3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
12 #include <zlib.h> /* For crc32 */
14 #ifndef CONFIG_USER_ONLY
15 static inline int get_phys_addr(CPUARMState *env, target_ulong address,
16 int access_type, ARMMMUIdx mmu_idx,
17 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
18 target_ulong *page_size);
20 /* Definitions for the PMCCNTR and PMCR registers */
26 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
30 /* VFP data registers are always little-endian. */
31 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
33 stfq_le_p(buf, env->vfp.regs[reg]);
36 if (arm_feature(env, ARM_FEATURE_NEON)) {
37 /* Aliases for Q regs. */
40 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
41 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
45 switch (reg - nregs) {
46 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
47 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
48 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
53 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
57 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
59 env->vfp.regs[reg] = ldfq_le_p(buf);
62 if (arm_feature(env, ARM_FEATURE_NEON)) {
65 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
66 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
70 switch (reg - nregs) {
71 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
72 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
73 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
78 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
82 /* 128 bit FP register */
83 stfq_le_p(buf, env->vfp.regs[reg * 2]);
84 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
88 stl_p(buf, vfp_get_fpsr(env));
92 stl_p(buf, vfp_get_fpcr(env));
99 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
103 /* 128 bit FP register */
104 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
105 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
109 vfp_set_fpsr(env, ldl_p(buf));
113 vfp_set_fpcr(env, ldl_p(buf));
120 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
122 assert(ri->fieldoffset);
123 if (cpreg_field_is_64bit(ri)) {
124 return CPREG_FIELD64(env, ri);
126 return CPREG_FIELD32(env, ri);
130 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
133 assert(ri->fieldoffset);
134 if (cpreg_field_is_64bit(ri)) {
135 CPREG_FIELD64(env, ri) = value;
137 CPREG_FIELD32(env, ri) = value;
141 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
143 return (char *)env + ri->fieldoffset;
146 static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
148 /* Raw read of a coprocessor register (as needed for migration, etc). */
149 if (ri->type & ARM_CP_CONST) {
150 return ri->resetvalue;
151 } else if (ri->raw_readfn) {
152 return ri->raw_readfn(env, ri);
153 } else if (ri->readfn) {
154 return ri->readfn(env, ri);
156 return raw_read(env, ri);
160 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
163 /* Raw write of a coprocessor register (as needed for migration, etc).
164 * Note that constant registers are treated as write-ignored; the
165 * caller should check for success by whether a readback gives the
168 if (ri->type & ARM_CP_CONST) {
170 } else if (ri->raw_writefn) {
171 ri->raw_writefn(env, ri, v);
172 } else if (ri->writefn) {
173 ri->writefn(env, ri, v);
175 raw_write(env, ri, v);
179 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
181 /* Return true if the regdef would cause an assertion if you called
182 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
183 * program bug for it not to have the NO_RAW flag).
184 * NB that returning false here doesn't necessarily mean that calling
185 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
186 * read/write access functions which are safe for raw use" from "has
187 * read/write access functions which have side effects but has forgotten
188 * to provide raw access functions".
189 * The tests here line up with the conditions in read/write_raw_cp_reg()
190 * and assertions in raw_read()/raw_write().
192 if ((ri->type & ARM_CP_CONST) ||
194 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
200 bool write_cpustate_to_list(ARMCPU *cpu)
202 /* Write the coprocessor state from cpu->env to the (index,value) list. */
206 for (i = 0; i < cpu->cpreg_array_len; i++) {
207 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
208 const ARMCPRegInfo *ri;
210 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
215 if (ri->type & ARM_CP_NO_RAW) {
218 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
223 bool write_list_to_cpustate(ARMCPU *cpu)
228 for (i = 0; i < cpu->cpreg_array_len; i++) {
229 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
230 uint64_t v = cpu->cpreg_values[i];
231 const ARMCPRegInfo *ri;
233 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
238 if (ri->type & ARM_CP_NO_RAW) {
241 /* Write value and confirm it reads back as written
242 * (to catch read-only registers and partially read-only
243 * registers where the incoming migration value doesn't match)
245 write_raw_cp_reg(&cpu->env, ri, v);
246 if (read_raw_cp_reg(&cpu->env, ri) != v) {
253 static void add_cpreg_to_list(gpointer key, gpointer opaque)
255 ARMCPU *cpu = opaque;
257 const ARMCPRegInfo *ri;
259 regidx = *(uint32_t *)key;
260 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
262 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
263 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
264 /* The value array need not be initialized at this point */
265 cpu->cpreg_array_len++;
269 static void count_cpreg(gpointer key, gpointer opaque)
271 ARMCPU *cpu = opaque;
273 const ARMCPRegInfo *ri;
275 regidx = *(uint32_t *)key;
276 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
278 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
279 cpu->cpreg_array_len++;
283 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
285 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
286 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
297 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
299 GList **plist = udata;
301 *plist = g_list_prepend(*plist, key);
304 void init_cpreg_list(ARMCPU *cpu)
306 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
307 * Note that we require cpreg_tuples[] to be sorted by key ID.
312 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
314 keys = g_list_sort(keys, cpreg_key_compare);
316 cpu->cpreg_array_len = 0;
318 g_list_foreach(keys, count_cpreg, cpu);
320 arraylen = cpu->cpreg_array_len;
321 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
322 cpu->cpreg_values = g_new(uint64_t, arraylen);
323 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
324 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
325 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
326 cpu->cpreg_array_len = 0;
328 g_list_foreach(keys, add_cpreg_to_list, cpu);
330 assert(cpu->cpreg_array_len == arraylen);
335 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
337 ARMCPU *cpu = arm_env_get_cpu(env);
339 raw_write(env, ri, value);
340 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
343 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
345 ARMCPU *cpu = arm_env_get_cpu(env);
347 if (raw_read(env, ri) != value) {
348 /* Unlike real hardware the qemu TLB uses virtual addresses,
349 * not modified virtual addresses, so this causes a TLB flush.
351 tlb_flush(CPU(cpu), 1);
352 raw_write(env, ri, value);
356 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
359 ARMCPU *cpu = arm_env_get_cpu(env);
361 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
362 && !extended_addresses_enabled(env)) {
363 /* For VMSA (when not using the LPAE long descriptor page table
364 * format) this register includes the ASID, so do a TLB flush.
365 * For PMSA it is purely a process ID and no action is needed.
367 tlb_flush(CPU(cpu), 1);
369 raw_write(env, ri, value);
372 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
375 /* Invalidate all (TLBIALL) */
376 ARMCPU *cpu = arm_env_get_cpu(env);
378 tlb_flush(CPU(cpu), 1);
381 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
384 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
385 ARMCPU *cpu = arm_env_get_cpu(env);
387 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
390 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
393 /* Invalidate by ASID (TLBIASID) */
394 ARMCPU *cpu = arm_env_get_cpu(env);
396 tlb_flush(CPU(cpu), value == 0);
399 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
402 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
403 ARMCPU *cpu = arm_env_get_cpu(env);
405 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
408 /* IS variants of TLB operations must affect all cores */
409 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
414 CPU_FOREACH(other_cs) {
415 tlb_flush(other_cs, 1);
419 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
424 CPU_FOREACH(other_cs) {
425 tlb_flush(other_cs, value == 0);
429 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
434 CPU_FOREACH(other_cs) {
435 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
439 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
444 CPU_FOREACH(other_cs) {
445 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
449 static const ARMCPRegInfo cp_reginfo[] = {
450 /* Define the secure and non-secure FCSE identifier CP registers
451 * separately because there is no secure bank in V8 (no _EL3). This allows
452 * the secure register to be properly reset and migrated. There is also no
453 * v8 EL1 version of the register so the non-secure instance stands alone.
455 { .name = "FCSEIDR(NS)",
456 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
457 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
458 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
459 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
460 { .name = "FCSEIDR(S)",
461 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
462 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
463 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
464 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
465 /* Define the secure and non-secure context identifier CP registers
466 * separately because there is no secure bank in V8 (no _EL3). This allows
467 * the secure register to be properly reset and migrated. In the
468 * non-secure case, the 32-bit register will have reset and migration
469 * disabled during registration as it is handled by the 64-bit instance.
471 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
472 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
473 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
474 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
475 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
476 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
477 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
478 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
479 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
480 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
484 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
485 /* NB: Some of these registers exist in v8 but with more precise
486 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
488 /* MMU Domain access control / MPU write buffer control */
490 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
491 .access = PL1_RW, .resetvalue = 0,
492 .writefn = dacr_write, .raw_writefn = raw_write,
493 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
494 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
495 /* ??? This covers not just the impdef TLB lockdown registers but also
496 * some v7VMSA registers relating to TEX remap, so it is overly broad.
498 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
499 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
500 /* Cache maintenance ops; some of this space may be overridden later. */
501 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
502 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
503 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
507 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
508 /* Not all pre-v6 cores implemented this WFI, so this is slightly
511 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
512 .access = PL1_W, .type = ARM_CP_WFI },
516 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
517 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
518 * is UNPREDICTABLE; we choose to NOP as most implementations do).
520 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
521 .access = PL1_W, .type = ARM_CP_WFI },
522 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
523 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
524 * OMAPCP will override this space.
526 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
527 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
529 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
530 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
532 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
533 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
534 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
536 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
537 * implementing it as RAZ means the "debug architecture version" bits
538 * will read as a reserved value, which should cause Linux to not try
539 * to use the debug hardware.
541 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
542 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
543 /* MMU TLB control. Note that the wildcarding means we cover not just
544 * the unified TLB ops but also the dside/iside/inner-shareable variants.
546 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
547 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
548 .type = ARM_CP_NO_RAW },
549 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
550 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
551 .type = ARM_CP_NO_RAW },
552 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
553 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
554 .type = ARM_CP_NO_RAW },
555 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
556 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
557 .type = ARM_CP_NO_RAW },
561 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
566 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
567 if (!arm_feature(env, ARM_FEATURE_V8)) {
568 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
569 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
570 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
572 if (arm_feature(env, ARM_FEATURE_VFP)) {
573 /* VFP coprocessor: cp10 & cp11 [23:20] */
574 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
576 if (!arm_feature(env, ARM_FEATURE_NEON)) {
577 /* ASEDIS [31] bit is RAO/WI */
581 /* VFPv3 and upwards with NEON implement 32 double precision
582 * registers (D0-D31).
584 if (!arm_feature(env, ARM_FEATURE_NEON) ||
585 !arm_feature(env, ARM_FEATURE_VFP3)) {
586 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
592 env->cp15.c1_coproc = value;
595 static const ARMCPRegInfo v6_cp_reginfo[] = {
596 /* prefetch by MVA in v6, NOP in v7 */
597 { .name = "MVA_prefetch",
598 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
599 .access = PL1_W, .type = ARM_CP_NOP },
600 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
601 .access = PL0_W, .type = ARM_CP_NOP },
602 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
603 .access = PL0_W, .type = ARM_CP_NOP },
604 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
605 .access = PL0_W, .type = ARM_CP_NOP },
606 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
608 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
609 offsetof(CPUARMState, cp15.ifar_ns) },
611 /* Watchpoint Fault Address Register : should actually only be present
612 * for 1136, 1176, 11MPCore.
614 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
615 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
616 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
617 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
618 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
619 .resetvalue = 0, .writefn = cpacr_write },
623 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
625 /* Performance monitor registers user accessibility is controlled
628 if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
629 return CP_ACCESS_TRAP;
634 #ifndef CONFIG_USER_ONLY
636 static inline bool arm_ccnt_enabled(CPUARMState *env)
638 /* This does not support checking PMCCFILTR_EL0 register */
640 if (!(env->cp15.c9_pmcr & PMCRE)) {
647 void pmccntr_sync(CPUARMState *env)
651 temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
652 get_ticks_per_sec(), 1000000);
654 if (env->cp15.c9_pmcr & PMCRD) {
655 /* Increment once every 64 processor clock cycles */
659 if (arm_ccnt_enabled(env)) {
660 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
664 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
670 /* The counter has been reset */
671 env->cp15.c15_ccnt = 0;
674 /* only the DP, X, D and E bits are writable */
675 env->cp15.c9_pmcr &= ~0x39;
676 env->cp15.c9_pmcr |= (value & 0x39);
681 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
683 uint64_t total_ticks;
685 if (!arm_ccnt_enabled(env)) {
686 /* Counter is disabled, do not change value */
687 return env->cp15.c15_ccnt;
690 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
691 get_ticks_per_sec(), 1000000);
693 if (env->cp15.c9_pmcr & PMCRD) {
694 /* Increment once every 64 processor clock cycles */
697 return total_ticks - env->cp15.c15_ccnt;
700 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
703 uint64_t total_ticks;
705 if (!arm_ccnt_enabled(env)) {
706 /* Counter is disabled, set the absolute value */
707 env->cp15.c15_ccnt = value;
711 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
712 get_ticks_per_sec(), 1000000);
714 if (env->cp15.c9_pmcr & PMCRD) {
715 /* Increment once every 64 processor clock cycles */
718 env->cp15.c15_ccnt = total_ticks - value;
721 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
724 uint64_t cur_val = pmccntr_read(env, NULL);
726 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
729 #else /* CONFIG_USER_ONLY */
731 void pmccntr_sync(CPUARMState *env)
737 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
741 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
745 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
749 env->cp15.c9_pmcnten |= value;
752 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
756 env->cp15.c9_pmcnten &= ~value;
759 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
762 env->cp15.c9_pmovsr &= ~value;
765 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
768 env->cp15.c9_pmxevtyper = value & 0xff;
771 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
774 env->cp15.c9_pmuserenr = value & 1;
777 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
780 /* We have no event counters so only the C bit can be changed */
782 env->cp15.c9_pminten |= value;
785 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
789 env->cp15.c9_pminten &= ~value;
792 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
795 /* Note that even though the AArch64 view of this register has bits
796 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
797 * architectural requirements for bits which are RES0 only in some
798 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
799 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
801 raw_write(env, ri, value & ~0x1FULL);
804 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
806 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
807 * For bits that vary between AArch32/64, code needs to check the
808 * current execution mode before directly using the feature bit.
810 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
812 if (!arm_feature(env, ARM_FEATURE_EL2)) {
813 valid_mask &= ~SCR_HCE;
815 /* On ARMv7, SMD (or SCD as it is called in v7) is only
816 * supported if EL2 exists. The bit is UNK/SBZP when
817 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
818 * when EL2 is unavailable.
820 if (arm_feature(env, ARM_FEATURE_V7)) {
821 valid_mask &= ~SCR_SMD;
825 /* Clear all-context RES0 bits. */
827 raw_write(env, ri, value);
830 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
832 ARMCPU *cpu = arm_env_get_cpu(env);
834 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
837 uint32_t index = A32_BANKED_REG_GET(env, csselr,
838 ri->secure & ARM_CP_SECSTATE_S);
840 return cpu->ccsidr[index];
843 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
846 raw_write(env, ri, value & 0xf);
849 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
851 CPUState *cs = ENV_GET_CPU(env);
854 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
857 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
860 /* External aborts are not possible in QEMU so A bit is always clear */
864 static const ARMCPRegInfo v7_cp_reginfo[] = {
865 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
866 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
867 .access = PL1_W, .type = ARM_CP_NOP },
868 /* Performance monitors are implementation defined in v7,
869 * but with an ARM recommended set of registers, which we
870 * follow (although we don't actually implement any counters)
872 * Performance registers fall into three categories:
873 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
874 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
875 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
876 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
877 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
879 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
880 .access = PL0_RW, .type = ARM_CP_ALIAS,
881 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
882 .writefn = pmcntenset_write,
883 .accessfn = pmreg_access,
884 .raw_writefn = raw_write },
885 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
886 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
887 .access = PL0_RW, .accessfn = pmreg_access,
888 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
889 .writefn = pmcntenset_write, .raw_writefn = raw_write },
890 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
892 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
893 .accessfn = pmreg_access,
894 .writefn = pmcntenclr_write,
895 .type = ARM_CP_ALIAS },
896 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
897 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
898 .access = PL0_RW, .accessfn = pmreg_access,
899 .type = ARM_CP_ALIAS,
900 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
901 .writefn = pmcntenclr_write },
902 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
903 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
904 .accessfn = pmreg_access,
905 .writefn = pmovsr_write,
906 .raw_writefn = raw_write },
907 /* Unimplemented so WI. */
908 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
909 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
910 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
911 * We choose to RAZ/WI.
913 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
914 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
915 .accessfn = pmreg_access },
916 #ifndef CONFIG_USER_ONLY
917 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
918 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
919 .readfn = pmccntr_read, .writefn = pmccntr_write32,
920 .accessfn = pmreg_access },
921 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
922 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
923 .access = PL0_RW, .accessfn = pmreg_access,
925 .readfn = pmccntr_read, .writefn = pmccntr_write, },
927 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
928 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
929 .writefn = pmccfiltr_write,
930 .access = PL0_RW, .accessfn = pmreg_access,
932 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
934 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
936 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
937 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
938 .raw_writefn = raw_write },
939 /* Unimplemented, RAZ/WI. */
940 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
941 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
942 .accessfn = pmreg_access },
943 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
944 .access = PL0_R | PL1_RW,
945 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
947 .writefn = pmuserenr_write, .raw_writefn = raw_write },
948 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
950 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
952 .writefn = pmintenset_write, .raw_writefn = raw_write },
953 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
954 .access = PL1_RW, .type = ARM_CP_ALIAS,
955 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
956 .resetvalue = 0, .writefn = pmintenclr_write, },
957 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
958 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
959 .access = PL1_RW, .writefn = vbar_write,
960 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
961 offsetof(CPUARMState, cp15.vbar_ns) },
963 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
964 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
965 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
966 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
967 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
968 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
969 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
970 offsetof(CPUARMState, cp15.csselr_ns) } },
971 /* Auxiliary ID register: this actually has an IMPDEF value but for now
972 * just RAZ for all cores:
974 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
975 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
976 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
977 /* Auxiliary fault status registers: these also are IMPDEF, and we
978 * choose to RAZ/WI for all cores.
980 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
981 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
982 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
983 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
984 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
985 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
986 /* MAIR can just read-as-written because we don't implement caches
987 * and so don't need to care about memory attributes.
989 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
990 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
991 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
993 /* For non-long-descriptor page tables these are PRRR and NMRR;
994 * regardless they still act as reads-as-written for QEMU.
995 * The override is necessary because of the overly-broad TLB_LOCKDOWN
998 /* MAIR0/1 are defined separately from their 64-bit counterpart which
999 * allows them to assign the correct fieldoffset based on the endianness
1000 * handled in the field definitions.
1002 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
1003 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1004 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1005 offsetof(CPUARMState, cp15.mair0_ns) },
1006 .resetfn = arm_cp_reset_ignore },
1007 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
1008 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1009 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1010 offsetof(CPUARMState, cp15.mair1_ns) },
1011 .resetfn = arm_cp_reset_ignore },
1012 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1013 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1014 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1015 /* 32 bit ITLB invalidates */
1016 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1017 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1018 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1019 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1020 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1021 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1022 /* 32 bit DTLB invalidates */
1023 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1024 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1025 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1026 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1027 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1028 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1029 /* 32 bit TLB invalidates */
1030 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1031 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1032 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1033 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1034 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1035 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1036 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1037 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1041 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1042 /* 32 bit TLB invalidates, Inner Shareable */
1043 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1044 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1045 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1046 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1047 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1048 .type = ARM_CP_NO_RAW, .access = PL1_W,
1049 .writefn = tlbiasid_is_write },
1050 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1051 .type = ARM_CP_NO_RAW, .access = PL1_W,
1052 .writefn = tlbimvaa_is_write },
1056 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1063 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
1065 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1066 return CP_ACCESS_TRAP;
1068 return CP_ACCESS_OK;
1071 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1072 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1073 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1075 .writefn = teecr_write },
1076 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1077 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1078 .accessfn = teehbr_access, .resetvalue = 0 },
1082 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1083 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1084 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1086 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1087 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1089 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1090 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1091 .resetfn = arm_cp_reset_ignore },
1092 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1093 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1094 .access = PL0_R|PL1_W,
1095 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1097 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1098 .access = PL0_R|PL1_W,
1099 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1100 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1101 .resetfn = arm_cp_reset_ignore },
1102 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1103 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1105 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1106 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1108 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1109 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1114 #ifndef CONFIG_USER_ONLY
1116 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
1118 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1119 if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
1120 return CP_ACCESS_TRAP;
1122 return CP_ACCESS_OK;
1125 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
1127 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1128 if (arm_current_el(env) == 0 &&
1129 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1130 return CP_ACCESS_TRAP;
1132 return CP_ACCESS_OK;
1135 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
1137 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1138 * EL0[PV]TEN is zero.
1140 if (arm_current_el(env) == 0 &&
1141 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1142 return CP_ACCESS_TRAP;
1144 return CP_ACCESS_OK;
1147 static CPAccessResult gt_pct_access(CPUARMState *env,
1148 const ARMCPRegInfo *ri)
1150 return gt_counter_access(env, GTIMER_PHYS);
1153 static CPAccessResult gt_vct_access(CPUARMState *env,
1154 const ARMCPRegInfo *ri)
1156 return gt_counter_access(env, GTIMER_VIRT);
1159 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1161 return gt_timer_access(env, GTIMER_PHYS);
1164 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1166 return gt_timer_access(env, GTIMER_VIRT);
1169 static uint64_t gt_get_countervalue(CPUARMState *env)
1171 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1174 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1176 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1179 /* Timer enabled: calculate and set current ISTATUS, irq, and
1180 * reset timer to when ISTATUS next has to change
1182 uint64_t count = gt_get_countervalue(&cpu->env);
1183 /* Note that this must be unsigned 64 bit arithmetic: */
1184 int istatus = count >= gt->cval;
1187 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1188 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1189 (istatus && !(gt->ctl & 2)));
1191 /* Next transition is when count rolls back over to zero */
1192 nexttick = UINT64_MAX;
1194 /* Next transition is when we hit cval */
1195 nexttick = gt->cval;
1197 /* Note that the desired next expiry time might be beyond the
1198 * signed-64-bit range of a QEMUTimer -- in this case we just
1199 * set the timer for as far in the future as possible. When the
1200 * timer expires we will reset the timer for any remaining period.
1202 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1203 nexttick = INT64_MAX / GTIMER_SCALE;
1205 timer_mod(cpu->gt_timer[timeridx], nexttick);
1207 /* Timer disabled: ISTATUS and timer output always clear */
1209 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1210 timer_del(cpu->gt_timer[timeridx]);
1214 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1216 ARMCPU *cpu = arm_env_get_cpu(env);
1217 int timeridx = ri->opc1 & 1;
1219 timer_del(cpu->gt_timer[timeridx]);
1222 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1224 return gt_get_countervalue(env);
1227 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1230 int timeridx = ri->opc1 & 1;
1232 env->cp15.c14_timer[timeridx].cval = value;
1233 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1236 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1238 int timeridx = ri->crm & 1;
1240 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1241 gt_get_countervalue(env));
1244 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1247 int timeridx = ri->crm & 1;
1249 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
1250 + sextract64(value, 0, 32);
1251 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1254 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1257 ARMCPU *cpu = arm_env_get_cpu(env);
1258 int timeridx = ri->crm & 1;
1259 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1261 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1262 if ((oldval ^ value) & 1) {
1263 /* Enable toggled */
1264 gt_recalc_timer(cpu, timeridx);
1265 } else if ((oldval ^ value) & 2) {
1266 /* IMASK toggled: don't need to recalculate,
1267 * just set the interrupt line based on ISTATUS
1269 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1270 (oldval & 4) && !(value & 2));
1274 void arm_gt_ptimer_cb(void *opaque)
1276 ARMCPU *cpu = opaque;
1278 gt_recalc_timer(cpu, GTIMER_PHYS);
1281 void arm_gt_vtimer_cb(void *opaque)
1283 ARMCPU *cpu = opaque;
1285 gt_recalc_timer(cpu, GTIMER_VIRT);
1288 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1289 /* Note that CNTFRQ is purely reads-as-written for the benefit
1290 * of software; writing it doesn't actually change the timer frequency.
1291 * Our reset value matches the fixed frequency we implement the timer at.
1293 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1294 .type = ARM_CP_ALIAS,
1295 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1296 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1297 .resetfn = arm_cp_reset_ignore,
1299 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1300 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1301 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1302 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1303 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1305 /* overall control: mostly access permissions */
1306 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1307 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1309 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1312 /* per-timer control */
1313 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1314 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1315 .accessfn = gt_ptimer_access,
1316 .fieldoffset = offsetoflow32(CPUARMState,
1317 cp15.c14_timer[GTIMER_PHYS].ctl),
1318 .resetfn = arm_cp_reset_ignore,
1319 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1321 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1322 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1323 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1324 .accessfn = gt_ptimer_access,
1325 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1327 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1329 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1330 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1331 .accessfn = gt_vtimer_access,
1332 .fieldoffset = offsetoflow32(CPUARMState,
1333 cp15.c14_timer[GTIMER_VIRT].ctl),
1334 .resetfn = arm_cp_reset_ignore,
1335 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1337 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1338 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1339 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1340 .accessfn = gt_vtimer_access,
1341 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1343 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1345 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1346 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1347 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1348 .accessfn = gt_ptimer_access,
1349 .readfn = gt_tval_read, .writefn = gt_tval_write,
1351 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1352 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1353 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1354 .readfn = gt_tval_read, .writefn = gt_tval_write,
1356 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1357 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1358 .accessfn = gt_vtimer_access,
1359 .readfn = gt_tval_read, .writefn = gt_tval_write,
1361 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1362 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1363 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1364 .readfn = gt_tval_read, .writefn = gt_tval_write,
1366 /* The counter itself */
1367 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1368 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1369 .accessfn = gt_pct_access,
1370 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1372 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1373 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1374 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1375 .accessfn = gt_pct_access,
1376 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1378 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1379 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1380 .accessfn = gt_vct_access,
1381 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1383 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1384 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1385 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1386 .accessfn = gt_vct_access,
1387 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1389 /* Comparison value, indicating when the timer goes off */
1390 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1391 .access = PL1_RW | PL0_R,
1392 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1393 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1394 .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
1395 .writefn = gt_cval_write, .raw_writefn = raw_write,
1397 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1398 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1399 .access = PL1_RW | PL0_R,
1401 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1402 .resetvalue = 0, .accessfn = gt_vtimer_access,
1403 .writefn = gt_cval_write, .raw_writefn = raw_write,
1405 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1406 .access = PL1_RW | PL0_R,
1407 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1408 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1409 .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
1410 .writefn = gt_cval_write, .raw_writefn = raw_write,
1412 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1413 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1414 .access = PL1_RW | PL0_R,
1416 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1417 .resetvalue = 0, .accessfn = gt_vtimer_access,
1418 .writefn = gt_cval_write, .raw_writefn = raw_write,
1424 /* In user-mode none of the generic timer registers are accessible,
1425 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1426 * so instead just don't register any of them.
1428 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1434 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1436 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1437 raw_write(env, ri, value);
1438 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1439 raw_write(env, ri, value & 0xfffff6ff);
1441 raw_write(env, ri, value & 0xfffff1ff);
1445 #ifndef CONFIG_USER_ONLY
1446 /* get_phys_addr() isn't present for user-mode-only targets */
1448 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1451 /* Other states are only available with TrustZone; in
1452 * a non-TZ implementation these registers don't exist
1453 * at all, which is an Uncategorized trap. This underdecoding
1454 * is safe because the reginfo is NO_RAW.
1456 return CP_ACCESS_TRAP_UNCATEGORIZED;
1458 return CP_ACCESS_OK;
1461 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1462 int access_type, ARMMMUIdx mmu_idx)
1465 target_ulong page_size;
1469 MemTxAttrs attrs = {};
1471 ret = get_phys_addr(env, value, access_type, mmu_idx,
1472 &phys_addr, &attrs, &prot, &page_size);
1473 if (extended_addresses_enabled(env)) {
1474 /* ret is a DFSR/IFSR value for the long descriptor
1475 * translation table format, but with WnR always clear.
1476 * Convert it to a 64-bit PAR.
1478 par64 = (1 << 11); /* LPAE bit always set */
1480 par64 |= phys_addr & ~0xfffULL;
1481 if (!attrs.secure) {
1482 par64 |= (1 << 9); /* NS */
1484 /* We don't set the ATTR or SH fields in the PAR. */
1487 par64 |= (ret & 0x3f) << 1; /* FS */
1488 /* Note that S2WLK and FSTAGE are always zero, because we don't
1489 * implement virtualization and therefore there can't be a stage 2
1494 /* ret is a DFSR/IFSR value for the short descriptor
1495 * translation table format (with WnR always clear).
1496 * Convert it to a 32-bit PAR.
1499 /* We do not set any attribute bits in the PAR */
1500 if (page_size == (1 << 24)
1501 && arm_feature(env, ARM_FEATURE_V7)) {
1502 par64 = (phys_addr & 0xff000000) | (1 << 1);
1504 par64 = phys_addr & 0xfffff000;
1506 if (!attrs.secure) {
1507 par64 |= (1 << 9); /* NS */
1510 par64 = ((ret & (1 << 10)) >> 5) | ((ret & (1 << 12)) >> 6) |
1511 ((ret & 0xf) << 1) | 1;
1517 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1519 int access_type = ri->opc2 & 1;
1522 int el = arm_current_el(env);
1523 bool secure = arm_is_secure_below_el3(env);
1525 switch (ri->opc2 & 6) {
1527 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1530 mmu_idx = ARMMMUIdx_S1E3;
1533 mmu_idx = ARMMMUIdx_S1NSE1;
1536 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1539 g_assert_not_reached();
1543 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1546 mmu_idx = ARMMMUIdx_S1SE0;
1549 mmu_idx = ARMMMUIdx_S1NSE0;
1552 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1555 g_assert_not_reached();
1559 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1560 mmu_idx = ARMMMUIdx_S12NSE1;
1563 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1564 mmu_idx = ARMMMUIdx_S12NSE0;
1567 g_assert_not_reached();
1570 par64 = do_ats_write(env, value, access_type, mmu_idx);
1572 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1575 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
1578 int access_type = ri->opc2 & 1;
1580 int secure = arm_is_secure_below_el3(env);
1582 switch (ri->opc2 & 6) {
1585 case 0: /* AT S1E1R, AT S1E1W */
1586 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1588 case 4: /* AT S1E2R, AT S1E2W */
1589 mmu_idx = ARMMMUIdx_S1E2;
1591 case 6: /* AT S1E3R, AT S1E3W */
1592 mmu_idx = ARMMMUIdx_S1E3;
1595 g_assert_not_reached();
1598 case 2: /* AT S1E0R, AT S1E0W */
1599 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1601 case 4: /* AT S12E1R, AT S12E1W */
1602 mmu_idx = ARMMMUIdx_S12NSE1;
1604 case 6: /* AT S12E0R, AT S12E0W */
1605 mmu_idx = ARMMMUIdx_S12NSE0;
1608 g_assert_not_reached();
1611 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
1615 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1616 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1617 .access = PL1_RW, .resetvalue = 0,
1618 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
1619 offsetoflow32(CPUARMState, cp15.par_ns) },
1620 .writefn = par_write },
1621 #ifndef CONFIG_USER_ONLY
1622 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1623 .access = PL1_W, .accessfn = ats_access,
1624 .writefn = ats_write, .type = ARM_CP_NO_RAW },
1629 /* Return basic MPU access permission bits. */
1630 static uint32_t simple_mpu_ap_bits(uint32_t val)
1637 for (i = 0; i < 16; i += 2) {
1638 ret |= (val >> i) & mask;
1644 /* Pad basic MPU access permission bits to extended format. */
1645 static uint32_t extended_mpu_ap_bits(uint32_t val)
1652 for (i = 0; i < 16; i += 2) {
1653 ret |= (val & mask) << i;
1659 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1662 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1665 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1667 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1670 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1673 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
1676 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1678 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
1681 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1682 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1683 .access = PL1_RW, .type = ARM_CP_ALIAS,
1684 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1686 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1687 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1688 .access = PL1_RW, .type = ARM_CP_ALIAS,
1689 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1691 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1692 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1694 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1696 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1698 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1700 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1702 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1703 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1705 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1706 /* Protection region base and size registers */
1707 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
1708 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1709 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
1710 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
1711 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1712 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
1713 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
1714 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1715 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
1716 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
1717 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1718 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
1719 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
1720 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1721 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
1722 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
1723 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1724 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
1725 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
1726 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1727 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
1728 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
1729 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1730 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1734 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1737 TCR *tcr = raw_ptr(env, ri);
1738 int maskshift = extract32(value, 0, 3);
1740 if (!arm_feature(env, ARM_FEATURE_V8)) {
1741 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
1742 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
1743 * using Long-desciptor translation table format */
1744 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1745 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
1746 /* In an implementation that includes the Security Extensions
1747 * TTBCR has additional fields PD0 [4] and PD1 [5] for
1748 * Short-descriptor translation table format.
1750 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
1756 /* Update the masks corresponding to the the TCR bank being written
1757 * Note that we always calculate mask and base_mask, but
1758 * they are only used for short-descriptor tables (ie if EAE is 0);
1759 * for long-descriptor tables the TCR fields are used differently
1760 * and the mask and base_mask values are meaningless.
1762 tcr->raw_tcr = value;
1763 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1764 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
1767 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1770 ARMCPU *cpu = arm_env_get_cpu(env);
1772 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1773 /* With LPAE the TTBCR could result in a change of ASID
1774 * via the TTBCR.A1 bit, so do a TLB flush.
1776 tlb_flush(CPU(cpu), 1);
1778 vmsa_ttbcr_raw_write(env, ri, value);
1781 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1783 TCR *tcr = raw_ptr(env, ri);
1785 /* Reset both the TCR as well as the masks corresponding to the bank of
1786 * the TCR being reset.
1790 tcr->base_mask = 0xffffc000u;
1793 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1796 ARMCPU *cpu = arm_env_get_cpu(env);
1797 TCR *tcr = raw_ptr(env, ri);
1799 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1800 tlb_flush(CPU(cpu), 1);
1801 tcr->raw_tcr = value;
1804 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807 /* 64 bit accesses to the TTBRs can change the ASID and so we
1808 * must flush the TLB.
1810 if (cpreg_field_is_64bit(ri)) {
1811 ARMCPU *cpu = arm_env_get_cpu(env);
1813 tlb_flush(CPU(cpu), 1);
1815 raw_write(env, ri, value);
1818 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1819 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1820 .access = PL1_RW, .type = ARM_CP_ALIAS,
1821 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
1822 offsetoflow32(CPUARMState, cp15.dfsr_ns) },
1823 .resetfn = arm_cp_reset_ignore, },
1824 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1825 .access = PL1_RW, .resetvalue = 0,
1826 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
1827 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
1828 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
1829 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
1831 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
1832 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
1833 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
1834 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
1835 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
1836 offsetof(CPUARMState, cp15.ttbr0_ns) } },
1837 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
1838 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
1839 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
1840 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
1841 offsetof(CPUARMState, cp15.ttbr1_ns) } },
1842 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
1843 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1844 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
1845 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1846 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
1847 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1848 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
1849 .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
1850 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
1851 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
1852 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
1853 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1854 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
1856 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
1857 .access = PL1_RW, .resetvalue = 0,
1858 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
1859 offsetof(CPUARMState, cp15.dfar_ns) } },
1863 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1866 env->cp15.c15_ticonfig = value & 0xe7;
1867 /* The OS_TYPE bit in this register changes the reported CPUID! */
1868 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1869 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1872 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875 env->cp15.c15_threadid = value & 0xffff;
1878 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1881 /* Wait-for-interrupt (deprecated) */
1882 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1885 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1888 /* On OMAP there are registers indicating the max/min index of dcache lines
1889 * containing a dirty line; cache flush operations have to reset these.
1891 env->cp15.c15_i_max = 0x000;
1892 env->cp15.c15_i_min = 0xff0;
1895 static const ARMCPRegInfo omap_cp_reginfo[] = {
1896 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1897 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1898 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
1900 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1901 .access = PL1_RW, .type = ARM_CP_NOP },
1902 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1904 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1905 .writefn = omap_ticonfig_write },
1906 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1908 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1909 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1910 .access = PL1_RW, .resetvalue = 0xff0,
1911 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1912 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1914 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1915 .writefn = omap_threadid_write },
1916 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1917 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1918 .type = ARM_CP_NO_RAW,
1919 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1920 /* TODO: Peripheral port remap register:
1921 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1922 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1925 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1926 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1927 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
1928 .writefn = omap_cachemaint_write },
1929 { .name = "C9", .cp = 15, .crn = 9,
1930 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1931 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1935 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1938 env->cp15.c15_cpar = value & 0x3fff;
1941 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1942 { .name = "XSCALE_CPAR",
1943 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1944 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1945 .writefn = xscale_cpar_write, },
1946 { .name = "XSCALE_AUXCR",
1947 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1948 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1950 /* XScale specific cache-lockdown: since we have no cache we NOP these
1951 * and hope the guest does not really rely on cache behaviour.
1953 { .name = "XSCALE_LOCK_ICACHE_LINE",
1954 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1955 .access = PL1_W, .type = ARM_CP_NOP },
1956 { .name = "XSCALE_UNLOCK_ICACHE",
1957 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1958 .access = PL1_W, .type = ARM_CP_NOP },
1959 { .name = "XSCALE_DCACHE_LOCK",
1960 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
1961 .access = PL1_RW, .type = ARM_CP_NOP },
1962 { .name = "XSCALE_UNLOCK_DCACHE",
1963 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
1964 .access = PL1_W, .type = ARM_CP_NOP },
1968 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1969 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1970 * implementation of this implementation-defined space.
1971 * Ideally this should eventually disappear in favour of actually
1972 * implementing the correct behaviour for all cores.
1974 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1975 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1977 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
1982 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1983 /* Cache status: RAZ because we have no cache so it's always clean */
1984 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1985 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
1990 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1991 /* We never have a a block transfer operation in progress */
1992 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1993 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
1995 /* The cache ops themselves: these all NOP for QEMU */
1996 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1997 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1998 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1999 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2000 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2001 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2002 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2003 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2004 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2005 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2006 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2007 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2011 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2012 /* The cache test-and-clean instructions always return (1 << 30)
2013 * to indicate that there are no dirty cache lines.
2015 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2016 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2017 .resetvalue = (1 << 30) },
2018 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2019 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2020 .resetvalue = (1 << 30) },
2024 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2025 /* Ignore ReadBuffer accesses */
2026 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2027 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2028 .access = PL1_RW, .resetvalue = 0,
2029 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2033 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2035 CPUState *cs = CPU(arm_env_get_cpu(env));
2036 uint32_t mpidr = cs->cpu_index;
2037 /* We don't support setting cluster ID ([8..11]) (known as Aff1
2038 * in later ARM ARM versions), or any of the higher affinity level fields,
2039 * so these bits always RAZ.
2041 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2042 mpidr |= (1U << 31);
2043 /* Cores which are uniprocessor (non-coherent)
2044 * but still implement the MP extensions set
2045 * bit 30. (For instance, A9UP.) However we do
2046 * not currently model any of those cores.
2052 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2053 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2054 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2055 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2059 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2060 /* NOP AMAIR0/1: the override is because these clash with the rather
2061 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
2063 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2064 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2065 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
2067 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2068 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2069 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
2071 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2072 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2073 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2074 offsetof(CPUARMState, cp15.par_ns)} },
2075 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2076 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2077 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2078 offsetof(CPUARMState, cp15.ttbr0_ns) },
2079 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
2080 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2081 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2082 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2083 offsetof(CPUARMState, cp15.ttbr1_ns) },
2084 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
2088 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2090 return vfp_get_fpcr(env);
2093 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2096 vfp_set_fpcr(env, value);
2099 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2101 return vfp_get_fpsr(env);
2104 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2107 vfp_set_fpsr(env, value);
2110 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
2112 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2113 return CP_ACCESS_TRAP;
2115 return CP_ACCESS_OK;
2118 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2121 env->daif = value & PSTATE_DAIF;
2124 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2125 const ARMCPRegInfo *ri)
2127 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2128 * SCTLR_EL1.UCI is set.
2130 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2131 return CP_ACCESS_TRAP;
2133 return CP_ACCESS_OK;
2136 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2137 * Page D4-1736 (DDI0487A.b)
2140 static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
2143 /* Invalidate by VA (AArch64 version) */
2144 ARMCPU *cpu = arm_env_get_cpu(env);
2145 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2147 tlb_flush_page(CPU(cpu), pageaddr);
2150 static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
2153 /* Invalidate by VA, all ASIDs (AArch64 version) */
2154 ARMCPU *cpu = arm_env_get_cpu(env);
2155 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2157 tlb_flush_page(CPU(cpu), pageaddr);
2160 static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2163 /* Invalidate by ASID (AArch64 version) */
2164 ARMCPU *cpu = arm_env_get_cpu(env);
2165 int asid = extract64(value, 48, 16);
2166 tlb_flush(CPU(cpu), asid == 0);
2169 static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2173 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2175 CPU_FOREACH(other_cs) {
2176 tlb_flush_page(other_cs, pageaddr);
2180 static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2184 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2186 CPU_FOREACH(other_cs) {
2187 tlb_flush_page(other_cs, pageaddr);
2191 static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2195 int asid = extract64(value, 48, 16);
2197 CPU_FOREACH(other_cs) {
2198 tlb_flush(other_cs, asid == 0);
2202 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
2204 /* We don't implement EL2, so the only control on DC ZVA is the
2205 * bit in the SCTLR which can prohibit access for EL0.
2207 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
2208 return CP_ACCESS_TRAP;
2210 return CP_ACCESS_OK;
2213 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
2215 ARMCPU *cpu = arm_env_get_cpu(env);
2216 int dzp_bit = 1 << 4;
2218 /* DZP indicates whether DC ZVA access is allowed */
2219 if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
2222 return cpu->dcz_blocksize | dzp_bit;
2225 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2227 if (!(env->pstate & PSTATE_SP)) {
2228 /* Access to SP_EL0 is undefined if it's being used as
2229 * the stack pointer.
2231 return CP_ACCESS_TRAP_UNCATEGORIZED;
2233 return CP_ACCESS_OK;
2236 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
2238 return env->pstate & PSTATE_SP;
2241 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
2243 update_spsel(env, val);
2246 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2249 ARMCPU *cpu = arm_env_get_cpu(env);
2251 if (raw_read(env, ri) == value) {
2252 /* Skip the TLB flush if nothing actually changed; Linux likes
2253 * to do a lot of pointless SCTLR writes.
2258 raw_write(env, ri, value);
2259 /* ??? Lots of these bits are not implemented. */
2260 /* This may enable/disable the MMU, so do a TLB flush. */
2261 tlb_flush(CPU(cpu), 1);
2264 static const ARMCPRegInfo v8_cp_reginfo[] = {
2265 /* Minimal set of EL0-visible registers. This will need to be expanded
2266 * significantly for system emulation of AArch64 CPUs.
2268 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
2269 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
2270 .access = PL0_RW, .type = ARM_CP_NZCV },
2271 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
2272 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
2273 .type = ARM_CP_NO_RAW,
2274 .access = PL0_RW, .accessfn = aa64_daif_access,
2275 .fieldoffset = offsetof(CPUARMState, daif),
2276 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
2277 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
2278 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
2279 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
2280 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
2281 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
2282 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
2283 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
2284 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
2285 .access = PL0_R, .type = ARM_CP_NO_RAW,
2286 .readfn = aa64_dczid_read },
2287 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
2288 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
2289 .access = PL0_W, .type = ARM_CP_DC_ZVA,
2290 #ifndef CONFIG_USER_ONLY
2291 /* Avoid overhead of an access check that always passes in user-mode */
2292 .accessfn = aa64_zva_access,
2295 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
2296 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
2297 .access = PL1_R, .type = ARM_CP_CURRENTEL },
2298 /* Cache ops: all NOPs since we don't emulate caches */
2299 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
2300 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2301 .access = PL1_W, .type = ARM_CP_NOP },
2302 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
2303 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2304 .access = PL1_W, .type = ARM_CP_NOP },
2305 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
2306 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
2307 .access = PL0_W, .type = ARM_CP_NOP,
2308 .accessfn = aa64_cacheop_access },
2309 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
2310 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2311 .access = PL1_W, .type = ARM_CP_NOP },
2312 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
2313 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2314 .access = PL1_W, .type = ARM_CP_NOP },
2315 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
2316 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
2317 .access = PL0_W, .type = ARM_CP_NOP,
2318 .accessfn = aa64_cacheop_access },
2319 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
2320 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2321 .access = PL1_W, .type = ARM_CP_NOP },
2322 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
2323 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
2324 .access = PL0_W, .type = ARM_CP_NOP,
2325 .accessfn = aa64_cacheop_access },
2326 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
2327 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
2328 .access = PL0_W, .type = ARM_CP_NOP,
2329 .accessfn = aa64_cacheop_access },
2330 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
2331 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2332 .access = PL1_W, .type = ARM_CP_NOP },
2333 /* TLBI operations */
2334 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
2335 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2336 .access = PL1_W, .type = ARM_CP_NO_RAW,
2337 .writefn = tlbiall_is_write },
2338 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
2339 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2340 .access = PL1_W, .type = ARM_CP_NO_RAW,
2341 .writefn = tlbi_aa64_va_is_write },
2342 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
2343 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2344 .access = PL1_W, .type = ARM_CP_NO_RAW,
2345 .writefn = tlbi_aa64_asid_is_write },
2346 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
2347 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2348 .access = PL1_W, .type = ARM_CP_NO_RAW,
2349 .writefn = tlbi_aa64_vaa_is_write },
2350 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
2351 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2352 .access = PL1_W, .type = ARM_CP_NO_RAW,
2353 .writefn = tlbi_aa64_va_is_write },
2354 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
2355 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2356 .access = PL1_W, .type = ARM_CP_NO_RAW,
2357 .writefn = tlbi_aa64_vaa_is_write },
2358 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
2359 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2360 .access = PL1_W, .type = ARM_CP_NO_RAW,
2361 .writefn = tlbiall_write },
2362 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
2363 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2364 .access = PL1_W, .type = ARM_CP_NO_RAW,
2365 .writefn = tlbi_aa64_va_write },
2366 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
2367 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2368 .access = PL1_W, .type = ARM_CP_NO_RAW,
2369 .writefn = tlbi_aa64_asid_write },
2370 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
2371 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2372 .access = PL1_W, .type = ARM_CP_NO_RAW,
2373 .writefn = tlbi_aa64_vaa_write },
2374 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
2375 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2376 .access = PL1_W, .type = ARM_CP_NO_RAW,
2377 .writefn = tlbi_aa64_va_write },
2378 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
2379 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2380 .access = PL1_W, .type = ARM_CP_NO_RAW,
2381 .writefn = tlbi_aa64_vaa_write },
2382 #ifndef CONFIG_USER_ONLY
2383 /* 64 bit address translation operations */
2384 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
2385 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
2386 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2387 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
2388 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
2389 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2390 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
2391 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
2392 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2393 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
2394 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
2395 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2397 /* TLB invalidate last level of translation table walk */
2398 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2399 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2400 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2401 .type = ARM_CP_NO_RAW, .access = PL1_W,
2402 .writefn = tlbimvaa_is_write },
2403 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2404 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2405 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2406 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2407 /* 32 bit cache operations */
2408 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2409 .type = ARM_CP_NOP, .access = PL1_W },
2410 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
2411 .type = ARM_CP_NOP, .access = PL1_W },
2412 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2413 .type = ARM_CP_NOP, .access = PL1_W },
2414 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
2415 .type = ARM_CP_NOP, .access = PL1_W },
2416 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
2417 .type = ARM_CP_NOP, .access = PL1_W },
2418 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
2419 .type = ARM_CP_NOP, .access = PL1_W },
2420 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2421 .type = ARM_CP_NOP, .access = PL1_W },
2422 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2423 .type = ARM_CP_NOP, .access = PL1_W },
2424 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
2425 .type = ARM_CP_NOP, .access = PL1_W },
2426 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2427 .type = ARM_CP_NOP, .access = PL1_W },
2428 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
2429 .type = ARM_CP_NOP, .access = PL1_W },
2430 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
2431 .type = ARM_CP_NOP, .access = PL1_W },
2432 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2433 .type = ARM_CP_NOP, .access = PL1_W },
2434 /* MMU Domain access control / MPU write buffer control */
2435 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
2436 .access = PL1_RW, .resetvalue = 0,
2437 .writefn = dacr_write, .raw_writefn = raw_write,
2438 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
2439 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
2440 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
2441 .type = ARM_CP_ALIAS,
2442 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
2444 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
2445 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
2446 .type = ARM_CP_ALIAS,
2447 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
2448 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) },
2449 /* We rely on the access checks not allowing the guest to write to the
2450 * state field when SPSel indicates that it's being used as the stack
2453 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
2454 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
2455 .access = PL1_RW, .accessfn = sp_el0_access,
2456 .type = ARM_CP_ALIAS,
2457 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
2458 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
2459 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
2460 .access = PL2_RW, .type = ARM_CP_ALIAS,
2461 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
2462 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
2463 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
2464 .type = ARM_CP_NO_RAW,
2465 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
2469 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
2470 static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo[] = {
2471 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2472 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2474 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2475 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2476 .type = ARM_CP_NO_RAW,
2477 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
2479 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2483 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2485 ARMCPU *cpu = arm_env_get_cpu(env);
2486 uint64_t valid_mask = HCR_MASK;
2488 if (arm_feature(env, ARM_FEATURE_EL3)) {
2489 valid_mask &= ~HCR_HCD;
2491 valid_mask &= ~HCR_TSC;
2494 /* Clear RES0 bits. */
2495 value &= valid_mask;
2497 /* These bits change the MMU setup:
2498 * HCR_VM enables stage 2 translation
2499 * HCR_PTW forbids certain page-table setups
2500 * HCR_DC Disables stage1 and enables stage2 translation
2502 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
2503 tlb_flush(CPU(cpu), 1);
2505 raw_write(env, ri, value);
2508 static const ARMCPRegInfo v8_el2_cp_reginfo[] = {
2509 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2510 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
2511 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
2512 .writefn = hcr_write },
2513 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
2514 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
2515 .access = PL2_RW, .resetvalue = 0,
2516 .writefn = dacr_write, .raw_writefn = raw_write,
2517 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
2518 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
2519 .type = ARM_CP_ALIAS,
2520 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
2522 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
2523 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
2524 .type = ARM_CP_ALIAS,
2525 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
2526 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
2527 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
2528 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
2529 .access = PL2_RW, .resetvalue = 0,
2530 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
2531 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
2532 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
2533 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
2534 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
2535 .type = ARM_CP_ALIAS,
2536 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
2537 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
2538 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2539 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2540 .access = PL2_RW, .writefn = vbar_write,
2541 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
2543 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
2544 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
2545 .access = PL3_RW, .type = ARM_CP_ALIAS,
2546 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
2550 static const ARMCPRegInfo el3_cp_reginfo[] = {
2551 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
2552 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
2553 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
2554 .resetvalue = 0, .writefn = scr_write },
2555 { .name = "SCR", .type = ARM_CP_ALIAS,
2556 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
2557 .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
2558 .resetfn = arm_cp_reset_ignore, .writefn = scr_write },
2559 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
2560 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
2561 .access = PL3_RW, .resetvalue = 0,
2562 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
2564 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
2565 .access = PL3_RW, .resetvalue = 0,
2566 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
2567 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
2568 { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
2569 .access = PL3_W | PL1_R, .resetvalue = 0,
2570 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
2571 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
2572 .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
2573 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
2574 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
2575 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
2576 .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
2577 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
2578 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
2579 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
2580 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2581 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
2582 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
2583 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
2584 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
2585 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2586 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
2587 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
2588 .type = ARM_CP_ALIAS,
2589 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
2591 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
2592 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
2593 .type = ARM_CP_ALIAS,
2594 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
2595 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
2596 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
2597 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
2598 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
2599 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
2600 .type = ARM_CP_ALIAS,
2601 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
2602 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
2603 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
2604 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
2605 .access = PL3_RW, .writefn = vbar_write,
2606 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
2611 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2613 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2614 * but the AArch32 CTR has its own reginfo struct)
2616 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
2617 return CP_ACCESS_TRAP;
2619 return CP_ACCESS_OK;
2622 static const ARMCPRegInfo debug_cp_reginfo[] = {
2623 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
2624 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
2625 * unlike DBGDRAR it is never accessible from EL0.
2626 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
2629 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2630 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2631 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
2632 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
2633 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2634 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2635 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2636 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
2637 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
2638 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
2640 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
2642 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
2643 * We don't implement the configurable EL0 access.
2645 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
2646 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
2647 .type = ARM_CP_ALIAS,
2649 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
2650 .resetfn = arm_cp_reset_ignore },
2651 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2652 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
2653 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
2654 .access = PL1_W, .type = ARM_CP_NOP },
2655 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
2656 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
2657 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
2658 .access = PL1_RW, .type = ARM_CP_NOP },
2659 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
2660 * implement vector catch debug events yet.
2663 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
2664 .access = PL1_RW, .type = ARM_CP_NOP },
2668 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
2669 /* 64 bit access versions of the (dummy) debug registers */
2670 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
2671 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
2672 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
2673 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
2677 void hw_watchpoint_update(ARMCPU *cpu, int n)
2679 CPUARMState *env = &cpu->env;
2681 vaddr wvr = env->cp15.dbgwvr[n];
2682 uint64_t wcr = env->cp15.dbgwcr[n];
2684 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
2686 if (env->cpu_watchpoint[n]) {
2687 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
2688 env->cpu_watchpoint[n] = NULL;
2691 if (!extract64(wcr, 0, 1)) {
2692 /* E bit clear : watchpoint disabled */
2696 switch (extract64(wcr, 3, 2)) {
2698 /* LSC 00 is reserved and must behave as if the wp is disabled */
2701 flags |= BP_MEM_READ;
2704 flags |= BP_MEM_WRITE;
2707 flags |= BP_MEM_ACCESS;
2711 /* Attempts to use both MASK and BAS fields simultaneously are
2712 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
2713 * thus generating a watchpoint for every byte in the masked region.
2715 mask = extract64(wcr, 24, 4);
2716 if (mask == 1 || mask == 2) {
2717 /* Reserved values of MASK; we must act as if the mask value was
2718 * some non-reserved value, or as if the watchpoint were disabled.
2719 * We choose the latter.
2723 /* Watchpoint covers an aligned area up to 2GB in size */
2725 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
2726 * whether the watchpoint fires when the unmasked bits match; we opt
2727 * to generate the exceptions.
2731 /* Watchpoint covers bytes defined by the byte address select bits */
2732 int bas = extract64(wcr, 5, 8);
2736 /* This must act as if the watchpoint is disabled */
2740 if (extract64(wvr, 2, 1)) {
2741 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
2742 * ignored, and BAS[3:0] define which bytes to watch.
2746 /* The BAS bits are supposed to be programmed to indicate a contiguous
2747 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
2748 * we fire for each byte in the word/doubleword addressed by the WVR.
2749 * We choose to ignore any non-zero bits after the first range of 1s.
2751 basstart = ctz32(bas);
2752 len = cto32(bas >> basstart);
2756 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
2757 &env->cpu_watchpoint[n]);
2760 void hw_watchpoint_update_all(ARMCPU *cpu)
2763 CPUARMState *env = &cpu->env;
2765 /* Completely clear out existing QEMU watchpoints and our array, to
2766 * avoid possible stale entries following migration load.
2768 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
2769 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
2771 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
2772 hw_watchpoint_update(cpu, i);
2776 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2779 ARMCPU *cpu = arm_env_get_cpu(env);
2782 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
2783 * register reads and behaves as if values written are sign extended.
2784 * Bits [1:0] are RES0.
2786 value = sextract64(value, 0, 49) & ~3ULL;
2788 raw_write(env, ri, value);
2789 hw_watchpoint_update(cpu, i);
2792 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2795 ARMCPU *cpu = arm_env_get_cpu(env);
2798 raw_write(env, ri, value);
2799 hw_watchpoint_update(cpu, i);
2802 void hw_breakpoint_update(ARMCPU *cpu, int n)
2804 CPUARMState *env = &cpu->env;
2805 uint64_t bvr = env->cp15.dbgbvr[n];
2806 uint64_t bcr = env->cp15.dbgbcr[n];
2811 if (env->cpu_breakpoint[n]) {
2812 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
2813 env->cpu_breakpoint[n] = NULL;
2816 if (!extract64(bcr, 0, 1)) {
2817 /* E bit clear : watchpoint disabled */
2821 bt = extract64(bcr, 20, 4);
2824 case 4: /* unlinked address mismatch (reserved if AArch64) */
2825 case 5: /* linked address mismatch (reserved if AArch64) */
2826 qemu_log_mask(LOG_UNIMP,
2827 "arm: address mismatch breakpoint types not implemented");
2829 case 0: /* unlinked address match */
2830 case 1: /* linked address match */
2832 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
2833 * we behave as if the register was sign extended. Bits [1:0] are
2834 * RES0. The BAS field is used to allow setting breakpoints on 16
2835 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
2836 * a bp will fire if the addresses covered by the bp and the addresses
2837 * covered by the insn overlap but the insn doesn't start at the
2838 * start of the bp address range. We choose to require the insn and
2839 * the bp to have the same address. The constraints on writing to
2840 * BAS enforced in dbgbcr_write mean we have only four cases:
2841 * 0b0000 => no breakpoint
2842 * 0b0011 => breakpoint on addr
2843 * 0b1100 => breakpoint on addr + 2
2844 * 0b1111 => breakpoint on addr
2845 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
2847 int bas = extract64(bcr, 5, 4);
2848 addr = sextract64(bvr, 0, 49) & ~3ULL;
2857 case 2: /* unlinked context ID match */
2858 case 8: /* unlinked VMID match (reserved if no EL2) */
2859 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
2860 qemu_log_mask(LOG_UNIMP,
2861 "arm: unlinked context breakpoint types not implemented");
2863 case 9: /* linked VMID match (reserved if no EL2) */
2864 case 11: /* linked context ID and VMID match (reserved if no EL2) */
2865 case 3: /* linked context ID match */
2867 /* We must generate no events for Linked context matches (unless
2868 * they are linked to by some other bp/wp, which is handled in
2869 * updates for the linking bp/wp). We choose to also generate no events
2870 * for reserved values.
2875 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
2878 void hw_breakpoint_update_all(ARMCPU *cpu)
2881 CPUARMState *env = &cpu->env;
2883 /* Completely clear out existing QEMU breakpoints and our array, to
2884 * avoid possible stale entries following migration load.
2886 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
2887 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
2889 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
2890 hw_breakpoint_update(cpu, i);
2894 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2897 ARMCPU *cpu = arm_env_get_cpu(env);
2900 raw_write(env, ri, value);
2901 hw_breakpoint_update(cpu, i);
2904 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2907 ARMCPU *cpu = arm_env_get_cpu(env);
2910 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
2913 value = deposit64(value, 6, 1, extract64(value, 5, 1));
2914 value = deposit64(value, 8, 1, extract64(value, 7, 1));
2916 raw_write(env, ri, value);
2917 hw_breakpoint_update(cpu, i);
2920 static void define_debug_regs(ARMCPU *cpu)
2922 /* Define v7 and v8 architectural debug registers.
2923 * These are just dummy implementations for now.
2926 int wrps, brps, ctx_cmps;
2927 ARMCPRegInfo dbgdidr = {
2928 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
2929 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
2932 /* Note that all these register fields hold "number of Xs minus 1". */
2933 brps = extract32(cpu->dbgdidr, 24, 4);
2934 wrps = extract32(cpu->dbgdidr, 28, 4);
2935 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
2937 assert(ctx_cmps <= brps);
2939 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
2940 * of the debug registers such as number of breakpoints;
2941 * check that if they both exist then they agree.
2943 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2944 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
2945 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
2946 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
2949 define_one_arm_cp_reg(cpu, &dbgdidr);
2950 define_arm_cp_regs(cpu, debug_cp_reginfo);
2952 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
2953 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
2956 for (i = 0; i < brps + 1; i++) {
2957 ARMCPRegInfo dbgregs[] = {
2958 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
2959 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
2961 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
2962 .writefn = dbgbvr_write, .raw_writefn = raw_write
2964 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
2965 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
2967 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
2968 .writefn = dbgbcr_write, .raw_writefn = raw_write
2972 define_arm_cp_regs(cpu, dbgregs);
2975 for (i = 0; i < wrps + 1; i++) {
2976 ARMCPRegInfo dbgregs[] = {
2977 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
2978 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
2980 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
2981 .writefn = dbgwvr_write, .raw_writefn = raw_write
2983 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
2984 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
2986 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
2987 .writefn = dbgwcr_write, .raw_writefn = raw_write
2991 define_arm_cp_regs(cpu, dbgregs);
2995 void register_cp_regs_for_features(ARMCPU *cpu)
2997 /* Register all the coprocessor registers based on feature bits */
2998 CPUARMState *env = &cpu->env;
2999 if (arm_feature(env, ARM_FEATURE_M)) {
3000 /* M profile has no coprocessor registers */
3004 define_arm_cp_regs(cpu, cp_reginfo);
3005 if (!arm_feature(env, ARM_FEATURE_V8)) {
3006 /* Must go early as it is full of wildcards that may be
3007 * overridden by later definitions.
3009 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
3012 if (arm_feature(env, ARM_FEATURE_V6)) {
3013 /* The ID registers all have impdef reset values */
3014 ARMCPRegInfo v6_idregs[] = {
3015 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
3016 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3017 .access = PL1_R, .type = ARM_CP_CONST,
3018 .resetvalue = cpu->id_pfr0 },
3019 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
3020 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
3021 .access = PL1_R, .type = ARM_CP_CONST,
3022 .resetvalue = cpu->id_pfr1 },
3023 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
3024 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
3025 .access = PL1_R, .type = ARM_CP_CONST,
3026 .resetvalue = cpu->id_dfr0 },
3027 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
3028 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
3029 .access = PL1_R, .type = ARM_CP_CONST,
3030 .resetvalue = cpu->id_afr0 },
3031 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
3032 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
3033 .access = PL1_R, .type = ARM_CP_CONST,
3034 .resetvalue = cpu->id_mmfr0 },
3035 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
3036 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
3037 .access = PL1_R, .type = ARM_CP_CONST,
3038 .resetvalue = cpu->id_mmfr1 },
3039 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
3040 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
3041 .access = PL1_R, .type = ARM_CP_CONST,
3042 .resetvalue = cpu->id_mmfr2 },
3043 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
3044 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
3045 .access = PL1_R, .type = ARM_CP_CONST,
3046 .resetvalue = cpu->id_mmfr3 },
3047 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
3048 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
3049 .access = PL1_R, .type = ARM_CP_CONST,
3050 .resetvalue = cpu->id_isar0 },
3051 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
3052 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
3053 .access = PL1_R, .type = ARM_CP_CONST,
3054 .resetvalue = cpu->id_isar1 },
3055 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
3056 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3057 .access = PL1_R, .type = ARM_CP_CONST,
3058 .resetvalue = cpu->id_isar2 },
3059 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
3060 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
3061 .access = PL1_R, .type = ARM_CP_CONST,
3062 .resetvalue = cpu->id_isar3 },
3063 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
3064 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
3065 .access = PL1_R, .type = ARM_CP_CONST,
3066 .resetvalue = cpu->id_isar4 },
3067 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
3068 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
3069 .access = PL1_R, .type = ARM_CP_CONST,
3070 .resetvalue = cpu->id_isar5 },
3071 /* 6..7 are as yet unallocated and must RAZ */
3072 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
3073 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
3075 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
3076 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
3080 define_arm_cp_regs(cpu, v6_idregs);
3081 define_arm_cp_regs(cpu, v6_cp_reginfo);
3083 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
3085 if (arm_feature(env, ARM_FEATURE_V6K)) {
3086 define_arm_cp_regs(cpu, v6k_cp_reginfo);
3088 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3089 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
3091 if (arm_feature(env, ARM_FEATURE_V7)) {
3092 /* v7 performance monitor control register: same implementor
3093 * field as main ID register, and we implement only the cycle
3096 #ifndef CONFIG_USER_ONLY
3097 ARMCPRegInfo pmcr = {
3098 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
3100 .type = ARM_CP_IO | ARM_CP_ALIAS,
3101 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
3102 .accessfn = pmreg_access, .writefn = pmcr_write,
3103 .raw_writefn = raw_write,
3105 ARMCPRegInfo pmcr64 = {
3106 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
3107 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
3108 .access = PL0_RW, .accessfn = pmreg_access,
3110 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
3111 .resetvalue = cpu->midr & 0xff000000,
3112 .writefn = pmcr_write, .raw_writefn = raw_write,
3114 define_one_arm_cp_reg(cpu, &pmcr);
3115 define_one_arm_cp_reg(cpu, &pmcr64);
3117 ARMCPRegInfo clidr = {
3118 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
3119 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
3120 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
3122 define_one_arm_cp_reg(cpu, &clidr);
3123 define_arm_cp_regs(cpu, v7_cp_reginfo);
3124 define_debug_regs(cpu);
3126 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
3128 if (arm_feature(env, ARM_FEATURE_V8)) {
3129 /* AArch64 ID registers, which all have impdef reset values */
3130 ARMCPRegInfo v8_idregs[] = {
3131 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
3132 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
3133 .access = PL1_R, .type = ARM_CP_CONST,
3134 .resetvalue = cpu->id_aa64pfr0 },
3135 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
3136 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
3137 .access = PL1_R, .type = ARM_CP_CONST,
3138 .resetvalue = cpu->id_aa64pfr1},
3139 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
3140 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
3141 .access = PL1_R, .type = ARM_CP_CONST,
3142 /* We mask out the PMUVer field, because we don't currently
3143 * implement the PMU. Not advertising it prevents the guest
3144 * from trying to use it and getting UNDEFs on registers we
3147 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
3148 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
3149 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
3150 .access = PL1_R, .type = ARM_CP_CONST,
3151 .resetvalue = cpu->id_aa64dfr1 },
3152 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
3153 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
3154 .access = PL1_R, .type = ARM_CP_CONST,
3155 .resetvalue = cpu->id_aa64afr0 },
3156 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
3157 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
3158 .access = PL1_R, .type = ARM_CP_CONST,
3159 .resetvalue = cpu->id_aa64afr1 },
3160 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
3161 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
3162 .access = PL1_R, .type = ARM_CP_CONST,
3163 .resetvalue = cpu->id_aa64isar0 },
3164 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
3165 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
3166 .access = PL1_R, .type = ARM_CP_CONST,
3167 .resetvalue = cpu->id_aa64isar1 },
3168 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
3169 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3170 .access = PL1_R, .type = ARM_CP_CONST,
3171 .resetvalue = cpu->id_aa64mmfr0 },
3172 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
3173 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
3174 .access = PL1_R, .type = ARM_CP_CONST,
3175 .resetvalue = cpu->id_aa64mmfr1 },
3176 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
3177 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
3178 .access = PL1_R, .type = ARM_CP_CONST,
3179 .resetvalue = cpu->mvfr0 },
3180 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
3181 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
3182 .access = PL1_R, .type = ARM_CP_CONST,
3183 .resetvalue = cpu->mvfr1 },
3184 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
3185 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
3186 .access = PL1_R, .type = ARM_CP_CONST,
3187 .resetvalue = cpu->mvfr2 },
3190 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
3191 if (!arm_feature(env, ARM_FEATURE_EL3) &&
3192 !arm_feature(env, ARM_FEATURE_EL2)) {
3193 ARMCPRegInfo rvbar = {
3194 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
3195 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3196 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
3198 define_one_arm_cp_reg(cpu, &rvbar);
3200 define_arm_cp_regs(cpu, v8_idregs);
3201 define_arm_cp_regs(cpu, v8_cp_reginfo);
3203 if (arm_feature(env, ARM_FEATURE_EL2)) {
3204 define_arm_cp_regs(cpu, v8_el2_cp_reginfo);
3205 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
3206 if (!arm_feature(env, ARM_FEATURE_EL3)) {
3207 ARMCPRegInfo rvbar = {
3208 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
3209 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
3210 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
3212 define_one_arm_cp_reg(cpu, &rvbar);
3215 /* If EL2 is missing but higher ELs are enabled, we need to
3216 * register the no_el2 reginfos.
3218 if (arm_feature(env, ARM_FEATURE_EL3)) {
3219 define_arm_cp_regs(cpu, v8_el3_no_el2_cp_reginfo);
3222 if (arm_feature(env, ARM_FEATURE_EL3)) {
3223 define_arm_cp_regs(cpu, el3_cp_reginfo);
3224 ARMCPRegInfo rvbar = {
3225 .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
3226 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
3227 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
3229 define_one_arm_cp_reg(cpu, &rvbar);
3231 if (arm_feature(env, ARM_FEATURE_MPU)) {
3232 /* These are the MPU registers prior to PMSAv6. Any new
3233 * PMSA core later than the ARM946 will require that we
3234 * implement the PMSAv6 or PMSAv7 registers, which are
3235 * completely different.
3237 assert(!arm_feature(env, ARM_FEATURE_V6));
3238 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
3240 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
3242 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
3243 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
3245 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
3246 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
3248 if (arm_feature(env, ARM_FEATURE_VAPA)) {
3249 define_arm_cp_regs(cpu, vapa_cp_reginfo);
3251 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
3252 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
3254 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
3255 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
3257 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
3258 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
3260 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
3261 define_arm_cp_regs(cpu, omap_cp_reginfo);
3263 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
3264 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
3266 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3267 define_arm_cp_regs(cpu, xscale_cp_reginfo);
3269 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
3270 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
3272 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3273 define_arm_cp_regs(cpu, lpae_cp_reginfo);
3275 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
3276 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
3277 * be read-only (ie write causes UNDEF exception).
3280 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
3281 /* Pre-v8 MIDR space.
3282 * Note that the MIDR isn't a simple constant register because
3283 * of the TI925 behaviour where writes to another register can
3284 * cause the MIDR value to change.
3286 * Unimplemented registers in the c15 0 0 0 space default to
3287 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
3288 * and friends override accordingly.
3291 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
3292 .access = PL1_R, .resetvalue = cpu->midr,
3293 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
3294 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
3295 .type = ARM_CP_OVERRIDE },
3296 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
3298 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
3299 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3301 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
3302 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3304 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
3305 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3307 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
3308 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3310 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
3311 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3314 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
3315 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
3316 * variable-MIDR TI925 behaviour. Instead we have a single
3317 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
3319 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
3320 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
3321 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
3322 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
3323 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
3324 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
3327 ARMCPRegInfo id_cp_reginfo[] = {
3328 /* These are common to v8 and pre-v8 */
3330 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
3331 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
3332 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
3333 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
3334 .access = PL0_R, .accessfn = ctr_el0_access,
3335 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
3336 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
3338 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
3339 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3341 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
3342 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3345 ARMCPRegInfo crn0_wi_reginfo = {
3346 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
3347 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
3348 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
3350 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
3351 arm_feature(env, ARM_FEATURE_STRONGARM)) {
3353 /* Register the blanket "writes ignored" value first to cover the
3354 * whole space. Then update the specific ID registers to allow write
3355 * access, so that they ignore writes rather than causing them to
3358 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
3359 for (r = id_pre_v8_midr_cp_reginfo;
3360 r->type != ARM_CP_SENTINEL; r++) {
3363 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
3367 if (arm_feature(env, ARM_FEATURE_V8)) {
3368 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
3370 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
3372 define_arm_cp_regs(cpu, id_cp_reginfo);
3375 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
3376 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
3379 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
3380 ARMCPRegInfo auxcr = {
3381 .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
3382 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
3383 .access = PL1_RW, .type = ARM_CP_CONST,
3384 .resetvalue = cpu->reset_auxcr
3386 define_one_arm_cp_reg(cpu, &auxcr);
3389 if (arm_feature(env, ARM_FEATURE_CBAR)) {
3390 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
3391 /* 32 bit view is [31:18] 0...0 [43:32]. */
3392 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
3393 | extract64(cpu->reset_cbar, 32, 12);
3394 ARMCPRegInfo cbar_reginfo[] = {
3396 .type = ARM_CP_CONST,
3397 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
3398 .access = PL1_R, .resetvalue = cpu->reset_cbar },
3399 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
3400 .type = ARM_CP_CONST,
3401 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
3402 .access = PL1_R, .resetvalue = cbar32 },
3405 /* We don't implement a r/w 64 bit CBAR currently */
3406 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
3407 define_arm_cp_regs(cpu, cbar_reginfo);
3409 ARMCPRegInfo cbar = {
3411 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
3412 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
3413 .fieldoffset = offsetof(CPUARMState,
3414 cp15.c15_config_base_address)
3416 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
3417 cbar.access = PL1_R;
3418 cbar.fieldoffset = 0;
3419 cbar.type = ARM_CP_CONST;
3421 define_one_arm_cp_reg(cpu, &cbar);
3425 /* Generic registers whose values depend on the implementation */
3427 ARMCPRegInfo sctlr = {
3428 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
3429 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
3431 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
3432 offsetof(CPUARMState, cp15.sctlr_ns) },
3433 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
3434 .raw_writefn = raw_write,
3436 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3437 /* Normally we would always end the TB on an SCTLR write, but Linux
3438 * arch/arm/mach-pxa/sleep.S expects two instructions following
3439 * an MMU enable to execute from cache. Imitate this behaviour.
3441 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
3443 define_one_arm_cp_reg(cpu, &sctlr);
3447 ARMCPU *cpu_arm_init(const char *cpu_model)
3449 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
3452 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
3454 CPUState *cs = CPU(cpu);
3455 CPUARMState *env = &cpu->env;
3457 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
3458 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
3459 aarch64_fpu_gdb_set_reg,
3460 34, "aarch64-fpu.xml", 0);
3461 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
3462 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3463 51, "arm-neon.xml", 0);
3464 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
3465 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3466 35, "arm-vfp3.xml", 0);
3467 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
3468 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3469 19, "arm-vfp.xml", 0);
3473 /* Sort alphabetically by type name, except for "any". */
3474 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
3476 ObjectClass *class_a = (ObjectClass *)a;
3477 ObjectClass *class_b = (ObjectClass *)b;
3478 const char *name_a, *name_b;
3480 name_a = object_class_get_name(class_a);
3481 name_b = object_class_get_name(class_b);
3482 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
3484 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
3487 return strcmp(name_a, name_b);
3491 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
3493 ObjectClass *oc = data;
3494 CPUListState *s = user_data;
3495 const char *typename;
3498 typename = object_class_get_name(oc);
3499 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
3500 (*s->cpu_fprintf)(s->file, " %s\n",
3505 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
3509 .cpu_fprintf = cpu_fprintf,
3513 list = object_class_get_list(TYPE_ARM_CPU, false);
3514 list = g_slist_sort(list, arm_cpu_list_compare);
3515 (*cpu_fprintf)(f, "Available CPUs:\n");
3516 g_slist_foreach(list, arm_cpu_list_entry, &s);
3519 /* The 'host' CPU type is dynamically registered only if KVM is
3520 * enabled, so we have to special-case it here:
3522 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
3526 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
3528 ObjectClass *oc = data;
3529 CpuDefinitionInfoList **cpu_list = user_data;
3530 CpuDefinitionInfoList *entry;
3531 CpuDefinitionInfo *info;
3532 const char *typename;
3534 typename = object_class_get_name(oc);
3535 info = g_malloc0(sizeof(*info));
3536 info->name = g_strndup(typename,
3537 strlen(typename) - strlen("-" TYPE_ARM_CPU));
3539 entry = g_malloc0(sizeof(*entry));
3540 entry->value = info;
3541 entry->next = *cpu_list;
3545 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
3547 CpuDefinitionInfoList *cpu_list = NULL;
3550 list = object_class_get_list(TYPE_ARM_CPU, false);
3551 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
3557 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
3558 void *opaque, int state, int secstate,
3559 int crm, int opc1, int opc2)
3561 /* Private utility function for define_one_arm_cp_reg_with_opaque():
3562 * add a single reginfo struct to the hash table.
3564 uint32_t *key = g_new(uint32_t, 1);
3565 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
3566 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3567 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
3569 /* Reset the secure state to the specific incoming state. This is
3570 * necessary as the register may have been defined with both states.
3572 r2->secure = secstate;
3574 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
3575 /* Register is banked (using both entries in array).
3576 * Overwriting fieldoffset as the array is only used to define
3577 * banked registers but later only fieldoffset is used.
3579 r2->fieldoffset = r->bank_fieldoffsets[ns];
3582 if (state == ARM_CP_STATE_AA32) {
3583 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
3584 /* If the register is banked then we don't need to migrate or
3585 * reset the 32-bit instance in certain cases:
3587 * 1) If the register has both 32-bit and 64-bit instances then we
3588 * can count on the 64-bit instance taking care of the
3590 * 2) If ARMv8 is enabled then we can count on a 64-bit version
3591 * taking care of the secure bank. This requires that separate
3592 * 32 and 64-bit definitions are provided.
3594 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
3595 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
3596 r2->type |= ARM_CP_ALIAS;
3597 r2->resetfn = arm_cp_reset_ignore;
3599 } else if ((secstate != r->secure) && !ns) {
3600 /* The register is not banked so we only want to allow migration of
3601 * the non-secure instance.
3603 r2->type |= ARM_CP_ALIAS;
3604 r2->resetfn = arm_cp_reset_ignore;
3607 if (r->state == ARM_CP_STATE_BOTH) {
3608 /* We assume it is a cp15 register if the .cp field is left unset.
3614 #ifdef HOST_WORDS_BIGENDIAN
3615 if (r2->fieldoffset) {
3616 r2->fieldoffset += sizeof(uint32_t);
3621 if (state == ARM_CP_STATE_AA64) {
3622 /* To allow abbreviation of ARMCPRegInfo
3623 * definitions, we treat cp == 0 as equivalent to
3624 * the value for "standard guest-visible sysreg".
3625 * STATE_BOTH definitions are also always "standard
3626 * sysreg" in their AArch64 view (the .cp value may
3627 * be non-zero for the benefit of the AArch32 view).
3629 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
3630 r2->cp = CP_REG_ARM64_SYSREG_CP;
3632 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
3633 r2->opc0, opc1, opc2);
3635 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
3638 r2->opaque = opaque;
3640 /* reginfo passed to helpers is correct for the actual access,
3641 * and is never ARM_CP_STATE_BOTH:
3644 /* Make sure reginfo passed to helpers for wildcarded regs
3645 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
3650 /* By convention, for wildcarded registers only the first
3651 * entry is used for migration; the others are marked as
3652 * ALIAS so we don't try to transfer the register
3653 * multiple times. Special registers (ie NOP/WFI) are
3654 * never migratable and not even raw-accessible.
3656 if ((r->type & ARM_CP_SPECIAL)) {
3657 r2->type |= ARM_CP_NO_RAW;
3659 if (((r->crm == CP_ANY) && crm != 0) ||
3660 ((r->opc1 == CP_ANY) && opc1 != 0) ||
3661 ((r->opc2 == CP_ANY) && opc2 != 0)) {
3662 r2->type |= ARM_CP_ALIAS;
3665 /* Check that raw accesses are either forbidden or handled. Note that
3666 * we can't assert this earlier because the setup of fieldoffset for
3667 * banked registers has to be done first.
3669 if (!(r2->type & ARM_CP_NO_RAW)) {
3670 assert(!raw_accessors_invalid(r2));
3673 /* Overriding of an existing definition must be explicitly
3676 if (!(r->type & ARM_CP_OVERRIDE)) {
3677 ARMCPRegInfo *oldreg;
3678 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
3679 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
3680 fprintf(stderr, "Register redefined: cp=%d %d bit "
3681 "crn=%d crm=%d opc1=%d opc2=%d, "
3682 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
3683 r2->crn, r2->crm, r2->opc1, r2->opc2,
3684 oldreg->name, r2->name);
3685 g_assert_not_reached();
3688 g_hash_table_insert(cpu->cp_regs, key, r2);
3692 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
3693 const ARMCPRegInfo *r, void *opaque)
3695 /* Define implementations of coprocessor registers.
3696 * We store these in a hashtable because typically
3697 * there are less than 150 registers in a space which
3698 * is 16*16*16*8*8 = 262144 in size.
3699 * Wildcarding is supported for the crm, opc1 and opc2 fields.
3700 * If a register is defined twice then the second definition is
3701 * used, so this can be used to define some generic registers and
3702 * then override them with implementation specific variations.
3703 * At least one of the original and the second definition should
3704 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
3705 * against accidental use.
3707 * The state field defines whether the register is to be
3708 * visible in the AArch32 or AArch64 execution state. If the
3709 * state is set to ARM_CP_STATE_BOTH then we synthesise a
3710 * reginfo structure for the AArch32 view, which sees the lower
3711 * 32 bits of the 64 bit register.
3713 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
3714 * be wildcarded. AArch64 registers are always considered to be 64
3715 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
3716 * the register, if any.
3718 int crm, opc1, opc2, state;
3719 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
3720 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
3721 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
3722 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
3723 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
3724 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
3725 /* 64 bit registers have only CRm and Opc1 fields */
3726 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
3727 /* op0 only exists in the AArch64 encodings */
3728 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
3729 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
3730 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
3731 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
3732 * encodes a minimum access level for the register. We roll this
3733 * runtime check into our general permission check code, so check
3734 * here that the reginfo's specified permissions are strict enough
3735 * to encompass the generic architectural permission check.
3737 if (r->state != ARM_CP_STATE_AA32) {
3740 case 0: case 1: case 2:
3753 /* unallocated encoding, so not possible */
3761 /* min_EL EL1, secure mode only (we don't check the latter) */
3765 /* broken reginfo with out-of-range opc1 */
3769 /* assert our permissions are not too lax (stricter is fine) */
3770 assert((r->access & ~mask) == 0);
3773 /* Check that the register definition has enough info to handle
3774 * reads and writes if they are permitted.
3776 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
3777 if (r->access & PL3_R) {
3778 assert((r->fieldoffset ||
3779 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
3782 if (r->access & PL3_W) {
3783 assert((r->fieldoffset ||
3784 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
3788 /* Bad type field probably means missing sentinel at end of reg list */
3789 assert(cptype_valid(r->type));
3790 for (crm = crmmin; crm <= crmmax; crm++) {
3791 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
3792 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
3793 for (state = ARM_CP_STATE_AA32;
3794 state <= ARM_CP_STATE_AA64; state++) {
3795 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
3798 if (state == ARM_CP_STATE_AA32) {
3799 /* Under AArch32 CP registers can be common
3800 * (same for secure and non-secure world) or banked.
3802 switch (r->secure) {
3803 case ARM_CP_SECSTATE_S:
3804 case ARM_CP_SECSTATE_NS:
3805 add_cpreg_to_hashtable(cpu, r, opaque, state,
3806 r->secure, crm, opc1, opc2);
3809 add_cpreg_to_hashtable(cpu, r, opaque, state,
3812 add_cpreg_to_hashtable(cpu, r, opaque, state,
3818 /* AArch64 registers get mapped to non-secure instance
3820 add_cpreg_to_hashtable(cpu, r, opaque, state,
3830 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
3831 const ARMCPRegInfo *regs, void *opaque)
3833 /* Define a whole list of registers */
3834 const ARMCPRegInfo *r;
3835 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
3836 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
3840 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
3842 return g_hash_table_lookup(cpregs, &encoded_cp);
3845 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
3848 /* Helper coprocessor write function for write-ignore registers */
3851 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
3853 /* Helper coprocessor write function for read-as-zero registers */
3857 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
3859 /* Helper coprocessor reset function for do-nothing-on-reset registers */
3862 static int bad_mode_switch(CPUARMState *env, int mode)
3864 /* Return true if it is not valid for us to switch to
3865 * this CPU mode (ie all the UNPREDICTABLE cases in
3866 * the ARM ARM CPSRWriteByInstr pseudocode).
3869 case ARM_CPU_MODE_USR:
3870 case ARM_CPU_MODE_SYS:
3871 case ARM_CPU_MODE_SVC:
3872 case ARM_CPU_MODE_ABT:
3873 case ARM_CPU_MODE_UND:
3874 case ARM_CPU_MODE_IRQ:
3875 case ARM_CPU_MODE_FIQ:
3877 case ARM_CPU_MODE_MON:
3878 return !arm_is_secure(env);
3884 uint32_t cpsr_read(CPUARMState *env)
3887 ZF = (env->ZF == 0);
3888 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
3889 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
3890 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
3891 | ((env->condexec_bits & 0xfc) << 8)
3892 | (env->GE << 16) | (env->daif & CPSR_AIF);
3895 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
3897 uint32_t changed_daif;
3899 if (mask & CPSR_NZCV) {
3900 env->ZF = (~val) & CPSR_Z;
3902 env->CF = (val >> 29) & 1;
3903 env->VF = (val << 3) & 0x80000000;
3906 env->QF = ((val & CPSR_Q) != 0);
3908 env->thumb = ((val & CPSR_T) != 0);
3909 if (mask & CPSR_IT_0_1) {
3910 env->condexec_bits &= ~3;
3911 env->condexec_bits |= (val >> 25) & 3;
3913 if (mask & CPSR_IT_2_7) {
3914 env->condexec_bits &= 3;
3915 env->condexec_bits |= (val >> 8) & 0xfc;
3917 if (mask & CPSR_GE) {
3918 env->GE = (val >> 16) & 0xf;
3921 /* In a V7 implementation that includes the security extensions but does
3922 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
3923 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
3924 * bits respectively.
3926 * In a V8 implementation, it is permitted for privileged software to
3927 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
3929 if (!arm_feature(env, ARM_FEATURE_V8) &&
3930 arm_feature(env, ARM_FEATURE_EL3) &&
3931 !arm_feature(env, ARM_FEATURE_EL2) &&
3932 !arm_is_secure(env)) {
3934 changed_daif = (env->daif ^ val) & mask;
3936 if (changed_daif & CPSR_A) {
3937 /* Check to see if we are allowed to change the masking of async
3938 * abort exceptions from a non-secure state.
3940 if (!(env->cp15.scr_el3 & SCR_AW)) {
3941 qemu_log_mask(LOG_GUEST_ERROR,
3942 "Ignoring attempt to switch CPSR_A flag from "
3943 "non-secure world with SCR.AW bit clear\n");
3948 if (changed_daif & CPSR_F) {
3949 /* Check to see if we are allowed to change the masking of FIQ
3950 * exceptions from a non-secure state.
3952 if (!(env->cp15.scr_el3 & SCR_FW)) {
3953 qemu_log_mask(LOG_GUEST_ERROR,
3954 "Ignoring attempt to switch CPSR_F flag from "
3955 "non-secure world with SCR.FW bit clear\n");
3959 /* Check whether non-maskable FIQ (NMFI) support is enabled.
3960 * If this bit is set software is not allowed to mask
3961 * FIQs, but is allowed to set CPSR_F to 0.
3963 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
3965 qemu_log_mask(LOG_GUEST_ERROR,
3966 "Ignoring attempt to enable CPSR_F flag "
3967 "(non-maskable FIQ [NMFI] support enabled)\n");
3973 env->daif &= ~(CPSR_AIF & mask);
3974 env->daif |= val & CPSR_AIF & mask;
3976 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
3977 if (bad_mode_switch(env, val & CPSR_M)) {
3978 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
3979 * We choose to ignore the attempt and leave the CPSR M field
3984 switch_mode(env, val & CPSR_M);
3987 mask &= ~CACHED_CPSR_BITS;
3988 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
3991 /* Sign/zero extend */
3992 uint32_t HELPER(sxtb16)(uint32_t x)
3995 res = (uint16_t)(int8_t)x;
3996 res |= (uint32_t)(int8_t)(x >> 16) << 16;
4000 uint32_t HELPER(uxtb16)(uint32_t x)
4003 res = (uint16_t)(uint8_t)x;
4004 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
4008 uint32_t HELPER(clz)(uint32_t x)
4013 int32_t HELPER(sdiv)(int32_t num, int32_t den)
4017 if (num == INT_MIN && den == -1)
4022 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
4029 uint32_t HELPER(rbit)(uint32_t x)
4031 x = ((x & 0xff000000) >> 24)
4032 | ((x & 0x00ff0000) >> 8)
4033 | ((x & 0x0000ff00) << 8)
4034 | ((x & 0x000000ff) << 24);
4035 x = ((x & 0xf0f0f0f0) >> 4)
4036 | ((x & 0x0f0f0f0f) << 4);
4037 x = ((x & 0x88888888) >> 3)
4038 | ((x & 0x44444444) >> 1)
4039 | ((x & 0x22222222) << 1)
4040 | ((x & 0x11111111) << 3);
4044 #if defined(CONFIG_USER_ONLY)
4046 int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
4049 ARMCPU *cpu = ARM_CPU(cs);
4050 CPUARMState *env = &cpu->env;
4052 env->exception.vaddress = address;
4054 cs->exception_index = EXCP_PREFETCH_ABORT;
4056 cs->exception_index = EXCP_DATA_ABORT;
4061 /* These should probably raise undefined insn exceptions. */
4062 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
4064 ARMCPU *cpu = arm_env_get_cpu(env);
4066 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
4069 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
4071 ARMCPU *cpu = arm_env_get_cpu(env);
4073 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
4077 void switch_mode(CPUARMState *env, int mode)
4079 ARMCPU *cpu = arm_env_get_cpu(env);
4081 if (mode != ARM_CPU_MODE_USR) {
4082 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
4086 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
4088 ARMCPU *cpu = arm_env_get_cpu(env);
4090 cpu_abort(CPU(cpu), "banked r13 write\n");
4093 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
4095 ARMCPU *cpu = arm_env_get_cpu(env);
4097 cpu_abort(CPU(cpu), "banked r13 read\n");
4101 unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx)
4106 void aarch64_sync_64_to_32(CPUARMState *env)
4108 g_assert_not_reached();
4113 /* Map CPU modes onto saved register banks. */
4114 int bank_number(int mode)
4117 case ARM_CPU_MODE_USR:
4118 case ARM_CPU_MODE_SYS:
4120 case ARM_CPU_MODE_SVC:
4122 case ARM_CPU_MODE_ABT:
4124 case ARM_CPU_MODE_UND:
4126 case ARM_CPU_MODE_IRQ:
4128 case ARM_CPU_MODE_FIQ:
4130 case ARM_CPU_MODE_HYP:
4132 case ARM_CPU_MODE_MON:
4135 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
4138 void switch_mode(CPUARMState *env, int mode)
4143 old_mode = env->uncached_cpsr & CPSR_M;
4144 if (mode == old_mode)
4147 if (old_mode == ARM_CPU_MODE_FIQ) {
4148 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
4149 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
4150 } else if (mode == ARM_CPU_MODE_FIQ) {
4151 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
4152 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
4155 i = bank_number(old_mode);
4156 env->banked_r13[i] = env->regs[13];
4157 env->banked_r14[i] = env->regs[14];
4158 env->banked_spsr[i] = env->spsr;
4160 i = bank_number(mode);
4161 env->regs[13] = env->banked_r13[i];
4162 env->regs[14] = env->banked_r14[i];
4163 env->spsr = env->banked_spsr[i];
4166 /* Physical Interrupt Target EL Lookup Table
4168 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
4170 * The below multi-dimensional table is used for looking up the target
4171 * exception level given numerous condition criteria. Specifically, the
4172 * target EL is based on SCR and HCR routing controls as well as the
4173 * currently executing EL and secure state.
4176 * target_el_table[2][2][2][2][2][4]
4177 * | | | | | +--- Current EL
4178 * | | | | +------ Non-secure(0)/Secure(1)
4179 * | | | +--------- HCR mask override
4180 * | | +------------ SCR exec state control
4181 * | +--------------- SCR mask override
4182 * +------------------ 32-bit(0)/64-bit(1) EL3
4184 * The table values are as such:
4188 * The ARM ARM target EL table includes entries indicating that an "exception
4189 * is not taken". The two cases where this is applicable are:
4190 * 1) An exception is taken from EL3 but the SCR does not have the exception
4192 * 2) An exception is taken from EL2 but the HCR does not have the exception
4194 * In these two cases, the below table contain a target of EL1. This value is
4195 * returned as it is expected that the consumer of the table data will check
4196 * for "target EL >= current EL" to ensure the exception is not taken.
4200 * BIT IRQ IMO Non-secure Secure
4201 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
4203 const int8_t target_el_table[2][2][2][2][2][4] = {
4204 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4205 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
4206 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4207 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
4208 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4209 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
4210 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4211 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
4212 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
4213 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
4214 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
4215 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
4216 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4217 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
4218 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4219 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
4223 * Determine the target EL for physical exceptions
4225 static inline uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
4226 uint32_t cur_el, bool secure)
4228 CPUARMState *env = cs->env_ptr;
4229 int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
4233 int is64 = arm_el_is_aa64(env, 3);
4237 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
4238 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
4241 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
4242 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
4245 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
4246 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
4250 /* If HCR.TGE is set then HCR is treated as being 1 */
4251 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
4253 /* Perform a table-lookup for the target EL given the current state */
4254 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
4256 assert(target_el > 0);
4262 * Determine the target EL for a given exception type.
4264 unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx)
4266 ARMCPU *cpu = ARM_CPU(cs);
4267 CPUARMState *env = &cpu->env;
4268 unsigned int cur_el = arm_current_el(env);
4269 unsigned int target_el;
4270 bool secure = arm_is_secure(env);
4282 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
4289 target_el = MAX(cur_el, 1);
4295 static void v7m_push(CPUARMState *env, uint32_t val)
4297 CPUState *cs = CPU(arm_env_get_cpu(env));
4300 stl_phys(cs->as, env->regs[13], val);
4303 static uint32_t v7m_pop(CPUARMState *env)
4305 CPUState *cs = CPU(arm_env_get_cpu(env));
4308 val = ldl_phys(cs->as, env->regs[13]);
4313 /* Switch to V7M main or process stack pointer. */
4314 static void switch_v7m_sp(CPUARMState *env, int process)
4317 if (env->v7m.current_sp != process) {
4318 tmp = env->v7m.other_sp;
4319 env->v7m.other_sp = env->regs[13];
4320 env->regs[13] = tmp;
4321 env->v7m.current_sp = process;
4325 static void do_v7m_exception_exit(CPUARMState *env)
4330 type = env->regs[15];
4331 if (env->v7m.exception != 0)
4332 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
4334 /* Switch to the target stack. */
4335 switch_v7m_sp(env, (type & 4) != 0);
4336 /* Pop registers. */
4337 env->regs[0] = v7m_pop(env);
4338 env->regs[1] = v7m_pop(env);
4339 env->regs[2] = v7m_pop(env);
4340 env->regs[3] = v7m_pop(env);
4341 env->regs[12] = v7m_pop(env);
4342 env->regs[14] = v7m_pop(env);
4343 env->regs[15] = v7m_pop(env);
4344 if (env->regs[15] & 1) {
4345 qemu_log_mask(LOG_GUEST_ERROR,
4346 "M profile return from interrupt with misaligned "
4347 "PC is UNPREDICTABLE\n");
4348 /* Actual hardware seems to ignore the lsbit, and there are several
4349 * RTOSes out there which incorrectly assume the r15 in the stack
4350 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
4352 env->regs[15] &= ~1U;
4354 xpsr = v7m_pop(env);
4355 xpsr_write(env, xpsr, 0xfffffdff);
4356 /* Undo stack alignment. */
4359 /* ??? The exception return type specifies Thread/Handler mode. However
4360 this is also implied by the xPSR value. Not sure what to do
4361 if there is a mismatch. */
4362 /* ??? Likewise for mismatches between the CONTROL register and the stack
4366 void arm_v7m_cpu_do_interrupt(CPUState *cs)
4368 ARMCPU *cpu = ARM_CPU(cs);
4369 CPUARMState *env = &cpu->env;
4370 uint32_t xpsr = xpsr_read(env);
4374 arm_log_exception(cs->exception_index);
4377 if (env->v7m.current_sp)
4379 if (env->v7m.exception == 0)
4382 /* For exceptions we just mark as pending on the NVIC, and let that
4384 /* TODO: Need to escalate if the current priority is higher than the
4385 one we're raising. */
4386 switch (cs->exception_index) {
4388 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
4391 /* The PC already points to the next instruction. */
4392 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
4394 case EXCP_PREFETCH_ABORT:
4395 case EXCP_DATA_ABORT:
4396 /* TODO: if we implemented the MPU registers, this is where we
4397 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
4399 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
4402 if (semihosting_enabled) {
4404 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
4407 env->regs[0] = do_arm_semihosting(env);
4408 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4412 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
4415 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
4417 case EXCP_EXCEPTION_EXIT:
4418 do_v7m_exception_exit(env);
4421 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
4422 return; /* Never happens. Keep compiler happy. */
4425 /* Align stack pointer. */
4426 /* ??? Should only do this if Configuration Control Register
4427 STACKALIGN bit is set. */
4428 if (env->regs[13] & 4) {
4432 /* Switch to the handler mode. */
4433 v7m_push(env, xpsr);
4434 v7m_push(env, env->regs[15]);
4435 v7m_push(env, env->regs[14]);
4436 v7m_push(env, env->regs[12]);
4437 v7m_push(env, env->regs[3]);
4438 v7m_push(env, env->regs[2]);
4439 v7m_push(env, env->regs[1]);
4440 v7m_push(env, env->regs[0]);
4441 switch_v7m_sp(env, 0);
4443 env->condexec_bits = 0;
4445 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
4446 env->regs[15] = addr & 0xfffffffe;
4447 env->thumb = addr & 1;
4450 /* Function used to synchronize QEMU's AArch64 register set with AArch32
4451 * register set. This is necessary when switching between AArch32 and AArch64
4454 void aarch64_sync_32_to_64(CPUARMState *env)
4457 uint32_t mode = env->uncached_cpsr & CPSR_M;
4459 /* We can blanket copy R[0:7] to X[0:7] */
4460 for (i = 0; i < 8; i++) {
4461 env->xregs[i] = env->regs[i];
4464 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
4465 * Otherwise, they come from the banked user regs.
4467 if (mode == ARM_CPU_MODE_FIQ) {
4468 for (i = 8; i < 13; i++) {
4469 env->xregs[i] = env->usr_regs[i - 8];
4472 for (i = 8; i < 13; i++) {
4473 env->xregs[i] = env->regs[i];
4477 /* Registers x13-x23 are the various mode SP and FP registers. Registers
4478 * r13 and r14 are only copied if we are in that mode, otherwise we copy
4479 * from the mode banked register.
4481 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
4482 env->xregs[13] = env->regs[13];
4483 env->xregs[14] = env->regs[14];
4485 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
4486 /* HYP is an exception in that it is copied from r14 */
4487 if (mode == ARM_CPU_MODE_HYP) {
4488 env->xregs[14] = env->regs[14];
4490 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
4494 if (mode == ARM_CPU_MODE_HYP) {
4495 env->xregs[15] = env->regs[13];
4497 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
4500 if (mode == ARM_CPU_MODE_IRQ) {
4501 env->xregs[16] = env->regs[13];
4502 env->xregs[17] = env->regs[14];
4504 env->xregs[16] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
4505 env->xregs[17] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
4508 if (mode == ARM_CPU_MODE_SVC) {
4509 env->xregs[18] = env->regs[13];
4510 env->xregs[19] = env->regs[14];
4512 env->xregs[18] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
4513 env->xregs[19] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
4516 if (mode == ARM_CPU_MODE_ABT) {
4517 env->xregs[20] = env->regs[13];
4518 env->xregs[21] = env->regs[14];
4520 env->xregs[20] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
4521 env->xregs[21] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
4524 if (mode == ARM_CPU_MODE_UND) {
4525 env->xregs[22] = env->regs[13];
4526 env->xregs[23] = env->regs[14];
4528 env->xregs[22] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
4529 env->xregs[23] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
4532 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4533 * mode, then we can copy from r8-r14. Otherwise, we copy from the
4534 * FIQ bank for r8-r14.
4536 if (mode == ARM_CPU_MODE_FIQ) {
4537 for (i = 24; i < 31; i++) {
4538 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
4541 for (i = 24; i < 29; i++) {
4542 env->xregs[i] = env->fiq_regs[i - 24];
4544 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
4545 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
4548 env->pc = env->regs[15];
4551 /* Function used to synchronize QEMU's AArch32 register set with AArch64
4552 * register set. This is necessary when switching between AArch32 and AArch64
4555 void aarch64_sync_64_to_32(CPUARMState *env)
4558 uint32_t mode = env->uncached_cpsr & CPSR_M;
4560 /* We can blanket copy X[0:7] to R[0:7] */
4561 for (i = 0; i < 8; i++) {
4562 env->regs[i] = env->xregs[i];
4565 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
4566 * Otherwise, we copy x8-x12 into the banked user regs.
4568 if (mode == ARM_CPU_MODE_FIQ) {
4569 for (i = 8; i < 13; i++) {
4570 env->usr_regs[i - 8] = env->xregs[i];
4573 for (i = 8; i < 13; i++) {
4574 env->regs[i] = env->xregs[i];
4578 /* Registers r13 & r14 depend on the current mode.
4579 * If we are in a given mode, we copy the corresponding x registers to r13
4580 * and r14. Otherwise, we copy the x register to the banked r13 and r14
4583 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
4584 env->regs[13] = env->xregs[13];
4585 env->regs[14] = env->xregs[14];
4587 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
4589 /* HYP is an exception in that it does not have its own banked r14 but
4590 * shares the USR r14
4592 if (mode == ARM_CPU_MODE_HYP) {
4593 env->regs[14] = env->xregs[14];
4595 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
4599 if (mode == ARM_CPU_MODE_HYP) {
4600 env->regs[13] = env->xregs[15];
4602 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
4605 if (mode == ARM_CPU_MODE_IRQ) {
4606 env->regs[13] = env->xregs[16];
4607 env->regs[14] = env->xregs[17];
4609 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
4610 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
4613 if (mode == ARM_CPU_MODE_SVC) {
4614 env->regs[13] = env->xregs[18];
4615 env->regs[14] = env->xregs[19];
4617 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
4618 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
4621 if (mode == ARM_CPU_MODE_ABT) {
4622 env->regs[13] = env->xregs[20];
4623 env->regs[14] = env->xregs[21];
4625 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
4626 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
4629 if (mode == ARM_CPU_MODE_UND) {
4630 env->regs[13] = env->xregs[22];
4631 env->regs[14] = env->xregs[23];
4633 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
4634 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
4637 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4638 * mode, then we can copy to r8-r14. Otherwise, we copy to the
4639 * FIQ bank for r8-r14.
4641 if (mode == ARM_CPU_MODE_FIQ) {
4642 for (i = 24; i < 31; i++) {
4643 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
4646 for (i = 24; i < 29; i++) {
4647 env->fiq_regs[i - 24] = env->xregs[i];
4649 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
4650 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
4653 env->regs[15] = env->pc;
4656 /* Handle a CPU exception. */
4657 void arm_cpu_do_interrupt(CPUState *cs)
4659 ARMCPU *cpu = ARM_CPU(cs);
4660 CPUARMState *env = &cpu->env;
4669 arm_log_exception(cs->exception_index);
4671 if (arm_is_psci_call(cpu, cs->exception_index)) {
4672 arm_handle_psci_call(cpu);
4673 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
4677 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
4678 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
4680 case EC_BREAKPOINT_SAME_EL:
4684 case EC_WATCHPOINT_SAME_EL:
4690 case EC_VECTORCATCH:
4699 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
4702 /* TODO: Vectored interrupt controller. */
4703 switch (cs->exception_index) {
4705 new_mode = ARM_CPU_MODE_UND;
4714 if (semihosting_enabled) {
4715 /* Check for semihosting interrupt. */
4717 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
4720 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
4723 /* Only intercept calls from privileged modes, to provide some
4724 semblance of security. */
4725 if (((mask == 0x123456 && !env->thumb)
4726 || (mask == 0xab && env->thumb))
4727 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
4728 env->regs[0] = do_arm_semihosting(env);
4729 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4733 new_mode = ARM_CPU_MODE_SVC;
4736 /* The PC already points to the next instruction. */
4740 /* See if this is a semihosting syscall. */
4741 if (env->thumb && semihosting_enabled) {
4742 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
4744 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
4746 env->regs[0] = do_arm_semihosting(env);
4747 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4751 env->exception.fsr = 2;
4752 /* Fall through to prefetch abort. */
4753 case EXCP_PREFETCH_ABORT:
4754 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
4755 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
4756 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
4757 env->exception.fsr, (uint32_t)env->exception.vaddress);
4758 new_mode = ARM_CPU_MODE_ABT;
4760 mask = CPSR_A | CPSR_I;
4763 case EXCP_DATA_ABORT:
4764 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
4765 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
4766 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4768 (uint32_t)env->exception.vaddress);
4769 new_mode = ARM_CPU_MODE_ABT;
4771 mask = CPSR_A | CPSR_I;
4775 new_mode = ARM_CPU_MODE_IRQ;
4777 /* Disable IRQ and imprecise data aborts. */
4778 mask = CPSR_A | CPSR_I;
4780 if (env->cp15.scr_el3 & SCR_IRQ) {
4781 /* IRQ routed to monitor mode */
4782 new_mode = ARM_CPU_MODE_MON;
4787 new_mode = ARM_CPU_MODE_FIQ;
4789 /* Disable FIQ, IRQ and imprecise data aborts. */
4790 mask = CPSR_A | CPSR_I | CPSR_F;
4791 if (env->cp15.scr_el3 & SCR_FIQ) {
4792 /* FIQ routed to monitor mode */
4793 new_mode = ARM_CPU_MODE_MON;
4798 new_mode = ARM_CPU_MODE_MON;
4800 mask = CPSR_A | CPSR_I | CPSR_F;
4804 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
4805 return; /* Never happens. Keep compiler happy. */
4808 if (new_mode == ARM_CPU_MODE_MON) {
4809 addr += env->cp15.mvbar;
4810 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
4811 /* High vectors. When enabled, base address cannot be remapped. */
4814 /* ARM v7 architectures provide a vector base address register to remap
4815 * the interrupt vector table.
4816 * This register is only followed in non-monitor mode, and is banked.
4817 * Note: only bits 31:5 are valid.
4819 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
4822 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
4823 env->cp15.scr_el3 &= ~SCR_NS;
4826 switch_mode (env, new_mode);
4827 /* For exceptions taken to AArch32 we must clear the SS bit in both
4828 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
4830 env->uncached_cpsr &= ~PSTATE_SS;
4831 env->spsr = cpsr_read(env);
4832 /* Clear IT bits. */
4833 env->condexec_bits = 0;
4834 /* Switch to the new mode, and to the correct instruction set. */
4835 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
4837 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
4838 * and we should just guard the thumb mode on V4 */
4839 if (arm_feature(env, ARM_FEATURE_V4T)) {
4840 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
4842 env->regs[14] = env->regs[15] + offset;
4843 env->regs[15] = addr;
4844 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
4848 /* Return the exception level which controls this address translation regime */
4849 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
4852 case ARMMMUIdx_S2NS:
4853 case ARMMMUIdx_S1E2:
4855 case ARMMMUIdx_S1E3:
4857 case ARMMMUIdx_S1SE0:
4858 return arm_el_is_aa64(env, 3) ? 1 : 3;
4859 case ARMMMUIdx_S1SE1:
4860 case ARMMMUIdx_S1NSE0:
4861 case ARMMMUIdx_S1NSE1:
4864 g_assert_not_reached();
4868 /* Return true if this address translation regime is secure */
4869 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
4872 case ARMMMUIdx_S12NSE0:
4873 case ARMMMUIdx_S12NSE1:
4874 case ARMMMUIdx_S1NSE0:
4875 case ARMMMUIdx_S1NSE1:
4876 case ARMMMUIdx_S1E2:
4877 case ARMMMUIdx_S2NS:
4879 case ARMMMUIdx_S1E3:
4880 case ARMMMUIdx_S1SE0:
4881 case ARMMMUIdx_S1SE1:
4884 g_assert_not_reached();
4888 /* Return the SCTLR value which controls this address translation regime */
4889 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
4891 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
4894 /* Return true if the specified stage of address translation is disabled */
4895 static inline bool regime_translation_disabled(CPUARMState *env,
4898 if (mmu_idx == ARMMMUIdx_S2NS) {
4899 return (env->cp15.hcr_el2 & HCR_VM) == 0;
4901 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
4904 /* Return the TCR controlling this translation regime */
4905 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
4907 if (mmu_idx == ARMMMUIdx_S2NS) {
4908 /* TODO: return VTCR_EL2 */
4909 g_assert_not_reached();
4911 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
4914 /* Return true if the translation regime is using LPAE format page tables */
4915 static inline bool regime_using_lpae_format(CPUARMState *env,
4918 int el = regime_el(env, mmu_idx);
4919 if (el == 2 || arm_el_is_aa64(env, el)) {
4922 if (arm_feature(env, ARM_FEATURE_LPAE)
4923 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
4929 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
4932 case ARMMMUIdx_S1SE0:
4933 case ARMMMUIdx_S1NSE0:
4937 case ARMMMUIdx_S12NSE0:
4938 case ARMMMUIdx_S12NSE1:
4939 g_assert_not_reached();
4943 /* Translate section/page access permissions to page
4944 * R/W protection flags
4947 * @mmu_idx: MMU index indicating required translation regime
4948 * @ap: The 3-bit access permissions (AP[2:0])
4949 * @domain_prot: The 2-bit domain access permissions
4951 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
4952 int ap, int domain_prot)
4954 bool is_user = regime_is_user(env, mmu_idx);
4956 if (domain_prot == 3) {
4957 return PAGE_READ | PAGE_WRITE;
4962 if (arm_feature(env, ARM_FEATURE_V7)) {
4965 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
4967 return is_user ? 0 : PAGE_READ;
4974 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
4979 return PAGE_READ | PAGE_WRITE;
4982 return PAGE_READ | PAGE_WRITE;
4983 case 4: /* Reserved. */
4986 return is_user ? 0 : PAGE_READ;
4990 if (!arm_feature(env, ARM_FEATURE_V6K)) {
4995 g_assert_not_reached();
4999 /* Translate section/page access permissions to page
5000 * R/W protection flags.
5002 * @ap: The 2-bit simple AP (AP[2:1])
5003 * @is_user: TRUE if accessing from PL0
5005 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
5009 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5011 return PAGE_READ | PAGE_WRITE;
5013 return is_user ? 0 : PAGE_READ;
5017 g_assert_not_reached();
5022 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
5024 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
5027 /* Translate section/page access permissions to protection flags
5030 * @mmu_idx: MMU index indicating required translation regime
5031 * @is_aa64: TRUE if AArch64
5032 * @ap: The 2-bit simple AP (AP[2:1])
5033 * @ns: NS (non-secure) bit
5034 * @xn: XN (execute-never) bit
5035 * @pxn: PXN (privileged execute-never) bit
5037 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
5038 int ap, int ns, int xn, int pxn)
5040 bool is_user = regime_is_user(env, mmu_idx);
5041 int prot_rw, user_rw;
5045 assert(mmu_idx != ARMMMUIdx_S2NS);
5047 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
5051 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
5054 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
5058 /* TODO have_wxn should be replaced with
5059 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
5060 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
5061 * compatible processors have EL2, which is required for [U]WXN.
5063 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
5066 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
5070 switch (regime_el(env, mmu_idx)) {
5073 xn = pxn || (user_rw & PAGE_WRITE);
5080 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5081 switch (regime_el(env, mmu_idx)) {
5085 xn = xn || !(user_rw & PAGE_READ);
5089 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
5091 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
5092 (uwxn && (user_rw & PAGE_WRITE));
5102 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
5105 return prot_rw | PAGE_EXEC;
5108 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
5109 uint32_t *table, uint32_t address)
5111 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
5112 int el = regime_el(env, mmu_idx);
5113 TCR *tcr = regime_tcr(env, mmu_idx);
5115 if (address & tcr->mask) {
5116 if (tcr->raw_tcr & TTBCR_PD1) {
5117 /* Translation table walk disabled for TTBR1 */
5120 *table = env->cp15.ttbr1_el[el] & 0xffffc000;
5122 if (tcr->raw_tcr & TTBCR_PD0) {
5123 /* Translation table walk disabled for TTBR0 */
5126 *table = env->cp15.ttbr0_el[el] & tcr->base_mask;
5128 *table |= (address >> 18) & 0x3ffc;
5132 /* All loads done in the course of a page table walk go through here.
5133 * TODO: rather than ignoring errors from physical memory reads (which
5134 * are external aborts in ARM terminology) we should propagate this
5135 * error out so that we can turn it into a Data Abort if this walk
5136 * was being done for a CPU load/store or an address translation instruction
5137 * (but not if it was for a debug access).
5139 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure)
5141 MemTxAttrs attrs = {};
5143 attrs.secure = is_secure;
5144 return address_space_ldl(cs->as, addr, attrs, NULL);
5147 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure)
5149 MemTxAttrs attrs = {};
5151 attrs.secure = is_secure;
5152 return address_space_ldq(cs->as, addr, attrs, NULL);
5155 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
5156 ARMMMUIdx mmu_idx, hwaddr *phys_ptr,
5157 int *prot, target_ulong *page_size)
5159 CPUState *cs = CPU(arm_env_get_cpu(env));
5170 /* Pagetable walk. */
5171 /* Lookup l1 descriptor. */
5172 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5173 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5177 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5179 domain = (desc >> 5) & 0x0f;
5180 if (regime_el(env, mmu_idx) == 1) {
5181 dacr = env->cp15.dacr_ns;
5183 dacr = env->cp15.dacr_s;
5185 domain_prot = (dacr >> (domain * 2)) & 3;
5187 /* Section translation fault. */
5191 if (domain_prot == 0 || domain_prot == 2) {
5193 code = 9; /* Section domain fault. */
5195 code = 11; /* Page domain fault. */
5200 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
5201 ap = (desc >> 10) & 3;
5203 *page_size = 1024 * 1024;
5205 /* Lookup l2 entry. */
5207 /* Coarse pagetable. */
5208 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
5210 /* Fine pagetable. */
5211 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
5213 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5215 case 0: /* Page translation fault. */
5218 case 1: /* 64k page. */
5219 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
5220 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
5221 *page_size = 0x10000;
5223 case 2: /* 4k page. */
5224 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5225 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
5226 *page_size = 0x1000;
5228 case 3: /* 1k page. */
5230 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5231 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5233 /* Page translation fault. */
5238 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
5240 ap = (desc >> 4) & 3;
5244 /* Never happens, but compiler isn't smart enough to tell. */
5249 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
5250 *prot |= *prot ? PAGE_EXEC : 0;
5251 if (!(*prot & (1 << access_type))) {
5252 /* Access permission fault. */
5255 *phys_ptr = phys_addr;
5258 return code | (domain << 4);
5261 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
5262 ARMMMUIdx mmu_idx, hwaddr *phys_ptr,
5264 int *prot, target_ulong *page_size)
5266 CPUState *cs = CPU(arm_env_get_cpu(env));
5280 /* Pagetable walk. */
5281 /* Lookup l1 descriptor. */
5282 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5283 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5287 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5289 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
5290 /* Section translation fault, or attempt to use the encoding
5291 * which is Reserved on implementations without PXN.
5296 if ((type == 1) || !(desc & (1 << 18))) {
5297 /* Page or Section. */
5298 domain = (desc >> 5) & 0x0f;
5300 if (regime_el(env, mmu_idx) == 1) {
5301 dacr = env->cp15.dacr_ns;
5303 dacr = env->cp15.dacr_s;
5305 domain_prot = (dacr >> (domain * 2)) & 3;
5306 if (domain_prot == 0 || domain_prot == 2) {
5308 code = 9; /* Section domain fault. */
5310 code = 11; /* Page domain fault. */
5315 if (desc & (1 << 18)) {
5317 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
5318 *page_size = 0x1000000;
5321 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
5322 *page_size = 0x100000;
5324 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
5325 xn = desc & (1 << 4);
5328 ns = extract32(desc, 19, 1);
5330 if (arm_feature(env, ARM_FEATURE_PXN)) {
5331 pxn = (desc >> 2) & 1;
5333 ns = extract32(desc, 3, 1);
5334 /* Lookup l2 entry. */
5335 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
5336 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5337 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
5339 case 0: /* Page translation fault. */
5342 case 1: /* 64k page. */
5343 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
5344 xn = desc & (1 << 15);
5345 *page_size = 0x10000;
5347 case 2: case 3: /* 4k page. */
5348 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5350 *page_size = 0x1000;
5353 /* Never happens, but compiler isn't smart enough to tell. */
5358 if (domain_prot == 3) {
5359 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
5361 if (pxn && !regime_is_user(env, mmu_idx)) {
5364 if (xn && access_type == 2)
5367 if (arm_feature(env, ARM_FEATURE_V6K) &&
5368 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
5369 /* The simplified model uses AP[0] as an access control bit. */
5370 if ((ap & 1) == 0) {
5371 /* Access flag fault. */
5372 code = (code == 15) ? 6 : 3;
5375 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
5377 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
5382 if (!(*prot & (1 << access_type))) {
5383 /* Access permission fault. */
5388 /* The NS bit will (as required by the architecture) have no effect if
5389 * the CPU doesn't support TZ or this is a non-secure translation
5390 * regime, because the attribute will already be non-secure.
5392 attrs->secure = false;
5394 *phys_ptr = phys_addr;
5397 return code | (domain << 4);
5400 /* Fault type for long-descriptor MMU fault reporting; this corresponds
5401 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
5404 translation_fault = 1,
5406 permission_fault = 3,
5409 static int get_phys_addr_lpae(CPUARMState *env, target_ulong address,
5410 int access_type, ARMMMUIdx mmu_idx,
5411 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
5412 target_ulong *page_size_ptr)
5414 CPUState *cs = CPU(arm_env_get_cpu(env));
5415 /* Read an LPAE long-descriptor translation table. */
5416 MMUFaultType fault_type = translation_fault;
5423 hwaddr descaddr, descmask;
5424 uint32_t tableattrs;
5425 target_ulong page_size;
5427 int32_t granule_sz = 9;
5428 int32_t va_size = 32;
5430 TCR *tcr = regime_tcr(env, mmu_idx);
5431 int ap, ns, xn, pxn;
5434 * This code assumes we're either a 64-bit EL1 or a 32-bit PL1;
5435 * it doesn't handle the different format TCR for TCR_EL2, TCR_EL3,
5436 * and VTCR_EL2, or the fact that those regimes don't have a split
5437 * TTBR0/TTBR1. Attribute and permission bit handling should also
5438 * be checked when adding support for those page table walks.
5440 if (arm_el_is_aa64(env, regime_el(env, mmu_idx))) {
5442 if (extract64(address, 55, 1))
5443 tbi = extract64(tcr->raw_tcr, 38, 1);
5445 tbi = extract64(tcr->raw_tcr, 37, 1);
5449 /* Determine whether this address is in the region controlled by
5450 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
5451 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
5452 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
5454 uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
5455 if (va_size == 64) {
5456 t0sz = MIN(t0sz, 39);
5457 t0sz = MAX(t0sz, 16);
5459 uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
5460 if (va_size == 64) {
5461 t1sz = MIN(t1sz, 39);
5462 t1sz = MAX(t1sz, 16);
5464 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
5465 /* there is a ttbr0 region and we are in it (high bits all zero) */
5467 } else if (t1sz && !extract64(~address, va_size - t1sz, t1sz - tbi)) {
5468 /* there is a ttbr1 region and we are in it (high bits all one) */
5471 /* ttbr0 region is "everything not in the ttbr1 region" */
5474 /* ttbr1 region is "everything not in the ttbr0 region" */
5477 /* in the gap between the two regions, this is a Translation fault */
5478 fault_type = translation_fault;
5482 /* Note that QEMU ignores shareability and cacheability attributes,
5483 * so we don't need to do anything with the SH, ORGN, IRGN fields
5484 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
5485 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
5486 * implement any ASID-like capability so we can ignore it (instead
5487 * we will always flush the TLB any time the ASID is changed).
5489 if (ttbr_select == 0) {
5490 ttbr = A32_BANKED_CURRENT_REG_GET(env, ttbr0);
5491 epd = extract32(tcr->raw_tcr, 7, 1);
5494 tg = extract32(tcr->raw_tcr, 14, 2);
5495 if (tg == 1) { /* 64KB pages */
5498 if (tg == 2) { /* 16KB pages */
5502 ttbr = A32_BANKED_CURRENT_REG_GET(env, ttbr1);
5503 epd = extract32(tcr->raw_tcr, 23, 1);
5506 tg = extract32(tcr->raw_tcr, 30, 2);
5507 if (tg == 3) { /* 64KB pages */
5510 if (tg == 1) { /* 16KB pages */
5515 /* Here we should have set up all the parameters for the translation:
5516 * va_size, ttbr, epd, tsz, granule_sz, tbi
5520 /* Translation table walk disabled => Translation fault on TLB miss */
5524 /* The starting level depends on the virtual address size (which can be
5525 * up to 48 bits) and the translation granule size. It indicates the number
5526 * of strides (granule_sz bits at a time) needed to consume the bits
5527 * of the input address. In the pseudocode this is:
5528 * level = 4 - RoundUp((inputsize - grainsize) / stride)
5529 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
5530 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
5531 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
5532 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
5533 * = 4 - (va_size - tsz - 4) / granule_sz;
5535 level = 4 - (va_size - tsz - 4) / granule_sz;
5537 /* Clear the vaddr bits which aren't part of the within-region address,
5538 * so that we don't have to special case things when calculating the
5539 * first descriptor address.
5542 address &= (1ULL << (va_size - tsz)) - 1;
5545 descmask = (1ULL << (granule_sz + 3)) - 1;
5547 /* Now we can extract the actual base address from the TTBR */
5548 descaddr = extract64(ttbr, 0, 48);
5549 descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
5551 /* Secure accesses start with the page table in secure memory and
5552 * can be downgraded to non-secure at any step. Non-secure accesses
5553 * remain non-secure. We implement this by just ORing in the NSTable/NS
5554 * bits at each step.
5556 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
5558 uint64_t descriptor;
5561 descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
5563 nstable = extract32(tableattrs, 4, 1);
5564 descriptor = arm_ldq_ptw(cs, descaddr, !nstable);
5565 if (!(descriptor & 1) ||
5566 (!(descriptor & 2) && (level == 3))) {
5567 /* Invalid, or the Reserved level 3 encoding */
5570 descaddr = descriptor & 0xfffffff000ULL;
5572 if ((descriptor & 2) && (level < 3)) {
5573 /* Table entry. The top five bits are attributes which may
5574 * propagate down through lower levels of the table (and
5575 * which are all arranged so that 0 means "no effect", so
5576 * we can gather them up by ORing in the bits at each level).
5578 tableattrs |= extract64(descriptor, 59, 5);
5582 /* Block entry at level 1 or 2, or page entry at level 3.
5583 * These are basically the same thing, although the number
5584 * of bits we pull in from the vaddr varies.
5586 page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
5587 descaddr |= (address & (page_size - 1));
5588 /* Extract attributes from the descriptor and merge with table attrs */
5589 attrs = extract64(descriptor, 2, 10)
5590 | (extract64(descriptor, 52, 12) << 10);
5591 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
5592 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
5593 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
5594 * means "force PL1 access only", which means forcing AP[1] to 0.
5596 if (extract32(tableattrs, 2, 1)) {
5599 attrs |= nstable << 3; /* NS */
5602 /* Here descaddr is the final physical address, and attributes
5605 fault_type = access_fault;
5606 if ((attrs & (1 << 8)) == 0) {
5611 ap = extract32(attrs, 4, 2);
5612 ns = extract32(attrs, 3, 1);
5613 xn = extract32(attrs, 12, 1);
5614 pxn = extract32(attrs, 11, 1);
5616 *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
5618 fault_type = permission_fault;
5619 if (!(*prot & (1 << access_type))) {
5624 /* The NS bit will (as required by the architecture) have no effect if
5625 * the CPU doesn't support TZ or this is a non-secure translation
5626 * regime, because the attribute will already be non-secure.
5628 txattrs->secure = false;
5630 *phys_ptr = descaddr;
5631 *page_size_ptr = page_size;
5635 /* Long-descriptor format IFSR/DFSR value */
5636 return (1 << 9) | (fault_type << 2) | level;
5639 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
5640 int access_type, ARMMMUIdx mmu_idx,
5641 hwaddr *phys_ptr, int *prot)
5646 bool is_user = regime_is_user(env, mmu_idx);
5648 *phys_ptr = address;
5649 for (n = 7; n >= 0; n--) {
5650 base = env->cp15.c6_region[n];
5651 if ((base & 1) == 0) {
5654 mask = 1 << ((base >> 1) & 0x1f);
5655 /* Keep this shift separate from the above to avoid an
5656 (undefined) << 32. */
5657 mask = (mask << 1) - 1;
5658 if (((base ^ address) & ~mask) == 0) {
5666 if (access_type == 2) {
5667 mask = env->cp15.pmsav5_insn_ap;
5669 mask = env->cp15.pmsav5_data_ap;
5671 mask = (mask >> (n * 4)) & 0xf;
5679 *prot = PAGE_READ | PAGE_WRITE;
5684 *prot |= PAGE_WRITE;
5688 *prot = PAGE_READ | PAGE_WRITE;
5700 /* Bad permission. */
5707 /* get_phys_addr - get the physical address for this virtual address
5709 * Find the physical address corresponding to the given virtual address,
5710 * by doing a translation table walk on MMU based systems or using the
5711 * MPU state on MPU based systems.
5713 * Returns 0 if the translation was successful. Otherwise, phys_ptr, attrs,
5714 * prot and page_size may not be filled in, and the return value provides
5715 * information on why the translation aborted, in the format of a
5716 * DFSR/IFSR fault register, with the following caveats:
5717 * * we honour the short vs long DFSR format differences.
5718 * * the WnR bit is never set (the caller must do this).
5719 * * for MPU based systems we don't bother to return a full FSR format
5723 * @address: virtual address to get physical address for
5724 * @access_type: 0 for read, 1 for write, 2 for execute
5725 * @mmu_idx: MMU index indicating required translation regime
5726 * @phys_ptr: set to the physical address corresponding to the virtual address
5727 * @attrs: set to the memory transaction attributes to use
5728 * @prot: set to the permissions for the page containing phys_ptr
5729 * @page_size: set to the size of the page containing phys_ptr
5731 static inline int get_phys_addr(CPUARMState *env, target_ulong address,
5732 int access_type, ARMMMUIdx mmu_idx,
5733 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
5734 target_ulong *page_size)
5736 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
5737 /* TODO: when we support EL2 we should here call ourselves recursively
5738 * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
5739 * functions will also need changing to perform ARMMMUIdx_S2NS loads
5740 * rather than direct physical memory loads when appropriate.
5741 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
5743 assert(!arm_feature(env, ARM_FEATURE_EL2));
5744 mmu_idx += ARMMMUIdx_S1NSE0;
5747 /* The page table entries may downgrade secure to non-secure, but
5748 * cannot upgrade an non-secure translation regime's attributes
5751 attrs->secure = regime_is_secure(env, mmu_idx);
5752 attrs->user = regime_is_user(env, mmu_idx);
5754 /* Fast Context Switch Extension. This doesn't exist at all in v8.
5755 * In v7 and earlier it affects all stage 1 translations.
5757 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
5758 && !arm_feature(env, ARM_FEATURE_V8)) {
5759 if (regime_el(env, mmu_idx) == 3) {
5760 address += env->cp15.fcseidr_s;
5762 address += env->cp15.fcseidr_ns;
5766 if (regime_translation_disabled(env, mmu_idx)) {
5767 /* MMU/MPU disabled. */
5768 *phys_ptr = address;
5769 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
5770 *page_size = TARGET_PAGE_SIZE;
5774 if (arm_feature(env, ARM_FEATURE_MPU)) {
5775 *page_size = TARGET_PAGE_SIZE;
5776 return get_phys_addr_mpu(env, address, access_type, mmu_idx, phys_ptr,
5780 if (regime_using_lpae_format(env, mmu_idx)) {
5781 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
5782 attrs, prot, page_size);
5783 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
5784 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
5785 attrs, prot, page_size);
5787 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
5792 int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
5793 int access_type, int mmu_idx)
5795 ARMCPU *cpu = ARM_CPU(cs);
5796 CPUARMState *env = &cpu->env;
5798 target_ulong page_size;
5802 bool same_el = (arm_current_el(env) != 0);
5803 MemTxAttrs attrs = {};
5805 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
5806 &attrs, &prot, &page_size);
5808 /* Map a single [sub]page. */
5809 phys_addr &= TARGET_PAGE_MASK;
5810 address &= TARGET_PAGE_MASK;
5811 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
5812 prot, mmu_idx, page_size);
5816 /* AArch64 syndrome does not have an LPAE bit */
5817 syn = ret & ~(1 << 9);
5819 /* For insn and data aborts we assume there is no instruction syndrome
5820 * information; this is always true for exceptions reported to EL1.
5822 if (access_type == 2) {
5823 syn = syn_insn_abort(same_el, 0, 0, syn);
5824 cs->exception_index = EXCP_PREFETCH_ABORT;
5826 syn = syn_data_abort(same_el, 0, 0, 0, access_type == 1, syn);
5827 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) {
5830 cs->exception_index = EXCP_DATA_ABORT;
5833 env->exception.syndrome = syn;
5834 env->exception.vaddress = address;
5835 env->exception.fsr = ret;
5839 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
5841 ARMCPU *cpu = ARM_CPU(cs);
5842 CPUARMState *env = &cpu->env;
5844 target_ulong page_size;
5847 MemTxAttrs attrs = {};
5849 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr,
5850 &attrs, &prot, &page_size);
5859 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
5861 if ((env->uncached_cpsr & CPSR_M) == mode) {
5862 env->regs[13] = val;
5864 env->banked_r13[bank_number(mode)] = val;
5868 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
5870 if ((env->uncached_cpsr & CPSR_M) == mode) {
5871 return env->regs[13];
5873 return env->banked_r13[bank_number(mode)];
5877 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5879 ARMCPU *cpu = arm_env_get_cpu(env);
5883 return xpsr_read(env) & 0xf8000000;
5885 return xpsr_read(env) & 0xf80001ff;
5887 return xpsr_read(env) & 0xff00fc00;
5889 return xpsr_read(env) & 0xff00fdff;
5891 return xpsr_read(env) & 0x000001ff;
5893 return xpsr_read(env) & 0x0700fc00;
5895 return xpsr_read(env) & 0x0700edff;
5897 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
5899 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
5900 case 16: /* PRIMASK */
5901 return (env->daif & PSTATE_I) != 0;
5902 case 17: /* BASEPRI */
5903 case 18: /* BASEPRI_MAX */
5904 return env->v7m.basepri;
5905 case 19: /* FAULTMASK */
5906 return (env->daif & PSTATE_F) != 0;
5907 case 20: /* CONTROL */
5908 return env->v7m.control;
5910 /* ??? For debugging only. */
5911 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
5916 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5918 ARMCPU *cpu = arm_env_get_cpu(env);
5922 xpsr_write(env, val, 0xf8000000);
5925 xpsr_write(env, val, 0xf8000000);
5928 xpsr_write(env, val, 0xfe00fc00);
5931 xpsr_write(env, val, 0xfe00fc00);
5934 /* IPSR bits are readonly. */
5937 xpsr_write(env, val, 0x0600fc00);
5940 xpsr_write(env, val, 0x0600fc00);
5943 if (env->v7m.current_sp)
5944 env->v7m.other_sp = val;
5946 env->regs[13] = val;
5949 if (env->v7m.current_sp)
5950 env->regs[13] = val;
5952 env->v7m.other_sp = val;
5954 case 16: /* PRIMASK */
5956 env->daif |= PSTATE_I;
5958 env->daif &= ~PSTATE_I;
5961 case 17: /* BASEPRI */
5962 env->v7m.basepri = val & 0xff;
5964 case 18: /* BASEPRI_MAX */
5966 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
5967 env->v7m.basepri = val;
5969 case 19: /* FAULTMASK */
5971 env->daif |= PSTATE_F;
5973 env->daif &= ~PSTATE_F;
5976 case 20: /* CONTROL */
5977 env->v7m.control = val & 3;
5978 switch_v7m_sp(env, (val & 2) != 0);
5981 /* ??? For debugging only. */
5982 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
5989 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
5991 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
5992 * Note that we do not implement the (architecturally mandated)
5993 * alignment fault for attempts to use this on Device memory
5994 * (which matches the usual QEMU behaviour of not implementing either
5995 * alignment faults or any memory attribute handling).
5998 ARMCPU *cpu = arm_env_get_cpu(env);
5999 uint64_t blocklen = 4 << cpu->dcz_blocksize;
6000 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
6002 #ifndef CONFIG_USER_ONLY
6004 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
6005 * the block size so we might have to do more than one TLB lookup.
6006 * We know that in fact for any v8 CPU the page size is at least 4K
6007 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
6008 * 1K as an artefact of legacy v5 subpage support being present in the
6009 * same QEMU executable.
6011 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
6012 void *hostaddr[maxidx];
6015 for (try = 0; try < 2; try++) {
6017 for (i = 0; i < maxidx; i++) {
6018 hostaddr[i] = tlb_vaddr_to_host(env,
6019 vaddr + TARGET_PAGE_SIZE * i,
6020 1, cpu_mmu_index(env));
6026 /* If it's all in the TLB it's fair game for just writing to;
6027 * we know we don't need to update dirty status, etc.
6029 for (i = 0; i < maxidx - 1; i++) {
6030 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
6032 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
6035 /* OK, try a store and see if we can populate the tlb. This
6036 * might cause an exception if the memory isn't writable,
6037 * in which case we will longjmp out of here. We must for
6038 * this purpose use the actual register value passed to us
6039 * so that we get the fault address right.
6041 helper_ret_stb_mmu(env, vaddr_in, 0, cpu_mmu_index(env), GETRA());
6042 /* Now we can populate the other TLB entries, if any */
6043 for (i = 0; i < maxidx; i++) {
6044 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
6045 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
6046 helper_ret_stb_mmu(env, va, 0, cpu_mmu_index(env), GETRA());
6051 /* Slow path (probably attempt to do this to an I/O device or
6052 * similar, or clearing of a block of code we have translations
6053 * cached for). Just do a series of byte writes as the architecture
6054 * demands. It's not worth trying to use a cpu_physical_memory_map(),
6055 * memset(), unmap() sequence here because:
6056 * + we'd need to account for the blocksize being larger than a page
6057 * + the direct-RAM access case is almost always going to be dealt
6058 * with in the fastpath code above, so there's no speed benefit
6059 * + we would have to deal with the map returning NULL because the
6060 * bounce buffer was in use
6062 for (i = 0; i < blocklen; i++) {
6063 helper_ret_stb_mmu(env, vaddr + i, 0, cpu_mmu_index(env), GETRA());
6067 memset(g2h(vaddr), 0, blocklen);
6071 /* Note that signed overflow is undefined in C. The following routines are
6072 careful to use unsigned types where modulo arithmetic is required.
6073 Failure to do so _will_ break on newer gcc. */
6075 /* Signed saturating arithmetic. */
6077 /* Perform 16-bit signed saturating addition. */
6078 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
6083 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
6092 /* Perform 8-bit signed saturating addition. */
6093 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
6098 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
6107 /* Perform 16-bit signed saturating subtraction. */
6108 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
6113 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
6122 /* Perform 8-bit signed saturating subtraction. */
6123 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
6128 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
6137 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
6138 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
6139 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
6140 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
6143 #include "op_addsub.h"
6145 /* Unsigned saturating arithmetic. */
6146 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6155 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6163 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
6172 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
6180 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
6181 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
6182 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
6183 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
6186 #include "op_addsub.h"
6188 /* Signed modulo arithmetic. */
6189 #define SARITH16(a, b, n, op) do { \
6191 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6192 RESULT(sum, n, 16); \
6194 ge |= 3 << (n * 2); \
6197 #define SARITH8(a, b, n, op) do { \
6199 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6200 RESULT(sum, n, 8); \
6206 #define ADD16(a, b, n) SARITH16(a, b, n, +)
6207 #define SUB16(a, b, n) SARITH16(a, b, n, -)
6208 #define ADD8(a, b, n) SARITH8(a, b, n, +)
6209 #define SUB8(a, b, n) SARITH8(a, b, n, -)
6213 #include "op_addsub.h"
6215 /* Unsigned modulo arithmetic. */
6216 #define ADD16(a, b, n) do { \
6218 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
6219 RESULT(sum, n, 16); \
6220 if ((sum >> 16) == 1) \
6221 ge |= 3 << (n * 2); \
6224 #define ADD8(a, b, n) do { \
6226 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
6227 RESULT(sum, n, 8); \
6228 if ((sum >> 8) == 1) \
6232 #define SUB16(a, b, n) do { \
6234 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
6235 RESULT(sum, n, 16); \
6236 if ((sum >> 16) == 0) \
6237 ge |= 3 << (n * 2); \
6240 #define SUB8(a, b, n) do { \
6242 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
6243 RESULT(sum, n, 8); \
6244 if ((sum >> 8) == 0) \
6251 #include "op_addsub.h"
6253 /* Halved signed arithmetic. */
6254 #define ADD16(a, b, n) \
6255 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
6256 #define SUB16(a, b, n) \
6257 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
6258 #define ADD8(a, b, n) \
6259 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
6260 #define SUB8(a, b, n) \
6261 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
6264 #include "op_addsub.h"
6266 /* Halved unsigned arithmetic. */
6267 #define ADD16(a, b, n) \
6268 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6269 #define SUB16(a, b, n) \
6270 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6271 #define ADD8(a, b, n) \
6272 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6273 #define SUB8(a, b, n) \
6274 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6277 #include "op_addsub.h"
6279 static inline uint8_t do_usad(uint8_t a, uint8_t b)
6287 /* Unsigned sum of absolute byte differences. */
6288 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
6291 sum = do_usad(a, b);
6292 sum += do_usad(a >> 8, b >> 8);
6293 sum += do_usad(a >> 16, b >>16);
6294 sum += do_usad(a >> 24, b >> 24);
6298 /* For ARMv6 SEL instruction. */
6299 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
6312 return (a & mask) | (b & ~mask);
6315 /* VFP support. We follow the convention used for VFP instructions:
6316 Single precision routines have a "s" suffix, double precision a
6319 /* Convert host exception flags to vfp form. */
6320 static inline int vfp_exceptbits_from_host(int host_bits)
6322 int target_bits = 0;
6324 if (host_bits & float_flag_invalid)
6326 if (host_bits & float_flag_divbyzero)
6328 if (host_bits & float_flag_overflow)
6330 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
6332 if (host_bits & float_flag_inexact)
6333 target_bits |= 0x10;
6334 if (host_bits & float_flag_input_denormal)
6335 target_bits |= 0x80;
6339 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
6344 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
6345 | (env->vfp.vec_len << 16)
6346 | (env->vfp.vec_stride << 20);
6347 i = get_float_exception_flags(&env->vfp.fp_status);
6348 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
6349 fpscr |= vfp_exceptbits_from_host(i);
6353 uint32_t vfp_get_fpscr(CPUARMState *env)
6355 return HELPER(vfp_get_fpscr)(env);
6358 /* Convert vfp exception flags to target form. */
6359 static inline int vfp_exceptbits_to_host(int target_bits)
6363 if (target_bits & 1)
6364 host_bits |= float_flag_invalid;
6365 if (target_bits & 2)
6366 host_bits |= float_flag_divbyzero;
6367 if (target_bits & 4)
6368 host_bits |= float_flag_overflow;
6369 if (target_bits & 8)
6370 host_bits |= float_flag_underflow;
6371 if (target_bits & 0x10)
6372 host_bits |= float_flag_inexact;
6373 if (target_bits & 0x80)
6374 host_bits |= float_flag_input_denormal;
6378 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
6383 changed = env->vfp.xregs[ARM_VFP_FPSCR];
6384 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
6385 env->vfp.vec_len = (val >> 16) & 7;
6386 env->vfp.vec_stride = (val >> 20) & 3;
6389 if (changed & (3 << 22)) {
6390 i = (val >> 22) & 3;
6392 case FPROUNDING_TIEEVEN:
6393 i = float_round_nearest_even;
6395 case FPROUNDING_POSINF:
6398 case FPROUNDING_NEGINF:
6399 i = float_round_down;
6401 case FPROUNDING_ZERO:
6402 i = float_round_to_zero;
6405 set_float_rounding_mode(i, &env->vfp.fp_status);
6407 if (changed & (1 << 24)) {
6408 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
6409 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
6411 if (changed & (1 << 25))
6412 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
6414 i = vfp_exceptbits_to_host(val);
6415 set_float_exception_flags(i, &env->vfp.fp_status);
6416 set_float_exception_flags(0, &env->vfp.standard_fp_status);
6419 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
6421 HELPER(vfp_set_fpscr)(env, val);
6424 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
6426 #define VFP_BINOP(name) \
6427 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
6429 float_status *fpst = fpstp; \
6430 return float32_ ## name(a, b, fpst); \
6432 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
6434 float_status *fpst = fpstp; \
6435 return float64_ ## name(a, b, fpst); \
6447 float32 VFP_HELPER(neg, s)(float32 a)
6449 return float32_chs(a);
6452 float64 VFP_HELPER(neg, d)(float64 a)
6454 return float64_chs(a);
6457 float32 VFP_HELPER(abs, s)(float32 a)
6459 return float32_abs(a);
6462 float64 VFP_HELPER(abs, d)(float64 a)
6464 return float64_abs(a);
6467 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
6469 return float32_sqrt(a, &env->vfp.fp_status);
6472 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
6474 return float64_sqrt(a, &env->vfp.fp_status);
6477 /* XXX: check quiet/signaling case */
6478 #define DO_VFP_cmp(p, type) \
6479 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
6482 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
6483 case 0: flags = 0x6; break; \
6484 case -1: flags = 0x8; break; \
6485 case 1: flags = 0x2; break; \
6486 default: case 2: flags = 0x3; break; \
6488 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6489 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6491 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
6494 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
6495 case 0: flags = 0x6; break; \
6496 case -1: flags = 0x8; break; \
6497 case 1: flags = 0x2; break; \
6498 default: case 2: flags = 0x3; break; \
6500 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6501 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6503 DO_VFP_cmp(s, float32)
6504 DO_VFP_cmp(d, float64)
6507 /* Integer to float and float to integer conversions */
6509 #define CONV_ITOF(name, fsz, sign) \
6510 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
6512 float_status *fpst = fpstp; \
6513 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
6516 #define CONV_FTOI(name, fsz, sign, round) \
6517 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
6519 float_status *fpst = fpstp; \
6520 if (float##fsz##_is_any_nan(x)) { \
6521 float_raise(float_flag_invalid, fpst); \
6524 return float##fsz##_to_##sign##int32##round(x, fpst); \
6527 #define FLOAT_CONVS(name, p, fsz, sign) \
6528 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
6529 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
6530 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
6532 FLOAT_CONVS(si, s, 32, )
6533 FLOAT_CONVS(si, d, 64, )
6534 FLOAT_CONVS(ui, s, 32, u)
6535 FLOAT_CONVS(ui, d, 64, u)
6541 /* floating point conversion */
6542 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
6544 float64 r = float32_to_float64(x, &env->vfp.fp_status);
6545 /* ARM requires that S<->D conversion of any kind of NaN generates
6546 * a quiet NaN by forcing the most significant frac bit to 1.
6548 return float64_maybe_silence_nan(r);
6551 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
6553 float32 r = float64_to_float32(x, &env->vfp.fp_status);
6554 /* ARM requires that S<->D conversion of any kind of NaN generates
6555 * a quiet NaN by forcing the most significant frac bit to 1.
6557 return float32_maybe_silence_nan(r);
6560 /* VFP3 fixed point conversion. */
6561 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6562 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
6565 float_status *fpst = fpstp; \
6567 tmp = itype##_to_##float##fsz(x, fpst); \
6568 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
6571 /* Notice that we want only input-denormal exception flags from the
6572 * scalbn operation: the other possible flags (overflow+inexact if
6573 * we overflow to infinity, output-denormal) aren't correct for the
6574 * complete scale-and-convert operation.
6576 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
6577 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
6581 float_status *fpst = fpstp; \
6582 int old_exc_flags = get_float_exception_flags(fpst); \
6584 if (float##fsz##_is_any_nan(x)) { \
6585 float_raise(float_flag_invalid, fpst); \
6588 tmp = float##fsz##_scalbn(x, shift, fpst); \
6589 old_exc_flags |= get_float_exception_flags(fpst) \
6590 & float_flag_input_denormal; \
6591 set_float_exception_flags(old_exc_flags, fpst); \
6592 return float##fsz##_to_##itype##round(tmp, fpst); \
6595 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
6596 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6597 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
6598 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6600 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
6601 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6602 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6604 VFP_CONV_FIX(sh, d, 64, 64, int16)
6605 VFP_CONV_FIX(sl, d, 64, 64, int32)
6606 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
6607 VFP_CONV_FIX(uh, d, 64, 64, uint16)
6608 VFP_CONV_FIX(ul, d, 64, 64, uint32)
6609 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
6610 VFP_CONV_FIX(sh, s, 32, 32, int16)
6611 VFP_CONV_FIX(sl, s, 32, 32, int32)
6612 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
6613 VFP_CONV_FIX(uh, s, 32, 32, uint16)
6614 VFP_CONV_FIX(ul, s, 32, 32, uint32)
6615 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
6617 #undef VFP_CONV_FIX_FLOAT
6618 #undef VFP_CONV_FLOAT_FIX_ROUND
6620 /* Set the current fp rounding mode and return the old one.
6621 * The argument is a softfloat float_round_ value.
6623 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
6625 float_status *fp_status = &env->vfp.fp_status;
6627 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
6628 set_float_rounding_mode(rmode, fp_status);
6633 /* Set the current fp rounding mode in the standard fp status and return
6634 * the old one. This is for NEON instructions that need to change the
6635 * rounding mode but wish to use the standard FPSCR values for everything
6636 * else. Always set the rounding mode back to the correct value after
6638 * The argument is a softfloat float_round_ value.
6640 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
6642 float_status *fp_status = &env->vfp.standard_fp_status;
6644 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
6645 set_float_rounding_mode(rmode, fp_status);
6650 /* Half precision conversions. */
6651 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
6653 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6654 float32 r = float16_to_float32(make_float16(a), ieee, s);
6656 return float32_maybe_silence_nan(r);
6661 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
6663 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6664 float16 r = float32_to_float16(a, ieee, s);
6666 r = float16_maybe_silence_nan(r);
6668 return float16_val(r);
6671 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
6673 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
6676 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
6678 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
6681 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
6683 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
6686 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
6688 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
6691 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
6693 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6694 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
6696 return float64_maybe_silence_nan(r);
6701 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
6703 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6704 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
6706 r = float16_maybe_silence_nan(r);
6708 return float16_val(r);
6711 #define float32_two make_float32(0x40000000)
6712 #define float32_three make_float32(0x40400000)
6713 #define float32_one_point_five make_float32(0x3fc00000)
6715 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
6717 float_status *s = &env->vfp.standard_fp_status;
6718 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
6719 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
6720 if (!(float32_is_zero(a) || float32_is_zero(b))) {
6721 float_raise(float_flag_input_denormal, s);
6725 return float32_sub(float32_two, float32_mul(a, b, s), s);
6728 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
6730 float_status *s = &env->vfp.standard_fp_status;
6732 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
6733 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
6734 if (!(float32_is_zero(a) || float32_is_zero(b))) {
6735 float_raise(float_flag_input_denormal, s);
6737 return float32_one_point_five;
6739 product = float32_mul(a, b, s);
6740 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
6745 /* Constants 256 and 512 are used in some helpers; we avoid relying on
6746 * int->float conversions at run-time. */
6747 #define float64_256 make_float64(0x4070000000000000LL)
6748 #define float64_512 make_float64(0x4080000000000000LL)
6749 #define float32_maxnorm make_float32(0x7f7fffff)
6750 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
6752 /* Reciprocal functions
6754 * The algorithm that must be used to calculate the estimate
6755 * is specified by the ARM ARM, see FPRecipEstimate()
6758 static float64 recip_estimate(float64 a, float_status *real_fp_status)
6760 /* These calculations mustn't set any fp exception flags,
6761 * so we use a local copy of the fp_status.
6763 float_status dummy_status = *real_fp_status;
6764 float_status *s = &dummy_status;
6765 /* q = (int)(a * 512.0) */
6766 float64 q = float64_mul(float64_512, a, s);
6767 int64_t q_int = float64_to_int64_round_to_zero(q, s);
6769 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
6770 q = int64_to_float64(q_int, s);
6771 q = float64_add(q, float64_half, s);
6772 q = float64_div(q, float64_512, s);
6773 q = float64_div(float64_one, q, s);
6775 /* s = (int)(256.0 * r + 0.5) */
6776 q = float64_mul(q, float64_256, s);
6777 q = float64_add(q, float64_half, s);
6778 q_int = float64_to_int64_round_to_zero(q, s);
6780 /* return (double)s / 256.0 */
6781 return float64_div(int64_to_float64(q_int, s), float64_256, s);
6784 /* Common wrapper to call recip_estimate */
6785 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
6787 uint64_t val64 = float64_val(num);
6788 uint64_t frac = extract64(val64, 0, 52);
6789 int64_t exp = extract64(val64, 52, 11);
6791 float64 scaled, estimate;
6793 /* Generate the scaled number for the estimate function */
6795 if (extract64(frac, 51, 1) == 0) {
6797 frac = extract64(frac, 0, 50) << 2;
6799 frac = extract64(frac, 0, 51) << 1;
6803 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
6804 scaled = make_float64((0x3feULL << 52)
6805 | extract64(frac, 44, 8) << 44);
6807 estimate = recip_estimate(scaled, fpst);
6809 /* Build new result */
6810 val64 = float64_val(estimate);
6811 sbit = 0x8000000000000000ULL & val64;
6813 frac = extract64(val64, 0, 52);
6816 frac = 1ULL << 51 | extract64(frac, 1, 51);
6817 } else if (exp == -1) {
6818 frac = 1ULL << 50 | extract64(frac, 2, 50);
6822 return make_float64(sbit | (exp << 52) | frac);
6825 static bool round_to_inf(float_status *fpst, bool sign_bit)
6827 switch (fpst->float_rounding_mode) {
6828 case float_round_nearest_even: /* Round to Nearest */
6830 case float_round_up: /* Round to +Inf */
6832 case float_round_down: /* Round to -Inf */
6834 case float_round_to_zero: /* Round to Zero */
6838 g_assert_not_reached();
6841 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
6843 float_status *fpst = fpstp;
6844 float32 f32 = float32_squash_input_denormal(input, fpst);
6845 uint32_t f32_val = float32_val(f32);
6846 uint32_t f32_sbit = 0x80000000ULL & f32_val;
6847 int32_t f32_exp = extract32(f32_val, 23, 8);
6848 uint32_t f32_frac = extract32(f32_val, 0, 23);
6854 if (float32_is_any_nan(f32)) {
6856 if (float32_is_signaling_nan(f32)) {
6857 float_raise(float_flag_invalid, fpst);
6858 nan = float32_maybe_silence_nan(f32);
6860 if (fpst->default_nan_mode) {
6861 nan = float32_default_nan;
6864 } else if (float32_is_infinity(f32)) {
6865 return float32_set_sign(float32_zero, float32_is_neg(f32));
6866 } else if (float32_is_zero(f32)) {
6867 float_raise(float_flag_divbyzero, fpst);
6868 return float32_set_sign(float32_infinity, float32_is_neg(f32));
6869 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
6870 /* Abs(value) < 2.0^-128 */
6871 float_raise(float_flag_overflow | float_flag_inexact, fpst);
6872 if (round_to_inf(fpst, f32_sbit)) {
6873 return float32_set_sign(float32_infinity, float32_is_neg(f32));
6875 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
6877 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
6878 float_raise(float_flag_underflow, fpst);
6879 return float32_set_sign(float32_zero, float32_is_neg(f32));
6883 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
6884 r64 = call_recip_estimate(f64, 253, fpst);
6885 r64_val = float64_val(r64);
6886 r64_exp = extract64(r64_val, 52, 11);
6887 r64_frac = extract64(r64_val, 0, 52);
6889 /* result = sign : result_exp<7:0> : fraction<51:29>; */
6890 return make_float32(f32_sbit |
6891 (r64_exp & 0xff) << 23 |
6892 extract64(r64_frac, 29, 24));
6895 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
6897 float_status *fpst = fpstp;
6898 float64 f64 = float64_squash_input_denormal(input, fpst);
6899 uint64_t f64_val = float64_val(f64);
6900 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
6901 int64_t f64_exp = extract64(f64_val, 52, 11);
6907 /* Deal with any special cases */
6908 if (float64_is_any_nan(f64)) {
6910 if (float64_is_signaling_nan(f64)) {
6911 float_raise(float_flag_invalid, fpst);
6912 nan = float64_maybe_silence_nan(f64);
6914 if (fpst->default_nan_mode) {
6915 nan = float64_default_nan;
6918 } else if (float64_is_infinity(f64)) {
6919 return float64_set_sign(float64_zero, float64_is_neg(f64));
6920 } else if (float64_is_zero(f64)) {
6921 float_raise(float_flag_divbyzero, fpst);
6922 return float64_set_sign(float64_infinity, float64_is_neg(f64));
6923 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
6924 /* Abs(value) < 2.0^-1024 */
6925 float_raise(float_flag_overflow | float_flag_inexact, fpst);
6926 if (round_to_inf(fpst, f64_sbit)) {
6927 return float64_set_sign(float64_infinity, float64_is_neg(f64));
6929 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
6931 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
6932 float_raise(float_flag_underflow, fpst);
6933 return float64_set_sign(float64_zero, float64_is_neg(f64));
6936 r64 = call_recip_estimate(f64, 2045, fpst);
6937 r64_val = float64_val(r64);
6938 r64_exp = extract64(r64_val, 52, 11);
6939 r64_frac = extract64(r64_val, 0, 52);
6941 /* result = sign : result_exp<10:0> : fraction<51:0> */
6942 return make_float64(f64_sbit |
6943 ((r64_exp & 0x7ff) << 52) |
6947 /* The algorithm that must be used to calculate the estimate
6948 * is specified by the ARM ARM.
6950 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
6952 /* These calculations mustn't set any fp exception flags,
6953 * so we use a local copy of the fp_status.
6955 float_status dummy_status = *real_fp_status;
6956 float_status *s = &dummy_status;
6960 if (float64_lt(a, float64_half, s)) {
6961 /* range 0.25 <= a < 0.5 */
6963 /* a in units of 1/512 rounded down */
6964 /* q0 = (int)(a * 512.0); */
6965 q = float64_mul(float64_512, a, s);
6966 q_int = float64_to_int64_round_to_zero(q, s);
6968 /* reciprocal root r */
6969 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
6970 q = int64_to_float64(q_int, s);
6971 q = float64_add(q, float64_half, s);
6972 q = float64_div(q, float64_512, s);
6973 q = float64_sqrt(q, s);
6974 q = float64_div(float64_one, q, s);
6976 /* range 0.5 <= a < 1.0 */
6978 /* a in units of 1/256 rounded down */
6979 /* q1 = (int)(a * 256.0); */
6980 q = float64_mul(float64_256, a, s);
6981 int64_t q_int = float64_to_int64_round_to_zero(q, s);
6983 /* reciprocal root r */
6984 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
6985 q = int64_to_float64(q_int, s);
6986 q = float64_add(q, float64_half, s);
6987 q = float64_div(q, float64_256, s);
6988 q = float64_sqrt(q, s);
6989 q = float64_div(float64_one, q, s);
6991 /* r in units of 1/256 rounded to nearest */
6992 /* s = (int)(256.0 * r + 0.5); */
6994 q = float64_mul(q, float64_256,s );
6995 q = float64_add(q, float64_half, s);
6996 q_int = float64_to_int64_round_to_zero(q, s);
6998 /* return (double)s / 256.0;*/
6999 return float64_div(int64_to_float64(q_int, s), float64_256, s);
7002 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
7004 float_status *s = fpstp;
7005 float32 f32 = float32_squash_input_denormal(input, s);
7006 uint32_t val = float32_val(f32);
7007 uint32_t f32_sbit = 0x80000000 & val;
7008 int32_t f32_exp = extract32(val, 23, 8);
7009 uint32_t f32_frac = extract32(val, 0, 23);
7015 if (float32_is_any_nan(f32)) {
7017 if (float32_is_signaling_nan(f32)) {
7018 float_raise(float_flag_invalid, s);
7019 nan = float32_maybe_silence_nan(f32);
7021 if (s->default_nan_mode) {
7022 nan = float32_default_nan;
7025 } else if (float32_is_zero(f32)) {
7026 float_raise(float_flag_divbyzero, s);
7027 return float32_set_sign(float32_infinity, float32_is_neg(f32));
7028 } else if (float32_is_neg(f32)) {
7029 float_raise(float_flag_invalid, s);
7030 return float32_default_nan;
7031 } else if (float32_is_infinity(f32)) {
7032 return float32_zero;
7035 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7036 * preserving the parity of the exponent. */
7038 f64_frac = ((uint64_t) f32_frac) << 29;
7040 while (extract64(f64_frac, 51, 1) == 0) {
7041 f64_frac = f64_frac << 1;
7042 f32_exp = f32_exp-1;
7044 f64_frac = extract64(f64_frac, 0, 51) << 1;
7047 if (extract64(f32_exp, 0, 1) == 0) {
7048 f64 = make_float64(((uint64_t) f32_sbit) << 32
7052 f64 = make_float64(((uint64_t) f32_sbit) << 32
7057 result_exp = (380 - f32_exp) / 2;
7059 f64 = recip_sqrt_estimate(f64, s);
7061 val64 = float64_val(f64);
7063 val = ((result_exp & 0xff) << 23)
7064 | ((val64 >> 29) & 0x7fffff);
7065 return make_float32(val);
7068 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
7070 float_status *s = fpstp;
7071 float64 f64 = float64_squash_input_denormal(input, s);
7072 uint64_t val = float64_val(f64);
7073 uint64_t f64_sbit = 0x8000000000000000ULL & val;
7074 int64_t f64_exp = extract64(val, 52, 11);
7075 uint64_t f64_frac = extract64(val, 0, 52);
7077 uint64_t result_frac;
7079 if (float64_is_any_nan(f64)) {
7081 if (float64_is_signaling_nan(f64)) {
7082 float_raise(float_flag_invalid, s);
7083 nan = float64_maybe_silence_nan(f64);
7085 if (s->default_nan_mode) {
7086 nan = float64_default_nan;
7089 } else if (float64_is_zero(f64)) {
7090 float_raise(float_flag_divbyzero, s);
7091 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7092 } else if (float64_is_neg(f64)) {
7093 float_raise(float_flag_invalid, s);
7094 return float64_default_nan;
7095 } else if (float64_is_infinity(f64)) {
7096 return float64_zero;
7099 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7100 * preserving the parity of the exponent. */
7103 while (extract64(f64_frac, 51, 1) == 0) {
7104 f64_frac = f64_frac << 1;
7105 f64_exp = f64_exp - 1;
7107 f64_frac = extract64(f64_frac, 0, 51) << 1;
7110 if (extract64(f64_exp, 0, 1) == 0) {
7111 f64 = make_float64(f64_sbit
7115 f64 = make_float64(f64_sbit
7120 result_exp = (3068 - f64_exp) / 2;
7122 f64 = recip_sqrt_estimate(f64, s);
7124 result_frac = extract64(float64_val(f64), 0, 52);
7126 return make_float64(f64_sbit |
7127 ((result_exp & 0x7ff) << 52) |
7131 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
7133 float_status *s = fpstp;
7136 if ((a & 0x80000000) == 0) {
7140 f64 = make_float64((0x3feULL << 52)
7141 | ((int64_t)(a & 0x7fffffff) << 21));
7143 f64 = recip_estimate(f64, s);
7145 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
7148 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
7150 float_status *fpst = fpstp;
7153 if ((a & 0xc0000000) == 0) {
7157 if (a & 0x80000000) {
7158 f64 = make_float64((0x3feULL << 52)
7159 | ((uint64_t)(a & 0x7fffffff) << 21));
7160 } else { /* bits 31-30 == '01' */
7161 f64 = make_float64((0x3fdULL << 52)
7162 | ((uint64_t)(a & 0x3fffffff) << 22));
7165 f64 = recip_sqrt_estimate(f64, fpst);
7167 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
7170 /* VFPv4 fused multiply-accumulate */
7171 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
7173 float_status *fpst = fpstp;
7174 return float32_muladd(a, b, c, 0, fpst);
7177 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
7179 float_status *fpst = fpstp;
7180 return float64_muladd(a, b, c, 0, fpst);
7183 /* ARMv8 round to integral */
7184 float32 HELPER(rints_exact)(float32 x, void *fp_status)
7186 return float32_round_to_int(x, fp_status);
7189 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
7191 return float64_round_to_int(x, fp_status);
7194 float32 HELPER(rints)(float32 x, void *fp_status)
7196 int old_flags = get_float_exception_flags(fp_status), new_flags;
7199 ret = float32_round_to_int(x, fp_status);
7201 /* Suppress any inexact exceptions the conversion produced */
7202 if (!(old_flags & float_flag_inexact)) {
7203 new_flags = get_float_exception_flags(fp_status);
7204 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
7210 float64 HELPER(rintd)(float64 x, void *fp_status)
7212 int old_flags = get_float_exception_flags(fp_status), new_flags;
7215 ret = float64_round_to_int(x, fp_status);
7217 new_flags = get_float_exception_flags(fp_status);
7219 /* Suppress any inexact exceptions the conversion produced */
7220 if (!(old_flags & float_flag_inexact)) {
7221 new_flags = get_float_exception_flags(fp_status);
7222 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
7228 /* Convert ARM rounding mode to softfloat */
7229 int arm_rmode_to_sf(int rmode)
7232 case FPROUNDING_TIEAWAY:
7233 rmode = float_round_ties_away;
7235 case FPROUNDING_ODD:
7236 /* FIXME: add support for TIEAWAY and ODD */
7237 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
7239 case FPROUNDING_TIEEVEN:
7241 rmode = float_round_nearest_even;
7243 case FPROUNDING_POSINF:
7244 rmode = float_round_up;
7246 case FPROUNDING_NEGINF:
7247 rmode = float_round_down;
7249 case FPROUNDING_ZERO:
7250 rmode = float_round_to_zero;
7257 * The upper bytes of val (above the number specified by 'bytes') must have
7258 * been zeroed out by the caller.
7260 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
7266 /* zlib crc32 converts the accumulator and output to one's complement. */
7267 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
7270 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
7276 /* Linux crc32c converts the output to one's complement. */
7277 return crc32c(acc, buf, bytes) ^ 0xffffffff;