]> Git Repo - qemu.git/blob - hw/spapr.c
PPC: SPAPR: Use KVM function for time info
[qemu.git] / hw / spapr.c
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "sysemu.h"
28 #include "hw.h"
29 #include "elf.h"
30 #include "net.h"
31 #include "blockdev.h"
32
33 #include "hw/boards.h"
34 #include "hw/ppc.h"
35 #include "hw/loader.h"
36
37 #include "hw/spapr.h"
38 #include "hw/spapr_vio.h"
39 #include "hw/xics.h"
40
41 #include "kvm.h"
42 #include "kvm_ppc.h"
43
44 #include <libfdt.h>
45
46 #define KERNEL_LOAD_ADDR        0x00000000
47 #define INITRD_LOAD_ADDR        0x02800000
48 #define FDT_MAX_SIZE            0x10000
49 #define RTAS_MAX_SIZE           0x10000
50 #define FW_MAX_SIZE             0x400000
51 #define FW_FILE_NAME            "slof.bin"
52
53 #define MIN_RAM_SLOF            512UL
54
55 #define TIMEBASE_FREQ           512000000ULL
56
57 #define MAX_CPUS                256
58 #define XICS_IRQS               1024
59
60 sPAPREnvironment *spapr;
61
62 static void *spapr_create_fdt_skel(const char *cpu_model,
63                                    target_phys_addr_t initrd_base,
64                                    target_phys_addr_t initrd_size,
65                                    const char *boot_device,
66                                    const char *kernel_cmdline,
67                                    long hash_shift)
68 {
69     void *fdt;
70     CPUState *env;
71     uint64_t mem_reg_property[] = { 0, cpu_to_be64(ram_size) };
72     uint32_t start_prop = cpu_to_be32(initrd_base);
73     uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
74     uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
75     char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
76         "\0hcall-tce\0hcall-vio\0hcall-splpar";
77     uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
78     int i;
79     char *modelname;
80
81 #define _FDT(exp) \
82     do { \
83         int ret = (exp);                                           \
84         if (ret < 0) {                                             \
85             fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
86                     #exp, fdt_strerror(ret));                      \
87             exit(1);                                               \
88         }                                                          \
89     } while (0)
90
91     fdt = g_malloc0(FDT_MAX_SIZE);
92     _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
93
94     _FDT((fdt_finish_reservemap(fdt)));
95
96     /* Root node */
97     _FDT((fdt_begin_node(fdt, "")));
98     _FDT((fdt_property_string(fdt, "device_type", "chrp")));
99     _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
100
101     _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
102     _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
103
104     /* /chosen */
105     _FDT((fdt_begin_node(fdt, "chosen")));
106
107     _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
108     _FDT((fdt_property(fdt, "linux,initrd-start",
109                        &start_prop, sizeof(start_prop))));
110     _FDT((fdt_property(fdt, "linux,initrd-end",
111                        &end_prop, sizeof(end_prop))));
112     _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
113
114     _FDT((fdt_end_node(fdt)));
115
116     /* memory node */
117     _FDT((fdt_begin_node(fdt, "memory@0")));
118
119     _FDT((fdt_property_string(fdt, "device_type", "memory")));
120     _FDT((fdt_property(fdt, "reg",
121                        mem_reg_property, sizeof(mem_reg_property))));
122
123     _FDT((fdt_end_node(fdt)));
124
125     /* cpus */
126     _FDT((fdt_begin_node(fdt, "cpus")));
127
128     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
129     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
130
131     modelname = g_strdup(cpu_model);
132
133     for (i = 0; i < strlen(modelname); i++) {
134         modelname[i] = toupper(modelname[i]);
135     }
136
137     for (env = first_cpu; env != NULL; env = env->next_cpu) {
138         int index = env->cpu_index;
139         uint32_t gserver_prop[] = {cpu_to_be32(index), 0}; /* HACK! */
140         char *nodename;
141         uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
142                            0xffffffff, 0xffffffff};
143         uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
144         uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
145
146         if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
147             fprintf(stderr, "Allocation failure\n");
148             exit(1);
149         }
150
151         _FDT((fdt_begin_node(fdt, nodename)));
152
153         free(nodename);
154
155         _FDT((fdt_property_cell(fdt, "reg", index)));
156         _FDT((fdt_property_string(fdt, "device_type", "cpu")));
157
158         _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
159         _FDT((fdt_property_cell(fdt, "dcache-block-size",
160                                 env->dcache_line_size)));
161         _FDT((fdt_property_cell(fdt, "icache-block-size",
162                                 env->icache_line_size)));
163         _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
164         _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
165         _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
166         _FDT((fdt_property(fdt, "ibm,pft-size",
167                            pft_size_prop, sizeof(pft_size_prop))));
168         _FDT((fdt_property_string(fdt, "status", "okay")));
169         _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
170         _FDT((fdt_property_cell(fdt, "ibm,ppc-interrupt-server#s", index)));
171         _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
172                            gserver_prop, sizeof(gserver_prop))));
173
174         if (env->mmu_model & POWERPC_MMU_1TSEG) {
175             _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
176                                segs, sizeof(segs))));
177         }
178
179         _FDT((fdt_end_node(fdt)));
180     }
181
182     g_free(modelname);
183
184     _FDT((fdt_end_node(fdt)));
185
186     /* RTAS */
187     _FDT((fdt_begin_node(fdt, "rtas")));
188
189     _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
190                        sizeof(hypertas_prop))));
191
192     _FDT((fdt_end_node(fdt)));
193
194     /* interrupt controller */
195     _FDT((fdt_begin_node(fdt, "interrupt-controller@0")));
196
197     _FDT((fdt_property_string(fdt, "device_type",
198                               "PowerPC-External-Interrupt-Presentation")));
199     _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
200     _FDT((fdt_property_cell(fdt, "reg", 0)));
201     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
202     _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
203                        interrupt_server_ranges_prop,
204                        sizeof(interrupt_server_ranges_prop))));
205
206     _FDT((fdt_end_node(fdt)));
207
208     /* vdevice */
209     _FDT((fdt_begin_node(fdt, "vdevice")));
210
211     _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
212     _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
213     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
214     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
215     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
216     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
217
218     _FDT((fdt_end_node(fdt)));
219
220     _FDT((fdt_end_node(fdt))); /* close root node */
221     _FDT((fdt_finish(fdt)));
222
223     return fdt;
224 }
225
226 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
227                                target_phys_addr_t fdt_addr,
228                                target_phys_addr_t rtas_addr,
229                                target_phys_addr_t rtas_size)
230 {
231     int ret;
232     void *fdt;
233
234     fdt = g_malloc(FDT_MAX_SIZE);
235
236     /* open out the base tree into a temp buffer for the final tweaks */
237     _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
238
239     ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
240     if (ret < 0) {
241         fprintf(stderr, "couldn't setup vio devices in fdt\n");
242         exit(1);
243     }
244
245     /* RTAS */
246     ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
247     if (ret < 0) {
248         fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
249     }
250
251     _FDT((fdt_pack(fdt)));
252
253     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
254
255     g_free(fdt);
256 }
257
258 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
259 {
260     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
261 }
262
263 static void emulate_spapr_hypercall(CPUState *env)
264 {
265     env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
266 }
267
268 static void spapr_reset(void *opaque)
269 {
270     sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
271
272     fprintf(stderr, "sPAPR reset\n");
273
274     /* flush out the hash table */
275     memset(spapr->htab, 0, spapr->htab_size);
276
277     /* Load the fdt */
278     spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
279                        spapr->rtas_size);
280
281     /* Set up the entry state */
282     first_cpu->gpr[3] = spapr->fdt_addr;
283     first_cpu->gpr[5] = 0;
284     first_cpu->halted = 0;
285     first_cpu->nip = spapr->entry_point;
286
287 }
288
289 /* pSeries LPAR / sPAPR hardware init */
290 static void ppc_spapr_init(ram_addr_t ram_size,
291                            const char *boot_device,
292                            const char *kernel_filename,
293                            const char *kernel_cmdline,
294                            const char *initrd_filename,
295                            const char *cpu_model)
296 {
297     CPUState *env;
298     int i;
299     ram_addr_t ram_offset;
300     uint32_t initrd_base;
301     long kernel_size, initrd_size, fw_size;
302     long pteg_shift = 17;
303     char *filename;
304
305     spapr = g_malloc(sizeof(*spapr));
306     cpu_ppc_hypercall = emulate_spapr_hypercall;
307
308     /* We place the device tree just below either the top of RAM, or
309      * 2GB, so that it can be processed with 32-bit code if
310      * necessary */
311     spapr->fdt_addr = MIN(ram_size, 0x80000000) - FDT_MAX_SIZE;
312     spapr->rtas_addr = spapr->fdt_addr - RTAS_MAX_SIZE;
313
314     /* init CPUs */
315     if (cpu_model == NULL) {
316         cpu_model = "POWER7";
317     }
318     for (i = 0; i < smp_cpus; i++) {
319         env = cpu_init(cpu_model);
320
321         if (!env) {
322             fprintf(stderr, "Unable to find PowerPC CPU definition\n");
323             exit(1);
324         }
325         /* Set time-base frequency to 512 MHz */
326         cpu_ppc_tb_init(env, TIMEBASE_FREQ);
327         qemu_register_reset((QEMUResetHandler *)&cpu_reset, env);
328
329         env->hreset_vector = 0x60;
330         env->hreset_excp_prefix = 0;
331         env->gpr[3] = env->cpu_index;
332     }
333
334     /* allocate RAM */
335     ram_offset = qemu_ram_alloc(NULL, "ppc_spapr.ram", ram_size);
336     cpu_register_physical_memory(0, ram_size, ram_offset);
337
338     /* allocate hash page table.  For now we always make this 16mb,
339      * later we should probably make it scale to the size of guest
340      * RAM */
341     spapr->htab_size = 1ULL << (pteg_shift + 7);
342     spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size);
343
344     for (env = first_cpu; env != NULL; env = env->next_cpu) {
345         env->external_htab = spapr->htab;
346         env->htab_base = -1;
347         env->htab_mask = spapr->htab_size - 1;
348
349         /* Tell KVM that we're in PAPR mode */
350         env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
351                              ((pteg_shift + 7) - 18);
352         env->spr[SPR_HIOR] = 0;
353
354         if (kvm_enabled()) {
355             kvmppc_set_papr(env);
356         }
357     }
358
359     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
360     spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
361                                            ram_size - spapr->rtas_addr);
362     if (spapr->rtas_size < 0) {
363         hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
364         exit(1);
365     }
366     g_free(filename);
367
368     /* Set up Interrupt Controller */
369     spapr->icp = xics_system_init(XICS_IRQS);
370
371     /* Set up VIO bus */
372     spapr->vio_bus = spapr_vio_bus_init();
373
374     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
375         if (serial_hds[i]) {
376             spapr_vty_create(spapr->vio_bus, SPAPR_VTY_BASE_ADDRESS + i,
377                              serial_hds[i]);
378         }
379     }
380
381     for (i = 0; i < nb_nics; i++) {
382         NICInfo *nd = &nd_table[i];
383
384         if (!nd->model) {
385             nd->model = g_strdup("ibmveth");
386         }
387
388         if (strcmp(nd->model, "ibmveth") == 0) {
389             spapr_vlan_create(spapr->vio_bus, 0x1000 + i, nd);
390         } else {
391             fprintf(stderr, "pSeries (sPAPR) platform does not support "
392                     "NIC model '%s' (only ibmveth is supported)\n",
393                     nd->model);
394             exit(1);
395         }
396     }
397
398     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
399         spapr_vscsi_create(spapr->vio_bus, 0x2000 + i);
400     }
401
402     if (kernel_filename) {
403         uint64_t lowaddr = 0;
404
405         kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
406                                NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
407         if (kernel_size < 0) {
408             kernel_size = load_image_targphys(kernel_filename,
409                                               KERNEL_LOAD_ADDR,
410                                               ram_size - KERNEL_LOAD_ADDR);
411         }
412         if (kernel_size < 0) {
413             fprintf(stderr, "qemu: could not load kernel '%s'\n",
414                     kernel_filename);
415             exit(1);
416         }
417
418         /* load initrd */
419         if (initrd_filename) {
420             initrd_base = INITRD_LOAD_ADDR;
421             initrd_size = load_image_targphys(initrd_filename, initrd_base,
422                                               ram_size - initrd_base);
423             if (initrd_size < 0) {
424                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
425                         initrd_filename);
426                 exit(1);
427             }
428         } else {
429             initrd_base = 0;
430             initrd_size = 0;
431         }
432
433         spapr->entry_point = KERNEL_LOAD_ADDR;
434     } else {
435         if (ram_size < (MIN_RAM_SLOF << 20)) {
436             fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
437                     "%ldM guest RAM\n", MIN_RAM_SLOF);
438             exit(1);
439         }
440         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "slof.bin");
441         fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
442         if (fw_size < 0) {
443             hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
444             exit(1);
445         }
446         g_free(filename);
447         spapr->entry_point = 0x100;
448         initrd_base = 0;
449         initrd_size = 0;
450
451         /* SLOF will startup the secondary CPUs using RTAS,
452            rather than expecting a kexec() style entry */
453         for (env = first_cpu; env != NULL; env = env->next_cpu) {
454             env->halted = 1;
455         }
456     }
457
458     /* Prepare the device tree */
459     spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
460                                             initrd_base, initrd_size,
461                                             boot_device, kernel_cmdline,
462                                             pteg_shift + 7);
463     assert(spapr->fdt_skel != NULL);
464
465     qemu_register_reset(spapr_reset, spapr);
466 }
467
468 static QEMUMachine spapr_machine = {
469     .name = "pseries",
470     .desc = "pSeries Logical Partition (PAPR compliant)",
471     .init = ppc_spapr_init,
472     .max_cpus = MAX_CPUS,
473     .no_vga = 1,
474     .no_parallel = 1,
475     .use_scsi = 1,
476 };
477
478 static void spapr_machine_init(void)
479 {
480     qemu_register_machine(&spapr_machine);
481 }
482
483 machine_init(spapr_machine_init);
This page took 0.053314 seconds and 4 git commands to generate.