw_writefn(env, ri, v);
95 } else if (ri->writefn) {
96 ri->writefn(env, ri, v);
98 raw_write(env, ri, v);
102 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
104 /* Return true if the regdef would cause an assertion if you called
105 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
106 * program bug for it not to have the NO_RAW flag).
107 * NB that returning false here doesn't necessarily mean that calling
108 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
109 * read/write access functions which are safe for raw use" from "has
110 * read/write access functions which have side effects but has forgotten
111 * to provide raw access functions".
112 * The tests here line up with the conditions in read/write_raw_cp_reg()
113 * and assertions in raw_read()/raw_write().
115 if ((ri->type & ARM_CP_CONST) ||
117 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
123 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
125 /* Write the coprocessor state from cpu->env to the (index,value) list. */
129 for (i = 0; i < cpu->cpreg_array_len; i++) {
130 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
131 const ARMCPRegInfo *ri;
134 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
139 if (ri->type & ARM_CP_NO_RAW) {
143 newval = read_raw_cp_reg(&cpu->env, ri);
146 * Only sync if the previous list->cpustate sync succeeded.
147 * Rather than tracking the success/failure state for every
148 * item in the list, we just recheck "does the raw write we must
149 * have made in write_list_to_cpustate() read back OK" here.
151 uint64_t oldval = cpu->cpreg_values[i];
153 if (oldval == newval) {
157 write_raw_cp_reg(&cpu->env, ri, oldval);
158 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
162 write_raw_cp_reg(&cpu->env, ri, newval);
164 cpu->cpreg_values[i] = newval;
169 bool write_list_to_cpustate(ARMCPU *cpu)
174 for (i = 0; i < cpu->cpreg_array_len; i++) {
175 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
176 uint64_t v = cpu->cpreg_values[i];
177 const ARMCPRegInfo *ri;
179 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
184 if (ri->type & ARM_CP_NO_RAW) {
187 /* Write value and confirm it reads back as written
188 * (to catch read-only registers and partially read-only
189 * registers where the incoming migration value doesn't match)
191 write_raw_cp_reg(&cpu->env, ri, v);
192 if (read_raw_cp_reg(&cpu->env, ri) != v) {
199 static void add_cpreg_to_list(gpointer key, gpointer opaque)
201 ARMCPU *cpu = opaque;
202 uint32_t regidx = (uintptr_t)key;
203 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
205 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
206 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
207 /* The value array need not be initialized at this point */
208 cpu->cpreg_array_len++;
212 static void count_cpreg(gpointer key, gpointer opaque)
214 ARMCPU *cpu = opaque;
215 const ARMCPRegInfo *ri;
217 ri = g_hash_table_lookup(cpu->cp_regs, key);
219 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
220 cpu->cpreg_array_len++;
224 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
226 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
227 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
238 void init_cpreg_list(ARMCPU *cpu)
240 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
241 * Note that we require cpreg_tuples[] to be sorted by key ID.
246 keys = g_hash_table_get_keys(cpu->cp_regs);
247 keys = g_list_sort(keys, cpreg_key_compare);
249 cpu->cpreg_array_len = 0;
251 g_list_foreach(keys, count_cpreg, cpu);
253 arraylen = cpu->cpreg_array_len;
254 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
255 cpu->cpreg_values = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
257 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
258 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
259 cpu->cpreg_array_len = 0;
261 g_list_foreach(keys, add_cpreg_to_list, cpu);
263 assert(cpu->cpreg_array_len == arraylen);
269 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
271 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
272 const ARMCPRegInfo *ri,
275 if (!is_a64(env) && arm_current_el(env) == 3 &&
276 arm_is_secure_below_el3(env)) {
277 return CP_ACCESS_TRAP_UNCATEGORIZED;
282 /* Some secure-only AArch32 registers trap to EL3 if used from
283 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
284 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
285 * We assume that the .access field is set to PL1_RW.
287 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
288 const ARMCPRegInfo *ri,
291 if (arm_current_el(env) == 3) {
294 if (arm_is_secure_below_el3(env)) {
295 if (env->cp15.scr_el3 & SCR_EEL2) {
296 return CP_ACCESS_TRAP_EL2;
298 return CP_ACCESS_TRAP_EL3;
300 /* This will be EL1 NS and EL2 NS, which just UNDEF */
301 return CP_ACCESS_TRAP_UNCATEGORIZED;
304 /* Check for traps to performance monitor registers, which are controlled
305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
310 int el = arm_current_el(env);
311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
314 return CP_ACCESS_TRAP_EL2;
316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
317 return CP_ACCESS_TRAP_EL3;
322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
323 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
326 if (arm_current_el(env) == 1) {
327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
328 if (arm_hcr_el2_eff(env) & trap) {
329 return CP_ACCESS_TRAP_EL2;
335 /* Check for traps from EL1 due to HCR_EL2.TSW. */
336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
340 return CP_ACCESS_TRAP_EL2;
345 /* Check for traps from EL1 due to HCR_EL2.TACR. */
346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
350 return CP_ACCESS_TRAP_EL2;
355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
360 return CP_ACCESS_TRAP_EL2;
365 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
367 ARMCPU *cpu = env_archcpu(env);
369 raw_write(env, ri, value);
370 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
373 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
375 ARMCPU *cpu = env_archcpu(env);
377 if (raw_read(env, ri) != value) {
378 /* Unlike real hardware the qemu TLB uses virtual addresses,
379 * not modified virtual addresses, so this causes a TLB flush.
382 raw_write(env, ri, value);
386 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
389 ARMCPU *cpu = env_archcpu(env);
391 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
392 && !extended_addresses_enabled(env)) {
393 /* For VMSA (when not using the LPAE long descriptor page table
394 * format) this register includes the ASID, so do a TLB flush.
395 * For PMSA it is purely a process ID and no action is needed.
399 raw_write(env, ri, value);
402 /* IS variants of TLB operations must affect all cores */
403 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
406 CPUState *cs = env_cpu(env);
408 tlb_flush_all_cpus_synced(cs);
411 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
414 CPUState *cs = env_cpu(env);
416 tlb_flush_all_cpus_synced(cs);
419 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
422 CPUState *cs = env_cpu(env);
424 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
427 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
430 CPUState *cs = env_cpu(env);
432 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
436 * Non-IS variants of TLB operations are upgraded to
437 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
438 * force broadcast of these operations.
440 static bool tlb_force_broadcast(CPUARMState *env)
442 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
445 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
448 /* Invalidate all (TLBIALL) */
449 CPUState *cs = env_cpu(env);
451 if (tlb_force_broadcast(env)) {
452 tlb_flush_all_cpus_synced(cs);
458 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
461 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
462 CPUState *cs = env_cpu(env);
464 value &= TARGET_PAGE_MASK;
465 if (tlb_force_broadcast(env)) {
466 tlb_flush_page_all_cpus_synced(cs, value);
468 tlb_flush_page(cs, value);
472 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
475 /* Invalidate by ASID (TLBIASID) */
476 CPUState *cs = env_cpu(env);
478 if (tlb_force_broadcast(env)) {
479 tlb_flush_all_cpus_synced(cs);
485 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
488 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
489 CPUState *cs = env_cpu(env);
491 value &= TARGET_PAGE_MASK;
492 if (tlb_force_broadcast(env)) {
493 tlb_flush_page_all_cpus_synced(cs, value);
495 tlb_flush_page(cs, value);
499 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
502 CPUState *cs = env_cpu(env);
504 tlb_flush_by_mmuidx(cs,
506 ARMMMUIdxBit_E10_1_PAN |
510 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 CPUState *cs = env_cpu(env);
515 tlb_flush_by_mmuidx_all_cpus_synced(cs,
517 ARMMMUIdxBit_E10_1_PAN |
522 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
525 CPUState *cs = env_cpu(env);
527 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
530 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
533 CPUState *cs = env_cpu(env);
535 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
538 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
541 CPUState *cs = env_cpu(env);
542 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
544 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
547 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
550 CPUState *cs = env_cpu(env);
551 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
553 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
557 static const ARMCPRegInfo cp_reginfo[] = {
558 /* Define the secure and non-secure FCSE identifier CP registers
559 * separately because there is no secure bank in V8 (no _EL3). This allows
560 * the secure register to be properly reset and migrated. There is also no
561 * v8 EL1 version of the register so the non-secure instance stands alone.
564 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
565 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
566 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
567 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
568 { .name = "FCSEIDR_S",
569 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
570 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
571 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
572 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
573 /* Define the secure and non-secure context identifier CP registers
574 * separately because there is no secure bank in V8 (no _EL3). This allows
575 * the secure register to be properly reset and migrated. In the
576 * non-secure case, the 32-bit register will have reset and migration
577 * disabled during registration as it is handled by the 64-bit instance.
579 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
580 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
581 .access = PL1_RW, .accessfn = access_tvm_trvm,
582 .secure = ARM_CP_SECSTATE_NS,
583 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
584 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
585 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
586 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
587 .access = PL1_RW, .accessfn = access_tvm_trvm,
588 .secure = ARM_CP_SECSTATE_S,
589 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
590 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
593 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
594 /* NB: Some of these registers exist in v8 but with more precise
595 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
597 /* MMU Domain access control / MPU write buffer control */
599 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
600 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
601 .writefn = dacr_write, .raw_writefn = raw_write,
602 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
603 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
604 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
605 * For v6 and v5, these mappings are overly broad.
607 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
608 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
609 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
610 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
611 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
612 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
613 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
614 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
615 /* Cache maintenance ops; some of this space may be overridden later. */
616 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
617 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
618 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
621 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
622 /* Not all pre-v6 cores implemented this WFI, so this is slightly
625 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
626 .access = PL1_W, .type = ARM_CP_WFI },
629 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
630 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
631 * is UNPREDICTABLE; we choose to NOP as most implementations do).
633 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
634 .access = PL1_W, .type = ARM_CP_WFI },
635 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
636 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
637 * OMAPCP will override this space.
639 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
640 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
642 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
643 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
645 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
646 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
647 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
649 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
650 * implementing it as RAZ means the "debug architecture version" bits
651 * will read as a reserved value, which should cause Linux to not try
652 * to use the debug hardware.
654 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
655 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
656 /* MMU TLB control. Note that the wildcarding means we cover not just
657 * the unified TLB ops but also the dside/iside/inner-shareable variants.
659 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
660 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
661 .type = ARM_CP_NO_RAW },
662 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
663 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
664 .type = ARM_CP_NO_RAW },
665 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
666 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
667 .type = ARM_CP_NO_RAW },
668 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
669 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
670 .type = ARM_CP_NO_RAW },
671 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
672 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
673 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
674 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
677 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
682 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
683 if (!arm_feature(env, ARM_FEATURE_V8)) {
684 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
685 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
686 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
688 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
689 /* VFP coprocessor: cp10 & cp11 [23:20] */
690 mask |= R_CPACR_ASEDIS_MASK |
691 R_CPACR_D32DIS_MASK |
695 if (!arm_feature(env, ARM_FEATURE_NEON)) {
696 /* ASEDIS [31] bit is RAO/WI */
697 value |= R_CPACR_ASEDIS_MASK;
700 /* VFPv3 and upwards with NEON implement 32 double precision
701 * registers (D0-D31).
703 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
704 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
705 value |= R_CPACR_D32DIS_MASK;
712 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
713 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
715 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
716 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
717 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
718 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
721 env->cp15.cpacr_el1 = value;
724 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
727 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
728 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
730 uint64_t value = env->cp15.cpacr_el1;
732 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
733 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
734 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
740 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
742 /* Call cpacr_write() so that we reset with the correct RAO bits set
743 * for our CPU features.
745 cpacr_write(env, ri, 0);
748 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
751 if (arm_feature(env, ARM_FEATURE_V8)) {
752 /* Check if CPACR accesses are to be trapped to EL2 */
753 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
754 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
755 return CP_ACCESS_TRAP_EL2;
756 /* Check if CPACR accesses are to be trapped to EL3 */
757 } else if (arm_current_el(env) < 3 &&
758 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
759 return CP_ACCESS_TRAP_EL3;
766 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
769 /* Check if CPTR accesses are set to trap to EL3 */
770 if (arm_current_el(env) == 2 &&
771 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
772 return CP_ACCESS_TRAP_EL3;
778 static const ARMCPRegInfo v6_cp_reginfo[] = {
779 /* prefetch by MVA in v6, NOP in v7 */
780 { .name = "MVA_prefetch",
781 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
782 .access = PL1_W, .type = ARM_CP_NOP },
783 /* We need to break the TB after ISB to execute self-modifying code
784 * correctly and also to take any pending interrupts immediately.
785 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
787 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
788 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
789 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
790 .access = PL0_W, .type = ARM_CP_NOP },
791 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
792 .access = PL0_W, .type = ARM_CP_NOP },
793 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
794 .access = PL1_RW, .accessfn = access_tvm_trvm,
795 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
796 offsetof(CPUARMState, cp15.ifar_ns) },
798 /* Watchpoint Fault Address Register : should actually only be present
799 * for 1136, 1176, 11MPCore.
801 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
802 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
803 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
804 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
805 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
806 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
809 typedef struct pm_event {
810 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
811 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
812 bool (*supported)(CPUARMState *);
814 * Retrieve the current count of the underlying event. The programmed
815 * counters hold a difference from the return value from this function
817 uint64_t (*get_count)(CPUARMState *);
819 * Return how many nanoseconds it will take (at a minimum) for count events
820 * to occur. A negative value indicates the counter will never overflow, or
821 * that the counter has otherwise arranged for the overflow bit to be set
822 * and the PMU interrupt to be raised on overflow.
824 int64_t (*ns_per_count)(uint64_t);
827 static bool event_always_supported(CPUARMState *env)
832 static uint64_t swinc_get_count(CPUARMState *env)
835 * SW_INCR events are written directly to the pmevcntr's by writes to
836 * PMSWINC, so there is no underlying count maintained by the PMU itself
841 static int64_t swinc_ns_per(uint64_t ignored)
847 * Return the underlying cycle count for the PMU cycle counters. If we're in
848 * usermode, simply return 0.
850 static uint64_t cycles_get_count(CPUARMState *env)
852 #ifndef CONFIG_USER_ONLY
853 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
854 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
856 return cpu_get_host_ticks();
860 #ifndef CONFIG_USER_ONLY
861 static int64_t cycles_ns_per(uint64_t cycles)
863 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
866 static bool instructions_supported(CPUARMState *env)
868 return icount_enabled() == 1; /* Precise instruction counting */
871 static uint64_t instructions_get_count(CPUARMState *env)
873 return (uint64_t)icount_get_raw();
876 static int64_t instructions_ns_per(uint64_t icount)
878 return icount_to_ns((int64_t)icount);
882 static bool pmuv3p1_events_supported(CPUARMState *env)
884 /* For events which are supported in any v8.1 PMU */
885 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
888 static bool pmuv3p4_events_supported(CPUARMState *env)
890 /* For events which are supported in any v8.1 PMU */
891 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
894 static uint64_t zero_event_get_count(CPUARMState *env)
896 /* For events which on QEMU never fire, so their count is always zero */
900 static int64_t zero_event_ns_per(uint64_t cycles)
902 /* An event which never fires can never overflow */
906 static const pm_event pm_events[] = {
907 { .number = 0x000, /* SW_INCR */
908 .supported = event_always_supported,
909 .get_count = swinc_get_count,
910 .ns_per_count = swinc_ns_per,
912 #ifndef CONFIG_USER_ONLY
913 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
914 .supported = instructions_supported,
915 .get_count = instructions_get_count,
916 .ns_per_count = instructions_ns_per,
918 { .number = 0x011, /* CPU_CYCLES, Cycle */
919 .supported = event_always_supported,
920 .get_count = cycles_get_count,
921 .ns_per_count = cycles_ns_per,
924 { .number = 0x023, /* STALL_FRONTEND */
925 .supported = pmuv3p1_events_supported,
926 .get_count = zero_event_get_count,
927 .ns_per_count = zero_event_ns_per,
929 { .number = 0x024, /* STALL_BACKEND */
930 .supported = pmuv3p1_events_supported,
931 .get_count = zero_event_get_count,
932 .ns_per_count = zero_event_ns_per,
934 { .number = 0x03c, /* STALL */
935 .supported = pmuv3p4_events_supported,
936 .get_count = zero_event_get_count,
937 .ns_per_count = zero_event_ns_per,
942 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
943 * events (i.e. the statistical profiling extension), this implementation
944 * should first be updated to something sparse instead of the current
945 * supported_event_map[] array.
947 #define MAX_EVENT_ID 0x3c
948 #define UNSUPPORTED_EVENT UINT16_MAX
949 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
952 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
953 * of ARM event numbers to indices in our pm_events array.
955 * Note: Events in the 0x40XX range are not currently supported.
957 void pmu_init(ARMCPU *cpu)
962 * Empty supported_event_map and cpu->pmceid[01] before adding supported
965 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
966 supported_event_map[i] = UNSUPPORTED_EVENT;
971 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
972 const pm_event *cnt = &pm_events[i];
973 assert(cnt->number <= MAX_EVENT_ID);
974 /* We do not currently support events in the 0x40xx range */
975 assert(cnt->number <= 0x3f);
977 if (cnt->supported(&cpu->env)) {
978 supported_event_map[cnt->number] = i;
979 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
980 if (cnt->number & 0x20) {
981 cpu->pmceid1 |= event_mask;
983 cpu->pmceid0 |= event_mask;
990 * Check at runtime whether a PMU event is supported for the current machine
992 static bool event_supported(uint16_t number)
994 if (number > MAX_EVENT_ID) {
997 return supported_event_map[number] != UNSUPPORTED_EVENT;
1000 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1003 /* Performance monitor registers user accessibility is controlled
1004 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1005 * trapping to EL2 or EL3 for other accesses.
1007 int el = arm_current_el(env);
1008 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1010 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1011 return CP_ACCESS_TRAP;
1013 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1014 return CP_ACCESS_TRAP_EL2;
1016 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1017 return CP_ACCESS_TRAP_EL3;
1020 return CP_ACCESS_OK;
1023 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1024 const ARMCPRegInfo *ri,
1027 /* ER: event counter read trap control */
1028 if (arm_feature(env, ARM_FEATURE_V8)
1029 && arm_current_el(env) == 0
1030 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1032 return CP_ACCESS_OK;
1035 return pmreg_access(env, ri, isread);
1038 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1039 const ARMCPRegInfo *ri,
1042 /* SW: software increment write trap control */
1043 if (arm_feature(env, ARM_FEATURE_V8)
1044 && arm_current_el(env) == 0
1045 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1047 return CP_ACCESS_OK;
1050 return pmreg_access(env, ri, isread);
1053 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1054 const ARMCPRegInfo *ri,
1057 /* ER: event counter read trap control */
1058 if (arm_feature(env, ARM_FEATURE_V8)
1059 && arm_current_el(env) == 0
1060 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1061 return CP_ACCESS_OK;
1064 return pmreg_access(env, ri, isread);
1067 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1068 const ARMCPRegInfo *ri,
1071 /* CR: cycle counter read trap control */
1072 if (arm_feature(env, ARM_FEATURE_V8)
1073 && arm_current_el(env) == 0
1074 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1076 return CP_ACCESS_OK;
1079 return pmreg_access(env, ri, isread);
1083 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1084 * We use these to decide whether we need to wrap a write to MDCR_EL2
1085 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1087 #define MDCR_EL2_PMU_ENABLE_BITS (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD)
1088 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1090 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1091 * the current EL, security state, and register configuration.
1093 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1096 bool e, p, u, nsk, nsu, nsh, m;
1097 bool enabled, prohibited = false, filtered;
1098 bool secure = arm_is_secure(env);
1099 int el = arm_current_el(env);
1100 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1101 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1103 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1107 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1108 (counter < hpmn || counter == 31)) {
1109 e = env->cp15.c9_pmcr & PMCRE;
1111 e = mdcr_el2 & MDCR_HPME;
1113 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1115 /* Is event counting prohibited? */
1116 if (el == 2 && (counter < hpmn || counter == 31)) {
1117 prohibited = mdcr_el2 & MDCR_HPMD;
1120 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1123 if (counter == 31) {
1125 * The cycle counter defaults to running. PMCR.DP says "disable
1126 * the cycle counter when event counting is prohibited".
1127 * Some MDCR bits disable the cycle counter specifically.
1129 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1130 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1132 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1135 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1140 if (counter == 31) {
1141 filter = env->cp15.pmccfiltr_el0;
1143 filter = env->cp15.c14_pmevtyper[counter];
1146 p = filter & PMXEVTYPER_P;
1147 u = filter & PMXEVTYPER_U;
1148 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1149 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1150 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1151 m = arm_el_is_aa64(env, 1) &&
1152 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1155 filtered = secure ? u : u != nsu;
1156 } else if (el == 1) {
1157 filtered = secure ? p : p != nsk;
1158 } else if (el == 2) {
1164 if (counter != 31) {
1166 * If not checking PMCCNTR, ensure the counter is setup to an event we
1169 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1170 if (!event_supported(event)) {
1175 return enabled && !prohibited && !filtered;
1178 static void pmu_update_irq(CPUARMState *env)
1180 ARMCPU *cpu = env_archcpu(env);
1181 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1182 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1185 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1188 * Return true if the clock divider is enabled and the cycle counter
1189 * is supposed to tick only once every 64 clock cycles. This is
1190 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1191 * (64-bit) cycle counter PMCR.D has no effect.
1193 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1197 * Ensure c15_ccnt is the guest-visible count so that operations such as
1198 * enabling/disabling the counter or filtering, modifying the count itself,
1199 * etc. can be done logically. This is essentially a no-op if the counter is
1200 * not enabled at the time of the call.
1202 static void pmccntr_op_start(CPUARMState *env)
1204 uint64_t cycles = cycles_get_count(env);
1206 if (pmu_counter_enabled(env, 31)) {
1207 uint64_t eff_cycles = cycles;
1208 if (pmccntr_clockdiv_enabled(env)) {
1212 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1214 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1215 1ull << 63 : 1ull << 31;
1216 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1217 env->cp15.c9_pmovsr |= (1ULL << 31);
1218 pmu_update_irq(env);
1221 env->cp15.c15_ccnt = new_pmccntr;
1223 env->cp15.c15_ccnt_delta = cycles;
1227 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1228 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1231 static void pmccntr_op_finish(CPUARMState *env)
1233 if (pmu_counter_enabled(env, 31)) {
1234 #ifndef CONFIG_USER_ONLY
1235 /* Calculate when the counter will next overflow */
1236 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1237 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1238 remaining_cycles = (uint32_t)remaining_cycles;
1240 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1242 if (overflow_in > 0) {
1243 int64_t overflow_at;
1245 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1246 overflow_in, &overflow_at)) {
1247 ARMCPU *cpu = env_archcpu(env);
1248 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1253 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1254 if (pmccntr_clockdiv_enabled(env)) {
1257 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1261 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1264 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1266 if (event_supported(event)) {
1267 uint16_t event_idx = supported_event_map[event];
1268 count = pm_events[event_idx].get_count(env);
1271 if (pmu_counter_enabled(env, counter)) {
1272 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1274 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1275 env->cp15.c9_pmovsr |= (1 << counter);
1276 pmu_update_irq(env);
1278 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1280 env->cp15.c14_pmevcntr_delta[counter] = count;
1283 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1285 if (pmu_counter_enabled(env, counter)) {
1286 #ifndef CONFIG_USER_ONLY
1287 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1288 uint16_t event_idx = supported_event_map[event];
1289 uint64_t delta = UINT32_MAX -
1290 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1291 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1293 if (overflow_in > 0) {
1294 int64_t overflow_at;
1296 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1297 overflow_in, &overflow_at)) {
1298 ARMCPU *cpu = env_archcpu(env);
1299 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1304 env->cp15.c14_pmevcntr_delta[counter] -=
1305 env->cp15.c14_pmevcntr[counter];
1309 void pmu_op_start(CPUARMState *env)
1312 pmccntr_op_start(env);
1313 for (i = 0; i < pmu_num_counters(env); i++) {
1314 pmevcntr_op_start(env, i);
1318 void pmu_op_finish(CPUARMState *env)
1321 pmccntr_op_finish(env);
1322 for (i = 0; i < pmu_num_counters(env); i++) {
1323 pmevcntr_op_finish(env, i);
1327 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1329 pmu_op_start(&cpu->env);
1332 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1334 pmu_op_finish(&cpu->env);
1337 void arm_pmu_timer_cb(void *opaque)
1339 ARMCPU *cpu = opaque;
1342 * Update all the counter values based on the current underlying counts,
1343 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1344 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1345 * counter may expire.
1347 pmu_op_start(&cpu->env);
1348 pmu_op_finish(&cpu->env);
1351 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1356 if (value & PMCRC) {
1357 /* The counter has been reset */
1358 env->cp15.c15_ccnt = 0;
1361 if (value & PMCRP) {
1363 for (i = 0; i < pmu_num_counters(env); i++) {
1364 env->cp15.c14_pmevcntr[i] = 0;
1368 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1369 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1374 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1378 for (i = 0; i < pmu_num_counters(env); i++) {
1379 /* Increment a counter's count iff: */
1380 if ((value & (1 << i)) && /* counter's bit is set */
1381 /* counter is enabled and not filtered */
1382 pmu_counter_enabled(env, i) &&
1383 /* counter is SW_INCR */
1384 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1385 pmevcntr_op_start(env, i);
1388 * Detect if this write causes an overflow since we can't predict
1389 * PMSWINC overflows like we can for other events
1391 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1393 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1394 env->cp15.c9_pmovsr |= (1 << i);
1395 pmu_update_irq(env);
1398 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1400 pmevcntr_op_finish(env, i);
1405 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1408 pmccntr_op_start(env);
1409 ret = env->cp15.c15_ccnt;
1410 pmccntr_op_finish(env);
1414 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1417 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1418 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1419 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1422 env->cp15.c9_pmselr = value & 0x1f;
1425 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1428 pmccntr_op_start(env);
1429 env->cp15.c15_ccnt = value;
1430 pmccntr_op_finish(env);
1433 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1436 uint64_t cur_val = pmccntr_read(env, NULL);
1438 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1441 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1444 pmccntr_op_start(env);
1445 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1446 pmccntr_op_finish(env);
1449 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1452 pmccntr_op_start(env);
1453 /* M is not accessible from AArch32 */
1454 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1455 (value & PMCCFILTR);
1456 pmccntr_op_finish(env);
1459 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1461 /* M is not visible in AArch32 */
1462 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1465 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1469 value &= pmu_counter_mask(env);
1470 env->cp15.c9_pmcnten |= value;
1474 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478 value &= pmu_counter_mask(env);
1479 env->cp15.c9_pmcnten &= ~value;
1483 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1486 value &= pmu_counter_mask(env);
1487 env->cp15.c9_pmovsr &= ~value;
1488 pmu_update_irq(env);
1491 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1494 value &= pmu_counter_mask(env);
1495 env->cp15.c9_pmovsr |= value;
1496 pmu_update_irq(env);
1499 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1500 uint64_t value, const uint8_t counter)
1502 if (counter == 31) {
1503 pmccfiltr_write(env, ri, value);
1504 } else if (counter < pmu_num_counters(env)) {
1505 pmevcntr_op_start(env, counter);
1508 * If this counter's event type is changing, store the current
1509 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1510 * pmevcntr_op_finish has the correct baseline when it converts back to
1513 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1514 PMXEVTYPER_EVTCOUNT;
1515 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1516 if (old_event != new_event) {
1518 if (event_supported(new_event)) {
1519 uint16_t event_idx = supported_event_map[new_event];
1520 count = pm_events[event_idx].get_count(env);
1522 env->cp15.c14_pmevcntr_delta[counter] = count;
1525 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1526 pmevcntr_op_finish(env, counter);
1528 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1529 * PMSELR value is equal to or greater than the number of implemented
1530 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1534 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1535 const uint8_t counter)
1537 if (counter == 31) {
1538 return env->cp15.pmccfiltr_el0;
1539 } else if (counter < pmu_num_counters(env)) {
1540 return env->cp15.c14_pmevtyper[counter];
1543 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1544 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1550 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1553 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1554 pmevtyper_write(env, ri, value, counter);
1557 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1560 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1561 env->cp15.c14_pmevtyper[counter] = value;
1564 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1565 * pmu_op_finish calls when loading saved state for a migration. Because
1566 * we're potentially updating the type of event here, the value written to
1567 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1568 * different counter type. Therefore, we need to set this value to the
1569 * current count for the counter type we're writing so that pmu_op_finish
1570 * has the correct count for its calculation.
1572 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1573 if (event_supported(event)) {
1574 uint16_t event_idx = supported_event_map[event];
1575 env->cp15.c14_pmevcntr_delta[counter] =
1576 pm_events[event_idx].get_count(env);
1580 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1582 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1583 return pmevtyper_read(env, ri, counter);
1586 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1589 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1592 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1594 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1597 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1598 uint64_t value, uint8_t counter)
1600 if (counter < pmu_num_counters(env)) {
1601 pmevcntr_op_start(env, counter);
1602 env->cp15.c14_pmevcntr[counter] = value;
1603 pmevcntr_op_finish(env, counter);
1606 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1607 * are CONSTRAINED UNPREDICTABLE.
1611 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1614 if (counter < pmu_num_counters(env)) {
1616 pmevcntr_op_start(env, counter);
1617 ret = env->cp15.c14_pmevcntr[counter];
1618 pmevcntr_op_finish(env, counter);
1621 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1622 * are CONSTRAINED UNPREDICTABLE. */
1627 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1630 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1631 pmevcntr_write(env, ri, value, counter);
1634 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1636 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1637 return pmevcntr_read(env, ri, counter);
1640 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1643 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1644 assert(counter < pmu_num_counters(env));
1645 env->cp15.c14_pmevcntr[counter] = value;
1646 pmevcntr_write(env, ri, value, counter);
1649 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1651 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1652 assert(counter < pmu_num_counters(env));
1653 return env->cp15.c14_pmevcntr[counter];
1656 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1659 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1662 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1664 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1667 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1670 if (arm_feature(env, ARM_FEATURE_V8)) {
1671 env->cp15.c9_pmuserenr = value & 0xf;
1673 env->cp15.c9_pmuserenr = value & 1;
1677 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1680 /* We have no event counters so only the C bit can be changed */
1681 value &= pmu_counter_mask(env);
1682 env->cp15.c9_pminten |= value;
1683 pmu_update_irq(env);
1686 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1689 value &= pmu_counter_mask(env);
1690 env->cp15.c9_pminten &= ~value;
1691 pmu_update_irq(env);
1694 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1697 /* Note that even though the AArch64 view of this register has bits
1698 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1699 * architectural requirements for bits which are RES0 only in some
1700 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1701 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1703 raw_write(env, ri, value & ~0x1FULL);
1706 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1708 /* Begin with base v8.0 state. */
1709 uint32_t valid_mask = 0x3fff;
1710 ARMCPU *cpu = env_archcpu(env);
1713 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1714 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1715 * Instead, choose the format based on the mode of EL3.
1717 if (arm_el_is_aa64(env, 3)) {
1718 value |= SCR_FW | SCR_AW; /* RES1 */
1719 valid_mask &= ~SCR_NET; /* RES0 */
1721 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1722 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1723 value |= SCR_RW; /* RAO/WI */
1725 if (cpu_isar_feature(aa64_ras, cpu)) {
1726 valid_mask |= SCR_TERR;
1728 if (cpu_isar_feature(aa64_lor, cpu)) {
1729 valid_mask |= SCR_TLOR;
1731 if (cpu_isar_feature(aa64_pauth, cpu)) {
1732 valid_mask |= SCR_API | SCR_APK;
1734 if (cpu_isar_feature(aa64_sel2, cpu)) {
1735 valid_mask |= SCR_EEL2;
1737 if (cpu_isar_feature(aa64_mte, cpu)) {
1738 valid_mask |= SCR_ATA;
1740 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1741 valid_mask |= SCR_ENSCXT;
1743 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1744 valid_mask |= SCR_EASE | SCR_NMEA;
1747 valid_mask &= ~(SCR_RW | SCR_ST);
1748 if (cpu_isar_feature(aa32_ras, cpu)) {
1749 valid_mask |= SCR_TERR;
1753 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1754 valid_mask &= ~SCR_HCE;
1756 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1757 * supported if EL2 exists. The bit is UNK/SBZP when
1758 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1759 * when EL2 is unavailable.
1760 * On ARMv8, this bit is always available.
1762 if (arm_feature(env, ARM_FEATURE_V7) &&
1763 !arm_feature(env, ARM_FEATURE_V8)) {
1764 valid_mask &= ~SCR_SMD;
1768 /* Clear all-context RES0 bits. */
1769 value &= valid_mask;
1770 raw_write(env, ri, value);
1773 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1776 * scr_write will set the RES1 bits on an AArch64-only CPU.
1777 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1779 scr_write(env, ri, 0);
1782 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1783 const ARMCPRegInfo *ri,
1786 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1787 return CP_ACCESS_TRAP_EL2;
1790 return CP_ACCESS_OK;
1793 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1795 ARMCPU *cpu = env_archcpu(env);
1797 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1800 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1801 ri->secure & ARM_CP_SECSTATE_S);
1803 return cpu->ccsidr[index];
1806 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1809 raw_write(env, ri, value & 0xf);
1812 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1814 CPUState *cs = env_cpu(env);
1815 bool el1 = arm_current_el(env) == 1;
1816 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1819 if (hcr_el2 & HCR_IMO) {
1820 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1824 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1829 if (hcr_el2 & HCR_FMO) {
1830 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1834 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1839 if (hcr_el2 & HCR_AMO) {
1840 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1848 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1851 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1852 return CP_ACCESS_TRAP_EL2;
1855 return CP_ACCESS_OK;
1858 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1861 if (arm_feature(env, ARM_FEATURE_V8)) {
1862 return access_aa64_tid1(env, ri, isread);
1865 return CP_ACCESS_OK;
1868 static const ARMCPRegInfo v7_cp_reginfo[] = {
1869 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1870 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1871 .access = PL1_W, .type = ARM_CP_NOP },
1872 /* Performance monitors are implementation defined in v7,
1873 * but with an ARM recommended set of registers, which we
1876 * Performance registers fall into three categories:
1877 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1878 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1879 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1880 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1881 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1883 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1884 .access = PL0_RW, .type = ARM_CP_ALIAS,
1885 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1886 .writefn = pmcntenset_write,
1887 .accessfn = pmreg_access,
1888 .raw_writefn = raw_write },
1889 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1890 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1891 .access = PL0_RW, .accessfn = pmreg_access,
1892 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1893 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1894 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1896 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1897 .accessfn = pmreg_access,
1898 .writefn = pmcntenclr_write,
1899 .type = ARM_CP_ALIAS },
1900 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1901 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1902 .access = PL0_RW, .accessfn = pmreg_access,
1903 .type = ARM_CP_ALIAS,
1904 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1905 .writefn = pmcntenclr_write },
1906 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1907 .access = PL0_RW, .type = ARM_CP_IO,
1908 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1909 .accessfn = pmreg_access,
1910 .writefn = pmovsr_write,
1911 .raw_writefn = raw_write },
1912 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1913 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1914 .access = PL0_RW, .accessfn = pmreg_access,
1915 .type = ARM_CP_ALIAS | ARM_CP_IO,
1916 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1917 .writefn = pmovsr_write,
1918 .raw_writefn = raw_write },
1919 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1920 .access = PL0_W, .accessfn = pmreg_access_swinc,
1921 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1922 .writefn = pmswinc_write },
1923 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1924 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1925 .access = PL0_W, .accessfn = pmreg_access_swinc,
1926 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1927 .writefn = pmswinc_write },
1928 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1929 .access = PL0_RW, .type = ARM_CP_ALIAS,
1930 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1931 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1932 .raw_writefn = raw_write},
1933 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1934 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1935 .access = PL0_RW, .accessfn = pmreg_access_selr,
1936 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1937 .writefn = pmselr_write, .raw_writefn = raw_write, },
1938 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1939 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1940 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1941 .accessfn = pmreg_access_ccntr },
1942 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1943 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1944 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1946 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1947 .readfn = pmccntr_read, .writefn = pmccntr_write,
1948 .raw_readfn = raw_read, .raw_writefn = raw_write, },
1949 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
1950 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
1951 .access = PL0_RW, .accessfn = pmreg_access,
1952 .type = ARM_CP_ALIAS | ARM_CP_IO,
1954 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1955 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1956 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
1957 .access = PL0_RW, .accessfn = pmreg_access,
1959 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1961 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1962 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1963 .accessfn = pmreg_access,
1964 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1965 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1966 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1967 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1968 .accessfn = pmreg_access,
1969 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1970 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1971 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1972 .accessfn = pmreg_access_xevcntr,
1973 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
1974 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
1975 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
1976 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1977 .accessfn = pmreg_access_xevcntr,
1978 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
1979 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1980 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1981 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
1983 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1984 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1985 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1986 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1987 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1989 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1990 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1991 .access = PL1_RW, .accessfn = access_tpm,
1992 .type = ARM_CP_ALIAS | ARM_CP_IO,
1993 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1995 .writefn = pmintenset_write, .raw_writefn = raw_write },
1996 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1997 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1998 .access = PL1_RW, .accessfn = access_tpm,
2000 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2001 .writefn = pmintenset_write, .raw_writefn = raw_write,
2002 .resetvalue = 0x0 },
2003 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2004 .access = PL1_RW, .accessfn = access_tpm,
2005 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2006 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2007 .writefn = pmintenclr_write, },
2008 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2009 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2010 .access = PL1_RW, .accessfn = access_tpm,
2011 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2012 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2013 .writefn = pmintenclr_write },
2014 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2015 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2017 .accessfn = access_aa64_tid2,
2018 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2019 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2020 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2022 .accessfn = access_aa64_tid2,
2023 .writefn = csselr_write, .resetvalue = 0,
2024 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2025 offsetof(CPUARMState, cp15.csselr_ns) } },
2026 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2027 * just RAZ for all cores:
2029 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2030 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2031 .access = PL1_R, .type = ARM_CP_CONST,
2032 .accessfn = access_aa64_tid1,
2034 /* Auxiliary fault status registers: these also are IMPDEF, and we
2035 * choose to RAZ/WI for all cores.
2037 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2038 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2039 .access = PL1_RW, .accessfn = access_tvm_trvm,
2040 .type = ARM_CP_CONST, .resetvalue = 0 },
2041 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2042 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2043 .access = PL1_RW, .accessfn = access_tvm_trvm,
2044 .type = ARM_CP_CONST, .resetvalue = 0 },
2045 /* MAIR can just read-as-written because we don't implement caches
2046 * and so don't need to care about memory attributes.
2048 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2049 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2050 .access = PL1_RW, .accessfn = access_tvm_trvm,
2051 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2053 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2054 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2055 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2057 /* For non-long-descriptor page tables these are PRRR and NMRR;
2058 * regardless they still act as reads-as-written for QEMU.
2060 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2061 * allows them to assign the correct fieldoffset based on the endianness
2062 * handled in the field definitions.
2064 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2065 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2066 .access = PL1_RW, .accessfn = access_tvm_trvm,
2067 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2068 offsetof(CPUARMState, cp15.mair0_ns) },
2069 .resetfn = arm_cp_reset_ignore },
2070 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2071 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2072 .access = PL1_RW, .accessfn = access_tvm_trvm,
2073 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2074 offsetof(CPUARMState, cp15.mair1_ns) },
2075 .resetfn = arm_cp_reset_ignore },
2076 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2077 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2078 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2079 /* 32 bit ITLB invalidates */
2080 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2081 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2082 .writefn = tlbiall_write },
2083 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2084 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2085 .writefn = tlbimva_write },
2086 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2087 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2088 .writefn = tlbiasid_write },
2089 /* 32 bit DTLB invalidates */
2090 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2091 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2092 .writefn = tlbiall_write },
2093 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2094 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2095 .writefn = tlbimva_write },
2096 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2097 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2098 .writefn = tlbiasid_write },
2099 /* 32 bit TLB invalidates */
2100 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2101 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2102 .writefn = tlbiall_write },
2103 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2104 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2105 .writefn = tlbimva_write },
2106 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2107 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2108 .writefn = tlbiasid_write },
2109 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2110 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2111 .writefn = tlbimvaa_write },
2114 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2115 /* 32 bit TLB invalidates, Inner Shareable */
2116 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2117 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2118 .writefn = tlbiall_is_write },
2119 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2120 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2121 .writefn = tlbimva_is_write },
2122 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2123 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2124 .writefn = tlbiasid_is_write },
2125 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2126 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2127 .writefn = tlbimvaa_is_write },
2130 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2131 /* PMOVSSET is not implemented in v7 before v7ve */
2132 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2133 .access = PL0_RW, .accessfn = pmreg_access,
2134 .type = ARM_CP_ALIAS | ARM_CP_IO,
2135 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2136 .writefn = pmovsset_write,
2137 .raw_writefn = raw_write },
2138 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2139 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2140 .access = PL0_RW, .accessfn = pmreg_access,
2141 .type = ARM_CP_ALIAS | ARM_CP_IO,
2142 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2143 .writefn = pmovsset_write,
2144 .raw_writefn = raw_write },
2147 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2154 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2158 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2159 * at all, so we don't need to check whether we're v8A.
2161 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2162 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2163 return CP_ACCESS_TRAP_EL2;
2165 return CP_ACCESS_OK;
2168 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2171 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2172 return CP_ACCESS_TRAP;
2174 return teecr_access(env, ri, isread);
2177 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2178 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2179 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2181 .writefn = teecr_write, .accessfn = teecr_access },
2182 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2183 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2184 .accessfn = teehbr_access, .resetvalue = 0 },
2187 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2188 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2189 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2191 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2192 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2194 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2195 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2196 .resetfn = arm_cp_reset_ignore },
2197 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2198 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2199 .access = PL0_R|PL1_W,
2200 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2202 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2203 .access = PL0_R|PL1_W,
2204 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2205 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2206 .resetfn = arm_cp_reset_ignore },
2207 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2208 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2210 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2211 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2213 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2214 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2218 #ifndef CONFIG_USER_ONLY
2220 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2223 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2224 * Writable only at the highest implemented exception level.
2226 int el = arm_current_el(env);
2232 hcr = arm_hcr_el2_eff(env);
2233 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2234 cntkctl = env->cp15.cnthctl_el2;
2236 cntkctl = env->cp15.c14_cntkctl;
2238 if (!extract32(cntkctl, 0, 2)) {
2239 return CP_ACCESS_TRAP;
2243 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2244 arm_is_secure_below_el3(env)) {
2245 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2246 return CP_ACCESS_TRAP_UNCATEGORIZED;
2254 if (!isread && el < arm_highest_el(env)) {
2255 return CP_ACCESS_TRAP_UNCATEGORIZED;
2258 return CP_ACCESS_OK;
2261 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2264 unsigned int cur_el = arm_current_el(env);
2265 bool has_el2 = arm_is_el2_enabled(env);
2266 uint64_t hcr = arm_hcr_el2_eff(env);
2270 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2271 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2272 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2273 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2276 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2277 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2278 return CP_ACCESS_TRAP;
2281 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2282 if (hcr & HCR_E2H) {
2283 if (timeridx == GTIMER_PHYS &&
2284 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2285 return CP_ACCESS_TRAP_EL2;
2288 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2289 if (has_el2 && timeridx == GTIMER_PHYS &&
2290 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2291 return CP_ACCESS_TRAP_EL2;
2297 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2298 if (has_el2 && timeridx == GTIMER_PHYS &&
2300 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2301 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2302 return CP_ACCESS_TRAP_EL2;
2306 return CP_ACCESS_OK;
2309 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2312 unsigned int cur_el = arm_current_el(env);
2313 bool has_el2 = arm_is_el2_enabled(env);
2314 uint64_t hcr = arm_hcr_el2_eff(env);
2318 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2319 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2320 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2321 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2325 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2326 * EL0 if EL0[PV]TEN is zero.
2328 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2329 return CP_ACCESS_TRAP;
2334 if (has_el2 && timeridx == GTIMER_PHYS) {
2335 if (hcr & HCR_E2H) {
2336 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2337 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2338 return CP_ACCESS_TRAP_EL2;
2341 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2342 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2343 return CP_ACCESS_TRAP_EL2;
2349 return CP_ACCESS_OK;
2352 static CPAccessResult gt_pct_access(CPUARMState *env,
2353 const ARMCPRegInfo *ri,
2356 return gt_counter_access(env, GTIMER_PHYS, isread);
2359 static CPAccessResult gt_vct_access(CPUARMState *env,
2360 const ARMCPRegInfo *ri,
2363 return gt_counter_access(env, GTIMER_VIRT, isread);
2366 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2369 return gt_timer_access(env, GTIMER_PHYS, isread);
2372 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2375 return gt_timer_access(env, GTIMER_VIRT, isread);
2378 static CPAccessResult gt_stimer_access(CPUARMState *env,
2379 const ARMCPRegInfo *ri,
2382 /* The AArch64 register view of the secure physical timer is
2383 * always accessible from EL3, and configurably accessible from
2386 switch (arm_current_el(env)) {
2388 if (!arm_is_secure(env)) {
2389 return CP_ACCESS_TRAP;
2391 if (!(env->cp15.scr_el3 & SCR_ST)) {
2392 return CP_ACCESS_TRAP_EL3;
2394 return CP_ACCESS_OK;
2397 return CP_ACCESS_TRAP;
2399 return CP_ACCESS_OK;
2401 g_assert_not_reached();
2405 static uint64_t gt_get_countervalue(CPUARMState *env)
2407 ARMCPU *cpu = env_archcpu(env);
2409 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2412 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2414 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2417 /* Timer enabled: calculate and set current ISTATUS, irq, and
2418 * reset timer to when ISTATUS next has to change
2420 uint64_t offset = timeridx == GTIMER_VIRT ?
2421 cpu->env.cp15.cntvoff_el2 : 0;
2422 uint64_t count = gt_get_countervalue(&cpu->env);
2423 /* Note that this must be unsigned 64 bit arithmetic: */
2424 int istatus = count - offset >= gt->cval;
2428 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2430 irqstate = (istatus && !(gt->ctl & 2));
2431 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2434 /* Next transition is when count rolls back over to zero */
2435 nexttick = UINT64_MAX;
2437 /* Next transition is when we hit cval */
2438 nexttick = gt->cval + offset;
2440 /* Note that the desired next expiry time might be beyond the
2441 * signed-64-bit range of a QEMUTimer -- in this case we just
2442 * set the timer for as far in the future as possible. When the
2443 * timer expires we will reset the timer for any remaining period.
2445 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2446 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2448 timer_mod(cpu->gt_timer[timeridx], nexttick);
2450 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2452 /* Timer disabled: ISTATUS and timer output always clear */
2454 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2455 timer_del(cpu->gt_timer[timeridx]);
2456 trace_arm_gt_recalc_disabled(timeridx);
2460 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2463 ARMCPU *cpu = env_archcpu(env);
2465 timer_del(cpu->gt_timer[timeridx]);
2468 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2470 return gt_get_countervalue(env);
2473 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2477 switch (arm_current_el(env)) {
2479 hcr = arm_hcr_el2_eff(env);
2480 if (hcr & HCR_E2H) {
2485 hcr = arm_hcr_el2_eff(env);
2486 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2492 return env->cp15.cntvoff_el2;
2495 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2497 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2500 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2504 trace_arm_gt_cval_write(timeridx, value);
2505 env->cp15.c14_timer[timeridx].cval = value;
2506 gt_recalc_timer(env_archcpu(env), timeridx);
2509 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2512 uint64_t offset = 0;
2516 case GTIMER_HYPVIRT:
2517 offset = gt_virt_cnt_offset(env);
2521 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2522 (gt_get_countervalue(env) - offset));
2525 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2529 uint64_t offset = 0;
2533 case GTIMER_HYPVIRT:
2534 offset = gt_virt_cnt_offset(env);
2538 trace_arm_gt_tval_write(timeridx, value);
2539 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2540 sextract64(value, 0, 32);
2541 gt_recalc_timer(env_archcpu(env), timeridx);
2544 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2548 ARMCPU *cpu = env_archcpu(env);
2549 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2551 trace_arm_gt_ctl_write(timeridx, value);
2552 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2553 if ((oldval ^ value) & 1) {
2554 /* Enable toggled */
2555 gt_recalc_timer(cpu, timeridx);
2556 } else if ((oldval ^ value) & 2) {
2557 /* IMASK toggled: don't need to recalculate,
2558 * just set the interrupt line based on ISTATUS
2560 int irqstate = (oldval & 4) && !(value & 2);
2562 trace_arm_gt_imask_toggle(timeridx, irqstate);
2563 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2567 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2569 gt_timer_reset(env, ri, GTIMER_PHYS);
2572 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2575 gt_cval_write(env, ri, GTIMER_PHYS, value);
2578 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2580 return gt_tval_read(env, ri, GTIMER_PHYS);
2583 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2586 gt_tval_write(env, ri, GTIMER_PHYS, value);
2589 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2592 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2595 static int gt_phys_redir_timeridx(CPUARMState *env)
2597 switch (arm_mmu_idx(env)) {
2598 case ARMMMUIdx_E20_0:
2599 case ARMMMUIdx_E20_2:
2600 case ARMMMUIdx_E20_2_PAN:
2601 case ARMMMUIdx_SE20_0:
2602 case ARMMMUIdx_SE20_2:
2603 case ARMMMUIdx_SE20_2_PAN:
2610 static int gt_virt_redir_timeridx(CPUARMState *env)
2612 switch (arm_mmu_idx(env)) {
2613 case ARMMMUIdx_E20_0:
2614 case ARMMMUIdx_E20_2:
2615 case ARMMMUIdx_E20_2_PAN:
2616 case ARMMMUIdx_SE20_0:
2617 case ARMMMUIdx_SE20_2:
2618 case ARMMMUIdx_SE20_2_PAN:
2619 return GTIMER_HYPVIRT;
2625 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2626 const ARMCPRegInfo *ri)
2628 int timeridx = gt_phys_redir_timeridx(env);
2629 return env->cp15.c14_timer[timeridx].cval;
2632 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2635 int timeridx = gt_phys_redir_timeridx(env);
2636 gt_cval_write(env, ri, timeridx, value);
2639 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2640 const ARMCPRegInfo *ri)
2642 int timeridx = gt_phys_redir_timeridx(env);
2643 return gt_tval_read(env, ri, timeridx);
2646 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2649 int timeridx = gt_phys_redir_timeridx(env);
2650 gt_tval_write(env, ri, timeridx, value);
2653 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2654 const ARMCPRegInfo *ri)
2656 int timeridx = gt_phys_redir_timeridx(env);
2657 return env->cp15.c14_timer[timeridx].ctl;
2660 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2663 int timeridx = gt_phys_redir_timeridx(env);
2664 gt_ctl_write(env, ri, timeridx, value);
2667 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2669 gt_timer_reset(env, ri, GTIMER_VIRT);
2672 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2675 gt_cval_write(env, ri, GTIMER_VIRT, value);
2678 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2680 return gt_tval_read(env, ri, GTIMER_VIRT);
2683 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2686 gt_tval_write(env, ri, GTIMER_VIRT, value);
2689 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2692 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2695 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2698 ARMCPU *cpu = env_archcpu(env);
2700 trace_arm_gt_cntvoff_write(value);
2701 raw_write(env, ri, value);
2702 gt_recalc_timer(cpu, GTIMER_VIRT);
2705 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2706 const ARMCPRegInfo *ri)
2708 int timeridx = gt_virt_redir_timeridx(env);
2709 return env->cp15.c14_timer[timeridx].cval;
2712 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2715 int timeridx = gt_virt_redir_timeridx(env);
2716 gt_cval_write(env, ri, timeridx, value);
2719 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2720 const ARMCPRegInfo *ri)
2722 int timeridx = gt_virt_redir_timeridx(env);
2723 return gt_tval_read(env, ri, timeridx);
2726 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2729 int timeridx = gt_virt_redir_timeridx(env);
2730 gt_tval_write(env, ri, timeridx, value);
2733 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2734 const ARMCPRegInfo *ri)
2736 int timeridx = gt_virt_redir_timeridx(env);
2737 return env->cp15.c14_timer[timeridx].ctl;
2740 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2743 int timeridx = gt_virt_redir_timeridx(env);
2744 gt_ctl_write(env, ri, timeridx, value);
2747 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2749 gt_timer_reset(env, ri, GTIMER_HYP);
2752 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2755 gt_cval_write(env, ri, GTIMER_HYP, value);
2758 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2760 return gt_tval_read(env, ri, GTIMER_HYP);
2763 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2766 gt_tval_write(env, ri, GTIMER_HYP, value);
2769 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2772 gt_ctl_write(env, ri, GTIMER_HYP, value);
2775 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2777 gt_timer_reset(env, ri, GTIMER_SEC);
2780 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2783 gt_cval_write(env, ri, GTIMER_SEC, value);
2786 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2788 return gt_tval_read(env, ri, GTIMER_SEC);
2791 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2794 gt_tval_write(env, ri, GTIMER_SEC, value);
2797 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2800 gt_ctl_write(env, ri, GTIMER_SEC, value);
2803 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2805 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2808 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2811 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2814 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2816 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2819 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2822 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2825 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2828 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2831 void arm_gt_ptimer_cb(void *opaque)
2833 ARMCPU *cpu = opaque;
2835 gt_recalc_timer(cpu, GTIMER_PHYS);
2838 void arm_gt_vtimer_cb(void *opaque)
2840 ARMCPU *cpu = opaque;
2842 gt_recalc_timer(cpu, GTIMER_VIRT);
2845 void arm_gt_htimer_cb(void *opaque)
2847 ARMCPU *cpu = opaque;
2849 gt_recalc_timer(cpu, GTIMER_HYP);
2852 void arm_gt_stimer_cb(void *opaque)
2854 ARMCPU *cpu = opaque;
2856 gt_recalc_timer(cpu, GTIMER_SEC);
2859 void arm_gt_hvtimer_cb(void *opaque)
2861 ARMCPU *cpu = opaque;
2863 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
2866 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2868 ARMCPU *cpu = env_archcpu(env);
2870 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2873 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2874 /* Note that CNTFRQ is purely reads-as-written for the benefit
2875 * of software; writing it doesn't actually change the timer frequency.
2876 * Our reset value matches the fixed frequency we implement the timer at.
2878 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2879 .type = ARM_CP_ALIAS,
2880 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2881 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2883 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2884 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2885 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2886 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2887 .resetfn = arm_gt_cntfrq_reset,
2889 /* overall control: mostly access permissions */
2890 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2891 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2893 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2896 /* per-timer control */
2897 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2898 .secure = ARM_CP_SECSTATE_NS,
2899 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2900 .accessfn = gt_ptimer_access,
2901 .fieldoffset = offsetoflow32(CPUARMState,
2902 cp15.c14_timer[GTIMER_PHYS].ctl),
2903 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2904 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2906 { .name = "CNTP_CTL_S",
2907 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2908 .secure = ARM_CP_SECSTATE_S,
2909 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2910 .accessfn = gt_ptimer_access,
2911 .fieldoffset = offsetoflow32(CPUARMState,
2912 cp15.c14_timer[GTIMER_SEC].ctl),
2913 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2915 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2916 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2917 .type = ARM_CP_IO, .access = PL0_RW,
2918 .accessfn = gt_ptimer_access,
2919 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2921 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2922 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2924 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2925 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2926 .accessfn = gt_vtimer_access,
2927 .fieldoffset = offsetoflow32(CPUARMState,
2928 cp15.c14_timer[GTIMER_VIRT].ctl),
2929 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2930 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2932 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2933 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2934 .type = ARM_CP_IO, .access = PL0_RW,
2935 .accessfn = gt_vtimer_access,
2936 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2938 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2939 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2941 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2942 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2943 .secure = ARM_CP_SECSTATE_NS,
2944 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2945 .accessfn = gt_ptimer_access,
2946 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2948 { .name = "CNTP_TVAL_S",
2949 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2950 .secure = ARM_CP_SECSTATE_S,
2951 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2952 .accessfn = gt_ptimer_access,
2953 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2955 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2956 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2957 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2958 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2959 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2961 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2962 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2963 .accessfn = gt_vtimer_access,
2964 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
2966 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2967 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2968 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2969 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2970 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
2972 /* The counter itself */
2973 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2974 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2975 .accessfn = gt_pct_access,
2976 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2978 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2979 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2980 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2981 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2983 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2984 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2985 .accessfn = gt_vct_access,
2986 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2988 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2989 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2990 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2991 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2993 /* Comparison value, indicating when the timer goes off */
2994 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2995 .secure = ARM_CP_SECSTATE_NS,
2997 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2998 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2999 .accessfn = gt_ptimer_access,
3000 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3001 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3003 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3004 .secure = ARM_CP_SECSTATE_S,
3006 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3007 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3008 .accessfn = gt_ptimer_access,
3009 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3011 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3012 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3015 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3016 .resetvalue = 0, .accessfn = gt_ptimer_access,
3017 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3018 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3020 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3022 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3023 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3024 .accessfn = gt_vtimer_access,
3025 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3026 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3028 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3029 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3032 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3033 .resetvalue = 0, .accessfn = gt_vtimer_access,
3034 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3035 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3037 /* Secure timer -- this is actually restricted to only EL3
3038 * and configurably Secure-EL1 via the accessfn.
3040 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3041 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3042 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3043 .accessfn = gt_stimer_access,
3044 .readfn = gt_sec_tval_read,
3045 .writefn = gt_sec_tval_write,
3046 .resetfn = gt_sec_timer_reset,
3048 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3049 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3050 .type = ARM_CP_IO, .access = PL1_RW,
3051 .accessfn = gt_stimer_access,
3052 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3054 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3056 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3057 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3058 .type = ARM_CP_IO, .access = PL1_RW,
3059 .accessfn = gt_stimer_access,
3060 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3061 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3065 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3068 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3069 return CP_ACCESS_TRAP;
3071 return CP_ACCESS_OK;
3076 /* In user-mode most of the generic timer registers are inaccessible
3077 * however modern kernels (4.12+) allow access to cntvct_el0
3080 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3082 ARMCPU *cpu = env_archcpu(env);
3084 /* Currently we have no support for QEMUTimer in linux-user so we
3085 * can't call gt_get_countervalue(env), instead we directly
3086 * call the lower level functions.
3088 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3091 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3092 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3093 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3094 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3095 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3096 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3098 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3099 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3100 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3101 .readfn = gt_virt_cnt_read,
3107 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3109 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3110 raw_write(env, ri, value);
3111 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3112 raw_write(env, ri, value & 0xfffff6ff);
3114 raw_write(env, ri, value & 0xfffff1ff);
3118 #ifndef CONFIG_USER_ONLY
3119 /* get_phys_addr() isn't present for user-mode-only targets */
3121 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3125 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3126 * Secure EL1 (which can only happen if EL3 is AArch64).
3127 * They are simply UNDEF if executed from NS EL1.
3128 * They function normally from EL2 or EL3.
3130 if (arm_current_el(env) == 1) {
3131 if (arm_is_secure_below_el3(env)) {
3132 if (env->cp15.scr_el3 & SCR_EEL2) {
3133 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3135 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3137 return CP_ACCESS_TRAP_UNCATEGORIZED;
3140 return CP_ACCESS_OK;
3144 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3145 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3148 target_ulong page_size;
3152 bool format64 = false;
3153 MemTxAttrs attrs = {};
3154 ARMMMUFaultInfo fi = {};
3155 ARMCacheAttrs cacheattrs = {};
3157 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3158 &prot, &page_size, &fi, &cacheattrs);
3161 * ATS operations only do S1 or S1+S2 translations, so we never
3162 * have to deal with the ARMCacheAttrs format for S2 only.
3164 assert(!cacheattrs.is_s2_format);
3168 * Some kinds of translation fault must cause exceptions rather
3169 * than being reported in the PAR.
3171 int current_el = arm_current_el(env);
3173 uint32_t syn, fsr, fsc;
3174 bool take_exc = false;
3176 if (fi.s1ptw && current_el == 1
3177 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3179 * Synchronous stage 2 fault on an access made as part of the
3180 * translation table walk for AT S1E0* or AT S1E1* insn
3181 * executed from NS EL1. If this is a synchronous external abort
3182 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3183 * to EL3. Otherwise the fault is taken as an exception to EL2,
3184 * and HPFAR_EL2 holds the faulting IPA.
3186 if (fi.type == ARMFault_SyncExternalOnWalk &&
3187 (env->cp15.scr_el3 & SCR_EA)) {
3190 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3191 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3192 env->cp15.hpfar_el2 |= HPFAR_NS;
3197 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3199 * Synchronous external aborts during a translation table walk
3200 * are taken as Data Abort exceptions.
3203 if (current_el == 3) {
3209 target_el = exception_target_el(env);
3215 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3216 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3217 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3218 fsr = arm_fi_to_lfsc(&fi);
3219 fsc = extract32(fsr, 0, 6);
3221 fsr = arm_fi_to_sfsc(&fi);
3225 * Report exception with ESR indicating a fault due to a
3226 * translation table walk for a cache maintenance instruction.
3228 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3229 fi.ea, 1, fi.s1ptw, 1, fsc);
3230 env->exception.vaddress = value;
3231 env->exception.fsr = fsr;
3232 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3238 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3241 * * TTBCR.EAE determines whether the result is returned using the
3242 * 32-bit or the 64-bit PAR format
3243 * * Instructions executed in Hyp mode always use the 64bit format
3245 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3246 * * The Non-secure TTBCR.EAE bit is set to 1
3247 * * The implementation includes EL2, and the value of HCR.VM is 1
3249 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3251 * ATS1Hx always uses the 64bit format.
3253 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3255 if (arm_feature(env, ARM_FEATURE_EL2)) {
3256 if (mmu_idx == ARMMMUIdx_E10_0 ||
3257 mmu_idx == ARMMMUIdx_E10_1 ||
3258 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3259 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3261 format64 |= arm_current_el(env) == 2;
3267 /* Create a 64-bit PAR */
3268 par64 = (1 << 11); /* LPAE bit always set */
3270 par64 |= phys_addr & ~0xfffULL;
3271 if (!attrs.secure) {
3272 par64 |= (1 << 9); /* NS */
3274 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3275 par64 |= cacheattrs.shareability << 7; /* SH */
3277 uint32_t fsr = arm_fi_to_lfsc(&fi);
3280 par64 |= (fsr & 0x3f) << 1; /* FS */
3282 par64 |= (1 << 9); /* S */
3285 par64 |= (1 << 8); /* PTW */
3289 /* fsr is a DFSR/IFSR value for the short descriptor
3290 * translation table format (with WnR always clear).
3291 * Convert it to a 32-bit PAR.
3294 /* We do not set any attribute bits in the PAR */
3295 if (page_size == (1 << 24)
3296 && arm_feature(env, ARM_FEATURE_V7)) {
3297 par64 = (phys_addr & 0xff000000) | (1 << 1);
3299 par64 = phys_addr & 0xfffff000;
3301 if (!attrs.secure) {
3302 par64 |= (1 << 9); /* NS */
3305 uint32_t fsr = arm_fi_to_sfsc(&fi);
3307 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3308 ((fsr & 0xf) << 1) | 1;
3313 #endif /* CONFIG_TCG */
3315 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3318 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3321 int el = arm_current_el(env);
3322 bool secure = arm_is_secure_below_el3(env);
3324 switch (ri->opc2 & 6) {
3326 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3329 mmu_idx = ARMMMUIdx_SE3;
3332 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3335 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3336 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3337 : ARMMMUIdx_Stage1_E1_PAN);
3339 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3343 g_assert_not_reached();
3347 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3350 mmu_idx = ARMMMUIdx_SE10_0;
3353 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3354 mmu_idx = ARMMMUIdx_Stage1_E0;
3357 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3360 g_assert_not_reached();
3364 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3365 mmu_idx = ARMMMUIdx_E10_1;
3368 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3369 mmu_idx = ARMMMUIdx_E10_0;
3372 g_assert_not_reached();
3375 par64 = do_ats_write(env, value, access_type, mmu_idx);
3377 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3379 /* Handled by hardware accelerator. */
3380 g_assert_not_reached();
3381 #endif /* CONFIG_TCG */
3384 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3388 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3391 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3393 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3395 /* Handled by hardware accelerator. */
3396 g_assert_not_reached();
3397 #endif /* CONFIG_TCG */
3400 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3403 if (arm_current_el(env) == 3 &&
3404 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3405 return CP_ACCESS_TRAP;
3407 return CP_ACCESS_OK;
3410 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3414 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3416 int secure = arm_is_secure_below_el3(env);
3418 switch (ri->opc2 & 6) {
3421 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3422 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3423 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3424 : ARMMMUIdx_Stage1_E1_PAN);
3426 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3429 case 4: /* AT S1E2R, AT S1E2W */
3430 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3432 case 6: /* AT S1E3R, AT S1E3W */
3433 mmu_idx = ARMMMUIdx_SE3;
3436 g_assert_not_reached();
3439 case 2: /* AT S1E0R, AT S1E0W */
3440 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3442 case 4: /* AT S12E1R, AT S12E1W */
3443 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3445 case 6: /* AT S12E0R, AT S12E0W */
3446 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3449 g_assert_not_reached();
3452 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3454 /* Handled by hardware accelerator. */
3455 g_assert_not_reached();
3456 #endif /* CONFIG_TCG */
3460 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3461 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3462 .access = PL1_RW, .resetvalue = 0,
3463 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3464 offsetoflow32(CPUARMState, cp15.par_ns) },
3465 .writefn = par_write },
3466 #ifndef CONFIG_USER_ONLY
3467 /* This underdecoding is safe because the reginfo is NO_RAW. */
3468 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3469 .access = PL1_W, .accessfn = ats_access,
3470 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3474 /* Return basic MPU access permission bits. */
3475 static uint32_t simple_mpu_ap_bits(uint32_t val)
3482 for (i = 0; i < 16; i += 2) {
3483 ret |= (val >> i) & mask;
3489 /* Pad basic MPU access permission bits to extended format. */
3490 static uint32_t extended_mpu_ap_bits(uint32_t val)
3497 for (i = 0; i < 16; i += 2) {
3498 ret |= (val & mask) << i;
3504 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3507 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3510 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3512 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3515 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3518 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3521 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3523 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3526 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3528 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3534 u32p += env->pmsav7.rnr[M_REG_NS];
3538 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3541 ARMCPU *cpu = env_archcpu(env);
3542 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3548 u32p += env->pmsav7.rnr[M_REG_NS];
3549 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3553 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3556 ARMCPU *cpu = env_archcpu(env);
3557 uint32_t nrgs = cpu->pmsav7_dregion;
3559 if (value >= nrgs) {
3560 qemu_log_mask(LOG_GUEST_ERROR,
3561 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3562 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3566 raw_write(env, ri, value);
3569 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3570 /* Reset for all these registers is handled in arm_cpu_reset(),
3571 * because the PMSAv7 is also used by M-profile CPUs, which do
3572 * not register cpregs but still need the state to be reset.
3574 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3575 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3576 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3577 .readfn = pmsav7_read, .writefn = pmsav7_write,
3578 .resetfn = arm_cp_reset_ignore },
3579 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3580 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3581 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3582 .readfn = pmsav7_read, .writefn = pmsav7_write,
3583 .resetfn = arm_cp_reset_ignore },
3584 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3585 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3586 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3587 .readfn = pmsav7_read, .writefn = pmsav7_write,
3588 .resetfn = arm_cp_reset_ignore },
3589 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3591 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3592 .writefn = pmsav7_rgnr_write,
3593 .resetfn = arm_cp_reset_ignore },
3596 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3597 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3598 .access = PL1_RW, .type = ARM_CP_ALIAS,
3599 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3600 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3601 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3602 .access = PL1_RW, .type = ARM_CP_ALIAS,
3603 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3604 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3605 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3607 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3609 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3611 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3613 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3615 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3616 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3618 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3619 /* Protection region base and size registers */
3620 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3621 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3622 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3623 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3624 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3625 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3626 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3627 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3628 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3629 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3630 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3631 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3632 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3633 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3634 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3635 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3636 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3637 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3638 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3639 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3640 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3641 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3642 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3643 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3646 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3649 ARMCPU *cpu = env_archcpu(env);
3651 if (!arm_feature(env, ARM_FEATURE_V8)) {
3652 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3654 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3655 * using Long-descriptor translation table format
3657 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3658 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3660 * In an implementation that includes the Security Extensions
3661 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3662 * Short-descriptor translation table format.
3664 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3670 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3671 /* With LPAE the TTBCR could result in a change of ASID
3672 * via the TTBCR.A1 bit, so do a TLB flush.
3674 tlb_flush(CPU(cpu));
3676 raw_write(env, ri, value);
3679 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3682 ARMCPU *cpu = env_archcpu(env);
3684 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3685 tlb_flush(CPU(cpu));
3686 raw_write(env, ri, value);
3689 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3692 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3693 if (cpreg_field_is_64bit(ri) &&
3694 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3695 ARMCPU *cpu = env_archcpu(env);
3696 tlb_flush(CPU(cpu));
3698 raw_write(env, ri, value);
3701 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3705 * If we are running with E2&0 regime, then an ASID is active.
3706 * Flush if that might be changing. Note we're not checking
3707 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3708 * holds the active ASID, only checking the field that might.
3710 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3711 (arm_hcr_el2_eff(env) & HCR_E2H)) {
3712 uint16_t mask = ARMMMUIdxBit_E20_2 |
3713 ARMMMUIdxBit_E20_2_PAN |
3716 if (arm_is_secure_below_el3(env)) {
3717 mask >>= ARM_MMU_IDX_A_NS;
3720 tlb_flush_by_mmuidx(env_cpu(env), mask);
3722 raw_write(env, ri, value);
3725 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3728 ARMCPU *cpu = env_archcpu(env);
3729 CPUState *cs = CPU(cpu);
3732 * A change in VMID to the stage2 page table (Stage2) invalidates
3733 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3735 if (raw_read(env, ri) != value) {
3736 uint16_t mask = ARMMMUIdxBit_E10_1 |
3737 ARMMMUIdxBit_E10_1_PAN |
3740 if (arm_is_secure_below_el3(env)) {
3741 mask >>= ARM_MMU_IDX_A_NS;
3744 tlb_flush_by_mmuidx(cs, mask);
3745 raw_write(env, ri, value);
3749 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3750 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3751 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
3752 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3753 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3754 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3755 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3756 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3757 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3758 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3759 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3760 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3761 offsetof(CPUARMState, cp15.dfar_ns) } },
3762 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3763 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3764 .access = PL1_RW, .accessfn = access_tvm_trvm,
3765 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3769 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3770 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3771 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3772 .access = PL1_RW, .accessfn = access_tvm_trvm,
3773 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3774 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3775 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3776 .access = PL1_RW, .accessfn = access_tvm_trvm,
3777 .writefn = vmsa_ttbr_write, .resetvalue = 0,
3778 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3779 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3780 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3781 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3782 .access = PL1_RW, .accessfn = access_tvm_trvm,
3783 .writefn = vmsa_ttbr_write, .resetvalue = 0,
3784 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3785 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3786 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3787 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3788 .access = PL1_RW, .accessfn = access_tvm_trvm,
3789 .writefn = vmsa_tcr_el12_write,
3790 .raw_writefn = raw_write,
3792 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3793 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3794 .access = PL1_RW, .accessfn = access_tvm_trvm,
3795 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3796 .raw_writefn = raw_write,
3797 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3798 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3801 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3802 * qemu tlbs nor adjusting cached masks.
3804 static const ARMCPRegInfo ttbcr2_reginfo = {
3805 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3806 .access = PL1_RW, .accessfn = access_tvm_trvm,
3807 .type = ARM_CP_ALIAS,
3808 .bank_fieldoffsets = {
3809 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3810 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
3814 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3817 env->cp15.c15_ticonfig = value & 0xe7;
3818 /* The OS_TYPE bit in this register changes the reported CPUID! */
3819 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3820 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3823 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3826 env->cp15.c15_threadid = value & 0xffff;
3829 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3832 /* Wait-for-interrupt (deprecated) */
3833 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3836 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3839 /* On OMAP there are registers indicating the max/min index of dcache lines
3840 * containing a dirty line; cache flush operations have to reset these.
3842 env->cp15.c15_i_max = 0x000;
3843 env->cp15.c15_i_min = 0xff0;
3846 static const ARMCPRegInfo omap_cp_reginfo[] = {
3847 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3848 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3849 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3851 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3852 .access = PL1_RW, .type = ARM_CP_NOP },
3853 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3855 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3856 .writefn = omap_ticonfig_write },
3857 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3859 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3860 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3861 .access = PL1_RW, .resetvalue = 0xff0,
3862 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3863 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3865 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3866 .writefn = omap_threadid_write },
3867 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3868 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3869 .type = ARM_CP_NO_RAW,
3870 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3871 /* TODO: Peripheral port remap register:
3872 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3873 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3876 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3877 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3878 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3879 .writefn = omap_cachemaint_write },
3880 { .name = "C9", .cp = 15, .crn = 9,
3881 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3882 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3885 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3888 env->cp15.c15_cpar = value & 0x3fff;
3891 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3892 { .name = "XSCALE_CPAR",
3893 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3894 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3895 .writefn = xscale_cpar_write, },
3896 { .name = "XSCALE_AUXCR",
3897 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3898 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3900 /* XScale specific cache-lockdown: since we have no cache we NOP these
3901 * and hope the guest does not really rely on cache behaviour.
3903 { .name = "XSCALE_LOCK_ICACHE_LINE",
3904 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3905 .access = PL1_W, .type = ARM_CP_NOP },
3906 { .name = "XSCALE_UNLOCK_ICACHE",
3907 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3908 .access = PL1_W, .type = ARM_CP_NOP },
3909 { .name = "XSCALE_DCACHE_LOCK",
3910 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3911 .access = PL1_RW, .type = ARM_CP_NOP },
3912 { .name = "XSCALE_UNLOCK_DCACHE",
3913 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3914 .access = PL1_W, .type = ARM_CP_NOP },
3917 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3918 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3919 * implementation of this implementation-defined space.
3920 * Ideally this should eventually disappear in favour of actually
3921 * implementing the correct behaviour for all cores.
3923 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3924 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3926 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3930 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3931 /* Cache status: RAZ because we have no cache so it's always clean */
3932 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3933 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3937 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3938 /* We never have a block transfer operation in progress */
3939 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3940 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3942 /* The cache ops themselves: these all NOP for QEMU */
3943 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3944 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3945 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3946 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3947 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3948 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3949 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3950 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3951 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3952 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3953 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3954 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3957 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3958 /* The cache test-and-clean instructions always return (1 << 30)
3959 * to indicate that there are no dirty cache lines.
3961 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3962 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3963 .resetvalue = (1 << 30) },
3964 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3965 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3966 .resetvalue = (1 << 30) },
3969 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3970 /* Ignore ReadBuffer accesses */
3971 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3972 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3973 .access = PL1_RW, .resetvalue = 0,
3974 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3977 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3979 unsigned int cur_el = arm_current_el(env);
3981 if (arm_is_el2_enabled(env) && cur_el == 1) {
3982 return env->cp15.vpidr_el2;
3984 return raw_read(env, ri);
3987 static uint64_t mpidr_read_val(CPUARMState *env)
3989 ARMCPU *cpu = env_archcpu(env);
3990 uint64_t mpidr = cpu->mp_affinity;
3992 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3993 mpidr |= (1U << 31);
3994 /* Cores which are uniprocessor (non-coherent)
3995 * but still implement the MP extensions set
3996 * bit 30. (For instance, Cortex-R5).
3998 if (cpu->mp_is_up) {
3999 mpidr |= (1u << 30);
4005 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4007 unsigned int cur_el = arm_current_el(env);
4009 if (arm_is_el2_enabled(env) && cur_el == 1) {
4010 return env->cp15.vmpidr_el2;
4012 return mpidr_read_val(env);
4015 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4017 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4018 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4019 .access = PL1_RW, .accessfn = access_tvm_trvm,
4020 .type = ARM_CP_CONST, .resetvalue = 0 },
4021 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4022 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4023 .access = PL1_RW, .accessfn = access_tvm_trvm,
4024 .type = ARM_CP_CONST, .resetvalue = 0 },
4025 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4026 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4027 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4028 offsetof(CPUARMState, cp15.par_ns)} },
4029 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4030 .access = PL1_RW, .accessfn = access_tvm_trvm,
4031 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4032 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4033 offsetof(CPUARMState, cp15.ttbr0_ns) },
4034 .writefn = vmsa_ttbr_write, },
4035 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4036 .access = PL1_RW, .accessfn = access_tvm_trvm,
4037 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4038 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4039 offsetof(CPUARMState, cp15.ttbr1_ns) },
4040 .writefn = vmsa_ttbr_write, },
4043 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4045 return vfp_get_fpcr(env);
4048 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4051 vfp_set_fpcr(env, value);
4054 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4056 return vfp_get_fpsr(env);
4059 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4062 vfp_set_fpsr(env, value);
4065 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4068 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4069 return CP_ACCESS_TRAP;
4071 return CP_ACCESS_OK;
4074 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4077 env->daif = value & PSTATE_DAIF;
4080 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4082 return env->pstate & PSTATE_PAN;
4085 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4088 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4091 static const ARMCPRegInfo pan_reginfo = {
4092 .name = "PAN", .state = ARM_CP_STATE_AA64,
4093 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4094 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4095 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4098 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4100 return env->pstate & PSTATE_UAO;
4103 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4106 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4109 static const ARMCPRegInfo uao_reginfo = {
4110 .name = "UAO", .state = ARM_CP_STATE_AA64,
4111 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4112 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4113 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4116 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4118 return env->pstate & PSTATE_DIT;
4121 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4124 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4127 static const ARMCPRegInfo dit_reginfo = {
4128 .name = "DIT", .state = ARM_CP_STATE_AA64,
4129 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4130 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4131 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4134 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4136 return env->pstate & PSTATE_SSBS;
4139 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4142 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4145 static const ARMCPRegInfo ssbs_reginfo = {
4146 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4147 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4148 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4149 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4152 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4153 const ARMCPRegInfo *ri,
4156 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4157 switch (arm_current_el(env)) {
4159 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4160 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4161 return CP_ACCESS_TRAP;
4165 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4166 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4167 return CP_ACCESS_TRAP_EL2;
4171 return CP_ACCESS_OK;
4174 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4175 const ARMCPRegInfo *ri,
4178 /* Cache invalidate/clean to Point of Unification... */
4179 switch (arm_current_el(env)) {
4181 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4182 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4183 return CP_ACCESS_TRAP;
4187 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4188 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4189 return CP_ACCESS_TRAP_EL2;
4193 return CP_ACCESS_OK;
4196 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4197 * Page D4-1736 (DDI0487A.b)
4200 static int vae1_tlbmask(CPUARMState *env)
4202 uint64_t hcr = arm_hcr_el2_eff(env);
4205 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4206 mask = ARMMMUIdxBit_E20_2 |
4207 ARMMMUIdxBit_E20_2_PAN |
4210 mask = ARMMMUIdxBit_E10_1 |
4211 ARMMMUIdxBit_E10_1_PAN |
4215 if (arm_is_secure_below_el3(env)) {
4216 mask >>= ARM_MMU_IDX_A_NS;
4222 /* Return 56 if TBI is enabled, 64 otherwise. */
4223 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4226 uint64_t tcr = regime_tcr(env, mmu_idx);
4227 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4228 int select = extract64(addr, 55, 1);
4230 return (tbi >> select) & 1 ? 56 : 64;
4233 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4235 uint64_t hcr = arm_hcr_el2_eff(env);
4238 /* Only the regime of the mmu_idx below is significant. */
4239 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4240 mmu_idx = ARMMMUIdx_E20_0;
4242 mmu_idx = ARMMMUIdx_E10_0;
4245 if (arm_is_secure_below_el3(env)) {
4246 mmu_idx &= ~ARM_MMU_IDX_A_NS;
4249 return tlbbits_for_regime(env, mmu_idx, addr);
4252 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4255 CPUState *cs = env_cpu(env);
4256 int mask = vae1_tlbmask(env);
4258 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4261 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4264 CPUState *cs = env_cpu(env);
4265 int mask = vae1_tlbmask(env);
4267 if (tlb_force_broadcast(env)) {
4268 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4270 tlb_flush_by_mmuidx(cs, mask);
4274 static int alle1_tlbmask(CPUARMState *env)
4277 * Note that the 'ALL' scope must invalidate both stage 1 and
4278 * stage 2 translations, whereas most other scopes only invalidate
4279 * stage 1 translations.
4281 if (arm_is_secure_below_el3(env)) {
4282 return ARMMMUIdxBit_SE10_1 |
4283 ARMMMUIdxBit_SE10_1_PAN |
4284 ARMMMUIdxBit_SE10_0;
4286 return ARMMMUIdxBit_E10_1 |
4287 ARMMMUIdxBit_E10_1_PAN |
4292 static int e2_tlbmask(CPUARMState *env)
4294 if (arm_is_secure_below_el3(env)) {
4295 return ARMMMUIdxBit_SE20_0 |
4296 ARMMMUIdxBit_SE20_2 |
4297 ARMMMUIdxBit_SE20_2_PAN |
4300 return ARMMMUIdxBit_E20_0 |
4301 ARMMMUIdxBit_E20_2 |
4302 ARMMMUIdxBit_E20_2_PAN |
4307 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4310 CPUState *cs = env_cpu(env);
4311 int mask = alle1_tlbmask(env);
4313 tlb_flush_by_mmuidx(cs, mask);
4316 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4319 CPUState *cs = env_cpu(env);
4320 int mask = e2_tlbmask(env);
4322 tlb_flush_by_mmuidx(cs, mask);
4325 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4328 ARMCPU *cpu = env_archcpu(env);
4329 CPUState *cs = CPU(cpu);
4331 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4334 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4337 CPUState *cs = env_cpu(env);
4338 int mask = alle1_tlbmask(env);
4340 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4343 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4346 CPUState *cs = env_cpu(env);
4347 int mask = e2_tlbmask(env);
4349 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4352 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4355 CPUState *cs = env_cpu(env);
4357 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4360 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4363 /* Invalidate by VA, EL2
4364 * Currently handles both VAE2 and VALE2, since we don't support
4365 * flush-last-level-only.
4367 CPUState *cs = env_cpu(env);
4368 int mask = e2_tlbmask(env);
4369 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4371 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4374 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4377 /* Invalidate by VA, EL3
4378 * Currently handles both VAE3 and VALE3, since we don't support
4379 * flush-last-level-only.
4381 ARMCPU *cpu = env_archcpu(env);
4382 CPUState *cs = CPU(cpu);
4383 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4385 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4388 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4391 CPUState *cs = env_cpu(env);
4392 int mask = vae1_tlbmask(env);
4393 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4394 int bits = vae1_tlbbits(env, pageaddr);
4396 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4399 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4402 /* Invalidate by VA, EL1&0 (AArch64 version).
4403 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4404 * since we don't support flush-for-specific-ASID-only or
4405 * flush-last-level-only.
4407 CPUState *cs = env_cpu(env);
4408 int mask = vae1_tlbmask(env);
4409 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4410 int bits = vae1_tlbbits(env, pageaddr);
4412 if (tlb_force_broadcast(env)) {
4413 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4415 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4419 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4422 CPUState *cs = env_cpu(env);
4423 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4424 bool secure = arm_is_secure_below_el3(env);
4425 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4426 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4429 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4432 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4435 CPUState *cs = env_cpu(env);
4436 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4437 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4439 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4440 ARMMMUIdxBit_SE3, bits);
4443 #ifdef TARGET_AARCH64
4449 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4452 unsigned int page_size_granule, page_shift, num, scale, exponent;
4453 /* Extract one bit to represent the va selector in use. */
4454 uint64_t select = sextract64(value, 36, 1);
4455 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
4456 TLBIRange ret = { };
4458 page_size_granule = extract64(value, 46, 2);
4460 /* The granule encoded in value must match the granule in use. */
4461 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) {
4462 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4467 page_shift = (page_size_granule - 1) * 2 + 12;
4468 num = extract64(value, 39, 5);
4469 scale = extract64(value, 44, 2);
4470 exponent = (5 * scale) + 1;
4472 ret.length = (num + 1) << (exponent + page_shift);
4475 ret.base = sextract64(value, 0, 37);
4477 ret.base = extract64(value, 0, 37);
4481 * With DS=1, BaseADDR is always shifted 16 so that it is able
4482 * to address all 52 va bits. The input address is perforce
4483 * aligned on a 64k boundary regardless of translation granule.
4487 ret.base <<= page_shift;
4492 static void do_rvae_write(CPUARMState *env, uint64_t value,
4493 int idxmap, bool synced)
4495 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4499 range = tlbi_aa64_get_range(env, one_idx, value);
4500 bits = tlbbits_for_regime(env, one_idx, range.base);
4503 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4509 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4510 range.length, idxmap, bits);
4514 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4515 const ARMCPRegInfo *ri,
4519 * Invalidate by VA range, EL1&0.
4520 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4521 * since we don't support flush-for-specific-ASID-only or
4522 * flush-last-level-only.
4525 do_rvae_write(env, value, vae1_tlbmask(env),
4526 tlb_force_broadcast(env));
4529 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4530 const ARMCPRegInfo *ri,
4534 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4535 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4536 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4537 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4538 * shareable specific flushes.
4541 do_rvae_write(env, value, vae1_tlbmask(env), true);
4544 static int vae2_tlbmask(CPUARMState *env)
4546 return (arm_is_secure_below_el3(env)
4547 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4550 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4551 const ARMCPRegInfo *ri,
4555 * Invalidate by VA range, EL2.
4556 * Currently handles all of RVAE2 and RVALE2,
4557 * since we don't support flush-for-specific-ASID-only or
4558 * flush-last-level-only.
4561 do_rvae_write(env, value, vae2_tlbmask(env),
4562 tlb_force_broadcast(env));
4567 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4568 const ARMCPRegInfo *ri,
4572 * Invalidate by VA range, Inner/Outer Shareable, EL2.
4573 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4574 * since we don't support flush-for-specific-ASID-only,
4575 * flush-last-level-only or inner/outer shareable specific flushes.
4578 do_rvae_write(env, value, vae2_tlbmask(env), true);
4582 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4583 const ARMCPRegInfo *ri,
4587 * Invalidate by VA range, EL3.
4588 * Currently handles all of RVAE3 and RVALE3,
4589 * since we don't support flush-for-specific-ASID-only or
4590 * flush-last-level-only.
4593 do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4594 tlb_force_broadcast(env));
4597 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4598 const ARMCPRegInfo *ri,
4602 * Invalidate by VA range, EL3, Inner/Outer Shareable.
4603 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4604 * since we don't support flush-for-specific-ASID-only,
4605 * flush-last-level-only or inner/outer specific flushes.
4608 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4612 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4615 int cur_el = arm_current_el(env);
4618 uint64_t hcr = arm_hcr_el2_eff(env);
4621 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4622 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4623 return CP_ACCESS_TRAP_EL2;
4626 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4627 return CP_ACCESS_TRAP;
4629 if (hcr & HCR_TDZ) {
4630 return CP_ACCESS_TRAP_EL2;
4633 } else if (hcr & HCR_TDZ) {
4634 return CP_ACCESS_TRAP_EL2;
4637 return CP_ACCESS_OK;
4640 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4642 ARMCPU *cpu = env_archcpu(env);
4643 int dzp_bit = 1 << 4;
4645 /* DZP indicates whether DC ZVA access is allowed */
4646 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4649 return cpu->dcz_blocksize | dzp_bit;
4652 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4655 if (!(env->pstate & PSTATE_SP)) {
4656 /* Access to SP_EL0 is undefined if it's being used as
4657 * the stack pointer.
4659 return CP_ACCESS_TRAP_UNCATEGORIZED;
4661 return CP_ACCESS_OK;
4664 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4666 return env->pstate & PSTATE_SP;
4669 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4671 update_spsel(env, val);
4674 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4677 ARMCPU *cpu = env_archcpu(env);
4679 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4680 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4684 /* ??? Lots of these bits are not implemented. */
4686 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4687 if (ri->opc1 == 6) { /* SCTLR_EL3 */
4688 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4690 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4691 SCTLR_ATA0 | SCTLR_ATA);
4695 if (raw_read(env, ri) == value) {
4696 /* Skip the TLB flush if nothing actually changed; Linux likes
4697 * to do a lot of pointless SCTLR writes.
4702 raw_write(env, ri, value);
4704 /* This may enable/disable the MMU, so do a TLB flush. */
4705 tlb_flush(CPU(cpu));
4707 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4709 * Normally we would always end the TB on an SCTLR write; see the
4710 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4711 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4712 * of hflags from the translator, so do it here.
4714 arm_rebuild_hflags(env);
4718 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4722 * Some MDCR_EL3 bits affect whether PMU counters are running:
4723 * if we are trying to change any of those then we must
4724 * bracket this update with PMU start/finish calls.
4726 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
4731 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4737 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4741 * Some MDCR_EL2 bits affect whether PMU counters are running:
4742 * if we are trying to change any of those then we must
4743 * bracket this update with PMU start/finish calls.
4745 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
4750 env->cp15.mdcr_el2 = value;
4756 static const ARMCPRegInfo v8_cp_reginfo[] = {
4757 /* Minimal set of EL0-visible registers. This will need to be expanded
4758 * significantly for system emulation of AArch64 CPUs.
4760 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4761 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4762 .access = PL0_RW, .type = ARM_CP_NZCV },
4763 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4764 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4765 .type = ARM_CP_NO_RAW,
4766 .access = PL0_RW, .accessfn = aa64_daif_access,
4767 .fieldoffset = offsetof(CPUARMState, daif),
4768 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4769 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4770 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4771 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4772 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4773 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4774 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4775 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4776 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4777 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4778 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4779 .access = PL0_R, .type = ARM_CP_NO_RAW,
4780 .readfn = aa64_dczid_read },
4781 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4782 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4783 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4784 #ifndef CONFIG_USER_ONLY
4785 /* Avoid overhead of an access check that always passes in user-mode */
4786 .accessfn = aa64_zva_access,
4789 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4790 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4791 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4792 /* Cache ops: all NOPs since we don't emulate caches */
4793 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4794 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4795 .access = PL1_W, .type = ARM_CP_NOP,
4796 .accessfn = aa64_cacheop_pou_access },
4797 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4798 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4799 .access = PL1_W, .type = ARM_CP_NOP,
4800 .accessfn = aa64_cacheop_pou_access },
4801 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4802 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4803 .access = PL0_W, .type = ARM_CP_NOP,
4804 .accessfn = aa64_cacheop_pou_access },
4805 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4806 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4807 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4808 .type = ARM_CP_NOP },
4809 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4810 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4811 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4812 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4813 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4814 .access = PL0_W, .type = ARM_CP_NOP,
4815 .accessfn = aa64_cacheop_poc_access },
4816 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4817 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4818 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4819 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4820 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4821 .access = PL0_W, .type = ARM_CP_NOP,
4822 .accessfn = aa64_cacheop_pou_access },
4823 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4824 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4825 .access = PL0_W, .type = ARM_CP_NOP,
4826 .accessfn = aa64_cacheop_poc_access },
4827 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4828 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4829 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4830 /* TLBI operations */
4831 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4832 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4833 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4834 .writefn = tlbi_aa64_vmalle1is_write },
4835 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4836 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4837 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4838 .writefn = tlbi_aa64_vae1is_write },
4839 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4840 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4841 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4842 .writefn = tlbi_aa64_vmalle1is_write },
4843 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4844 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4845 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4846 .writefn = tlbi_aa64_vae1is_write },
4847 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4848 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4849 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4850 .writefn = tlbi_aa64_vae1is_write },
4851 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4852 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4853 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4854 .writefn = tlbi_aa64_vae1is_write },
4855 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4856 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4857 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4858 .writefn = tlbi_aa64_vmalle1_write },
4859 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4860 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4861 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4862 .writefn = tlbi_aa64_vae1_write },
4863 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4864 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4865 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4866 .writefn = tlbi_aa64_vmalle1_write },
4867 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4868 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4869 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4870 .writefn = tlbi_aa64_vae1_write },
4871 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4872 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4873 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4874 .writefn = tlbi_aa64_vae1_write },
4875 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4876 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4877 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4878 .writefn = tlbi_aa64_vae1_write },
4879 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4880 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4881 .access = PL2_W, .type = ARM_CP_NOP },
4882 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4883 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4884 .access = PL2_W, .type = ARM_CP_NOP },
4885 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4886 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4887 .access = PL2_W, .type = ARM_CP_NO_RAW,
4888 .writefn = tlbi_aa64_alle1is_write },
4889 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4890 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4891 .access = PL2_W, .type = ARM_CP_NO_RAW,
4892 .writefn = tlbi_aa64_alle1is_write },
4893 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4894 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4895 .access = PL2_W, .type = ARM_CP_NOP },
4896 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4897 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4898 .access = PL2_W, .type = ARM_CP_NOP },
4899 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4900 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4901 .access = PL2_W, .type = ARM_CP_NO_RAW,
4902 .writefn = tlbi_aa64_alle1_write },
4903 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4904 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4905 .access = PL2_W, .type = ARM_CP_NO_RAW,
4906 .writefn = tlbi_aa64_alle1is_write },
4907 #ifndef CONFIG_USER_ONLY
4908 /* 64 bit address translation operations */
4909 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4910 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4911 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4912 .writefn = ats_write64 },
4913 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4914 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4915 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4916 .writefn = ats_write64 },
4917 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4918 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4919 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4920 .writefn = ats_write64 },
4921 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4922 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4923 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4924 .writefn = ats_write64 },
4925 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4926 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4927 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4928 .writefn = ats_write64 },
4929 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4930 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4931 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4932 .writefn = ats_write64 },
4933 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4934 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4935 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4936 .writefn = ats_write64 },
4937 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4938 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4939 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4940 .writefn = ats_write64 },
4941 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4942 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4943 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4944 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4945 .writefn = ats_write64 },
4946 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4947 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4948 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4949 .writefn = ats_write64 },
4950 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4951 .type = ARM_CP_ALIAS,
4952 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4953 .access = PL1_RW, .resetvalue = 0,
4954 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4955 .writefn = par_write },
4957 /* TLB invalidate last level of translation table walk */
4958 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4959 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4960 .writefn = tlbimva_is_write },
4961 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4962 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4963 .writefn = tlbimvaa_is_write },
4964 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4965 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4966 .writefn = tlbimva_write },
4967 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4968 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4969 .writefn = tlbimvaa_write },
4970 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4971 .type = ARM_CP_NO_RAW, .access = PL2_W,
4972 .writefn = tlbimva_hyp_write },
4973 { .name = "TLBIMVALHIS",
4974 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4975 .type = ARM_CP_NO_RAW, .access = PL2_W,
4976 .writefn = tlbimva_hyp_is_write },
4977 { .name = "TLBIIPAS2",
4978 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4979 .type = ARM_CP_NOP, .access = PL2_W },
4980 { .name = "TLBIIPAS2IS",
4981 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4982 .type = ARM_CP_NOP, .access = PL2_W },
4983 { .name = "TLBIIPAS2L",
4984 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4985 .type = ARM_CP_NOP, .access = PL2_W },
4986 { .name = "TLBIIPAS2LIS",
4987 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4988 .type = ARM_CP_NOP, .access = PL2_W },
4989 /* 32 bit cache operations */
4990 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4991 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
4992 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4993 .type = ARM_CP_NOP, .access = PL1_W },
4994 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4995 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
4996 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4997 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
4998 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4999 .type = ARM_CP_NOP, .access = PL1_W },
5000 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5001 .type = ARM_CP_NOP, .access = PL1_W },
5002 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5003 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5004 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5005 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5006 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5007 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5008 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5009 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5010 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5011 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5012 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5013 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5014 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5015 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5016 /* MMU Domain access control / MPU write buffer control */
5017 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5018 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5019 .writefn = dacr_write, .raw_writefn = raw_write,
5020 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5021 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5022 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5023 .type = ARM_CP_ALIAS,
5024 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5026 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5027 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5028 .type = ARM_CP_ALIAS,
5029 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5031 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5032 /* We rely on the access checks not allowing the guest to write to the
5033 * state field when SPSel indicates that it's being used as the stack
5036 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5037 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5038 .access = PL1_RW, .accessfn = sp_el0_access,
5039 .type = ARM_CP_ALIAS,
5040 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5041 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5042 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5043 .access = PL2_RW, .type = ARM_CP_ALIAS,
5044 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5045 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5046 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5047 .type = ARM_CP_NO_RAW,
5048 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5049 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5050 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5052 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5053 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5054 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5055 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5056 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5057 .writefn = dacr_write, .raw_writefn = raw_write,
5058 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5059 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5060 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5061 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5062 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5063 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5064 .type = ARM_CP_ALIAS,
5065 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5067 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5068 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5069 .type = ARM_CP_ALIAS,
5070 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5072 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5073 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5074 .type = ARM_CP_ALIAS,
5075 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5077 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5078 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5079 .type = ARM_CP_ALIAS,
5080 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5082 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5083 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5084 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5086 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5087 { .name = "SDCR", .type = ARM_CP_ALIAS,
5088 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5089 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5090 .writefn = sdcr_write,
5091 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5094 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5096 ARMCPU *cpu = env_archcpu(env);
5098 if (arm_feature(env, ARM_FEATURE_V8)) {
5099 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5101 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5104 if (arm_feature(env, ARM_FEATURE_EL3)) {
5105 valid_mask &= ~HCR_HCD;
5106 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5107 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5108 * However, if we're using the SMC PSCI conduit then QEMU is
5109 * effectively acting like EL3 firmware and so the guest at
5110 * EL2 should retain the ability to prevent EL1 from being
5111 * able to make SMC calls into the ersatz firmware, so in
5112 * that case HCR.TSC should be read/write.
5114 valid_mask &= ~HCR_TSC;
5117 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5118 if (cpu_isar_feature(aa64_vh, cpu)) {
5119 valid_mask |= HCR_E2H;
5121 if (cpu_isar_feature(aa64_ras, cpu)) {
5122 valid_mask |= HCR_TERR | HCR_TEA;
5124 if (cpu_isar_feature(aa64_lor, cpu)) {
5125 valid_mask |= HCR_TLOR;
5127 if (cpu_isar_feature(aa64_pauth, cpu)) {
5128 valid_mask |= HCR_API | HCR_APK;
5130 if (cpu_isar_feature(aa64_mte, cpu)) {
5131 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5133 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5134 valid_mask |= HCR_ENSCXT;
5136 if (cpu_isar_feature(aa64_fwb, cpu)) {
5137 valid_mask |= HCR_FWB;
5141 /* Clear RES0 bits. */
5142 value &= valid_mask;
5145 * These bits change the MMU setup:
5146 * HCR_VM enables stage 2 translation
5147 * HCR_PTW forbids certain page-table setups
5148 * HCR_DC disables stage1 and enables stage2 translation
5149 * HCR_DCT enables tagging on (disabled) stage1 translation
5150 * HCR_FWB changes the interpretation of stage2 descriptor bits
5152 if ((env->cp15.hcr_el2 ^ value) &
5153 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5154 tlb_flush(CPU(cpu));
5156 env->cp15.hcr_el2 = value;
5159 * Updates to VI and VF require us to update the status of
5160 * virtual interrupts, which are the logical OR of these bits
5161 * and the state of the input lines from the GIC. (This requires
5162 * that we have the iothread lock, which is done by marking the
5163 * reginfo structs as ARM_CP_IO.)
5164 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5165 * possible for it to be taken immediately, because VIRQ and
5166 * VFIQ are masked unless running at EL0 or EL1, and HCR
5167 * can only be written at EL2.
5169 g_assert(qemu_mutex_iothread_locked());
5170 arm_cpu_update_virq(cpu);
5171 arm_cpu_update_vfiq(cpu);
5172 arm_cpu_update_vserr(cpu);
5175 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5177 do_hcr_write(env, value, 0);
5180 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5183 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5184 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5185 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5188 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5191 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5192 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5193 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5197 * Return the effective value of HCR_EL2.
5198 * Bits that are not included here:
5199 * RW (read from SCR_EL3.RW as needed)
5201 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5203 uint64_t ret = env->cp15.hcr_el2;
5205 if (!arm_is_el2_enabled(env)) {
5207 * "This register has no effect if EL2 is not enabled in the
5208 * current Security state". This is ARMv8.4-SecEL2 speak for
5209 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5211 * Prior to that, the language was "In an implementation that
5212 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5213 * as if this field is 0 for all purposes other than a direct
5214 * read or write access of HCR_EL2". With lots of enumeration
5215 * on a per-field basis. In current QEMU, this is condition
5216 * is arm_is_secure_below_el3.
5218 * Since the v8.4 language applies to the entire register, and
5219 * appears to be backward compatible, use that.
5225 * For a cpu that supports both aarch64 and aarch32, we can set bits
5226 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5227 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5229 if (!arm_el_is_aa64(env, 2)) {
5230 uint64_t aa32_valid;
5233 * These bits are up-to-date as of ARMv8.6.
5234 * For HCR, it's easiest to list just the 2 bits that are invalid.
5235 * For HCR2, list those that are valid.
5237 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5238 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5239 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5243 if (ret & HCR_TGE) {
5244 /* These bits are up-to-date as of ARMv8.6. */
5245 if (ret & HCR_E2H) {
5246 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5247 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5248 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5249 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5250 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5251 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5253 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5255 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5256 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5257 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5265 * Corresponds to ARM pseudocode function ELIsInHost().
5267 bool el_is_in_host(CPUARMState *env, int el)
5272 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5273 * Perform the simplest bit tests first, and validate EL2 afterward.
5276 return false; /* EL1 or EL3 */
5280 * Note that hcr_write() checks isar_feature_aa64_vh(),
5281 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5283 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5284 if ((env->cp15.hcr_el2 & mask) != mask) {
5288 /* TGE and/or E2H set: double check those bits are currently legal. */
5289 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5292 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5295 uint64_t valid_mask = 0;
5297 /* No features adding bits to HCRX are implemented. */
5299 /* Clear RES0 bits. */
5300 env->cp15.hcrx_el2 = value & valid_mask;
5303 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5306 if (arm_current_el(env) < 3
5307 && arm_feature(env, ARM_FEATURE_EL3)
5308 && !(env->cp15.scr_el3 & SCR_HXEN)) {
5309 return CP_ACCESS_TRAP_EL3;
5311 return CP_ACCESS_OK;
5314 static const ARMCPRegInfo hcrx_el2_reginfo = {
5315 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5316 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5317 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5318 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5321 /* Return the effective value of HCRX_EL2. */
5322 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5325 * The bits in this register behave as 0 for all purposes other than
5326 * direct reads of the register if:
5327 * - EL2 is not enabled in the current security state,
5328 * - SCR_EL3.HXEn is 0.
5330 if (!arm_is_el2_enabled(env)
5331 || (arm_feature(env, ARM_FEATURE_EL3)
5332 && !(env->cp15.scr_el3 & SCR_HXEN))) {
5335 return env->cp15.hcrx_el2;
5338 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5342 * For A-profile AArch32 EL3, if NSACR.CP10
5343 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5345 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5346 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5347 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5348 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5350 env->cp15.cptr_el[2] = value;
5353 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5356 * For A-profile AArch32 EL3, if NSACR.CP10
5357 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5359 uint64_t value = env->cp15.cptr_el[2];
5361 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5362 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5363 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5368 static const ARMCPRegInfo el2_cp_reginfo[] = {
5369 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5371 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5372 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5373 .writefn = hcr_write },
5374 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5375 .type = ARM_CP_ALIAS | ARM_CP_IO,
5376 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5377 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5378 .writefn = hcr_writelow },
5379 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5380 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5381 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5382 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5383 .type = ARM_CP_ALIAS,
5384 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5386 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5387 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5388 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5389 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5390 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5391 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5392 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5393 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5394 .type = ARM_CP_ALIAS,
5395 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5397 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5398 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5399 .type = ARM_CP_ALIAS,
5400 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5402 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5403 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5404 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5405 .access = PL2_RW, .writefn = vbar_write,
5406 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5408 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5409 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5410 .access = PL3_RW, .type = ARM_CP_ALIAS,
5411 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5412 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5413 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5414 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5415 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5416 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5417 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5418 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5419 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5421 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5422 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5423 .access = PL2_RW, .type = ARM_CP_ALIAS,
5424 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5425 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5426 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5427 .access = PL2_RW, .type = ARM_CP_CONST,
5429 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5430 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5431 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5432 .access = PL2_RW, .type = ARM_CP_CONST,
5434 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5435 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5436 .access = PL2_RW, .type = ARM_CP_CONST,
5438 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5439 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5440 .access = PL2_RW, .type = ARM_CP_CONST,
5442 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5443 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5444 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5445 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5446 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5447 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5448 .type = ARM_CP_ALIAS,
5449 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5450 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
5451 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5452 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5454 /* no .writefn needed as this can't cause an ASID change */
5455 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5456 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5457 .cp = 15, .opc1 = 6, .crm = 2,
5458 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5459 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5460 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5461 .writefn = vttbr_write },
5462 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5463 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5464 .access = PL2_RW, .writefn = vttbr_write,
5465 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5466 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5467 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5468 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5469 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5470 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5471 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5472 .access = PL2_RW, .resetvalue = 0,
5473 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5474 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5475 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5476 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5477 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5478 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5479 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5480 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5481 { .name = "TLBIALLNSNH",
5482 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5483 .type = ARM_CP_NO_RAW, .access = PL2_W,
5484 .writefn = tlbiall_nsnh_write },
5485 { .name = "TLBIALLNSNHIS",
5486 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5487 .type = ARM_CP_NO_RAW, .access = PL2_W,
5488 .writefn = tlbiall_nsnh_is_write },
5489 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5490 .type = ARM_CP_NO_RAW, .access = PL2_W,
5491 .writefn = tlbiall_hyp_write },
5492 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5493 .type = ARM_CP_NO_RAW, .access = PL2_W,
5494 .writefn = tlbiall_hyp_is_write },
5495 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5496 .type = ARM_CP_NO_RAW, .access = PL2_W,
5497 .writefn = tlbimva_hyp_write },
5498 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5499 .type = ARM_CP_NO_RAW, .access = PL2_W,
5500 .writefn = tlbimva_hyp_is_write },
5501 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5502 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5503 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5504 .writefn = tlbi_aa64_alle2_write },
5505 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5506 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5507 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5508 .writefn = tlbi_aa64_vae2_write },
5509 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5510 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5511 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5512 .writefn = tlbi_aa64_vae2_write },
5513 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5514 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5515 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5516 .writefn = tlbi_aa64_alle2is_write },
5517 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5518 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5519 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5520 .writefn = tlbi_aa64_vae2is_write },
5521 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5522 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5523 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5524 .writefn = tlbi_aa64_vae2is_write },
5525 #ifndef CONFIG_USER_ONLY
5526 /* Unlike the other EL2-related AT operations, these must
5527 * UNDEF from EL3 if EL2 is not implemented, which is why we
5528 * define them here rather than with the rest of the AT ops.
5530 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5531 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5532 .access = PL2_W, .accessfn = at_s1e2_access,
5533 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5534 .writefn = ats_write64 },
5535 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5536 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5537 .access = PL2_W, .accessfn = at_s1e2_access,
5538 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5539 .writefn = ats_write64 },
5540 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5541 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5542 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5543 * to behave as if SCR.NS was 1.
5545 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5547 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5548 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5550 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5551 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5552 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5553 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5554 * reset values as IMPDEF. We choose to reset to 3 to comply with
5555 * both ARMv7 and ARMv8.
5557 .access = PL2_RW, .resetvalue = 3,
5558 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5559 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5560 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5561 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5562 .writefn = gt_cntvoff_write,
5563 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5564 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5565 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5566 .writefn = gt_cntvoff_write,
5567 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5568 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5569 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5570 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5571 .type = ARM_CP_IO, .access = PL2_RW,
5572 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5573 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5574 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5575 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5576 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5577 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5578 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5579 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5580 .resetfn = gt_hyp_timer_reset,
5581 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5582 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5584 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5586 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5588 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5590 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5591 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5592 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5593 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5594 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5595 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5597 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5598 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5599 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5601 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5604 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5605 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5606 .type = ARM_CP_ALIAS | ARM_CP_IO,
5607 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5609 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5610 .writefn = hcr_writehigh },
5613 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5616 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5617 return CP_ACCESS_OK;
5619 return CP_ACCESS_TRAP_UNCATEGORIZED;
5622 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5623 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5624 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5625 .access = PL2_RW, .accessfn = sel2_access,
5626 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5627 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5628 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5629 .access = PL2_RW, .accessfn = sel2_access,
5630 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5633 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5636 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5637 * At Secure EL1 it traps to EL3 or EL2.
5639 if (arm_current_el(env) == 3) {
5640 return CP_ACCESS_OK;
5642 if (arm_is_secure_below_el3(env)) {
5643 if (env->cp15.scr_el3 & SCR_EEL2) {
5644 return CP_ACCESS_TRAP_EL2;
5646 return CP_ACCESS_TRAP_EL3;
5648 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5650 return CP_ACCESS_OK;
5652 return CP_ACCESS_TRAP_UNCATEGORIZED;
5655 static const ARMCPRegInfo el3_cp_reginfo[] = {
5656 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5657 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5658 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5659 .resetfn = scr_reset, .writefn = scr_write },
5660 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5661 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5662 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5663 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5664 .writefn = scr_write },
5665 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5666 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5667 .access = PL3_RW, .resetvalue = 0,
5668 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5670 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5671 .access = PL3_RW, .resetvalue = 0,
5672 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5673 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5674 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5675 .writefn = vbar_write, .resetvalue = 0,
5676 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5677 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5678 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5679 .access = PL3_RW, .resetvalue = 0,
5680 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5681 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5682 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5684 /* no .writefn needed as this can't cause an ASID change */
5686 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5687 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5688 .type = ARM_CP_ALIAS,
5689 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5691 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5692 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5693 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5694 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5695 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5696 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5697 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5698 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5699 .type = ARM_CP_ALIAS,
5700 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5702 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5703 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5704 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5705 .access = PL3_RW, .writefn = vbar_write,
5706 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5708 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5709 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5710 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5711 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5712 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5713 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5714 .access = PL3_RW, .resetvalue = 0,
5715 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5716 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5717 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5718 .access = PL3_RW, .type = ARM_CP_CONST,
5720 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5721 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5722 .access = PL3_RW, .type = ARM_CP_CONST,
5724 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5725 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5726 .access = PL3_RW, .type = ARM_CP_CONST,
5728 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5729 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5730 .access = PL3_W, .type = ARM_CP_NO_RAW,
5731 .writefn = tlbi_aa64_alle3is_write },
5732 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5733 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5734 .access = PL3_W, .type = ARM_CP_NO_RAW,
5735 .writefn = tlbi_aa64_vae3is_write },
5736 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5737 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5738 .access = PL3_W, .type = ARM_CP_NO_RAW,
5739 .writefn = tlbi_aa64_vae3is_write },
5740 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5741 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5742 .access = PL3_W, .type = ARM_CP_NO_RAW,
5743 .writefn = tlbi_aa64_alle3_write },
5744 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5745 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5746 .access = PL3_W, .type = ARM_CP_NO_RAW,
5747 .writefn = tlbi_aa64_vae3_write },
5748 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5749 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5750 .access = PL3_W, .type = ARM_CP_NO_RAW,
5751 .writefn = tlbi_aa64_vae3_write },
5754 #ifndef CONFIG_USER_ONLY
5755 /* Test if system register redirection is to occur in the current state. */
5756 static bool redirect_for_e2h(CPUARMState *env)
5758 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5761 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5765 if (redirect_for_e2h(env)) {
5766 /* Switch to the saved EL2 version of the register. */
5768 readfn = ri->readfn;
5770 readfn = ri->orig_readfn;
5772 if (readfn == NULL) {
5775 return readfn(env, ri);
5778 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5783 if (redirect_for_e2h(env)) {
5784 /* Switch to the saved EL2 version of the register. */
5786 writefn = ri->writefn;
5788 writefn = ri->orig_writefn;
5790 if (writefn == NULL) {
5791 writefn = raw_write;
5793 writefn(env, ri, value);
5796 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5799 uint32_t src_key, dst_key, new_key;
5800 const char *src_name, *dst_name, *new_name;
5801 bool (*feature)(const ARMISARegisters *id);
5804 #define K(op0, op1, crn, crm, op2) \
5805 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5807 static const struct E2HAlias aliases[] = {
5808 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
5809 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5810 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
5811 "CPACR", "CPTR_EL2", "CPACR_EL12" },
5812 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
5813 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5814 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
5815 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5816 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
5817 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5818 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
5819 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5820 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
5821 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5822 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
5823 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5824 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
5825 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5826 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
5827 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5828 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
5829 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5830 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5831 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5832 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5833 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5834 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5835 "VBAR", "VBAR_EL2", "VBAR_EL12" },
5836 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5837 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5838 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5839 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5842 * Note that redirection of ZCR is mentioned in the description
5843 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5844 * not in the summary table.
5846 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
5847 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5848 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
5849 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
5851 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
5852 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5854 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
5855 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
5856 isar_feature_aa64_scxtnum },
5858 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5859 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5865 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5866 const struct E2HAlias *a = &aliases[i];
5867 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
5870 if (a->feature && !a->feature(&cpu->isar)) {
5874 src_reg = g_hash_table_lookup(cpu->cp_regs,
5875 (gpointer)(uintptr_t)a->src_key);
5876 dst_reg = g_hash_table_lookup(cpu->cp_regs,
5877 (gpointer)(uintptr_t)a->dst_key);
5878 g_assert(src_reg != NULL);
5879 g_assert(dst_reg != NULL);
5881 /* Cross-compare names to detect typos in the keys. */
5882 g_assert(strcmp(src_reg->name, a->src_name) == 0);
5883 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5885 /* None of the core system registers use opaque; we will. */
5886 g_assert(src_reg->opaque == NULL);
5888 /* Create alias before redirection so we dup the right data. */
5889 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5891 new_reg->name = a->new_name;
5892 new_reg->type |= ARM_CP_ALIAS;
5893 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
5894 new_reg->access &= PL2_RW | PL3_RW;
5896 ok = g_hash_table_insert(cpu->cp_regs,
5897 (gpointer)(uintptr_t)a->new_key, new_reg);
5900 src_reg->opaque = dst_reg;
5901 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5902 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5903 if (!src_reg->raw_readfn) {
5904 src_reg->raw_readfn = raw_read;
5906 if (!src_reg->raw_writefn) {
5907 src_reg->raw_writefn = raw_write;
5909 src_reg->readfn = el2_e2h_read;
5910 src_reg->writefn = el2_e2h_write;
5915 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5918 int cur_el = arm_current_el(env);
5921 uint64_t hcr = arm_hcr_el2_eff(env);
5924 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5925 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5926 return CP_ACCESS_TRAP_EL2;
5929 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5930 return CP_ACCESS_TRAP;
5932 if (hcr & HCR_TID2) {
5933 return CP_ACCESS_TRAP_EL2;
5936 } else if (hcr & HCR_TID2) {
5937 return CP_ACCESS_TRAP_EL2;
5941 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5942 return CP_ACCESS_TRAP_EL2;
5945 return CP_ACCESS_OK;
5949 * Check for traps to RAS registers, which are controlled
5950 * by HCR_EL2.TERR and SCR_EL3.TERR.
5952 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
5955 int el = arm_current_el(env);
5957 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
5958 return CP_ACCESS_TRAP_EL2;
5960 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
5961 return CP_ACCESS_TRAP_EL3;
5963 return CP_ACCESS_OK;
5966 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
5968 int el = arm_current_el(env);
5970 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
5971 return env->cp15.vdisr_el2;
5973 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
5974 return 0; /* RAZ/WI */
5976 return env->cp15.disr_el1;
5979 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5981 int el = arm_current_el(env);
5983 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
5984 env->cp15.vdisr_el2 = val;
5987 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
5988 return; /* RAZ/WI */
5990 env->cp15.disr_el1 = val;
5994 * Minimal RAS implementation with no Error Records.
5995 * Which means that all of the Error Record registers:
6003 * ERXPFGCDN_EL1 (RASv1p1)
6004 * ERXPFGCTL_EL1 (RASv1p1)
6005 * ERXPFGF_EL1 (RASv1p1)
6009 * may generate UNDEFINED, which is the effect we get by not
6010 * listing them at all.
6012 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6013 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6014 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6015 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6016 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6017 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6018 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6019 .access = PL1_R, .accessfn = access_terr,
6020 .type = ARM_CP_CONST, .resetvalue = 0 },
6021 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6022 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6023 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6024 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6025 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6026 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6030 * Return the exception level to which exceptions should be taken
6031 * via SVEAccessTrap. This excludes the check for whether the exception
6032 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6033 * be found by testing 0 < fp_exception_el < sve_exception_el.
6035 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6036 * pseudocode does *not* separate out the FP trap checks, but has them
6037 * all in one function.
6039 int sve_exception_el(CPUARMState *env, int el)
6041 #ifndef CONFIG_USER_ONLY
6042 if (el <= 1 && !el_is_in_host(env, el)) {
6043 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6055 if (el <= 2 && arm_is_el2_enabled(env)) {
6056 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6057 if (env->cp15.hcr_el2 & HCR_E2H) {
6058 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6060 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6069 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6075 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6076 if (arm_feature(env, ARM_FEATURE_EL3)
6077 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6085 * Return the exception level to which exceptions should be taken for SME.
6086 * C.f. the ARM pseudocode function CheckSMEAccess.
6088 int sme_exception_el(CPUARMState *env, int el)
6090 #ifndef CONFIG_USER_ONLY
6091 if (el <= 1 && !el_is_in_host(env, el)) {
6092 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6104 if (el <= 2 && arm_is_el2_enabled(env)) {
6105 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6106 if (env->cp15.hcr_el2 & HCR_E2H) {
6107 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6109 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6118 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6124 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6125 if (arm_feature(env, ARM_FEATURE_EL3)
6126 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6133 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
6134 static bool sme_fa64(CPUARMState *env, int el)
6136 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
6140 if (el <= 1 && !el_is_in_host(env, el)) {
6141 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
6145 if (el <= 2 && arm_is_el2_enabled(env)) {
6146 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
6150 if (arm_feature(env, ARM_FEATURE_EL3)) {
6151 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
6160 * Given that SVE is enabled, return the vector length for EL.
6162 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6164 ARMCPU *cpu = env_archcpu(env);
6165 uint64_t *cr = env->vfp.zcr_el;
6166 uint32_t map = cpu->sve_vq.map;
6167 uint32_t len = ARM_MAX_VQ - 1;
6170 cr = env->vfp.smcr_el;
6171 map = cpu->sme_vq.map;
6174 if (el <= 1 && !el_is_in_host(env, el)) {
6175 len = MIN(len, 0xf & (uint32_t)cr[1]);
6177 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6178 len = MIN(len, 0xf & (uint32_t)cr[2]);
6180 if (arm_feature(env, ARM_FEATURE_EL3)) {
6181 len = MIN(len, 0xf & (uint32_t)cr[3]);
6184 map &= MAKE_64BIT_MASK(0, len + 1);
6186 return 31 - clz32(map);
6189 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6191 return ctz32(cpu->sme_vq.map);
6194 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6196 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6199 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6202 int cur_el = arm_current_el(env);
6203 int old_len = sve_vqm1_for_el(env, cur_el);
6206 /* Bits other than [3:0] are RAZ/WI. */
6207 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6208 raw_write(env, ri, value & 0xf);
6211 * Because we arrived here, we know both FP and SVE are enabled;
6212 * otherwise we would have trapped access to the ZCR_ELn register.
6214 new_len = sve_vqm1_for_el(env, cur_el);
6215 if (new_len < old_len) {
6216 aarch64_sve_narrow_vq(env, new_len + 1);
6220 static const ARMCPRegInfo zcr_reginfo[] = {
6221 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6222 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6223 .access = PL1_RW, .type = ARM_CP_SVE,
6224 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6225 .writefn = zcr_write, .raw_writefn = raw_write },
6226 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6227 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6228 .access = PL2_RW, .type = ARM_CP_SVE,
6229 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6230 .writefn = zcr_write, .raw_writefn = raw_write },
6231 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6232 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6233 .access = PL3_RW, .type = ARM_CP_SVE,
6234 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6235 .writefn = zcr_write, .raw_writefn = raw_write },
6238 #ifdef TARGET_AARCH64
6239 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6242 int el = arm_current_el(env);
6245 uint64_t sctlr = arm_sctlr(env, el);
6246 if (!(sctlr & SCTLR_EnTP2)) {
6247 return CP_ACCESS_TRAP;
6250 /* TODO: FEAT_FGT */
6252 && arm_feature(env, ARM_FEATURE_EL3)
6253 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6254 return CP_ACCESS_TRAP_EL3;
6256 return CP_ACCESS_OK;
6259 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6262 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6263 if (arm_current_el(env) < 3
6264 && arm_feature(env, ARM_FEATURE_EL3)
6265 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6266 return CP_ACCESS_TRAP_EL3;
6268 return CP_ACCESS_OK;
6271 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6274 helper_set_pstate_sm(env, FIELD_EX64(value, SVCR, SM));
6275 helper_set_pstate_za(env, FIELD_EX64(value, SVCR, ZA));
6276 arm_rebuild_hflags(env);
6279 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6282 int cur_el = arm_current_el(env);
6283 int old_len = sve_vqm1_for_el(env, cur_el);
6286 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6287 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6288 raw_write(env, ri, value);
6291 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6292 * when SVL is widened (old values kept, or zeros). Choose to keep the
6293 * current values for simplicity. But for QEMU internals, we must still
6294 * apply the narrower SVL to the Zregs and Pregs -- see the comment
6295 * above aarch64_sve_narrow_vq.
6297 new_len = sve_vqm1_for_el(env, cur_el);
6298 if (new_len < old_len) {
6299 aarch64_sve_narrow_vq(env, new_len + 1);
6303 static const ARMCPRegInfo sme_reginfo[] = {
6304 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6305 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6306 .access = PL0_RW, .accessfn = access_tpidr2,
6307 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6308 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6309 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6310 .access = PL0_RW, .type = ARM_CP_SME,
6311 .fieldoffset = offsetof(CPUARMState, svcr),
6312 .writefn = svcr_write, .raw_writefn = raw_write },
6313 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6314 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6315 .access = PL1_RW, .type = ARM_CP_SME,
6316 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6317 .writefn = smcr_write, .raw_writefn = raw_write },
6318 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6319 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6320 .access = PL2_RW, .type = ARM_CP_SME,
6321 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6322 .writefn = smcr_write, .raw_writefn = raw_write },
6323 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6324 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6325 .access = PL3_RW, .type = ARM_CP_SME,
6326 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6327 .writefn = smcr_write, .raw_writefn = raw_write },
6328 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6329 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6330 .access = PL1_R, .accessfn = access_aa64_tid1,
6332 * IMPLEMENTOR = 0 (software)
6333 * REVISION = 0 (implementation defined)
6334 * SMPS = 0 (no streaming execution priority in QEMU)
6335 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
6337 .type = ARM_CP_CONST, .resetvalue = 0, },
6339 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6341 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6342 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6343 .access = PL1_RW, .accessfn = access_esm,
6344 .type = ARM_CP_CONST, .resetvalue = 0 },
6345 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6346 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6347 .access = PL2_RW, .accessfn = access_esm,
6348 .type = ARM_CP_CONST, .resetvalue = 0 },
6350 #endif /* TARGET_AARCH64 */
6352 static void define_pmu_regs(ARMCPU *cpu)
6355 * v7 performance monitor control register: same implementor
6356 * field as main ID register, and we implement four counters in
6357 * addition to the cycle count register.
6359 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
6360 ARMCPRegInfo pmcr = {
6361 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6363 .type = ARM_CP_IO | ARM_CP_ALIAS,
6364 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6365 .accessfn = pmreg_access, .writefn = pmcr_write,
6366 .raw_writefn = raw_write,
6368 ARMCPRegInfo pmcr64 = {
6369 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6370 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6371 .access = PL0_RW, .accessfn = pmreg_access,
6373 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6374 .resetvalue = cpu->isar.reset_pmcr_el0,
6375 .writefn = pmcr_write, .raw_writefn = raw_write,
6378 define_one_arm_cp_reg(cpu, &pmcr);
6379 define_one_arm_cp_reg(cpu, &pmcr64);
6380 for (i = 0; i < pmcrn; i++) {
6381 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6382 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6383 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6384 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6385 ARMCPRegInfo pmev_regs[] = {
6386 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6387 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6388 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6389 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6390 .accessfn = pmreg_access_xevcntr },
6391 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6392 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6393 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
6395 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6396 .raw_readfn = pmevcntr_rawread,
6397 .raw_writefn = pmevcntr_rawwrite },
6398 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6399 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6400 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6401 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6402 .accessfn = pmreg_access },
6403 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6404 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6405 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6407 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6408 .raw_writefn = pmevtyper_rawwrite },
6410 define_arm_cp_regs(cpu, pmev_regs);
6411 g_free(pmevcntr_name);
6412 g_free(pmevcntr_el0_name);
6413 g_free(pmevtyper_name);
6414 g_free(pmevtyper_el0_name);
6416 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
6417 ARMCPRegInfo v81_pmu_regs[] = {
6418 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6419 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6420 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6421 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6422 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6423 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6424 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6425 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6427 define_arm_cp_regs(cpu, v81_pmu_regs);
6429 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
6430 static const ARMCPRegInfo v84_pmmir = {
6431 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6432 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6433 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6436 define_one_arm_cp_reg(cpu, &v84_pmmir);
6440 /* We don't know until after realize whether there's a GICv3
6441 * attached, and that is what registers the gicv3 sysregs.
6442 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6445 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6447 ARMCPU *cpu = env_archcpu(env);
6448 uint64_t pfr1 = cpu->isar.id_pfr1;
6450 if (env->gicv3state) {
6456 #ifndef CONFIG_USER_ONLY
6457 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6459 ARMCPU *cpu = env_archcpu(env);
6460 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6462 if (env->gicv3state) {
6469 /* Shared logic between LORID and the rest of the LOR* registers.
6470 * Secure state exclusion has already been dealt with.
6472 static CPAccessResult access_lor_ns(CPUARMState *env,
6473 const ARMCPRegInfo *ri, bool isread)
6475 int el = arm_current_el(env);
6477 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6478 return CP_ACCESS_TRAP_EL2;
6480 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6481 return CP_ACCESS_TRAP_EL3;
6483 return CP_ACCESS_OK;
6486 static CPAccessResult access_lor_other(CPUARMState *env,
6487 const ARMCPRegInfo *ri, bool isread)
6489 if (arm_is_secure_below_el3(env)) {
6490 /* Access denied in secure mode. */
6491 return CP_ACCESS_TRAP;
6493 return access_lor_ns(env, ri, isread);
6497 * A trivial implementation of ARMv8.1-LOR leaves all of these
6498 * registers fixed at 0, which indicates that there are zero
6499 * supported Limited Ordering regions.
6501 static const ARMCPRegInfo lor_reginfo[] = {
6502 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6503 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6504 .access = PL1_RW, .accessfn = access_lor_other,
6505 .type = ARM_CP_CONST, .resetvalue = 0 },
6506 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6507 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6508 .access = PL1_RW, .accessfn = access_lor_other,
6509 .type = ARM_CP_CONST, .resetvalue = 0 },
6510 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6511 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6512 .access = PL1_RW, .accessfn = access_lor_other,
6513 .type = ARM_CP_CONST, .resetvalue = 0 },
6514 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6515 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6516 .access = PL1_RW, .accessfn = access_lor_other,
6517 .type = ARM_CP_CONST, .resetvalue = 0 },
6518 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6519 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6520 .access = PL1_R, .accessfn = access_lor_ns,
6521 .type = ARM_CP_CONST, .resetvalue = 0 },
6524 #ifdef TARGET_AARCH64
6525 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6528 int el = arm_current_el(env);
6531 arm_is_el2_enabled(env) &&
6532 !(arm_hcr_el2_eff(env) & HCR_APK)) {
6533 return CP_ACCESS_TRAP_EL2;
6536 arm_feature(env, ARM_FEATURE_EL3) &&
6537 !(env->cp15.scr_el3 & SCR_APK)) {
6538 return CP_ACCESS_TRAP_EL3;
6540 return CP_ACCESS_OK;
6543 static const ARMCPRegInfo pauth_reginfo[] = {
6544 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6545 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6546 .access = PL1_RW, .accessfn = access_pauth,
6547 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6548 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6549 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6550 .access = PL1_RW, .accessfn = access_pauth,
6551 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6552 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6553 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6554 .access = PL1_RW, .accessfn = access_pauth,
6555 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6556 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6557 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6558 .access = PL1_RW, .accessfn = access_pauth,
6559 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6560 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6561 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6562 .access = PL1_RW, .accessfn = access_pauth,
6563 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6564 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6565 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6566 .access = PL1_RW, .accessfn = access_pauth,
6567 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6568 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6569 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6570 .access = PL1_RW, .accessfn = access_pauth,
6571 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6572 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6573 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6574 .access = PL1_RW, .accessfn = access_pauth,
6575 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6576 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6577 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6578 .access = PL1_RW, .accessfn = access_pauth,
6579 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6580 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6581 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6582 .access = PL1_RW, .accessfn = access_pauth,
6583 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6586 static const ARMCPRegInfo tlbirange_reginfo[] = {
6587 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
6588 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
6589 .access = PL1_W, .type = ARM_CP_NO_RAW,
6590 .writefn = tlbi_aa64_rvae1is_write },
6591 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
6592 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
6593 .access = PL1_W, .type = ARM_CP_NO_RAW,
6594 .writefn = tlbi_aa64_rvae1is_write },
6595 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
6596 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
6597 .access = PL1_W, .type = ARM_CP_NO_RAW,
6598 .writefn = tlbi_aa64_rvae1is_write },
6599 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
6600 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
6601 .access = PL1_W, .type = ARM_CP_NO_RAW,
6602 .writefn = tlbi_aa64_rvae1is_write },
6603 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
6604 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
6605 .access = PL1_W, .type = ARM_CP_NO_RAW,
6606 .writefn = tlbi_aa64_rvae1is_write },
6607 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
6608 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
6609 .access = PL1_W, .type = ARM_CP_NO_RAW,
6610 .writefn = tlbi_aa64_rvae1is_write },
6611 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
6612 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
6613 .access = PL1_W, .type = ARM_CP_NO_RAW,
6614 .writefn = tlbi_aa64_rvae1is_write },
6615 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
6616 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
6617 .access = PL1_W, .type = ARM_CP_NO_RAW,
6618 .writefn = tlbi_aa64_rvae1is_write },
6619 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
6620 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
6621 .access = PL1_W, .type = ARM_CP_NO_RAW,
6622 .writefn = tlbi_aa64_rvae1_write },
6623 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
6624 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
6625 .access = PL1_W, .type = ARM_CP_NO_RAW,
6626 .writefn = tlbi_aa64_rvae1_write },
6627 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
6628 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
6629 .access = PL1_W, .type = ARM_CP_NO_RAW,
6630 .writefn = tlbi_aa64_rvae1_write },
6631 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
6632 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
6633 .access = PL1_W, .type = ARM_CP_NO_RAW,
6634 .writefn = tlbi_aa64_rvae1_write },
6635 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
6636 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
6637 .access = PL2_W, .type = ARM_CP_NOP },
6638 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
6639 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
6640 .access = PL2_W, .type = ARM_CP_NOP },
6641 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
6642 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
6643 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6644 .writefn = tlbi_aa64_rvae2is_write },
6645 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
6646 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
6647 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6648 .writefn = tlbi_aa64_rvae2is_write },
6649 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
6650 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
6651 .access = PL2_W, .type = ARM_CP_NOP },
6652 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
6653 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
6654 .access = PL2_W, .type = ARM_CP_NOP },
6655 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
6656 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
6657 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6658 .writefn = tlbi_aa64_rvae2is_write },
6659 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
6660 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
6661 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6662 .writefn = tlbi_aa64_rvae2is_write },
6663 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
6664 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
6665 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6666 .writefn = tlbi_aa64_rvae2_write },
6667 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
6668 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
6669 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6670 .writefn = tlbi_aa64_rvae2_write },
6671 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
6672 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
6673 .access = PL3_W, .type = ARM_CP_NO_RAW,
6674 .writefn = tlbi_aa64_rvae3is_write },
6675 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
6676 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
6677 .access = PL3_W, .type = ARM_CP_NO_RAW,
6678 .writefn = tlbi_aa64_rvae3is_write },
6679 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
6680 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
6681 .access = PL3_W, .type = ARM_CP_NO_RAW,
6682 .writefn = tlbi_aa64_rvae3is_write },
6683 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
6684 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
6685 .access = PL3_W, .type = ARM_CP_NO_RAW,
6686 .writefn = tlbi_aa64_rvae3is_write },
6687 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
6688 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
6689 .access = PL3_W, .type = ARM_CP_NO_RAW,
6690 .writefn = tlbi_aa64_rvae3_write },
6691 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
6692 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
6693 .access = PL3_W, .type = ARM_CP_NO_RAW,
6694 .writefn = tlbi_aa64_rvae3_write },
6697 static const ARMCPRegInfo tlbios_reginfo[] = {
6698 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
6699 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
6700 .access = PL1_W, .type = ARM_CP_NO_RAW,
6701 .writefn = tlbi_aa64_vmalle1is_write },
6702 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
6703 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
6704 .access = PL1_W, .type = ARM_CP_NO_RAW,
6705 .writefn = tlbi_aa64_vae1is_write },
6706 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
6707 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
6708 .access = PL1_W, .type = ARM_CP_NO_RAW,
6709 .writefn = tlbi_aa64_vmalle1is_write },
6710 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
6711 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
6712 .access = PL1_W, .type = ARM_CP_NO_RAW,
6713 .writefn = tlbi_aa64_vae1is_write },
6714 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
6715 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
6716 .access = PL1_W, .type = ARM_CP_NO_RAW,
6717 .writefn = tlbi_aa64_vae1is_write },
6718 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
6719 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
6720 .access = PL1_W, .type = ARM_CP_NO_RAW,
6721 .writefn = tlbi_aa64_vae1is_write },
6722 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
6723 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
6724 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6725 .writefn = tlbi_aa64_alle2is_write },
6726 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
6727 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
6728 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6729 .writefn = tlbi_aa64_vae2is_write },
6730 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
6731 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
6732 .access = PL2_W, .type = ARM_CP_NO_RAW,
6733 .writefn = tlbi_aa64_alle1is_write },
6734 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
6735 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
6736 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6737 .writefn = tlbi_aa64_vae2is_write },
6738 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
6739 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
6740 .access = PL2_W, .type = ARM_CP_NO_RAW,
6741 .writefn = tlbi_aa64_alle1is_write },
6742 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
6743 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
6744 .access = PL2_W, .type = ARM_CP_NOP },
6745 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
6746 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
6747 .access = PL2_W, .type = ARM_CP_NOP },
6748 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
6749 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
6750 .access = PL2_W, .type = ARM_CP_NOP },
6751 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
6752 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
6753 .access = PL2_W, .type = ARM_CP_NOP },
6754 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
6755 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
6756 .access = PL3_W, .type = ARM_CP_NO_RAW,
6757 .writefn = tlbi_aa64_alle3is_write },
6758 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
6759 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
6760 .access = PL3_W, .type = ARM_CP_NO_RAW,
6761 .writefn = tlbi_aa64_vae3is_write },
6762 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
6763 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
6764 .access = PL3_W, .type = ARM_CP_NO_RAW,
6765 .writefn = tlbi_aa64_vae3is_write },
6768 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6773 /* Success sets NZCV = 0000. */
6774 env->NF = env->CF = env->VF = 0, env->ZF = 1;
6776 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6778 * ??? Failed, for unknown reasons in the crypto subsystem.
6779 * The best we can do is log the reason and return the
6780 * timed-out indication to the guest. There is no reason
6781 * we know to expect this failure to be transitory, so the
6782 * guest may well hang retrying the operation.
6784 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6785 ri->name, error_get_pretty(err));
6788 env->ZF = 0; /* NZCF = 0100 */
6794 /* We do not support re-seeding, so the two registers operate the same. */
6795 static const ARMCPRegInfo rndr_reginfo[] = {
6796 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6797 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6798 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6799 .access = PL0_R, .readfn = rndr_readfn },
6800 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6801 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6802 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6803 .access = PL0_R, .readfn = rndr_readfn },
6806 #ifndef CONFIG_USER_ONLY
6807 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6810 ARMCPU *cpu = env_archcpu(env);
6811 /* CTR_EL0 System register -> DminLine, bits [19:16] */
6812 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6813 uint64_t vaddr_in = (uint64_t) value;
6814 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6816 int mem_idx = cpu_mmu_index(env, false);
6818 /* This won't be crossing page boundaries */
6819 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6825 /* RCU lock is already being held */
6826 mr = memory_region_from_host(haddr, &offset);
6829 memory_region_writeback(mr, offset, dline_size);
6834 static const ARMCPRegInfo dcpop_reg[] = {
6835 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6836 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6837 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6838 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6841 static const ARMCPRegInfo dcpodp_reg[] = {
6842 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6843 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6844 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6845 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6847 #endif /*CONFIG_USER_ONLY*/
6849 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
6852 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
6853 return CP_ACCESS_TRAP_EL2;
6856 return CP_ACCESS_OK;
6859 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
6862 int el = arm_current_el(env);
6864 if (el < 2 && arm_is_el2_enabled(env)) {
6865 uint64_t hcr = arm_hcr_el2_eff(env);
6866 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
6867 return CP_ACCESS_TRAP_EL2;
6871 arm_feature(env, ARM_FEATURE_EL3) &&
6872 !(env->cp15.scr_el3 & SCR_ATA)) {
6873 return CP_ACCESS_TRAP_EL3;
6875 return CP_ACCESS_OK;
6878 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
6880 return env->pstate & PSTATE_TCO;
6883 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6885 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
6888 static const ARMCPRegInfo mte_reginfo[] = {
6889 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
6890 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
6891 .access = PL1_RW, .accessfn = access_mte,
6892 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
6893 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
6894 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
6895 .access = PL1_RW, .accessfn = access_mte,
6896 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
6897 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
6898 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
6899 .access = PL2_RW, .accessfn = access_mte,
6900 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
6901 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
6902 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
6904 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
6905 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
6906 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
6907 .access = PL1_RW, .accessfn = access_mte,
6908 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
6909 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
6910 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
6911 .access = PL1_RW, .accessfn = access_mte,
6912 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
6913 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
6914 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
6915 .access = PL1_R, .accessfn = access_aa64_tid5,
6916 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
6917 { .name = "TCO", .state = ARM_CP_STATE_AA64,
6918 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6919 .type = ARM_CP_NO_RAW,
6920 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
6921 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
6922 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
6923 .type = ARM_CP_NOP, .access = PL1_W,
6924 .accessfn = aa64_cacheop_poc_access },
6925 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
6926 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
6927 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6928 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
6929 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
6930 .type = ARM_CP_NOP, .access = PL1_W,
6931 .accessfn = aa64_cacheop_poc_access },
6932 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
6933 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
6934 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6935 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
6936 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
6937 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6938 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
6939 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
6940 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6941 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
6942 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
6943 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6944 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
6945 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
6946 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6949 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
6950 { .name = "TCO", .state = ARM_CP_STATE_AA64,
6951 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6952 .type = ARM_CP_CONST, .access = PL0_RW, },
6955 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
6956 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
6957 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
6958 .type = ARM_CP_NOP, .access = PL0_W,
6959 .accessfn = aa64_cacheop_poc_access },
6960 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
6961 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
6962 .type = ARM_CP_NOP, .access = PL0_W,
6963 .accessfn = aa64_cacheop_poc_access },
6964 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
6965 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
6966 .type = ARM_CP_NOP, .access = PL0_W,
6967 .accessfn = aa64_cacheop_poc_access },
6968 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
6969 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
6970 .type = ARM_CP_NOP, .access = PL0_W,
6971 .accessfn = aa64_cacheop_poc_access },
6972 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
6973 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
6974 .type = ARM_CP_NOP, .access = PL0_W,
6975 .accessfn = aa64_cacheop_poc_access },
6976 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
6977 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
6978 .type = ARM_CP_NOP, .access = PL0_W,
6979 .accessfn = aa64_cacheop_poc_access },
6980 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
6981 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
6982 .type = ARM_CP_NOP, .access = PL0_W,
6983 .accessfn = aa64_cacheop_poc_access },
6984 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
6985 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
6986 .type = ARM_CP_NOP, .access = PL0_W,
6987 .accessfn = aa64_cacheop_poc_access },
6988 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
6989 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
6990 .access = PL0_W, .type = ARM_CP_DC_GVA,
6991 #ifndef CONFIG_USER_ONLY
6992 /* Avoid overhead of an access check that always passes in user-mode */
6993 .accessfn = aa64_zva_access,
6996 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
6997 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
6998 .access = PL0_W, .type = ARM_CP_DC_GZVA,
6999 #ifndef CONFIG_USER_ONLY
7000 /* Avoid overhead of an access check that always passes in user-mode */
7001 .accessfn = aa64_zva_access,
7006 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7009 uint64_t hcr = arm_hcr_el2_eff(env);
7010 int el = arm_current_el(env);
7012 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7013 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7014 if (hcr & HCR_TGE) {
7015 return CP_ACCESS_TRAP_EL2;
7017 return CP_ACCESS_TRAP;
7019 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7020 return CP_ACCESS_TRAP_EL2;
7022 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7023 return CP_ACCESS_TRAP_EL2;
7026 && arm_feature(env, ARM_FEATURE_EL3)
7027 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7028 return CP_ACCESS_TRAP_EL3;
7030 return CP_ACCESS_OK;
7033 static const ARMCPRegInfo scxtnum_reginfo[] = {
7034 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7035 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7036 .access = PL0_RW, .accessfn = access_scxtnum,
7037 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7038 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7039 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7040 .access = PL1_RW, .accessfn = access_scxtnum,
7041 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7042 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7043 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7044 .access = PL2_RW, .accessfn = access_scxtnum,
7045 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7046 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7047 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7049 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7051 #endif /* TARGET_AARCH64 */
7053 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7056 int el = arm_current_el(env);
7059 uint64_t sctlr = arm_sctlr(env, el);
7060 if (!(sctlr & SCTLR_EnRCTX)) {
7061 return CP_ACCESS_TRAP;
7063 } else if (el == 1) {
7064 uint64_t hcr = arm_hcr_el2_eff(env);
7066 return CP_ACCESS_TRAP_EL2;
7069 return CP_ACCESS_OK;
7072 static const ARMCPRegInfo predinv_reginfo[] = {
7073 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7074 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7075 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7076 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7077 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7078 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7079 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7080 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7081 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7083 * Note the AArch32 opcodes have a different OPC1.
7085 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7086 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7087 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7088 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7089 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7090 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7091 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7092 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7093 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7096 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7098 /* Read the high 32 bits of the current CCSIDR */
7099 return extract64(ccsidr_read(env, ri), 32, 32);
7102 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7103 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7104 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7106 .accessfn = access_aa64_tid2,
7107 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7110 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7113 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7114 return CP_ACCESS_TRAP_EL2;
7117 return CP_ACCESS_OK;
7120 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7123 if (arm_feature(env, ARM_FEATURE_V8)) {
7124 return access_aa64_tid3(env, ri, isread);
7127 return CP_ACCESS_OK;
7130 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7133 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7134 return CP_ACCESS_TRAP_EL2;
7137 return CP_ACCESS_OK;
7140 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7141 const ARMCPRegInfo *ri, bool isread)
7144 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7145 * in v7A, not in v8A.
7147 if (!arm_feature(env, ARM_FEATURE_V8) &&
7148 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7149 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7150 return CP_ACCESS_TRAP_EL2;
7152 return CP_ACCESS_OK;
7155 static const ARMCPRegInfo jazelle_regs[] = {
7157 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7158 .access = PL1_R, .accessfn = access_jazelle,
7159 .type = ARM_CP_CONST, .resetvalue = 0 },
7161 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7162 .accessfn = access_joscr_jmcr,
7163 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7165 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7166 .accessfn = access_joscr_jmcr,
7167 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7170 static const ARMCPRegInfo contextidr_el2 = {
7171 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7172 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7174 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7177 static const ARMCPRegInfo vhe_reginfo[] = {
7178 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7179 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7180 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7181 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7182 #ifndef CONFIG_USER_ONLY
7183 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7184 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7186 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7187 .type = ARM_CP_IO, .access = PL2_RW,
7188 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7189 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7190 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7191 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7192 .resetfn = gt_hv_timer_reset,
7193 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7194 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7196 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7198 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7199 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7200 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7201 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7202 .type = ARM_CP_IO | ARM_CP_ALIAS,
7203 .access = PL2_RW, .accessfn = e2h_access,
7204 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7205 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7206 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7207 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7208 .type = ARM_CP_IO | ARM_CP_ALIAS,
7209 .access = PL2_RW, .accessfn = e2h_access,
7210 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7211 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7212 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7213 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7214 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7215 .access = PL2_RW, .accessfn = e2h_access,
7216 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7217 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7218 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7219 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7220 .access = PL2_RW, .accessfn = e2h_access,
7221 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7222 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7223 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7224 .type = ARM_CP_IO | ARM_CP_ALIAS,
7225 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7226 .access = PL2_RW, .accessfn = e2h_access,
7227 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7228 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7229 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7230 .type = ARM_CP_IO | ARM_CP_ALIAS,
7231 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7232 .access = PL2_RW, .accessfn = e2h_access,
7233 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7237 #ifndef CONFIG_USER_ONLY
7238 static const ARMCPRegInfo ats1e1_reginfo[] = {
7239 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7240 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7241 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7242 .writefn = ats_write64 },
7243 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7244 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7245 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7246 .writefn = ats_write64 },
7249 static const ARMCPRegInfo ats1cp_reginfo[] = {
7250 { .name = "ATS1CPRP",
7251 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7252 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7253 .writefn = ats_write },
7254 { .name = "ATS1CPWP",
7255 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7256 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7257 .writefn = ats_write },
7262 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7263 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7264 * is non-zero, which is never for ARMv7, optionally in ARMv8
7265 * and mandatorily for ARMv8.2 and up.
7266 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7267 * implementation is RAZ/WI we can ignore this detail, as we
7270 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7271 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7272 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7273 .access = PL1_RW, .accessfn = access_tacr,
7274 .type = ARM_CP_CONST, .resetvalue = 0 },
7275 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7276 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7277 .access = PL2_RW, .type = ARM_CP_CONST,
7281 void register_cp_regs_for_features(ARMCPU *cpu)
7283 /* Register all the coprocessor registers based on feature bits */
7284 CPUARMState *env = &cpu->env;
7285 if (arm_feature(env, ARM_FEATURE_M)) {
7286 /* M profile has no coprocessor registers */
7290 define_arm_cp_regs(cpu, cp_reginfo);
7291 if (!arm_feature(env, ARM_FEATURE_V8)) {
7292 /* Must go early as it is full of wildcards that may be
7293 * overridden by later definitions.
7295 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7298 if (arm_feature(env, ARM_FEATURE_V6)) {
7299 /* The ID registers all have impdef reset values */
7300 ARMCPRegInfo v6_idregs[] = {
7301 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7302 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7303 .access = PL1_R, .type = ARM_CP_CONST,
7304 .accessfn = access_aa32_tid3,
7305 .resetvalue = cpu->isar.id_pfr0 },
7306 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7307 * the value of the GIC field until after we define these regs.
7309 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7310 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7311 .access = PL1_R, .type = ARM_CP_NO_RAW,
7312 .accessfn = access_aa32_tid3,
7313 .readfn = id_pfr1_read,
7314 .writefn = arm_cp_write_ignore },
7315 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7316 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7317 .access = PL1_R, .type = ARM_CP_CONST,
7318 .accessfn = access_aa32_tid3,
7319 .resetvalue = cpu->isar.id_dfr0 },
7320 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7321 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7322 .access = PL1_R, .type = ARM_CP_CONST,
7323 .accessfn = access_aa32_tid3,
7324 .resetvalue = cpu->id_afr0 },
7325 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7326 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7327 .access = PL1_R, .type = ARM_CP_CONST,
7328 .accessfn = access_aa32_tid3,
7329 .resetvalue = cpu->isar.id_mmfr0 },
7330 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7331 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7332 .access = PL1_R, .type = ARM_CP_CONST,
7333 .accessfn = access_aa32_tid3,
7334 .resetvalue = cpu->isar.id_mmfr1 },
7335 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7336 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7337 .access = PL1_R, .type = ARM_CP_CONST,
7338 .accessfn = access_aa32_tid3,
7339 .resetvalue = cpu->isar.id_mmfr2 },
7340 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7341 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7342 .access = PL1_R, .type = ARM_CP_CONST,
7343 .accessfn = access_aa32_tid3,
7344 .resetvalue = cpu->isar.id_mmfr3 },
7345 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7346 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7347 .access = PL1_R, .type = ARM_CP_CONST,
7348 .accessfn = access_aa32_tid3,
7349 .resetvalue = cpu->isar.id_isar0 },
7350 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7351 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7352 .access = PL1_R, .type = ARM_CP_CONST,
7353 .accessfn = access_aa32_tid3,
7354 .resetvalue = cpu->isar.id_isar1 },
7355 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7356 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7357 .access = PL1_R, .type = ARM_CP_CONST,
7358 .accessfn = access_aa32_tid3,
7359 .resetvalue = cpu->isar.id_isar2 },
7360 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7361 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7362 .access = PL1_R, .type = ARM_CP_CONST,
7363 .accessfn = access_aa32_tid3,
7364 .resetvalue = cpu->isar.id_isar3 },
7365 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7366 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7367 .access = PL1_R, .type = ARM_CP_CONST,
7368 .accessfn = access_aa32_tid3,
7369 .resetvalue = cpu->isar.id_isar4 },
7370 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7371 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7372 .access = PL1_R, .type = ARM_CP_CONST,
7373 .accessfn = access_aa32_tid3,
7374 .resetvalue = cpu->isar.id_isar5 },
7375 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7376 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7377 .access = PL1_R, .type = ARM_CP_CONST,
7378 .accessfn = access_aa32_tid3,
7379 .resetvalue = cpu->isar.id_mmfr4 },
7380 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7381 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7382 .access = PL1_R, .type = ARM_CP_CONST,
7383 .accessfn = access_aa32_tid3,
7384 .resetvalue = cpu->isar.id_isar6 },
7386 define_arm_cp_regs(cpu, v6_idregs);
7387 define_arm_cp_regs(cpu, v6_cp_reginfo);
7389 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7391 if (arm_feature(env, ARM_FEATURE_V6K)) {
7392 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7394 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7395 !arm_feature(env, ARM_FEATURE_PMSA)) {
7396 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7398 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7399 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7401 if (arm_feature(env, ARM_FEATURE_V7)) {
7402 ARMCPRegInfo clidr = {
7403 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7404 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7405 .access = PL1_R, .type = ARM_CP_CONST,
7406 .accessfn = access_aa64_tid2,
7407 .resetvalue = cpu->clidr
7409 define_one_arm_cp_reg(cpu, &clidr);
7410 define_arm_cp_regs(cpu, v7_cp_reginfo);
7411 define_debug_regs(cpu);
7412 define_pmu_regs(cpu);
7414 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7416 if (arm_feature(env, ARM_FEATURE_V8)) {
7418 * v8 ID registers, which all have impdef reset values.
7419 * Note that within the ID register ranges the unused slots
7420 * must all RAZ, not UNDEF; future architecture versions may
7421 * define new registers here.
7422 * ID registers which are AArch64 views of the AArch32 ID registers
7423 * which already existed in v6 and v7 are handled elsewhere,
7427 ARMCPRegInfo v8_idregs[] = {
7429 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7430 * emulation because we don't know the right value for the
7431 * GIC field until after we define these regs.
7433 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7434 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7436 #ifdef CONFIG_USER_ONLY
7437 .type = ARM_CP_CONST,
7438 .resetvalue = cpu->isar.id_aa64pfr0
7440 .type = ARM_CP_NO_RAW,
7441 .accessfn = access_aa64_tid3,
7442 .readfn = id_aa64pfr0_read,
7443 .writefn = arm_cp_write_ignore
7446 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7447 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7448 .access = PL1_R, .type = ARM_CP_CONST,
7449 .accessfn = access_aa64_tid3,
7450 .resetvalue = cpu->isar.id_aa64pfr1},
7451 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7452 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7453 .access = PL1_R, .type = ARM_CP_CONST,
7454 .accessfn = access_aa64_tid3,
7456 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7457 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7458 .access = PL1_R, .type = ARM_CP_CONST,
7459 .accessfn = access_aa64_tid3,
7461 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7462 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7463 .access = PL1_R, .type = ARM_CP_CONST,
7464 .accessfn = access_aa64_tid3,
7465 .resetvalue = cpu->isar.id_aa64zfr0 },
7466 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
7467 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7468 .access = PL1_R, .type = ARM_CP_CONST,
7469 .accessfn = access_aa64_tid3,
7470 .resetvalue = cpu->isar.id_aa64smfr0 },
7471 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7472 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7473 .access = PL1_R, .type = ARM_CP_CONST,
7474 .accessfn = access_aa64_tid3,
7476 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7477 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7478 .access = PL1_R, .type = ARM_CP_CONST,
7479 .accessfn = access_aa64_tid3,
7481 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7482 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7483 .access = PL1_R, .type = ARM_CP_CONST,
7484 .accessfn = access_aa64_tid3,
7485 .resetvalue = cpu->isar.id_aa64dfr0 },
7486 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7487 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7488 .access = PL1_R, .type = ARM_CP_CONST,
7489 .accessfn = access_aa64_tid3,
7490 .resetvalue = cpu->isar.id_aa64dfr1 },
7491 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7492 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7493 .access = PL1_R, .type = ARM_CP_CONST,
7494 .accessfn = access_aa64_tid3,
7496 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7497 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7498 .access = PL1_R, .type = ARM_CP_CONST,
7499 .accessfn = access_aa64_tid3,
7501 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7502 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7503 .access = PL1_R, .type = ARM_CP_CONST,
7504 .accessfn = access_aa64_tid3,
7505 .resetvalue = cpu->id_aa64afr0 },
7506 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7507 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7508 .access = PL1_R, .type = ARM_CP_CONST,
7509 .accessfn = access_aa64_tid3,
7510 .resetvalue = cpu->id_aa64afr1 },
7511 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7512 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7513 .access = PL1_R, .type = ARM_CP_CONST,
7514 .accessfn = access_aa64_tid3,
7516 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7517 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7518 .access = PL1_R, .type = ARM_CP_CONST,
7519 .accessfn = access_aa64_tid3,
7521 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7522 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7523 .access = PL1_R, .type = ARM_CP_CONST,
7524 .accessfn = access_aa64_tid3,
7525 .resetvalue = cpu->isar.id_aa64isar0 },
7526 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7527 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7528 .access = PL1_R, .type = ARM_CP_CONST,
7529 .accessfn = access_aa64_tid3,
7530 .resetvalue = cpu->isar.id_aa64isar1 },
7531 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7532 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7533 .access = PL1_R, .type = ARM_CP_CONST,
7534 .accessfn = access_aa64_tid3,
7536 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7537 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7538 .access = PL1_R, .type = ARM_CP_CONST,
7539 .accessfn = access_aa64_tid3,
7541 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7542 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7543 .access = PL1_R, .type = ARM_CP_CONST,
7544 .accessfn = access_aa64_tid3,
7546 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7547 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7548 .access = PL1_R, .type = ARM_CP_CONST,
7549 .accessfn = access_aa64_tid3,
7551 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7552 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7553 .access = PL1_R, .type = ARM_CP_CONST,
7554 .accessfn = access_aa64_tid3,
7556 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7557 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7558 .access = PL1_R, .type = ARM_CP_CONST,
7559 .accessfn = access_aa64_tid3,
7561 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7562 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7563 .access = PL1_R, .type = ARM_CP_CONST,
7564 .accessfn = access_aa64_tid3,
7565 .resetvalue = cpu->isar.id_aa64mmfr0 },
7566 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7567 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7568 .access = PL1_R, .type = ARM_CP_CONST,
7569 .accessfn = access_aa64_tid3,
7570 .resetvalue = cpu->isar.id_aa64mmfr1 },
7571 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7572 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7573 .access = PL1_R, .type = ARM_CP_CONST,
7574 .accessfn = access_aa64_tid3,
7575 .resetvalue = cpu->isar.id_aa64mmfr2 },
7576 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7577 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7578 .access = PL1_R, .type = ARM_CP_CONST,
7579 .accessfn = access_aa64_tid3,
7581 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7582 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7583 .access = PL1_R, .type = ARM_CP_CONST,
7584 .accessfn = access_aa64_tid3,
7586 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7588 .access = PL1_R, .type = ARM_CP_CONST,
7589 .accessfn = access_aa64_tid3,
7591 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7592 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7593 .access = PL1_R, .type = ARM_CP_CONST,
7594 .accessfn = access_aa64_tid3,
7596 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7597 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7598 .access = PL1_R, .type = ARM_CP_CONST,
7599 .accessfn = access_aa64_tid3,
7601 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7602 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7603 .access = PL1_R, .type = ARM_CP_CONST,
7604 .accessfn = access_aa64_tid3,
7605 .resetvalue = cpu->isar.mvfr0 },
7606 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7608 .access = PL1_R, .type = ARM_CP_CONST,
7609 .accessfn = access_aa64_tid3,
7610 .resetvalue = cpu->isar.mvfr1 },
7611 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7612 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7613 .access = PL1_R, .type = ARM_CP_CONST,
7614 .accessfn = access_aa64_tid3,
7615 .resetvalue = cpu->isar.mvfr2 },
7617 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
7618 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
7619 * as RAZ, since it is in the "reserved for future ID
7620 * registers, RAZ" part of the AArch32 encoding space.
7622 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
7623 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7624 .access = PL1_R, .type = ARM_CP_CONST,
7625 .accessfn = access_aa64_tid3,
7627 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
7628 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7629 .access = PL1_R, .type = ARM_CP_CONST,
7630 .accessfn = access_aa64_tid3,
7632 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
7633 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7634 .access = PL1_R, .type = ARM_CP_CONST,
7635 .accessfn = access_aa64_tid3,
7638 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
7639 * they're also RAZ for AArch64, and in v8 are gradually
7640 * being filled with AArch64-view-of-AArch32-ID-register
7641 * for new ID registers.
7643 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
7644 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7645 .access = PL1_R, .type = ARM_CP_CONST,
7646 .accessfn = access_aa64_tid3,
7648 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7649 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7650 .access = PL1_R, .type = ARM_CP_CONST,
7651 .accessfn = access_aa64_tid3,
7652 .resetvalue = cpu->isar.id_pfr2 },
7653 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
7654 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7655 .access = PL1_R, .type = ARM_CP_CONST,
7656 .accessfn = access_aa64_tid3,
7657 .resetvalue = cpu->isar.id_dfr1 },
7658 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
7659 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7660 .access = PL1_R, .type = ARM_CP_CONST,
7661 .accessfn = access_aa64_tid3,
7662 .resetvalue = cpu->isar.id_mmfr5 },
7663 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
7664 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7665 .access = PL1_R, .type = ARM_CP_CONST,
7666 .accessfn = access_aa64_tid3,
7668 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7669 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7670 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7671 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7672 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7673 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7674 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7675 .resetvalue = cpu->pmceid0 },
7676 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7677 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7678 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7679 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7680 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7681 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7682 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7683 .resetvalue = cpu->pmceid1 },
7685 #ifdef CONFIG_USER_ONLY
7686 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7687 { .name = "ID_AA64PFR0_EL1",
7688 .exported_bits = 0x000f000f00ff0000,
7689 .fixed_bits = 0x0000000000000011 },
7690 { .name = "ID_AA64PFR1_EL1",
7691 .exported_bits = 0x00000000000000f0 },
7692 { .name = "ID_AA64PFR*_EL1_RESERVED",
7694 { .name = "ID_AA64ZFR0_EL1" },
7695 { .name = "ID_AA64MMFR0_EL1",
7696 .fixed_bits = 0x00000000ff000000 },
7697 { .name = "ID_AA64MMFR1_EL1" },
7698 { .name = "ID_AA64MMFR*_EL1_RESERVED",
7700 { .name = "ID_AA64DFR0_EL1",
7701 .fixed_bits = 0x0000000000000006 },
7702 { .name = "ID_AA64DFR1_EL1" },
7703 { .name = "ID_AA64DFR*_EL1_RESERVED",
7705 { .name = "ID_AA64AFR*",
7707 { .name = "ID_AA64ISAR0_EL1",
7708 .exported_bits = 0x00fffffff0fffff0 },
7709 { .name = "ID_AA64ISAR1_EL1",
7710 .exported_bits = 0x000000f0ffffffff },
7711 { .name = "ID_AA64ISAR*_EL1_RESERVED",
7714 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7716 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7717 if (!arm_feature(env, ARM_FEATURE_EL3) &&
7718 !arm_feature(env, ARM_FEATURE_EL2)) {
7719 ARMCPRegInfo rvbar = {
7720 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7721 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7723 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7725 define_one_arm_cp_reg(cpu, &rvbar);
7727 define_arm_cp_regs(cpu, v8_idregs);
7728 define_arm_cp_regs(cpu, v8_cp_reginfo);
7730 for (i = 4; i < 16; i++) {
7732 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
7733 * For pre-v8 cores there are RAZ patterns for these in
7734 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
7735 * v8 extends the "must RAZ" part of the ID register space
7736 * to also cover c0, 0, c{8-15}, {0-7}.
7737 * These are STATE_AA32 because in the AArch64 sysreg space
7738 * c4-c7 is where the AArch64 ID registers live (and we've
7739 * already defined those in v8_idregs[]), and c8-c15 are not
7740 * "must RAZ" for AArch64.
7742 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
7743 ARMCPRegInfo v8_aa32_raz_idregs = {
7745 .state = ARM_CP_STATE_AA32,
7746 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
7747 .access = PL1_R, .type = ARM_CP_CONST,
7748 .accessfn = access_aa64_tid3,
7750 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
7755 * Register the base EL2 cpregs.
7756 * Pre v8, these registers are implemented only as part of the
7757 * Virtualization Extensions (EL2 present). Beginning with v8,
7758 * if EL2 is missing but EL3 is enabled, mostly these become
7759 * RES0 from EL3, with some specific exceptions.
7761 if (arm_feature(env, ARM_FEATURE_EL2)
7762 || (arm_feature(env, ARM_FEATURE_EL3)
7763 && arm_feature(env, ARM_FEATURE_V8))) {
7764 uint64_t vmpidr_def = mpidr_read_val(env);
7765 ARMCPRegInfo vpidr_regs[] = {
7766 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7767 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7768 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7769 .resetvalue = cpu->midr,
7770 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
7771 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7772 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7773 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7774 .access = PL2_RW, .resetvalue = cpu->midr,
7775 .type = ARM_CP_EL3_NO_EL2_C_NZ,
7776 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7777 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7778 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7779 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7780 .resetvalue = vmpidr_def,
7781 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
7782 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7783 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7784 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7785 .access = PL2_RW, .resetvalue = vmpidr_def,
7786 .type = ARM_CP_EL3_NO_EL2_C_NZ,
7787 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7790 * The only field of MDCR_EL2 that has a defined architectural reset
7791 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
7793 ARMCPRegInfo mdcr_el2 = {
7794 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
7795 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
7796 .writefn = mdcr_el2_write,
7797 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
7798 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
7800 define_one_arm_cp_reg(cpu, &mdcr_el2);
7801 define_arm_cp_regs(cpu, vpidr_regs);
7802 define_arm_cp_regs(cpu, el2_cp_reginfo);
7803 if (arm_feature(env, ARM_FEATURE_V8)) {
7804 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7806 if (cpu_isar_feature(aa64_sel2, cpu)) {
7807 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
7809 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7810 if (!arm_feature(env, ARM_FEATURE_EL3)) {
7811 ARMCPRegInfo rvbar = {
7812 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7813 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7815 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7817 define_one_arm_cp_reg(cpu, &rvbar);
7821 /* Register the base EL3 cpregs. */
7822 if (arm_feature(env, ARM_FEATURE_EL3)) {
7823 define_arm_cp_regs(cpu, el3_cp_reginfo);
7824 ARMCPRegInfo el3_regs[] = {
7825 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7826 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7828 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7830 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7831 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7833 .raw_writefn = raw_write, .writefn = sctlr_write,
7834 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7835 .resetvalue = cpu->reset_sctlr },
7838 define_arm_cp_regs(cpu, el3_regs);
7840 /* The behaviour of NSACR is sufficiently various that we don't
7841 * try to describe it in a single reginfo:
7842 * if EL3 is 64 bit, then trap to EL3 from S EL1,
7843 * reads as constant 0xc00 from NS EL1 and NS EL2
7844 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7845 * if v7 without EL3, register doesn't exist
7846 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7848 if (arm_feature(env, ARM_FEATURE_EL3)) {
7849 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7850 static const ARMCPRegInfo nsacr = {
7851 .name = "NSACR", .type = ARM_CP_CONST,
7852 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7853 .access = PL1_RW, .accessfn = nsacr_access,
7856 define_one_arm_cp_reg(cpu, &nsacr);
7858 static const ARMCPRegInfo nsacr = {
7860 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7861 .access = PL3_RW | PL1_R,
7863 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7865 define_one_arm_cp_reg(cpu, &nsacr);
7868 if (arm_feature(env, ARM_FEATURE_V8)) {
7869 static const ARMCPRegInfo nsacr = {
7870 .name = "NSACR", .type = ARM_CP_CONST,
7871 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7875 define_one_arm_cp_reg(cpu, &nsacr);
7879 if (arm_feature(env, ARM_FEATURE_PMSA)) {
7880 if (arm_feature(env, ARM_FEATURE_V6)) {
7881 /* PMSAv6 not implemented */
7882 assert(arm_feature(env, ARM_FEATURE_V7));
7883 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7884 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7886 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7889 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7890 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7891 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
7892 if (cpu_isar_feature(aa32_hpd, cpu)) {
7893 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7896 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7897 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7899 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7900 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7902 if (arm_feature(env, ARM_FEATURE_VAPA)) {
7903 define_arm_cp_regs(cpu, vapa_cp_reginfo);
7905 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7906 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7908 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7909 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7911 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7912 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7914 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7915 define_arm_cp_regs(cpu, omap_cp_reginfo);
7917 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7918 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7920 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7921 define_arm_cp_regs(cpu, xscale_cp_reginfo);
7923 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7924 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7926 if (arm_feature(env, ARM_FEATURE_LPAE)) {
7927 define_arm_cp_regs(cpu, lpae_cp_reginfo);
7929 if (cpu_isar_feature(aa32_jazelle, cpu)) {
7930 define_arm_cp_regs(cpu, jazelle_regs);
7932 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7933 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7934 * be read-only (ie write causes UNDEF exception).
7937 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7938 /* Pre-v8 MIDR space.
7939 * Note that the MIDR isn't a simple constant register because
7940 * of the TI925 behaviour where writes to another register can
7941 * cause the MIDR value to change.
7943 * Unimplemented registers in the c15 0 0 0 space default to
7944 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7945 * and friends override accordingly.
7948 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7949 .access = PL1_R, .resetvalue = cpu->midr,
7950 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7951 .readfn = midr_read,
7952 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7953 .type = ARM_CP_OVERRIDE },
7954 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7956 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7957 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7959 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
7960 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7962 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
7963 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7965 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
7966 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7968 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
7969 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7971 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
7972 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
7973 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
7974 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
7975 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7976 .readfn = midr_read },
7977 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
7978 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7979 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7980 .access = PL1_R, .resetvalue = cpu->midr },
7981 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7982 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
7983 .access = PL1_R, .resetvalue = cpu->midr },
7984 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
7985 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
7987 .accessfn = access_aa64_tid1,
7988 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
7990 ARMCPRegInfo id_cp_reginfo[] = {
7991 /* These are common to v8 and pre-v8 */
7993 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
7994 .access = PL1_R, .accessfn = ctr_el0_access,
7995 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7996 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
7997 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
7998 .access = PL0_R, .accessfn = ctr_el0_access,
7999 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8000 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8002 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8004 .accessfn = access_aa32_tid1,
8005 .type = ARM_CP_CONST, .resetvalue = 0 },
8007 /* TLBTR is specific to VMSA */
8008 ARMCPRegInfo id_tlbtr_reginfo = {
8010 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8012 .accessfn = access_aa32_tid1,
8013 .type = ARM_CP_CONST, .resetvalue = 0,
8015 /* MPUIR is specific to PMSA V6+ */
8016 ARMCPRegInfo id_mpuir_reginfo = {
8018 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8019 .access = PL1_R, .type = ARM_CP_CONST,
8020 .resetvalue = cpu->pmsav7_dregion << 8
8022 static const ARMCPRegInfo crn0_wi_reginfo = {
8023 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8024 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8025 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8027 #ifdef CONFIG_USER_ONLY
8028 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8029 { .name = "MIDR_EL1",
8030 .exported_bits = 0x00000000ffffffff },
8031 { .name = "REVIDR_EL1" },
8033 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8035 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8036 arm_feature(env, ARM_FEATURE_STRONGARM)) {
8038 /* Register the blanket "writes ignored" value first to cover the
8039 * whole space. Then update the specific ID registers to allow write
8040 * access, so that they ignore writes rather than causing them to
8043 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8044 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8045 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8047 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8048 id_cp_reginfo[i].access = PL1_RW;
8050 id_mpuir_reginfo.access = PL1_RW;
8051 id_tlbtr_reginfo.access = PL1_RW;
8053 if (arm_feature(env, ARM_FEATURE_V8)) {
8054 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8056 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8058 define_arm_cp_regs(cpu, id_cp_reginfo);
8059 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8060 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8061 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8062 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8066 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8067 ARMCPRegInfo mpidr_cp_reginfo[] = {
8068 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8069 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8070 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8072 #ifdef CONFIG_USER_ONLY
8073 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8074 { .name = "MPIDR_EL1",
8075 .fixed_bits = 0x0000000080000000 },
8077 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8079 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8082 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8083 ARMCPRegInfo auxcr_reginfo[] = {
8084 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8085 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8086 .access = PL1_RW, .accessfn = access_tacr,
8087 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8088 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8089 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8090 .access = PL2_RW, .type = ARM_CP_CONST,
8092 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8093 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8094 .access = PL3_RW, .type = ARM_CP_CONST,
8097 define_arm_cp_regs(cpu, auxcr_reginfo);
8098 if (cpu_isar_feature(aa32_ac2, cpu)) {
8099 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8103 if (arm_feature(env, ARM_FEATURE_CBAR)) {
8105 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8106 * There are two flavours:
8107 * (1) older 32-bit only cores have a simple 32-bit CBAR
8108 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8109 * 32-bit register visible to AArch32 at a different encoding
8110 * to the "flavour 1" register and with the bits rearranged to
8111 * be able to squash a 64-bit address into the 32-bit view.
8112 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8113 * in future if we support AArch32-only configs of some of the
8114 * AArch64 cores we might need to add a specific feature flag
8115 * to indicate cores with "flavour 2" CBAR.
8117 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8118 /* 32 bit view is [31:18] 0...0 [43:32]. */
8119 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8120 | extract64(cpu->reset_cbar, 32, 12);
8121 ARMCPRegInfo cbar_reginfo[] = {
8123 .type = ARM_CP_CONST,
8124 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8125 .access = PL1_R, .resetvalue = cbar32 },
8126 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8127 .type = ARM_CP_CONST,
8128 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8129 .access = PL1_R, .resetvalue = cpu->reset_cbar },
8131 /* We don't implement a r/w 64 bit CBAR currently */
8132 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8133 define_arm_cp_regs(cpu, cbar_reginfo);
8135 ARMCPRegInfo cbar = {
8137 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8138 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8139 .fieldoffset = offsetof(CPUARMState,
8140 cp15.c15_config_base_address)
8142 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8143 cbar.access = PL1_R;
8144 cbar.fieldoffset = 0;
8145 cbar.type = ARM_CP_CONST;
8147 define_one_arm_cp_reg(cpu, &cbar);
8151 if (arm_feature(env, ARM_FEATURE_VBAR)) {
8152 static const ARMCPRegInfo vbar_cp_reginfo[] = {
8153 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8154 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8155 .access = PL1_RW, .writefn = vbar_write,
8156 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8157 offsetof(CPUARMState, cp15.vbar_ns) },
8160 define_arm_cp_regs(cpu, vbar_cp_reginfo);
8163 /* Generic registers whose values depend on the implementation */
8165 ARMCPRegInfo sctlr = {
8166 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8167 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8168 .access = PL1_RW, .accessfn = access_tvm_trvm,
8169 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8170 offsetof(CPUARMState, cp15.sctlr_ns) },
8171 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8172 .raw_writefn = raw_write,
8174 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8175 /* Normally we would always end the TB on an SCTLR write, but Linux
8176 * arch/arm/mach-pxa/sleep.S expects two instructions following
8177 * an MMU enable to execute from cache. Imitate this behaviour.
8179 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8181 define_one_arm_cp_reg(cpu, &sctlr);
8184 if (cpu_isar_feature(aa64_lor, cpu)) {
8185 define_arm_cp_regs(cpu, lor_reginfo);
8187 if (cpu_isar_feature(aa64_pan, cpu)) {
8188 define_one_arm_cp_reg(cpu, &pan_reginfo);
8190 #ifndef CONFIG_USER_ONLY
8191 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8192 define_arm_cp_regs(cpu, ats1e1_reginfo);
8194 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8195 define_arm_cp_regs(cpu, ats1cp_reginfo);
8198 if (cpu_isar_feature(aa64_uao, cpu)) {
8199 define_one_arm_cp_reg(cpu, &uao_reginfo);
8202 if (cpu_isar_feature(aa64_dit, cpu)) {
8203 define_one_arm_cp_reg(cpu, &dit_reginfo);
8205 if (cpu_isar_feature(aa64_ssbs, cpu)) {
8206 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8208 if (cpu_isar_feature(any_ras, cpu)) {
8209 define_arm_cp_regs(cpu, minimal_ras_reginfo);
8212 if (cpu_isar_feature(aa64_vh, cpu) ||
8213 cpu_isar_feature(aa64_debugv8p2, cpu)) {
8214 define_one_arm_cp_reg(cpu, &contextidr_el2);
8216 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8217 define_arm_cp_regs(cpu, vhe_reginfo);
8220 if (cpu_isar_feature(aa64_sve, cpu)) {
8221 define_arm_cp_regs(cpu, zcr_reginfo);
8224 if (cpu_isar_feature(aa64_hcx, cpu)) {
8225 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
8228 #ifdef TARGET_AARCH64
8229 if (cpu_isar_feature(aa64_sme, cpu)) {
8230 define_arm_cp_regs(cpu, sme_reginfo);
8232 if (cpu_isar_feature(aa64_pauth, cpu)) {
8233 define_arm_cp_regs(cpu, pauth_reginfo);
8235 if (cpu_isar_feature(aa64_rndr, cpu)) {
8236 define_arm_cp_regs(cpu, rndr_reginfo);
8238 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8239 define_arm_cp_regs(cpu, tlbirange_reginfo);
8241 if (cpu_isar_feature(aa64_tlbios, cpu)) {
8242 define_arm_cp_regs(cpu, tlbios_reginfo);
8244 #ifndef CONFIG_USER_ONLY
8245 /* Data Cache clean instructions up to PoP */
8246 if (cpu_isar_feature(aa64_dcpop, cpu)) {
8247 define_one_arm_cp_reg(cpu, dcpop_reg);
8249 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8250 define_one_arm_cp_reg(cpu, dcpodp_reg);
8253 #endif /*CONFIG_USER_ONLY*/
8256 * If full MTE is enabled, add all of the system registers.
8257 * If only "instructions available at EL0" are enabled,
8258 * then define only a RAZ/WI version of PSTATE.TCO.
8260 if (cpu_isar_feature(aa64_mte, cpu)) {
8261 define_arm_cp_regs(cpu, mte_reginfo);
8262 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8263 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8264 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8265 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8268 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
8269 define_arm_cp_regs(cpu, scxtnum_reginfo);
8273 if (cpu_isar_feature(any_predinv, cpu)) {
8274 define_arm_cp_regs(cpu, predinv_reginfo);
8277 if (cpu_isar_feature(any_ccidx, cpu)) {
8278 define_arm_cp_regs(cpu, ccsidr2_reginfo);
8281 #ifndef CONFIG_USER_ONLY
8283 * Register redirections and aliases must be done last,
8284 * after the registers from the other extensions have been defined.
8286 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8287 define_arm_vh_e2h_redirects_aliases(cpu);
8292 /* Sort alphabetically by type name, except for "any". */
8293 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8295 ObjectClass *class_a = (ObjectClass *)a;
8296 ObjectClass *class_b = (ObjectClass *)b;
8297 const char *name_a, *name_b;
8299 name_a = object_class_get_name(class_a);
8300 name_b = object_class_get_name(class_b);
8301 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8303 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8306 return strcmp(name_a, name_b);
8310 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8312 ObjectClass *oc = data;
8313 CPUClass *cc = CPU_CLASS(oc);
8314 const char *typename;
8317 typename = object_class_get_name(oc);
8318 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8319 if (cc->deprecation_note) {
8320 qemu_printf(" %s (deprecated)\n", name);
8322 qemu_printf(" %s\n", name);
8327 void arm_cpu_list(void)
8331 list = object_class_get_list(TYPE_ARM_CPU, false);
8332 list = g_slist_sort(list, arm_cpu_list_compare);
8333 qemu_printf("Available CPUs:\n");
8334 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8338 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8340 ObjectClass *oc = data;
8341 CpuDefinitionInfoList **cpu_list = user_data;
8342 CpuDefinitionInfo *info;
8343 const char *typename;
8345 typename = object_class_get_name(oc);
8346 info = g_malloc0(sizeof(*info));
8347 info->name = g_strndup(typename,
8348 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8349 info->q_typename = g_strdup(typename);
8351 QAPI_LIST_PREPEND(*cpu_list, info);
8354 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8356 CpuDefinitionInfoList *cpu_list = NULL;
8359 list = object_class_get_list(TYPE_ARM_CPU, false);
8360 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8367 * Private utility function for define_one_arm_cp_reg_with_opaque():
8368 * add a single reginfo struct to the hash table.
8370 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8371 void *opaque, CPState state,
8372 CPSecureState secstate,
8373 int crm, int opc1, int opc2,
8376 CPUARMState *env = &cpu->env;
8379 bool is64 = r->type & ARM_CP_64BIT;
8380 bool ns = secstate & ARM_CP_SECSTATE_NS;
8386 case ARM_CP_STATE_AA32:
8387 /* We assume it is a cp15 register if the .cp field is left unset. */
8388 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
8391 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
8393 case ARM_CP_STATE_AA64:
8395 * To allow abbreviation of ARMCPRegInfo definitions, we treat
8396 * cp == 0 as equivalent to the value for "standard guest-visible
8397 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
8398 * in their AArch64 view (the .cp value may be non-zero for the
8399 * benefit of the AArch32 view).
8401 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8402 cp = CP_REG_ARM64_SYSREG_CP;
8404 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
8407 g_assert_not_reached();
8410 /* Overriding of an existing definition must be explicitly requested. */
8411 if (!(r->type & ARM_CP_OVERRIDE)) {
8412 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
8414 assert(oldreg->type & ARM_CP_OVERRIDE);
8419 * Eliminate registers that are not present because the EL is missing.
8420 * Doing this here makes it easier to put all registers for a given
8421 * feature into the same ARMCPRegInfo array and define them all at once.
8424 if (arm_feature(env, ARM_FEATURE_EL3)) {
8426 * An EL2 register without EL2 but with EL3 is (usually) RES0.
8427 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
8429 int min_el = ctz32(r->access) / 2;
8430 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
8431 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
8434 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
8437 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
8439 if ((r->access & max_el) == 0) {
8444 /* Combine cpreg and name into one allocation. */
8445 name_len = strlen(name) + 1;
8446 r2 = g_malloc(sizeof(*r2) + name_len);
8448 r2->name = memcpy(r2 + 1, name, name_len);
8451 * Update fields to match the instantiation, overwiting wildcards
8452 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
8459 r2->secure = secstate;
8461 r2->opaque = opaque;
8465 /* This should not have been a very special register to begin. */
8466 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
8467 assert(old_special == 0 || old_special == ARM_CP_NOP);
8469 * Set the special function to CONST, retaining the other flags.
8470 * This is important for e.g. ARM_CP_SVE so that we still
8471 * take the SVE trap if CPTR_EL3.EZ == 0.
8473 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
8475 * Usually, these registers become RES0, but there are a few
8476 * special cases like VPIDR_EL2 which have a constant non-zero
8477 * value with writes ignored.
8479 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
8483 * ARM_CP_CONST has precedence, so removing the callbacks and
8484 * offsets are not strictly necessary, but it is potentially
8485 * less confusing to debug later.
8489 r2->raw_readfn = NULL;
8490 r2->raw_writefn = NULL;
8492 r2->fieldoffset = 0;
8493 r2->bank_fieldoffsets[0] = 0;
8494 r2->bank_fieldoffsets[1] = 0;
8496 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
8500 * Register is banked (using both entries in array).
8501 * Overwriting fieldoffset as the array is only used to define
8502 * banked registers but later only fieldoffset is used.
8504 r2->fieldoffset = r->bank_fieldoffsets[ns];
8506 if (state == ARM_CP_STATE_AA32) {
8509 * If the register is banked then we don't need to migrate or
8510 * reset the 32-bit instance in certain cases:
8512 * 1) If the register has both 32-bit and 64-bit instances
8513 * then we can count on the 64-bit instance taking care
8514 * of the non-secure bank.
8515 * 2) If ARMv8 is enabled then we can count on a 64-bit
8516 * version taking care of the secure bank. This requires
8517 * that separate 32 and 64-bit definitions are provided.
8519 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8520 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
8521 r2->type |= ARM_CP_ALIAS;
8523 } else if ((secstate != r->secure) && !ns) {
8525 * The register is not banked so we only want to allow
8526 * migration of the non-secure instance.
8528 r2->type |= ARM_CP_ALIAS;
8531 if (HOST_BIG_ENDIAN &&
8532 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
8533 r2->fieldoffset += sizeof(uint32_t);
8539 * By convention, for wildcarded registers only the first
8540 * entry is used for migration; the others are marked as
8541 * ALIAS so we don't try to transfer the register
8542 * multiple times. Special registers (ie NOP/WFI) are
8543 * never migratable and not even raw-accessible.
8545 if (r2->type & ARM_CP_SPECIAL_MASK) {
8546 r2->type |= ARM_CP_NO_RAW;
8548 if (((r->crm == CP_ANY) && crm != 0) ||
8549 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8550 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8551 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8555 * Check that raw accesses are either forbidden or handled. Note that
8556 * we can't assert this earlier because the setup of fieldoffset for
8557 * banked registers has to be done first.
8559 if (!(r2->type & ARM_CP_NO_RAW)) {
8560 assert(!raw_accessors_invalid(r2));
8563 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
8567 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8568 const ARMCPRegInfo *r, void *opaque)
8570 /* Define implementations of coprocessor registers.
8571 * We store these in a hashtable because typically
8572 * there are less than 150 registers in a space which
8573 * is 16*16*16*8*8 = 262144 in size.
8574 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8575 * If a register is defined twice then the second definition is
8576 * used, so this can be used to define some generic registers and
8577 * then override them with implementation specific variations.
8578 * At least one of the original and the second definition should
8579 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8580 * against accidental use.
8582 * The state field defines whether the register is to be
8583 * visible in the AArch32 or AArch64 execution state. If the
8584 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8585 * reginfo structure for the AArch32 view, which sees the lower
8586 * 32 bits of the 64 bit register.
8588 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8589 * be wildcarded. AArch64 registers are always considered to be 64
8590 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8591 * the register, if any.
8593 int crm, opc1, opc2;
8594 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8595 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8596 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8597 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8598 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8599 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8602 /* 64 bit registers have only CRm and Opc1 fields */
8603 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8604 /* op0 only exists in the AArch64 encodings */
8605 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8606 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8607 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8609 * This API is only for Arm's system coprocessors (14 and 15) or
8610 * (M-profile or v7A-and-earlier only) for implementation defined
8611 * coprocessors in the range 0..7. Our decode assumes this, since
8612 * 8..13 can be used for other insns including VFP and Neon. See
8613 * valid_cp() in translate.c. Assert here that we haven't tried
8614 * to use an invalid coprocessor number.
8617 case ARM_CP_STATE_BOTH:
8618 /* 0 has a special meaning, but otherwise the same rules as AA32. */
8623 case ARM_CP_STATE_AA32:
8624 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8625 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8626 assert(r->cp >= 14 && r->cp <= 15);
8628 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8631 case ARM_CP_STATE_AA64:
8632 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8635 g_assert_not_reached();
8637 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8638 * encodes a minimum access level for the register. We roll this
8639 * runtime check into our general permission check code, so check
8640 * here that the reginfo's specified permissions are strict enough
8641 * to encompass the generic architectural permission check.
8643 if (r->state != ARM_CP_STATE_AA32) {
8644 CPAccessRights mask;
8647 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8648 mask = PL0U_R | PL1_RW;
8668 /* min_EL EL1, secure mode only (we don't check the latter) */
8672 /* broken reginfo with out-of-range opc1 */
8673 g_assert_not_reached();
8675 /* assert our permissions are not too lax (stricter is fine) */
8676 assert((r->access & ~mask) == 0);
8679 /* Check that the register definition has enough info to handle
8680 * reads and writes if they are permitted.
8682 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
8683 if (r->access & PL3_R) {
8684 assert((r->fieldoffset ||
8685 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8688 if (r->access & PL3_W) {
8689 assert((r->fieldoffset ||
8690 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8695 for (crm = crmmin; crm <= crmmax; crm++) {
8696 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8697 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8698 for (state = ARM_CP_STATE_AA32;
8699 state <= ARM_CP_STATE_AA64; state++) {
8700 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8703 if (state == ARM_CP_STATE_AA32) {
8704 /* Under AArch32 CP registers can be common
8705 * (same for secure and non-secure world) or banked.
8709 switch (r->secure) {
8710 case ARM_CP_SECSTATE_S:
8711 case ARM_CP_SECSTATE_NS:
8712 add_cpreg_to_hashtable(cpu, r, opaque, state,
8713 r->secure, crm, opc1, opc2,
8716 case ARM_CP_SECSTATE_BOTH:
8717 name = g_strdup_printf("%s_S", r->name);
8718 add_cpreg_to_hashtable(cpu, r, opaque, state,
8720 crm, opc1, opc2, name);
8722 add_cpreg_to_hashtable(cpu, r, opaque, state,
8724 crm, opc1, opc2, r->name);
8727 g_assert_not_reached();
8730 /* AArch64 registers get mapped to non-secure instance
8732 add_cpreg_to_hashtable(cpu, r, opaque, state,
8734 crm, opc1, opc2, r->name);
8742 /* Define a whole list of registers */
8743 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
8744 void *opaque, size_t len)
8747 for (i = 0; i < len; ++i) {
8748 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
8753 * Modify ARMCPRegInfo for access from userspace.
8755 * This is a data driven modification directed by
8756 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8757 * user-space cannot alter any values and dynamic values pertaining to
8758 * execution state are hidden from user space view anyway.
8760 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
8761 const ARMCPRegUserSpaceInfo *mods,
8764 for (size_t mi = 0; mi < mods_len; ++mi) {
8765 const ARMCPRegUserSpaceInfo *m = mods + mi;
8766 GPatternSpec *pat = NULL;
8769 pat = g_pattern_spec_new(m->name);
8771 for (size_t ri = 0; ri < regs_len; ++ri) {
8772 ARMCPRegInfo *r = regs + ri;
8774 if (pat && g_pattern_match_string(pat, r->name)) {
8775 r->type = ARM_CP_CONST;
8779 } else if (strcmp(r->name, m->name) == 0) {
8780 r->type = ARM_CP_CONST;
8782 r->resetvalue &= m->exported_bits;
8783 r->resetvalue |= m->fixed_bits;
8788 g_pattern_spec_free(pat);
8793 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8795 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
8798 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8801 /* Helper coprocessor write function for write-ignore registers */
8804 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8806 /* Helper coprocessor write function for read-as-zero registers */
8810 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8812 /* Helper coprocessor reset function for do-nothing-on-reset registers */
8815 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8817 /* Return true if it is not valid for us to switch to
8818 * this CPU mode (ie all the UNPREDICTABLE cases in
8819 * the ARM ARM CPSRWriteByInstr pseudocode).
8822 /* Changes to or from Hyp via MSR and CPS are illegal. */
8823 if (write_type == CPSRWriteByInstr &&
8824 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8825 mode == ARM_CPU_MODE_HYP)) {
8830 case ARM_CPU_MODE_USR:
8832 case ARM_CPU_MODE_SYS:
8833 case ARM_CPU_MODE_SVC:
8834 case ARM_CPU_MODE_ABT:
8835 case ARM_CPU_MODE_UND:
8836 case ARM_CPU_MODE_IRQ:
8837 case ARM_CPU_MODE_FIQ:
8838 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8839 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8841 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8842 * and CPS are treated as illegal mode changes.
8844 if (write_type == CPSRWriteByInstr &&
8845 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8846 (arm_hcr_el2_eff(env) & HCR_TGE)) {
8850 case ARM_CPU_MODE_HYP:
8851 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
8852 case ARM_CPU_MODE_MON:
8853 return arm_current_el(env) < 3;
8859 uint32_t cpsr_read(CPUARMState *env)
8862 ZF = (env->ZF == 0);
8863 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8864 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8865 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8866 | ((env->condexec_bits & 0xfc) << 8)
8867 | (env->GE << 16) | (env->daif & CPSR_AIF);
8870 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8871 CPSRWriteType write_type)
8873 uint32_t changed_daif;
8874 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
8875 (mask & (CPSR_M | CPSR_E | CPSR_IL));
8877 if (mask & CPSR_NZCV) {
8878 env->ZF = (~val) & CPSR_Z;
8880 env->CF = (val >> 29) & 1;
8881 env->VF = (val << 3) & 0x80000000;
8884 env->QF = ((val & CPSR_Q) != 0);
8886 env->thumb = ((val & CPSR_T) != 0);
8887 if (mask & CPSR_IT_0_1) {
8888 env->condexec_bits &= ~3;
8889 env->condexec_bits |= (val >> 25) & 3;
8891 if (mask & CPSR_IT_2_7) {
8892 env->condexec_bits &= 3;
8893 env->condexec_bits |= (val >> 8) & 0xfc;
8895 if (mask & CPSR_GE) {
8896 env->GE = (val >> 16) & 0xf;
8899 /* In a V7 implementation that includes the security extensions but does
8900 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8901 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8902 * bits respectively.
8904 * In a V8 implementation, it is permitted for privileged software to
8905 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8907 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8908 arm_feature(env, ARM_FEATURE_EL3) &&
8909 !arm_feature(env, ARM_FEATURE_EL2) &&
8910 !arm_is_secure(env)) {
8912 changed_daif = (env->daif ^ val) & mask;
8914 if (changed_daif & CPSR_A) {
8915 /* Check to see if we are allowed to change the masking of async
8916 * abort exceptions from a non-secure state.
8918 if (!(env->cp15.scr_el3 & SCR_AW)) {
8919 qemu_log_mask(LOG_GUEST_ERROR,
8920 "Ignoring attempt to switch CPSR_A flag from "
8921 "non-secure world with SCR.AW bit clear\n");
8926 if (changed_daif & CPSR_F) {
8927 /* Check to see if we are allowed to change the masking of FIQ
8928 * exceptions from a non-secure state.
8930 if (!(env->cp15.scr_el3 & SCR_FW)) {
8931 qemu_log_mask(LOG_GUEST_ERROR,
8932 "Ignoring attempt to switch CPSR_F flag from "
8933 "non-secure world with SCR.FW bit clear\n");
8937 /* Check whether non-maskable FIQ (NMFI) support is enabled.
8938 * If this bit is set software is not allowed to mask
8939 * FIQs, but is allowed to set CPSR_F to 0.
8941 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8943 qemu_log_mask(LOG_GUEST_ERROR,
8944 "Ignoring attempt to enable CPSR_F flag "
8945 "(non-maskable FIQ [NMFI] support enabled)\n");
8951 env->daif &= ~(CPSR_AIF & mask);
8952 env->daif |= val & CPSR_AIF & mask;
8954 if (write_type != CPSRWriteRaw &&
8955 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8956 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8957 /* Note that we can only get here in USR mode if this is a
8958 * gdb stub write; for this case we follow the architectural
8959 * behaviour for guest writes in USR mode of ignoring an attempt
8960 * to switch mode. (Those are caught by translate.c for writes
8961 * triggered by guest instructions.)
8964 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8965 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8966 * v7, and has defined behaviour in v8:
8967 * + leave CPSR.M untouched
8968 * + allow changes to the other CPSR fields
8970 * For user changes via the GDB stub, we don't set PSTATE.IL,
8971 * as this would be unnecessarily harsh for a user error.
8974 if (write_type != CPSRWriteByGDBStub &&
8975 arm_feature(env, ARM_FEATURE_V8)) {
8979 qemu_log_mask(LOG_GUEST_ERROR,
8980 "Illegal AArch32 mode switch attempt from %s to %s\n",
8981 aarch32_mode_name(env->uncached_cpsr),
8982 aarch32_mode_name(val));
8984 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8985 write_type == CPSRWriteExceptionReturn ?
8986 "Exception return from AArch32" :
8987 "AArch32 mode switch from",
8988 aarch32_mode_name(env->uncached_cpsr),
8989 aarch32_mode_name(val), env->regs[15]);
8990 switch_mode(env, val & CPSR_M);
8993 mask &= ~CACHED_CPSR_BITS;
8994 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8995 if (rebuild_hflags) {
8996 arm_rebuild_hflags(env);
9000 /* Sign/zero extend */
9001 uint32_t HELPER(sxtb16)(uint32_t x)
9004 res = (uint16_t)(int8_t)x;
9005 res |= (uint32_t)(int8_t)(x >> 16) << 16;
9009 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9012 * Take a division-by-zero exception if necessary; otherwise return
9013 * to get the usual non-trapping division behaviour (result of 0)
9015 if (arm_feature(env, ARM_FEATURE_M)
9016 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9017 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9021 uint32_t HELPER(uxtb16)(uint32_t x)
9024 res = (uint16_t)(uint8_t)x;
9025 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9029 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9032 handle_possible_div0_trap(env, GETPC());
9035 if (num == INT_MIN && den == -1) {
9041 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9044 handle_possible_div0_trap(env, GETPC());
9050 uint32_t HELPER(rbit)(uint32_t x)
9055 #ifdef CONFIG_USER_ONLY
9057 static void switch_mode(CPUARMState *env, int mode)
9059 ARMCPU *cpu = env_archcpu(env);
9061 if (mode != ARM_CPU_MODE_USR) {
9062 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9066 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9067 uint32_t cur_el, bool secure)
9072 void aarch64_sync_64_to_32(CPUARMState *env)
9074 g_assert_not_reached();
9079 static void switch_mode(CPUARMState *env, int mode)
9084 old_mode = env->uncached_cpsr & CPSR_M;
9085 if (mode == old_mode)
9088 if (old_mode == ARM_CPU_MODE_FIQ) {
9089 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9090 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9091 } else if (mode == ARM_CPU_MODE_FIQ) {
9092 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9093 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9096 i = bank_number(old_mode);
9097 env->banked_r13[i] = env->regs[13];
9098 env->banked_spsr[i] = env->spsr;
9100 i = bank_number(mode);
9101 env->regs[13] = env->banked_r13[i];
9102 env->spsr = env->banked_spsr[i];
9104 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9105 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9108 /* Physical Interrupt Target EL Lookup Table
9110 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9112 * The below multi-dimensional table is used for looking up the target
9113 * exception level given numerous condition criteria. Specifically, the
9114 * target EL is based on SCR and HCR routing controls as well as the
9115 * currently executing EL and secure state.
9118 * target_el_table[2][2][2][2][2][4]
9119 * | | | | | +--- Current EL
9120 * | | | | +------ Non-secure(0)/Secure(1)
9121 * | | | +--------- HCR mask override
9122 * | | +------------ SCR exec state control
9123 * | +--------------- SCR mask override
9124 * +------------------ 32-bit(0)/64-bit(1) EL3
9126 * The table values are as such:
9130 * The ARM ARM target EL table includes entries indicating that an "exception
9131 * is not taken". The two cases where this is applicable are:
9132 * 1) An exception is taken from EL3 but the SCR does not have the exception
9134 * 2) An exception is taken from EL2 but the HCR does not have the exception
9136 * In these two cases, the below table contain a target of EL1. This value is
9137 * returned as it is expected that the consumer of the table data will check
9138 * for "target EL >= current EL" to ensure the exception is not taken.
9142 * BIT IRQ IMO Non-secure Secure
9143 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
9145 static const int8_t target_el_table[2][2][2][2][2][4] = {
9146 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9147 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
9148 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9149 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
9150 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9151 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
9152 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9153 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
9154 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
9155 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
9156 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
9157 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
9158 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
9159 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
9160 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
9161 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
9165 * Determine the target EL for physical exceptions
9167 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9168 uint32_t cur_el, bool secure)
9170 CPUARMState *env = cs->env_ptr;
9175 /* Is the highest EL AArch64? */
9176 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9179 if (arm_feature(env, ARM_FEATURE_EL3)) {
9180 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9182 /* Either EL2 is the highest EL (and so the EL2 register width
9183 * is given by is64); or there is no EL2 or EL3, in which case
9184 * the value of 'rw' does not affect the table lookup anyway.
9189 hcr_el2 = arm_hcr_el2_eff(env);
9192 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9193 hcr = hcr_el2 & HCR_IMO;
9196 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9197 hcr = hcr_el2 & HCR_FMO;
9200 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9201 hcr = hcr_el2 & HCR_AMO;
9206 * For these purposes, TGE and AMO/IMO/FMO both force the
9207 * interrupt to EL2. Fold TGE into the bit extracted above.
9209 hcr |= (hcr_el2 & HCR_TGE) != 0;
9211 /* Perform a table-lookup for the target EL given the current state */
9212 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9214 assert(target_el > 0);
9219 void arm_log_exception(CPUState *cs)
9221 int idx = cs->exception_index;
9223 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9224 const char *exc = NULL;
9225 static const char * const excnames[] = {
9226 [EXCP_UDEF] = "Undefined Instruction",
9228 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9229 [EXCP_DATA_ABORT] = "Data Abort",
9232 [EXCP_BKPT] = "Breakpoint",
9233 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9234 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9235 [EXCP_HVC] = "Hypervisor Call",
9236 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9237 [EXCP_SMC] = "Secure Monitor Call",
9238 [EXCP_VIRQ] = "Virtual IRQ",
9239 [EXCP_VFIQ] = "Virtual FIQ",
9240 [EXCP_SEMIHOST] = "Semihosting call",
9241 [EXCP_NOCP] = "v7M NOCP UsageFault",
9242 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9243 [EXCP_STKOF] = "v8M STKOF UsageFault",
9244 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9245 [EXCP_LSERR] = "v8M LSERR UsageFault",
9246 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9247 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9248 [EXCP_VSERR] = "Virtual SERR",
9251 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9252 exc = excnames[idx];
9257 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
9258 idx, exc, cs->cpu_index);
9263 * Function used to synchronize QEMU's AArch64 register set with AArch32
9264 * register set. This is necessary when switching between AArch32 and AArch64
9267 void aarch64_sync_32_to_64(CPUARMState *env)
9270 uint32_t mode = env->uncached_cpsr & CPSR_M;
9272 /* We can blanket copy R[0:7] to X[0:7] */
9273 for (i = 0; i < 8; i++) {
9274 env->xregs[i] = env->regs[i];
9278 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9279 * Otherwise, they come from the banked user regs.
9281 if (mode == ARM_CPU_MODE_FIQ) {
9282 for (i = 8; i < 13; i++) {
9283 env->xregs[i] = env->usr_regs[i - 8];
9286 for (i = 8; i < 13; i++) {
9287 env->xregs[i] = env->regs[i];
9292 * Registers x13-x23 are the various mode SP and FP registers. Registers
9293 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9294 * from the mode banked register.
9296 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9297 env->xregs[13] = env->regs[13];
9298 env->xregs[14] = env->regs[14];
9300 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9301 /* HYP is an exception in that it is copied from r14 */
9302 if (mode == ARM_CPU_MODE_HYP) {
9303 env->xregs[14] = env->regs[14];
9305 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9309 if (mode == ARM_CPU_MODE_HYP) {
9310 env->xregs[15] = env->regs[13];
9312 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9315 if (mode == ARM_CPU_MODE_IRQ) {
9316 env->xregs[16] = env->regs[14];
9317 env->xregs[17] = env->regs[13];
9319 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9320 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9323 if (mode == ARM_CPU_MODE_SVC) {
9324 env->xregs[18] = env->regs[14];
9325 env->xregs[19] = env->regs[13];
9327 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9328 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9331 if (mode == ARM_CPU_MODE_ABT) {
9332 env->xregs[20] = env->regs[14];
9333 env->xregs[21] = env->regs[13];
9335 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9336 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9339 if (mode == ARM_CPU_MODE_UND) {
9340 env->xregs[22] = env->regs[14];
9341 env->xregs[23] = env->regs[13];
9343 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9344 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9348 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9349 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9350 * FIQ bank for r8-r14.
9352 if (mode == ARM_CPU_MODE_FIQ) {
9353 for (i = 24; i < 31; i++) {
9354 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9357 for (i = 24; i < 29; i++) {
9358 env->xregs[i] = env->fiq_regs[i - 24];
9360 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9361 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9364 env->pc = env->regs[15];
9368 * Function used to synchronize QEMU's AArch32 register set with AArch64
9369 * register set. This is necessary when switching between AArch32 and AArch64
9372 void aarch64_sync_64_to_32(CPUARMState *env)
9375 uint32_t mode = env->uncached_cpsr & CPSR_M;
9377 /* We can blanket copy X[0:7] to R[0:7] */
9378 for (i = 0; i < 8; i++) {
9379 env->regs[i] = env->xregs[i];
9383 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9384 * Otherwise, we copy x8-x12 into the banked user regs.
9386 if (mode == ARM_CPU_MODE_FIQ) {
9387 for (i = 8; i < 13; i++) {
9388 env->usr_regs[i - 8] = env->xregs[i];
9391 for (i = 8; i < 13; i++) {
9392 env->regs[i] = env->xregs[i];
9397 * Registers r13 & r14 depend on the current mode.
9398 * If we are in a given mode, we copy the corresponding x registers to r13
9399 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9402 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9403 env->regs[13] = env->xregs[13];
9404 env->regs[14] = env->xregs[14];
9406 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9409 * HYP is an exception in that it does not have its own banked r14 but
9410 * shares the USR r14
9412 if (mode == ARM_CPU_MODE_HYP) {
9413 env->regs[14] = env->xregs[14];
9415 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9419 if (mode == ARM_CPU_MODE_HYP) {
9420 env->regs[13] = env->xregs[15];
9422 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9425 if (mode == ARM_CPU_MODE_IRQ) {
9426 env->regs[14] = env->xregs[16];
9427 env->regs[13] = env->xregs[17];
9429 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9430 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9433 if (mode == ARM_CPU_MODE_SVC) {
9434 env->regs[14] = env->xregs[18];
9435 env->regs[13] = env->xregs[19];
9437 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9438 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9441 if (mode == ARM_CPU_MODE_ABT) {
9442 env->regs[14] = env->xregs[20];
9443 env->regs[13] = env->xregs[21];
9445 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9446 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9449 if (mode == ARM_CPU_MODE_UND) {
9450 env->regs[14] = env->xregs[22];
9451 env->regs[13] = env->xregs[23];
9453 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9454 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9457 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9458 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9459 * FIQ bank for r8-r14.
9461 if (mode == ARM_CPU_MODE_FIQ) {
9462 for (i = 24; i < 31; i++) {
9463 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9466 for (i = 24; i < 29; i++) {
9467 env->fiq_regs[i - 24] = env->xregs[i];
9469 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9470 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9473 env->regs[15] = env->pc;
9476 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9477 uint32_t mask, uint32_t offset,
9482 /* Change the CPU state so as to actually take the exception. */
9483 switch_mode(env, new_mode);
9486 * For exceptions taken to AArch32 we must clear the SS bit in both
9487 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9489 env->pstate &= ~PSTATE_SS;
9490 env->spsr = cpsr_read(env);
9491 /* Clear IT bits. */
9492 env->condexec_bits = 0;
9493 /* Switch to the new mode, and to the correct instruction set. */
9494 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9496 /* This must be after mode switching. */
9497 new_el = arm_current_el(env);
9499 /* Set new mode endianness */
9500 env->uncached_cpsr &= ~CPSR_E;
9501 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9502 env->uncached_cpsr |= CPSR_E;
9504 /* J and IL must always be cleared for exception entry */
9505 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9508 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9509 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9510 env->uncached_cpsr |= CPSR_SSBS;
9512 env->uncached_cpsr &= ~CPSR_SSBS;
9516 if (new_mode == ARM_CPU_MODE_HYP) {
9517 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9518 env->elr_el[2] = env->regs[15];
9520 /* CPSR.PAN is normally preserved preserved unless... */
9521 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9524 if (!arm_is_secure_below_el3(env)) {
9525 /* ... the target is EL3, from non-secure state. */
9526 env->uncached_cpsr &= ~CPSR_PAN;
9529 /* ... the target is EL3, from secure state ... */
9532 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9533 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9534 env->uncached_cpsr |= CPSR_PAN;
9540 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9541 * and we should just guard the thumb mode on V4
9543 if (arm_feature(env, ARM_FEATURE_V4T)) {
9545 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9547 env->regs[14] = env->regs[15] + offset;
9549 env->regs[15] = newpc;
9550 arm_rebuild_hflags(env);
9553 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9556 * Handle exception entry to Hyp mode; this is sufficiently
9557 * different to entry to other AArch32 modes that we handle it
9560 * The vector table entry used is always the 0x14 Hyp mode entry point,
9561 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
9562 * The offset applied to the preferred return address is always zero
9563 * (see DDI0487C.a section G1.12.3).
9564 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9566 uint32_t addr, mask;
9567 ARMCPU *cpu = ARM_CPU(cs);
9568 CPUARMState *env = &cpu->env;
9570 switch (cs->exception_index) {
9578 /* Fall through to prefetch abort. */
9579 case EXCP_PREFETCH_ABORT:
9580 env->cp15.ifar_s = env->exception.vaddress;
9581 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9582 (uint32_t)env->exception.vaddress);
9585 case EXCP_DATA_ABORT:
9586 env->cp15.dfar_s = env->exception.vaddress;
9587 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9588 (uint32_t)env->exception.vaddress);
9604 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9607 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9608 if (!arm_feature(env, ARM_FEATURE_V8)) {
9610 * QEMU syndrome values are v8-style. v7 has the IL bit
9611 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9612 * If this is a v7 CPU, squash the IL bit in those cases.
9614 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9615 (cs->exception_index == EXCP_DATA_ABORT &&
9616 !(env->exception.syndrome & ARM_EL_ISV)) ||
9617 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9618 env->exception.syndrome &= ~ARM_EL_IL;
9621 env->cp15.esr_el[2] = env->exception.syndrome;
9624 if (arm_current_el(env) != 2 && addr < 0x14) {
9629 if (!(env->cp15.scr_el3 & SCR_EA)) {
9632 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9635 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9639 addr += env->cp15.hvbar;
9641 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9644 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9646 ARMCPU *cpu = ARM_CPU(cs);
9647 CPUARMState *env = &cpu->env;
9654 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9655 switch (syn_get_ec(env->exception.syndrome)) {
9657 case EC_BREAKPOINT_SAME_EL:
9661 case EC_WATCHPOINT_SAME_EL:
9667 case EC_VECTORCATCH:
9676 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9679 if (env->exception.target_el == 2) {
9680 arm_cpu_do_interrupt_aarch32_hyp(cs);
9684 switch (cs->exception_index) {
9686 new_mode = ARM_CPU_MODE_UND;
9695 new_mode = ARM_CPU_MODE_SVC;
9698 /* The PC already points to the next instruction. */
9702 /* Fall through to prefetch abort. */
9703 case EXCP_PREFETCH_ABORT:
9704 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9705 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9706 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9707 env->exception.fsr, (uint32_t)env->exception.vaddress);
9708 new_mode = ARM_CPU_MODE_ABT;
9710 mask = CPSR_A | CPSR_I;
9713 case EXCP_DATA_ABORT:
9714 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9715 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9716 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9718 (uint32_t)env->exception.vaddress);
9719 new_mode = ARM_CPU_MODE_ABT;
9721 mask = CPSR_A | CPSR_I;
9725 new_mode = ARM_CPU_MODE_IRQ;
9727 /* Disable IRQ and imprecise data aborts. */
9728 mask = CPSR_A | CPSR_I;
9730 if (env->cp15.scr_el3 & SCR_IRQ) {
9731 /* IRQ routed to monitor mode */
9732 new_mode = ARM_CPU_MODE_MON;
9737 new_mode = ARM_CPU_MODE_FIQ;
9739 /* Disable FIQ, IRQ and imprecise data aborts. */
9740 mask = CPSR_A | CPSR_I | CPSR_F;
9741 if (env->cp15.scr_el3 & SCR_FIQ) {
9742 /* FIQ routed to monitor mode */
9743 new_mode = ARM_CPU_MODE_MON;
9748 new_mode = ARM_CPU_MODE_IRQ;
9750 /* Disable IRQ and imprecise data aborts. */
9751 mask = CPSR_A | CPSR_I;
9755 new_mode = ARM_CPU_MODE_FIQ;
9757 /* Disable FIQ, IRQ and imprecise data aborts. */
9758 mask = CPSR_A | CPSR_I | CPSR_F;
9764 * Note that this is reported as a data abort, but the DFAR
9765 * has an UNKNOWN value. Construct the SError syndrome from
9766 * AET and ExT fields.
9768 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
9770 if (extended_addresses_enabled(env)) {
9771 env->exception.fsr = arm_fi_to_lfsc(&fi);
9773 env->exception.fsr = arm_fi_to_sfsc(&fi);
9775 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
9776 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9777 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
9778 env->exception.fsr);
9780 new_mode = ARM_CPU_MODE_ABT;
9782 mask = CPSR_A | CPSR_I;
9787 new_mode = ARM_CPU_MODE_MON;
9789 mask = CPSR_A | CPSR_I | CPSR_F;
9793 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9794 return; /* Never happens. Keep compiler happy. */
9797 if (new_mode == ARM_CPU_MODE_MON) {
9798 addr += env->cp15.mvbar;
9799 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9800 /* High vectors. When enabled, base address cannot be remapped. */
9803 /* ARM v7 architectures provide a vector base address register to remap
9804 * the interrupt vector table.
9805 * This register is only followed in non-monitor mode, and is banked.
9806 * Note: only bits 31:5 are valid.
9808 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9811 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9812 env->cp15.scr_el3 &= ~SCR_NS;
9815 take_aarch32_exception(env, new_mode, mask, offset, addr);
9818 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9821 * Return the register number of the AArch64 view of the AArch32
9822 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9823 * be that of the AArch32 mode the exception came from.
9825 int mode = env->uncached_cpsr & CPSR_M;
9827 switch (aarch32_reg) {
9831 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9834 case ARM_CPU_MODE_USR:
9835 case ARM_CPU_MODE_SYS:
9837 case ARM_CPU_MODE_HYP:
9839 case ARM_CPU_MODE_IRQ:
9841 case ARM_CPU_MODE_SVC:
9843 case ARM_CPU_MODE_ABT:
9845 case ARM_CPU_MODE_UND:
9847 case ARM_CPU_MODE_FIQ:
9850 g_assert_not_reached();
9854 case ARM_CPU_MODE_USR:
9855 case ARM_CPU_MODE_SYS:
9856 case ARM_CPU_MODE_HYP:
9858 case ARM_CPU_MODE_IRQ:
9860 case ARM_CPU_MODE_SVC:
9862 case ARM_CPU_MODE_ABT:
9864 case ARM_CPU_MODE_UND:
9866 case ARM_CPU_MODE_FIQ:
9869 g_assert_not_reached();
9874 g_assert_not_reached();
9878 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
9880 uint32_t ret = cpsr_read(env);
9882 /* Move DIT to the correct location for SPSR_ELx */
9883 if (ret & CPSR_DIT) {
9887 /* Merge PSTATE.SS into SPSR_ELx */
9888 ret |= env->pstate & PSTATE_SS;
9893 static bool syndrome_is_sync_extabt(uint32_t syndrome)
9895 /* Return true if this syndrome value is a synchronous external abort */
9896 switch (syn_get_ec(syndrome)) {
9898 case EC_INSNABORT_SAME_EL:
9900 case EC_DATAABORT_SAME_EL:
9901 /* Look at fault status code for all the synchronous ext abort cases */
9902 switch (syndrome & 0x3f) {
9918 /* Handle exception entry to a target EL which is using AArch64 */
9919 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9921 ARMCPU *cpu = ARM_CPU(cs);
9922 CPUARMState *env = &cpu->env;
9923 unsigned int new_el = env->exception.target_el;
9924 target_ulong addr = env->cp15.vbar_el[new_el];
9925 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9926 unsigned int old_mode;
9927 unsigned int cur_el = arm_current_el(env);
9931 * Note that new_el can never be 0. If cur_el is 0, then
9932 * el0_a64 is is_a64(), else el0_a64 is ignored.
9934 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9936 if (cur_el < new_el) {
9937 /* Entry vector offset depends on whether the implemented EL
9938 * immediately lower than the target level is using AArch32 or AArch64
9945 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9948 hcr = arm_hcr_el2_eff(env);
9949 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9950 is_aa64 = (hcr & HCR_RW) != 0;
9955 is_aa64 = is_a64(env);
9958 g_assert_not_reached();
9966 } else if (pstate_read(env) & PSTATE_SP) {
9970 switch (cs->exception_index) {
9971 case EXCP_PREFETCH_ABORT:
9972 case EXCP_DATA_ABORT:
9974 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
9975 * to be taken to the SError vector entrypoint.
9977 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
9978 syndrome_is_sync_extabt(env->exception.syndrome)) {
9981 env->cp15.far_el[new_el] = env->exception.vaddress;
9982 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9983 env->cp15.far_el[new_el]);
9991 switch (syn_get_ec(env->exception.syndrome)) {
9992 case EC_ADVSIMDFPACCESSTRAP:
9994 * QEMU internal FP/SIMD syndromes from AArch32 include the
9995 * TA and coproc fields which are only exposed if the exception
9996 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9997 * AArch64 format syndrome.
9999 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10001 case EC_CP14RTTRAP:
10002 case EC_CP15RTTRAP:
10003 case EC_CP14DTTRAP:
10005 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10006 * the raw register field from the insn; when taking this to
10007 * AArch64 we must convert it to the AArch64 view of the register
10008 * number. Notice that we read a 4-bit AArch32 register number and
10009 * write back a 5-bit AArch64 one.
10011 rt = extract32(env->exception.syndrome, 5, 4);
10012 rt = aarch64_regnum(env, rt);
10013 env->exception.syndrome = deposit32(env->exception.syndrome,
10016 case EC_CP15RRTTRAP:
10017 case EC_CP14RRTTRAP:
10018 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10019 rt = extract32(env->exception.syndrome, 5, 4);
10020 rt = aarch64_regnum(env, rt);
10021 env->exception.syndrome = deposit32(env->exception.syndrome,
10023 rt = extract32(env->exception.syndrome, 10, 4);
10024 rt = aarch64_regnum(env, rt);
10025 env->exception.syndrome = deposit32(env->exception.syndrome,
10029 env->cp15.esr_el[new_el] = env->exception.syndrome;
10041 /* Construct the SError syndrome from IDS and ISS fields. */
10042 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10043 env->cp15.esr_el[new_el] = env->exception.syndrome;
10046 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10050 old_mode = pstate_read(env);
10051 aarch64_save_sp(env, arm_current_el(env));
10052 env->elr_el[new_el] = env->pc;
10054 old_mode = cpsr_read_for_spsr_elx(env);
10055 env->elr_el[new_el] = env->regs[15];
10057 aarch64_sync_32_to_64(env);
10059 env->condexec_bits = 0;
10061 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10063 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10064 env->elr_el[new_el]);
10066 if (cpu_isar_feature(aa64_pan, cpu)) {
10067 /* The value of PSTATE.PAN is normally preserved, except when ... */
10068 new_mode |= old_mode & PSTATE_PAN;
10071 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
10072 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10073 != (HCR_E2H | HCR_TGE)) {
10078 /* ... the target is EL1 ... */
10079 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
10080 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10081 new_mode |= PSTATE_PAN;
10086 if (cpu_isar_feature(aa64_mte, cpu)) {
10087 new_mode |= PSTATE_TCO;
10090 if (cpu_isar_feature(aa64_ssbs, cpu)) {
10091 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10092 new_mode |= PSTATE_SSBS;
10094 new_mode &= ~PSTATE_SSBS;
10098 pstate_write(env, PSTATE_DAIF | new_mode);
10099 env->aarch64 = true;
10100 aarch64_restore_sp(env, new_el);
10101 helper_rebuild_hflags_a64(env, new_el);
10105 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10106 new_el, env->pc, pstate_read(env));
10110 * Do semihosting call and set the appropriate return value. All the
10111 * permission and validity checks have been done at translate time.
10113 * We only see semihosting exceptions in TCG only as they are not
10114 * trapped to the hypervisor in KVM.
10117 static void handle_semihosting(CPUState *cs)
10119 ARMCPU *cpu = ARM_CPU(cs);
10120 CPUARMState *env = &cpu->env;
10123 qemu_log_mask(CPU_LOG_INT,
10124 "...handling as semihosting call 0x%" PRIx64 "\n",
10126 do_common_semihosting(cs);
10129 qemu_log_mask(CPU_LOG_INT,
10130 "...handling as semihosting call 0x%x\n",
10132 do_common_semihosting(cs);
10133 env->regs[15] += env->thumb ? 2 : 4;
10138 /* Handle a CPU exception for A and R profile CPUs.
10139 * Do any appropriate logging, handle PSCI calls, and then hand off
10140 * to the AArch64-entry or AArch32-entry function depending on the
10141 * target exception level's register width.
10143 * Note: this is used for both TCG (as the do_interrupt tcg op),
10144 * and KVM to re-inject guest debug exceptions, and to
10145 * inject a Synchronous-External-Abort.
10147 void arm_cpu_do_interrupt(CPUState *cs)
10149 ARMCPU *cpu = ARM_CPU(cs);
10150 CPUARMState *env = &cpu->env;
10151 unsigned int new_el = env->exception.target_el;
10153 assert(!arm_feature(env, ARM_FEATURE_M));
10155 arm_log_exception(cs);
10156 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10158 if (qemu_loglevel_mask(CPU_LOG_INT)
10159 && !excp_is_internal(cs->exception_index)) {
10160 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10161 syn_get_ec(env->exception.syndrome),
10162 env->exception.syndrome);
10165 if (arm_is_psci_call(cpu, cs->exception_index)) {
10166 arm_handle_psci_call(cpu);
10167 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10172 * Semihosting semantics depend on the register width of the code
10173 * that caused the exception, not the target exception level, so
10174 * must be handled here.
10177 if (cs->exception_index == EXCP_SEMIHOST) {
10178 handle_semihosting(cs);
10183 /* Hooks may change global state so BQL should be held, also the
10184 * BQL needs to be held for any modification of
10185 * cs->interrupt_request.
10187 g_assert(qemu_mutex_iothread_locked());
10189 arm_call_pre_el_change_hook(cpu);
10191 assert(!excp_is_internal(cs->exception_index));
10192 if (arm_el_is_aa64(env, new_el)) {
10193 arm_cpu_do_interrupt_aarch64(cs);
10195 arm_cpu_do_interrupt_aarch32(cs);
10198 arm_call_el_change_hook(cpu);
10200 if (!kvm_enabled()) {
10201 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10204 #endif /* !CONFIG_USER_ONLY */
10206 uint64_t arm_sctlr(CPUARMState *env, int el)
10208 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10210 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10211 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10214 return env->cp15.sctlr_el[el];
10217 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10219 if (regime_has_2_ranges(mmu_idx)) {
10220 return extract64(tcr, 37, 2);
10221 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10222 return 0; /* VTCR_EL2 */
10224 /* Replicate the single TBI bit so we always have 2 bits. */
10225 return extract32(tcr, 20, 1) * 3;
10229 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10231 if (regime_has_2_ranges(mmu_idx)) {
10232 return extract64(tcr, 51, 2);
10233 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10234 return 0; /* VTCR_EL2 */
10236 /* Replicate the single TBID bit so we always have 2 bits. */
10237 return extract32(tcr, 29, 1) * 3;
10241 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
10243 if (regime_has_2_ranges(mmu_idx)) {
10244 return extract64(tcr, 57, 2);
10246 /* Replicate the single TCMA bit so we always have 2 bits. */
10247 return extract32(tcr, 30, 1) * 3;
10251 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10252 ARMMMUIdx mmu_idx, bool data)
10254 uint64_t tcr = regime_tcr(env, mmu_idx);
10255 bool epd, hpd, using16k, using64k, tsz_oob, ds;
10256 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
10257 ARMCPU *cpu = env_archcpu(env);
10259 if (!regime_has_2_ranges(mmu_idx)) {
10261 tsz = extract32(tcr, 0, 6);
10262 using64k = extract32(tcr, 14, 1);
10263 using16k = extract32(tcr, 15, 1);
10264 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10268 hpd = extract32(tcr, 24, 1);
10271 sh = extract32(tcr, 12, 2);
10272 ps = extract32(tcr, 16, 3);
10273 ds = extract64(tcr, 32, 1);
10276 * Bit 55 is always between the two regions, and is canonical for
10277 * determining if address tagging is enabled.
10279 select = extract64(va, 55, 1);
10281 tsz = extract32(tcr, 0, 6);
10282 epd = extract32(tcr, 7, 1);
10283 sh = extract32(tcr, 12, 2);
10284 using64k = extract32(tcr, 14, 1);
10285 using16k = extract32(tcr, 15, 1);
10286 hpd = extract64(tcr, 41, 1);
10288 int tg = extract32(tcr, 30, 2);
10289 using16k = tg == 1;
10290 using64k = tg == 3;
10291 tsz = extract32(tcr, 16, 6);
10292 epd = extract32(tcr, 23, 1);
10293 sh = extract32(tcr, 28, 2);
10294 hpd = extract64(tcr, 42, 1);
10296 ps = extract64(tcr, 32, 3);
10297 ds = extract64(tcr, 59, 1);
10300 if (cpu_isar_feature(aa64_st, cpu)) {
10301 max_tsz = 48 - using64k;
10307 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
10308 * adjust the effective value of DS, as documented.
10312 if (cpu_isar_feature(aa64_lva, cpu)) {
10318 case ARMMMUIdx_Stage2:
10319 case ARMMMUIdx_Stage2_S:
10321 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
10323 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
10328 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
10330 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
10339 if (tsz > max_tsz) {
10342 } else if (tsz < min_tsz) {
10349 /* Present TBI as a composite with TBID. */
10350 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
10352 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
10354 tbi = (tbi >> select) & 1;
10356 return (ARMVAParameters) {
10364 .using16k = using16k,
10365 .using64k = using64k,
10366 .tsz_oob = tsz_oob,
10371 /* Note that signed overflow is undefined in C. The following routines are
10372 careful to use unsigned types where modulo arithmetic is required.
10373 Failure to do so _will_ break on newer gcc. */
10375 /* Signed saturating arithmetic. */
10377 /* Perform 16-bit signed saturating addition. */
10378 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10383 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10392 /* Perform 8-bit signed saturating addition. */
10393 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10398 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10407 /* Perform 16-bit signed saturating subtraction. */
10408 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10413 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10422 /* Perform 8-bit signed saturating subtraction. */
10423 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10428 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10437 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10438 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10439 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
10440 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
10443 #include "op_addsub.h"
10445 /* Unsigned saturating arithmetic. */
10446 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10455 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10463 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10472 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10480 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10481 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10482 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
10483 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
10486 #include "op_addsub.h"
10488 /* Signed modulo arithmetic. */
10489 #define SARITH16(a, b, n, op) do { \
10491 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10492 RESULT(sum, n, 16); \
10494 ge |= 3 << (n * 2); \
10497 #define SARITH8(a, b, n, op) do { \
10499 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10500 RESULT(sum, n, 8); \
10506 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10507 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10508 #define ADD8(a, b, n) SARITH8(a, b, n, +)
10509 #define SUB8(a, b, n) SARITH8(a, b, n, -)
10513 #include "op_addsub.h"
10515 /* Unsigned modulo arithmetic. */
10516 #define ADD16(a, b, n) do { \
10518 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10519 RESULT(sum, n, 16); \
10520 if ((sum >> 16) == 1) \
10521 ge |= 3 << (n * 2); \
10524 #define ADD8(a, b, n) do { \
10526 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10527 RESULT(sum, n, 8); \
10528 if ((sum >> 8) == 1) \
10532 #define SUB16(a, b, n) do { \
10534 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10535 RESULT(sum, n, 16); \
10536 if ((sum >> 16) == 0) \
10537 ge |= 3 << (n * 2); \
10540 #define SUB8(a, b, n) do { \
10542 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10543 RESULT(sum, n, 8); \
10544 if ((sum >> 8) == 0) \
10551 #include "op_addsub.h"
10553 /* Halved signed arithmetic. */
10554 #define ADD16(a, b, n) \
10555 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10556 #define SUB16(a, b, n) \
10557 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10558 #define ADD8(a, b, n) \
10559 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10560 #define SUB8(a, b, n) \
10561 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10564 #include "op_addsub.h"
10566 /* Halved unsigned arithmetic. */
10567 #define ADD16(a, b, n) \
10568 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10569 #define SUB16(a, b, n) \
10570 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10571 #define ADD8(a, b, n) \
10572 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10573 #define SUB8(a, b, n) \
10574 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10577 #include "op_addsub.h"
10579 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10587 /* Unsigned sum of absolute byte differences. */
10588 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10591 sum = do_usad(a, b);
10592 sum += do_usad(a >> 8, b >> 8);
10593 sum += do_usad(a >> 16, b >> 16);
10594 sum += do_usad(a >> 24, b >> 24);
10598 /* For ARMv6 SEL instruction. */
10599 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10611 mask |= 0xff000000;
10612 return (a & mask) | (b & ~mask);
10616 * The upper bytes of val (above the number specified by 'bytes') must have
10617 * been zeroed out by the caller.
10619 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10623 stl_le_p(buf, val);
10625 /* zlib crc32 converts the accumulator and output to one's complement. */
10626 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10629 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10633 stl_le_p(buf, val);
10635 /* Linux crc32c converts the output to one's complement. */
10636 return crc32c(acc, buf, bytes) ^ 0xffffffff;
10639 /* Return the exception level to which FP-disabled exceptions should
10640 * be taken, or 0 if FP is enabled.
10642 int fp_exception_el(CPUARMState *env, int cur_el)
10644 #ifndef CONFIG_USER_ONLY
10647 /* CPACR and the CPTR registers don't exist before v6, so FP is
10648 * always accessible
10650 if (!arm_feature(env, ARM_FEATURE_V6)) {
10654 if (arm_feature(env, ARM_FEATURE_M)) {
10655 /* CPACR can cause a NOCP UsageFault taken to current security state */
10656 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
10660 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
10661 if (!extract32(env->v7m.nsacr, 10, 1)) {
10662 /* FP insns cause a NOCP UsageFault taken to Secure */
10670 hcr_el2 = arm_hcr_el2_eff(env);
10672 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
10673 * 0, 2 : trap EL0 and EL1/PL1 accesses
10674 * 1 : trap only EL0 accesses
10675 * 3 : trap no accesses
10676 * This register is ignored if E2H+TGE are both set.
10678 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10679 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
10689 /* Trap from Secure PL0 or PL1 to Secure PL1. */
10690 if (!arm_el_is_aa64(env, 3)
10691 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
10702 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
10703 * to control non-secure access to the FPU. It doesn't have any
10704 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
10706 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
10707 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
10708 if (!extract32(env->cp15.nsacr, 10, 1)) {
10709 /* FP insns act as UNDEF */
10710 return cur_el == 2 ? 2 : 1;
10715 * CPTR_EL2 is present in v7VE or v8, and changes format
10716 * with HCR_EL2.E2H (regardless of TGE).
10719 if (hcr_el2 & HCR_E2H) {
10720 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
10722 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
10730 } else if (arm_is_el2_enabled(env)) {
10731 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
10737 /* CPTR_EL3 : present in v8 */
10738 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
10739 /* Trap all FP ops to EL3 */
10746 /* Return the exception level we're running at if this is our mmu_idx */
10747 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
10749 if (mmu_idx & ARM_MMU_IDX_M) {
10750 return mmu_idx & ARM_MMU_IDX_M_PRIV;
10754 case ARMMMUIdx_E10_0:
10755 case ARMMMUIdx_E20_0:
10756 case ARMMMUIdx_SE10_0:
10757 case ARMMMUIdx_SE20_0:
10759 case ARMMMUIdx_E10_1:
10760 case ARMMMUIdx_E10_1_PAN:
10761 case ARMMMUIdx_SE10_1:
10762 case ARMMMUIdx_SE10_1_PAN:
10765 case ARMMMUIdx_E20_2:
10766 case ARMMMUIdx_E20_2_PAN:
10767 case ARMMMUIdx_SE2:
10768 case ARMMMUIdx_SE20_2:
10769 case ARMMMUIdx_SE20_2_PAN:
10771 case ARMMMUIdx_SE3:
10774 g_assert_not_reached();
10779 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
10781 g_assert_not_reached();
10785 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
10790 if (arm_feature(env, ARM_FEATURE_M)) {
10791 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
10794 /* See ARM pseudo-function ELIsInHost. */
10797 hcr = arm_hcr_el2_eff(env);
10798 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
10799 idx = ARMMMUIdx_E20_0;
10801 idx = ARMMMUIdx_E10_0;
10805 if (env->pstate & PSTATE_PAN) {
10806 idx = ARMMMUIdx_E10_1_PAN;
10808 idx = ARMMMUIdx_E10_1;
10812 /* Note that TGE does not apply at EL2. */
10813 if (arm_hcr_el2_eff(env) & HCR_E2H) {
10814 if (env->pstate & PSTATE_PAN) {
10815 idx = ARMMMUIdx_E20_2_PAN;
10817 idx = ARMMMUIdx_E20_2;
10820 idx = ARMMMUIdx_E2;
10824 return ARMMMUIdx_SE3;
10826 g_assert_not_reached();
10829 if (arm_is_secure_below_el3(env)) {
10830 idx &= ~ARM_MMU_IDX_A_NS;
10836 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
10838 return arm_mmu_idx_el(env, arm_current_el(env));
10841 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
10843 CPUARMTBFlags flags)
10845 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
10846 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
10848 if (arm_singlestep_active(env)) {
10849 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
10854 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
10856 CPUARMTBFlags flags)
10858 bool sctlr_b = arm_sctlr_b(env);
10861 DP_TBFLAG_A32(flags, SCTLR__B, 1);
10863 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
10864 DP_TBFLAG_ANY(flags, BE_DATA, 1);
10866 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
10868 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
10871 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
10874 CPUARMTBFlags flags = {};
10875 uint32_t ccr = env->v7m.ccr[env->v7m.secure];
10877 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
10878 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
10879 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
10882 if (arm_v7m_is_handler_mode(env)) {
10883 DP_TBFLAG_M32(flags, HANDLER, 1);
10887 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
10888 * is suppressing them because the requested execution priority
10891 if (arm_feature(env, ARM_FEATURE_V8) &&
10892 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
10893 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
10894 DP_TBFLAG_M32(flags, STACKCHECK, 1);
10897 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
10900 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
10903 CPUARMTBFlags flags = {};
10904 int el = arm_current_el(env);
10906 if (arm_sctlr(env, el) & SCTLR_A) {
10907 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
10910 if (arm_el_is_aa64(env, 1)) {
10911 DP_TBFLAG_A32(flags, VFPEN, 1);
10914 if (el < 2 && env->cp15.hstr_el2 &&
10915 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10916 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
10919 if (env->uncached_cpsr & CPSR_IL) {
10920 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
10924 * The SME exception we are testing for is raised via
10925 * AArch64.CheckFPAdvSIMDEnabled(), as called from
10926 * AArch32.CheckAdvSIMDOrFPEnabled().
10929 && FIELD_EX64(env->svcr, SVCR, SM)
10930 && (!arm_is_el2_enabled(env)
10931 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
10932 && arm_el_is_aa64(env, 1)
10933 && !sme_fa64(env, el)) {
10934 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
10937 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
10940 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
10943 CPUARMTBFlags flags = {};
10944 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
10945 uint64_t tcr = regime_tcr(env, mmu_idx);
10949 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
10951 /* Get control bits for tagged addresses. */
10952 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
10953 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
10955 DP_TBFLAG_A64(flags, TBII, tbii);
10956 DP_TBFLAG_A64(flags, TBID, tbid);
10958 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
10959 int sve_el = sve_exception_el(env, el);
10962 * If either FP or SVE are disabled, translator does not need len.
10963 * If SVE EL > FP EL, FP exception has precedence, and translator
10964 * does not need SVE EL. Save potential re-translations by forcing
10965 * the unneeded data to zero.
10968 if (sve_el > fp_el) {
10971 } else if (sve_el == 0) {
10972 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
10974 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
10976 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
10977 int sme_el = sme_exception_el(env, el);
10978 bool sm = FIELD_EX64(env->svcr, SVCR, SM);
10980 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
10982 /* Similarly, do not compute SVL if SME is disabled. */
10983 int svl = sve_vqm1_for_el_sm(env, el, true);
10984 DP_TBFLAG_A64(flags, SVL, svl);
10986 /* If SVE is disabled, we will not have set VL above. */
10987 DP_TBFLAG_A64(flags, VL, svl);
10991 DP_TBFLAG_A64(flags, PSTATE_SM, 1);
10992 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
10994 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
10997 sctlr = regime_sctlr(env, stage1);
10999 if (sctlr & SCTLR_A) {
11000 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
11003 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
11004 DP_TBFLAG_ANY(flags, BE_DATA, 1);
11007 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
11009 * In order to save space in flags, we record only whether
11010 * pauth is "inactive", meaning all insns are implemented as
11011 * a nop, or "active" when some action must be performed.
11012 * The decision of which action to take is left to a helper.
11014 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
11015 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
11019 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11020 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
11021 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
11022 DP_TBFLAG_A64(flags, BT, 1);
11026 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
11027 if (!(env->pstate & PSTATE_UAO)) {
11029 case ARMMMUIdx_E10_1:
11030 case ARMMMUIdx_E10_1_PAN:
11031 case ARMMMUIdx_SE10_1:
11032 case ARMMMUIdx_SE10_1_PAN:
11033 /* TODO: ARMv8.3-NV */
11034 DP_TBFLAG_A64(flags, UNPRIV, 1);
11036 case ARMMMUIdx_E20_2:
11037 case ARMMMUIdx_E20_2_PAN:
11038 case ARMMMUIdx_SE20_2:
11039 case ARMMMUIdx_SE20_2_PAN:
11041 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
11042 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
11044 if (env->cp15.hcr_el2 & HCR_TGE) {
11045 DP_TBFLAG_A64(flags, UNPRIV, 1);
11053 if (env->pstate & PSTATE_IL) {
11054 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
11057 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
11059 * Set MTE_ACTIVE if any access may be Checked, and leave clear
11060 * if all accesses must be Unchecked:
11061 * 1) If no TBI, then there are no tags in the address to check,
11062 * 2) If Tag Check Override, then all accesses are Unchecked,
11063 * 3) If Tag Check Fail == 0, then Checked access have no effect,
11064 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
11066 if (allocation_tag_access_enabled(env, el, sctlr)) {
11067 DP_TBFLAG_A64(flags, ATA, 1);
11069 && !(env->pstate & PSTATE_TCO)
11070 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
11071 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
11074 /* And again for unprivileged accesses, if required. */
11075 if (EX_TBFLAG_A64(flags, UNPRIV)
11077 && !(env->pstate & PSTATE_TCO)
11078 && (sctlr & SCTLR_TCF0)
11079 && allocation_tag_access_enabled(env, 0, sctlr)) {
11080 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
11082 /* Cache TCMA as well as TBI. */
11083 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
11086 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11089 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
11091 int el = arm_current_el(env);
11092 int fp_el = fp_exception_el(env, el);
11093 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11096 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11097 } else if (arm_feature(env, ARM_FEATURE_M)) {
11098 return rebuild_hflags_m32(env, fp_el, mmu_idx);
11100 return rebuild_hflags_a32(env, fp_el, mmu_idx);
11104 void arm_rebuild_hflags(CPUARMState *env)
11106 env->hflags = rebuild_hflags_internal(env);
11110 * If we have triggered a EL state change we can't rely on the
11111 * translator having passed it to us, we need to recompute.
11113 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
11115 int el = arm_current_el(env);
11116 int fp_el = fp_exception_el(env, el);
11117 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11119 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11122 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
11124 int fp_el = fp_exception_el(env, el);
11125 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11127 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11131 * If we have triggered a EL state change we can't rely on the
11132 * translator having passed it to us, we need to recompute.
11134 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
11136 int el = arm_current_el(env);
11137 int fp_el = fp_exception_el(env, el);
11138 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11139 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11142 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
11144 int fp_el = fp_exception_el(env, el);
11145 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11147 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11150 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
11152 int fp_el = fp_exception_el(env, el);
11153 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11155 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11158 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
11160 #ifdef CONFIG_DEBUG_TCG
11161 CPUARMTBFlags c = env->hflags;
11162 CPUARMTBFlags r = rebuild_hflags_internal(env);
11164 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
11165 fprintf(stderr, "TCG hflags mismatch "
11166 "(current:(0x%08x,0x" TARGET_FMT_lx ")"
11167 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
11168 c.flags, c.flags2, r.flags, r.flags2);
11174 static bool mve_no_pred(CPUARMState *env)
11177 * Return true if there is definitely no predication of MVE
11178 * instructions by VPR or LTPSIZE. (Returning false even if there
11179 * isn't any predication is OK; generated code will just be
11181 * If the CPU does not implement MVE then this TB flag is always 0.
11183 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
11184 * logic in gen_update_fp_context() needs to be updated to match.
11186 * We do not include the effect of the ECI bits here -- they are
11187 * tracked in other TB flags. This simplifies the logic for
11188 * "when did we emit code that changes the MVE_NO_PRED TB flag
11189 * and thus need to end the TB?".
11191 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
11194 if (env->v7m.vpr) {
11197 if (env->v7m.ltpsize < 4) {
11203 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11204 target_ulong *cs_base, uint32_t *pflags)
11206 CPUARMTBFlags flags;
11208 assert_hflags_rebuild_correctly(env);
11209 flags = env->hflags;
11211 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
11213 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11214 DP_TBFLAG_A64(flags, BTYPE, env->btype);
11217 *pc = env->regs[15];
11219 if (arm_feature(env, ARM_FEATURE_M)) {
11220 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11221 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11222 != env->v7m.secure) {
11223 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
11226 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11227 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11228 (env->v7m.secure &&
11229 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11231 * ASPEN is set, but FPCA/SFPA indicate that there is no
11232 * active FP context; we must create a new FP context before
11233 * executing any FP insn.
11235 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
11238 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11239 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11240 DP_TBFLAG_M32(flags, LSPACT, 1);
11243 if (mve_no_pred(env)) {
11244 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
11248 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11249 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11251 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11252 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
11254 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
11255 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
11257 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
11258 DP_TBFLAG_A32(flags, VFPEN, 1);
11262 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
11263 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
11267 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11268 * states defined in the ARM ARM for software singlestep:
11269 * SS_ACTIVE PSTATE.SS State
11270 * 0 x Inactive (the TB flag for SS is always 0)
11271 * 1 0 Active-pending
11272 * 1 1 Active-not-pending
11273 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
11275 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
11276 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
11279 *pflags = flags.flags;
11280 *cs_base = flags.flags2;
11283 #ifdef TARGET_AARCH64
11285 * The manual says that when SVE is enabled and VQ is widened the
11286 * implementation is allowed to zero the previously inaccessible
11287 * portion of the registers. The corollary to that is that when
11288 * SVE is enabled and VQ is narrowed we are also allowed to zero
11289 * the now inaccessible portion of the registers.
11291 * The intent of this is that no predicate bit beyond VQ is ever set.
11292 * Which means that some operations on predicate registers themselves
11293 * may operate on full uint64_t or even unrolled across the maximum
11294 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
11295 * may well be cheaper than conditionals to restrict the operation
11296 * to the relevant portion of a uint16_t[16].
11298 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11303 assert(vq >= 1 && vq <= ARM_MAX_VQ);
11304 assert(vq <= env_archcpu(env)->sve_max_vq);
11306 /* Zap the high bits of the zregs. */
11307 for (i = 0; i < 32; i++) {
11308 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11311 /* Zap the high bits of the pregs and ffr. */
11314 pmask = ~(-1ULL << (16 * (vq & 3)));
11316 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11317 for (i = 0; i < 17; ++i) {
11318 env->vfp.pregs[i].p[j] &= pmask;
11324 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
11329 exc_el = sme_exception_el(env, el);
11331 exc_el = sve_exception_el(env, el);
11334 return 0; /* disabled */
11336 return sve_vqm1_for_el_sm(env, el, sm);
11340 * Notice a change in SVE vector size when changing EL.
11342 void aarch64_sve_change_el(CPUARMState *env, int old_el,
11343 int new_el, bool el0_a64)
11345 ARMCPU *cpu = env_archcpu(env);
11346 int old_len, new_len;
11347 bool old_a64, new_a64, sm;
11349 /* Nothing to do if no SVE. */
11350 if (!cpu_isar_feature(aa64_sve, cpu)) {
11354 /* Nothing to do if FP is disabled in either EL. */
11355 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
11359 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
11360 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
11363 * Both AArch64.TakeException and AArch64.ExceptionReturn
11364 * invoke ResetSVEState when taking an exception from, or
11365 * returning to, AArch32 state when PSTATE.SM is enabled.
11367 sm = FIELD_EX64(env->svcr, SVCR, SM);
11368 if (old_a64 != new_a64 && sm) {
11369 arm_reset_sve_state(env);
11374 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
11375 * at ELx, or not available because the EL is in AArch32 state, then
11376 * for all purposes other than a direct read, the ZCR_ELx.LEN field
11377 * has an effective value of 0".
11379 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
11380 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
11381 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
11382 * we already have the correct register contents when encountering the
11383 * vq0->vq0 transition between EL0->EL1.
11385 old_len = new_len = 0;
11387 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
11390 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
11393 /* When changing vector length, clear inaccessible state. */
11394 if (new_len < old_len) {
11395 aarch64_sve_narrow_vq(env, new_len + 1);