4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
47 #include "exec/cpu-all.h"
49 #include "exec/cputlb.h"
50 #include "translate-all.h"
52 #include "exec/memory-internal.h"
54 //#define DEBUG_SUBPAGE
56 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration;
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
72 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
73 /* current CPU in the current thread. It is only valid inside
75 DEFINE_TLS(CPUState *, current_cpu);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
81 #if !defined(CONFIG_USER_ONLY)
83 typedef struct PhysPageEntry PhysPageEntry;
85 struct PhysPageEntry {
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
91 typedef PhysPageEntry Node[L2_SIZE];
93 struct AddressSpaceDispatch {
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
97 PhysPageEntry phys_map;
99 MemoryRegionSection *sections;
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t {
108 uint16_t sub_section[TARGET_PAGE_SIZE];
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
116 typedef struct PhysPageMap {
117 unsigned sections_nb;
118 unsigned sections_nb_alloc;
120 unsigned nodes_nb_alloc;
122 MemoryRegionSection *sections;
125 static PhysPageMap *prev_map;
126 static PhysPageMap next_map;
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr);
134 static MemoryRegion io_mem_watch;
137 #if !defined(CONFIG_USER_ONLY)
139 static void phys_map_node_reserve(unsigned nodes)
141 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
142 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
144 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
145 next_map.nodes_nb + nodes);
146 next_map.nodes = g_renew(Node, next_map.nodes,
147 next_map.nodes_nb_alloc);
151 static uint16_t phys_map_node_alloc(void)
156 ret = next_map.nodes_nb++;
157 assert(ret != PHYS_MAP_NODE_NIL);
158 assert(ret != next_map.nodes_nb_alloc);
159 for (i = 0; i < L2_SIZE; ++i) {
160 next_map.nodes[ret][i].is_leaf = 0;
161 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
166 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
167 hwaddr *nb, uint16_t leaf,
172 hwaddr step = (hwaddr)1 << (level * L2_BITS);
174 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
175 lp->ptr = phys_map_node_alloc();
176 p = next_map.nodes[lp->ptr];
178 for (i = 0; i < L2_SIZE; i++) {
180 p[i].ptr = PHYS_SECTION_UNASSIGNED;
184 p = next_map.nodes[lp->ptr];
186 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
188 while (*nb && lp < &p[L2_SIZE]) {
189 if ((*index & (step - 1)) == 0 && *nb >= step) {
195 phys_page_set_level(lp, index, nb, leaf, level - 1);
201 static void phys_page_set(AddressSpaceDispatch *d,
202 hwaddr index, hwaddr nb,
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS);
208 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
211 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
212 Node *nodes, MemoryRegionSection *sections)
217 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
218 if (lp.ptr == PHYS_MAP_NODE_NIL) {
219 return §ions[PHYS_SECTION_UNASSIGNED];
222 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
224 return §ions[lp.ptr];
227 bool memory_region_is_unassigned(MemoryRegion *mr)
229 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
230 && mr != &io_mem_watch;
233 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
235 bool resolve_subpage)
237 MemoryRegionSection *section;
240 section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
241 d->nodes, d->sections);
242 if (resolve_subpage && section->mr->subpage) {
243 subpage = container_of(section->mr, subpage_t, iomem);
244 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
249 static MemoryRegionSection *
250 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
251 hwaddr *plen, bool resolve_subpage)
253 MemoryRegionSection *section;
256 section = address_space_lookup_region(d, addr, resolve_subpage);
257 /* Compute offset within MemoryRegionSection */
258 addr -= section->offset_within_address_space;
260 /* Compute offset within MemoryRegion */
261 *xlat = addr + section->offset_within_region;
263 diff = int128_sub(section->mr->size, int128_make64(addr));
264 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
268 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
269 hwaddr *xlat, hwaddr *plen,
273 MemoryRegionSection *section;
278 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
281 if (!mr->iommu_ops) {
285 iotlb = mr->iommu_ops->translate(mr, addr);
286 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
287 | (addr & iotlb.addr_mask));
288 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
289 if (!(iotlb.perm & (1 << is_write))) {
290 mr = &io_mem_unassigned;
294 as = iotlb.target_as;
302 MemoryRegionSection *
303 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
306 MemoryRegionSection *section;
307 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
309 assert(!section->mr->iommu_ops);
314 void cpu_exec_init_all(void)
316 #if !defined(CONFIG_USER_ONLY)
317 qemu_mutex_init(&ram_list.mutex);
323 #if !defined(CONFIG_USER_ONLY)
325 static int cpu_common_post_load(void *opaque, int version_id)
327 CPUState *cpu = opaque;
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
331 cpu->interrupt_request &= ~0x01;
332 tlb_flush(cpu->env_ptr, 1);
337 const VMStateDescription vmstate_cpu_common = {
338 .name = "cpu_common",
340 .minimum_version_id = 1,
341 .minimum_version_id_old = 1,
342 .post_load = cpu_common_post_load,
343 .fields = (VMStateField []) {
344 VMSTATE_UINT32(halted, CPUState),
345 VMSTATE_UINT32(interrupt_request, CPUState),
346 VMSTATE_END_OF_LIST()
352 CPUState *qemu_get_cpu(int index)
357 if (cpu->cpu_index == index) {
365 void cpu_exec_init(CPUArchState *env)
367 CPUState *cpu = ENV_GET_CPU(env);
368 CPUClass *cc = CPU_GET_CLASS(cpu);
372 #if defined(CONFIG_USER_ONLY)
376 CPU_FOREACH(some_cpu) {
379 cpu->cpu_index = cpu_index;
381 QTAILQ_INIT(&env->breakpoints);
382 QTAILQ_INIT(&env->watchpoints);
383 #ifndef CONFIG_USER_ONLY
384 cpu->thread_id = qemu_get_thread_id();
386 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
387 #if defined(CONFIG_USER_ONLY)
390 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
391 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
393 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
394 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
395 cpu_save, cpu_load, env);
396 assert(cc->vmsd == NULL);
397 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
399 if (cc->vmsd != NULL) {
400 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
404 #if defined(TARGET_HAS_ICE)
405 #if defined(CONFIG_USER_ONLY)
406 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
408 tb_invalidate_phys_page_range(pc, pc + 1, 0);
411 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
413 tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu, pc) |
414 (pc & ~TARGET_PAGE_MASK));
417 #endif /* TARGET_HAS_ICE */
419 #if defined(CONFIG_USER_ONLY)
420 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
425 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
426 int flags, CPUWatchpoint **watchpoint)
431 /* Add a watchpoint. */
432 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
433 int flags, CPUWatchpoint **watchpoint)
435 target_ulong len_mask = ~(len - 1);
438 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
439 if ((len & (len - 1)) || (addr & ~len_mask) ||
440 len == 0 || len > TARGET_PAGE_SIZE) {
441 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
442 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
445 wp = g_malloc(sizeof(*wp));
448 wp->len_mask = len_mask;
451 /* keep all GDB-injected watchpoints in front */
453 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
455 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
457 tlb_flush_page(env, addr);
464 /* Remove a specific watchpoint. */
465 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
468 target_ulong len_mask = ~(len - 1);
471 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
472 if (addr == wp->vaddr && len_mask == wp->len_mask
473 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
474 cpu_watchpoint_remove_by_ref(env, wp);
481 /* Remove a specific watchpoint by reference. */
482 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
484 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
486 tlb_flush_page(env, watchpoint->vaddr);
491 /* Remove all matching watchpoints. */
492 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
494 CPUWatchpoint *wp, *next;
496 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
497 if (wp->flags & mask)
498 cpu_watchpoint_remove_by_ref(env, wp);
503 /* Add a breakpoint. */
504 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
505 CPUBreakpoint **breakpoint)
507 #if defined(TARGET_HAS_ICE)
510 bp = g_malloc(sizeof(*bp));
515 /* keep all GDB-injected breakpoints in front */
516 if (flags & BP_GDB) {
517 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
519 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
522 breakpoint_invalidate(ENV_GET_CPU(env), pc);
533 /* Remove a specific breakpoint. */
534 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
536 #if defined(TARGET_HAS_ICE)
539 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
540 if (bp->pc == pc && bp->flags == flags) {
541 cpu_breakpoint_remove_by_ref(env, bp);
551 /* Remove a specific breakpoint by reference. */
552 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
554 #if defined(TARGET_HAS_ICE)
555 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
557 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
563 /* Remove all matching breakpoints. */
564 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
566 #if defined(TARGET_HAS_ICE)
567 CPUBreakpoint *bp, *next;
569 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
570 if (bp->flags & mask)
571 cpu_breakpoint_remove_by_ref(env, bp);
576 /* enable or disable single step mode. EXCP_DEBUG is returned by the
577 CPU loop after each instruction */
578 void cpu_single_step(CPUState *cpu, int enabled)
580 #if defined(TARGET_HAS_ICE)
581 if (cpu->singlestep_enabled != enabled) {
582 cpu->singlestep_enabled = enabled;
584 kvm_update_guest_debug(cpu, 0);
586 /* must flush all the translated code to avoid inconsistencies */
587 /* XXX: only flush what is necessary */
588 CPUArchState *env = cpu->env_ptr;
595 void cpu_abort(CPUArchState *env, const char *fmt, ...)
597 CPUState *cpu = ENV_GET_CPU(env);
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
611 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
617 #if defined(CONFIG_USER_ONLY)
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
628 CPUArchState *cpu_copy(CPUArchState *env)
630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
631 #if defined(TARGET_HAS_ICE)
636 /* Reset non arch specific state */
637 cpu_reset(ENV_GET_CPU(new_env));
639 /* Copy arch specific state into the new CPU */
640 memcpy(new_env, env, sizeof(CPUArchState));
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
647 #if defined(TARGET_HAS_ICE)
648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
660 #if !defined(CONFIG_USER_ONLY)
661 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
675 cpu_tlb_reset_dirty_all(start1, length);
679 /* Note: start and end must be within the same ram block. */
680 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
688 length = end - start;
691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
694 tlb_reset_dirty_range_all(start, end, length);
698 static int cpu_physical_memory_set_dirty_tracking(int enable)
701 in_migration = enable;
705 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
706 MemoryRegionSection *section,
708 hwaddr paddr, hwaddr xlat,
710 target_ulong *address)
715 if (memory_region_is_ram(section->mr)) {
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
719 if (!section->readonly) {
720 iotlb |= PHYS_SECTION_NOTDIRTY;
722 iotlb |= PHYS_SECTION_ROM;
725 iotlb = section - address_space_memory.dispatch->sections;
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
735 iotlb = PHYS_SECTION_WATCH + paddr;
736 *address |= TLB_MMIO;
744 #endif /* defined(CONFIG_USER_ONLY) */
746 #if !defined(CONFIG_USER_ONLY)
748 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
750 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
752 static uint16_t phys_section_add(MemoryRegionSection *section)
754 /* The physical section number is ORed with a page-aligned
755 * pointer to produce the iotlb entries. Thus it should
756 * never overflow into the page-aligned value.
758 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
760 if (next_map.sections_nb == next_map.sections_nb_alloc) {
761 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
763 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
764 next_map.sections_nb_alloc);
766 next_map.sections[next_map.sections_nb] = *section;
767 memory_region_ref(section->mr);
768 return next_map.sections_nb++;
771 static void phys_section_destroy(MemoryRegion *mr)
773 memory_region_unref(mr);
776 subpage_t *subpage = container_of(mr, subpage_t, iomem);
777 memory_region_destroy(&subpage->iomem);
782 static void phys_sections_free(PhysPageMap *map)
784 while (map->sections_nb > 0) {
785 MemoryRegionSection *section = &map->sections[--map->sections_nb];
786 phys_section_destroy(section->mr);
788 g_free(map->sections);
793 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
796 hwaddr base = section->offset_within_address_space
798 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
799 next_map.nodes, next_map.sections);
800 MemoryRegionSection subsection = {
801 .offset_within_address_space = base,
802 .size = int128_make64(TARGET_PAGE_SIZE),
806 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
808 if (!(existing->mr->subpage)) {
809 subpage = subpage_init(d->as, base);
810 subsection.mr = &subpage->iomem;
811 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
812 phys_section_add(&subsection));
814 subpage = container_of(existing->mr, subpage_t, iomem);
816 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
817 end = start + int128_get64(section->size) - 1;
818 subpage_register(subpage, start, end, phys_section_add(section));
822 static void register_multipage(AddressSpaceDispatch *d,
823 MemoryRegionSection *section)
825 hwaddr start_addr = section->offset_within_address_space;
826 uint16_t section_index = phys_section_add(section);
827 uint64_t num_pages = int128_get64(int128_rshift(section->size,
831 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
834 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
836 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
837 AddressSpaceDispatch *d = as->next_dispatch;
838 MemoryRegionSection now = *section, remain = *section;
839 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
841 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
842 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
843 - now.offset_within_address_space;
845 now.size = int128_min(int128_make64(left), now.size);
846 register_subpage(d, &now);
848 now.size = int128_zero();
850 while (int128_ne(remain.size, now.size)) {
851 remain.size = int128_sub(remain.size, now.size);
852 remain.offset_within_address_space += int128_get64(now.size);
853 remain.offset_within_region += int128_get64(now.size);
855 if (int128_lt(remain.size, page_size)) {
856 register_subpage(d, &now);
857 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
858 now.size = page_size;
859 register_subpage(d, &now);
861 now.size = int128_and(now.size, int128_neg(page_size));
862 register_multipage(d, &now);
867 void qemu_flush_coalesced_mmio_buffer(void)
870 kvm_flush_coalesced_mmio_buffer();
873 void qemu_mutex_lock_ramlist(void)
875 qemu_mutex_lock(&ram_list.mutex);
878 void qemu_mutex_unlock_ramlist(void)
880 qemu_mutex_unlock(&ram_list.mutex);
883 #if defined(__linux__) && !defined(TARGET_S390X)
887 #define HUGETLBFS_MAGIC 0x958458f6
889 static long gethugepagesize(const char *path)
895 ret = statfs(path, &fs);
896 } while (ret != 0 && errno == EINTR);
903 if (fs.f_type != HUGETLBFS_MAGIC)
904 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
909 static void *file_ram_alloc(RAMBlock *block,
914 char *sanitized_name;
921 unsigned long hpagesize;
923 hpagesize = gethugepagesize(path);
928 if (memory < hpagesize) {
932 if (kvm_enabled() && !kvm_has_sync_mmu()) {
933 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
937 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
938 sanitized_name = g_strdup(block->mr->name);
939 for (c = sanitized_name; *c != '\0'; c++) {
944 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
946 g_free(sanitized_name);
948 fd = mkstemp(filename);
950 perror("unable to create backing store for hugepages");
957 memory = (memory+hpagesize-1) & ~(hpagesize-1);
960 * ftruncate is not supported by hugetlbfs in older
961 * hosts, so don't bother bailing out on errors.
962 * If anything goes wrong with it under other filesystems,
965 if (ftruncate(fd, memory))
969 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
970 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
971 * to sidestep this quirk.
973 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
974 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
976 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
978 if (area == MAP_FAILED) {
979 perror("file_ram_alloc: can't mmap RAM pages");
988 static ram_addr_t find_ram_offset(ram_addr_t size)
990 RAMBlock *block, *next_block;
991 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
993 assert(size != 0); /* it would hand out same offset multiple times */
995 if (QTAILQ_EMPTY(&ram_list.blocks))
998 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
999 ram_addr_t end, next = RAM_ADDR_MAX;
1001 end = block->offset + block->length;
1003 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1004 if (next_block->offset >= end) {
1005 next = MIN(next, next_block->offset);
1008 if (next - end >= size && next - end < mingap) {
1010 mingap = next - end;
1014 if (offset == RAM_ADDR_MAX) {
1015 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1023 ram_addr_t last_ram_offset(void)
1026 ram_addr_t last = 0;
1028 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1029 last = MAX(last, block->offset + block->length);
1034 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1038 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1039 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1040 "dump-guest-core", true)) {
1041 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1043 perror("qemu_madvise");
1044 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1045 "but dump_guest_core=off specified\n");
1050 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1052 RAMBlock *new_block, *block;
1055 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1056 if (block->offset == addr) {
1062 assert(!new_block->idstr[0]);
1065 char *id = qdev_get_dev_path(dev);
1067 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1071 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1073 /* This assumes the iothread lock is taken here too. */
1074 qemu_mutex_lock_ramlist();
1075 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1076 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1077 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1082 qemu_mutex_unlock_ramlist();
1085 static int memory_try_enable_merging(void *addr, size_t len)
1087 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1088 /* disabled by the user */
1092 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1095 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1098 RAMBlock *block, *new_block;
1100 size = TARGET_PAGE_ALIGN(size);
1101 new_block = g_malloc0(sizeof(*new_block));
1103 /* This assumes the iothread lock is taken here too. */
1104 qemu_mutex_lock_ramlist();
1106 new_block->offset = find_ram_offset(size);
1108 new_block->host = host;
1109 new_block->flags |= RAM_PREALLOC_MASK;
1112 #if defined (__linux__) && !defined(TARGET_S390X)
1113 new_block->host = file_ram_alloc(new_block, size, mem_path);
1114 if (!new_block->host) {
1115 new_block->host = qemu_anon_ram_alloc(size);
1116 memory_try_enable_merging(new_block->host, size);
1119 fprintf(stderr, "-mem-path option unsupported\n");
1123 if (xen_enabled()) {
1124 xen_ram_alloc(new_block->offset, size, mr);
1125 } else if (kvm_enabled()) {
1126 /* some s390/kvm configurations have special constraints */
1127 new_block->host = kvm_ram_alloc(size);
1129 new_block->host = qemu_anon_ram_alloc(size);
1131 memory_try_enable_merging(new_block->host, size);
1134 new_block->length = size;
1136 /* Keep the list sorted from biggest to smallest block. */
1137 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1138 if (block->length < new_block->length) {
1143 QTAILQ_INSERT_BEFORE(block, new_block, next);
1145 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1147 ram_list.mru_block = NULL;
1150 qemu_mutex_unlock_ramlist();
1152 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1153 last_ram_offset() >> TARGET_PAGE_BITS);
1154 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1155 0, size >> TARGET_PAGE_BITS);
1156 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1158 qemu_ram_setup_dump(new_block->host, size);
1159 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1162 kvm_setup_guest_memory(new_block->host, size);
1164 return new_block->offset;
1167 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1169 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1172 void qemu_ram_free_from_ptr(ram_addr_t addr)
1176 /* This assumes the iothread lock is taken here too. */
1177 qemu_mutex_lock_ramlist();
1178 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1179 if (addr == block->offset) {
1180 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1181 ram_list.mru_block = NULL;
1187 qemu_mutex_unlock_ramlist();
1190 void qemu_ram_free(ram_addr_t addr)
1194 /* This assumes the iothread lock is taken here too. */
1195 qemu_mutex_lock_ramlist();
1196 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1197 if (addr == block->offset) {
1198 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1199 ram_list.mru_block = NULL;
1201 if (block->flags & RAM_PREALLOC_MASK) {
1203 } else if (mem_path) {
1204 #if defined (__linux__) && !defined(TARGET_S390X)
1206 munmap(block->host, block->length);
1209 qemu_anon_ram_free(block->host, block->length);
1215 if (xen_enabled()) {
1216 xen_invalidate_map_cache_entry(block->host);
1218 qemu_anon_ram_free(block->host, block->length);
1225 qemu_mutex_unlock_ramlist();
1230 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1237 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1238 offset = addr - block->offset;
1239 if (offset < block->length) {
1240 vaddr = block->host + offset;
1241 if (block->flags & RAM_PREALLOC_MASK) {
1245 munmap(vaddr, length);
1247 #if defined(__linux__) && !defined(TARGET_S390X)
1250 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1253 flags |= MAP_PRIVATE;
1255 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1256 flags, block->fd, offset);
1258 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1259 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1266 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1267 flags |= MAP_SHARED | MAP_ANONYMOUS;
1268 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1271 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1272 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1276 if (area != vaddr) {
1277 fprintf(stderr, "Could not remap addr: "
1278 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1282 memory_try_enable_merging(vaddr, length);
1283 qemu_ram_setup_dump(vaddr, length);
1289 #endif /* !_WIN32 */
1291 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1295 /* The list is protected by the iothread lock here. */
1296 block = ram_list.mru_block;
1297 if (block && addr - block->offset < block->length) {
1300 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1301 if (addr - block->offset < block->length) {
1306 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1310 ram_list.mru_block = block;
1314 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1315 With the exception of the softmmu code in this file, this should
1316 only be used for local memory (e.g. video ram) that the device owns,
1317 and knows it isn't going to access beyond the end of the block.
1319 It should not be used for general purpose DMA.
1320 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1322 void *qemu_get_ram_ptr(ram_addr_t addr)
1324 RAMBlock *block = qemu_get_ram_block(addr);
1326 if (xen_enabled()) {
1327 /* We need to check if the requested address is in the RAM
1328 * because we don't want to map the entire memory in QEMU.
1329 * In that case just map until the end of the page.
1331 if (block->offset == 0) {
1332 return xen_map_cache(addr, 0, 0);
1333 } else if (block->host == NULL) {
1335 xen_map_cache(block->offset, block->length, 1);
1338 return block->host + (addr - block->offset);
1341 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1342 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1344 * ??? Is this still necessary?
1346 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1350 /* The list is protected by the iothread lock here. */
1351 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1352 if (addr - block->offset < block->length) {
1353 if (xen_enabled()) {
1354 /* We need to check if the requested address is in the RAM
1355 * because we don't want to map the entire memory in QEMU.
1356 * In that case just map until the end of the page.
1358 if (block->offset == 0) {
1359 return xen_map_cache(addr, 0, 0);
1360 } else if (block->host == NULL) {
1362 xen_map_cache(block->offset, block->length, 1);
1365 return block->host + (addr - block->offset);
1369 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1375 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1376 * but takes a size argument */
1377 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1382 if (xen_enabled()) {
1383 return xen_map_cache(addr, *size, 1);
1387 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1388 if (addr - block->offset < block->length) {
1389 if (addr - block->offset + *size > block->length)
1390 *size = block->length - addr + block->offset;
1391 return block->host + (addr - block->offset);
1395 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1400 /* Some of the softmmu routines need to translate from a host pointer
1401 (typically a TLB entry) back to a ram offset. */
1402 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1405 uint8_t *host = ptr;
1407 if (xen_enabled()) {
1408 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1409 return qemu_get_ram_block(*ram_addr)->mr;
1412 block = ram_list.mru_block;
1413 if (block && block->host && host - block->host < block->length) {
1417 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1418 /* This case append when the block is not mapped. */
1419 if (block->host == NULL) {
1422 if (host - block->host < block->length) {
1430 *ram_addr = block->offset + (host - block->host);
1434 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1435 uint64_t val, unsigned size)
1438 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1439 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1440 tb_invalidate_phys_page_fast(ram_addr, size);
1441 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1445 stb_p(qemu_get_ram_ptr(ram_addr), val);
1448 stw_p(qemu_get_ram_ptr(ram_addr), val);
1451 stl_p(qemu_get_ram_ptr(ram_addr), val);
1456 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1457 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1458 /* we remove the notdirty callback only if the code has been
1460 if (dirty_flags == 0xff) {
1461 CPUArchState *env = current_cpu->env_ptr;
1462 tlb_set_dirty(env, env->mem_io_vaddr);
1466 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1467 unsigned size, bool is_write)
1472 static const MemoryRegionOps notdirty_mem_ops = {
1473 .write = notdirty_mem_write,
1474 .valid.accepts = notdirty_mem_accepts,
1475 .endianness = DEVICE_NATIVE_ENDIAN,
1478 /* Generate a debug exception if a watchpoint has been hit. */
1479 static void check_watchpoint(int offset, int len_mask, int flags)
1481 CPUArchState *env = current_cpu->env_ptr;
1482 target_ulong pc, cs_base;
1487 if (env->watchpoint_hit) {
1488 /* We re-entered the check after replacing the TB. Now raise
1489 * the debug interrupt so that is will trigger after the
1490 * current instruction. */
1491 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1494 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1495 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1496 if ((vaddr == (wp->vaddr & len_mask) ||
1497 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1498 wp->flags |= BP_WATCHPOINT_HIT;
1499 if (!env->watchpoint_hit) {
1500 env->watchpoint_hit = wp;
1501 tb_check_watchpoint(env);
1502 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1503 env->exception_index = EXCP_DEBUG;
1506 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1507 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1508 cpu_resume_from_signal(env, NULL);
1512 wp->flags &= ~BP_WATCHPOINT_HIT;
1517 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1518 so these check for a hit then pass through to the normal out-of-line
1520 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1523 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1525 case 1: return ldub_phys(addr);
1526 case 2: return lduw_phys(addr);
1527 case 4: return ldl_phys(addr);
1532 static void watch_mem_write(void *opaque, hwaddr addr,
1533 uint64_t val, unsigned size)
1535 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1538 stb_phys(addr, val);
1541 stw_phys(addr, val);
1544 stl_phys(addr, val);
1550 static const MemoryRegionOps watch_mem_ops = {
1551 .read = watch_mem_read,
1552 .write = watch_mem_write,
1553 .endianness = DEVICE_NATIVE_ENDIAN,
1556 static uint64_t subpage_read(void *opaque, hwaddr addr,
1559 subpage_t *subpage = opaque;
1562 #if defined(DEBUG_SUBPAGE)
1563 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1564 subpage, len, addr);
1566 address_space_read(subpage->as, addr + subpage->base, buf, len);
1579 static void subpage_write(void *opaque, hwaddr addr,
1580 uint64_t value, unsigned len)
1582 subpage_t *subpage = opaque;
1585 #if defined(DEBUG_SUBPAGE)
1586 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1587 " value %"PRIx64"\n",
1588 __func__, subpage, len, addr, value);
1603 address_space_write(subpage->as, addr + subpage->base, buf, len);
1606 static bool subpage_accepts(void *opaque, hwaddr addr,
1607 unsigned size, bool is_write)
1609 subpage_t *subpage = opaque;
1610 #if defined(DEBUG_SUBPAGE)
1611 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1612 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1615 return address_space_access_valid(subpage->as, addr + subpage->base,
1619 static const MemoryRegionOps subpage_ops = {
1620 .read = subpage_read,
1621 .write = subpage_write,
1622 .valid.accepts = subpage_accepts,
1623 .endianness = DEVICE_NATIVE_ENDIAN,
1626 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1631 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1633 idx = SUBPAGE_IDX(start);
1634 eidx = SUBPAGE_IDX(end);
1635 #if defined(DEBUG_SUBPAGE)
1636 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1637 mmio, start, end, idx, eidx, memory);
1639 for (; idx <= eidx; idx++) {
1640 mmio->sub_section[idx] = section;
1646 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1650 mmio = g_malloc0(sizeof(subpage_t));
1654 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1655 "subpage", TARGET_PAGE_SIZE);
1656 mmio->iomem.subpage = true;
1657 #if defined(DEBUG_SUBPAGE)
1658 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1659 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1661 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1666 static uint16_t dummy_section(MemoryRegion *mr)
1668 MemoryRegionSection section = {
1670 .offset_within_address_space = 0,
1671 .offset_within_region = 0,
1672 .size = int128_2_64(),
1675 return phys_section_add(§ion);
1678 MemoryRegion *iotlb_to_region(hwaddr index)
1680 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
1683 static void io_mem_init(void)
1685 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1686 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1687 "unassigned", UINT64_MAX);
1688 memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL,
1689 "notdirty", UINT64_MAX);
1690 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1691 "watch", UINT64_MAX);
1694 static void mem_begin(MemoryListener *listener)
1696 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1697 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1699 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1701 as->next_dispatch = d;
1704 static void mem_commit(MemoryListener *listener)
1706 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1707 AddressSpaceDispatch *cur = as->dispatch;
1708 AddressSpaceDispatch *next = as->next_dispatch;
1710 next->nodes = next_map.nodes;
1711 next->sections = next_map.sections;
1713 as->dispatch = next;
1717 static void core_begin(MemoryListener *listener)
1721 prev_map = g_new(PhysPageMap, 1);
1722 *prev_map = next_map;
1724 memset(&next_map, 0, sizeof(next_map));
1725 n = dummy_section(&io_mem_unassigned);
1726 assert(n == PHYS_SECTION_UNASSIGNED);
1727 n = dummy_section(&io_mem_notdirty);
1728 assert(n == PHYS_SECTION_NOTDIRTY);
1729 n = dummy_section(&io_mem_rom);
1730 assert(n == PHYS_SECTION_ROM);
1731 n = dummy_section(&io_mem_watch);
1732 assert(n == PHYS_SECTION_WATCH);
1735 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1736 * All AddressSpaceDispatch instances have switched to the next map.
1738 static void core_commit(MemoryListener *listener)
1740 phys_sections_free(prev_map);
1743 static void tcg_commit(MemoryListener *listener)
1747 /* since each CPU stores ram addresses in its TLB cache, we must
1748 reset the modified entries */
1751 CPUArchState *env = cpu->env_ptr;
1757 static void core_log_global_start(MemoryListener *listener)
1759 cpu_physical_memory_set_dirty_tracking(1);
1762 static void core_log_global_stop(MemoryListener *listener)
1764 cpu_physical_memory_set_dirty_tracking(0);
1767 static MemoryListener core_memory_listener = {
1768 .begin = core_begin,
1769 .commit = core_commit,
1770 .log_global_start = core_log_global_start,
1771 .log_global_stop = core_log_global_stop,
1775 static MemoryListener tcg_memory_listener = {
1776 .commit = tcg_commit,
1779 void address_space_init_dispatch(AddressSpace *as)
1781 as->dispatch = NULL;
1782 as->dispatch_listener = (MemoryListener) {
1784 .commit = mem_commit,
1785 .region_add = mem_add,
1786 .region_nop = mem_add,
1789 memory_listener_register(&as->dispatch_listener, as);
1792 void address_space_destroy_dispatch(AddressSpace *as)
1794 AddressSpaceDispatch *d = as->dispatch;
1796 memory_listener_unregister(&as->dispatch_listener);
1798 as->dispatch = NULL;
1801 static void memory_map_init(void)
1803 system_memory = g_malloc(sizeof(*system_memory));
1804 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1805 address_space_init(&address_space_memory, system_memory, "memory");
1807 system_io = g_malloc(sizeof(*system_io));
1808 memory_region_init(system_io, NULL, "io", 65536);
1809 address_space_init(&address_space_io, system_io, "I/O");
1811 memory_listener_register(&core_memory_listener, &address_space_memory);
1812 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1815 MemoryRegion *get_system_memory(void)
1817 return system_memory;
1820 MemoryRegion *get_system_io(void)
1825 #endif /* !defined(CONFIG_USER_ONLY) */
1827 /* physical memory access (slow version, mainly for debug) */
1828 #if defined(CONFIG_USER_ONLY)
1829 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
1830 uint8_t *buf, int len, int is_write)
1837 page = addr & TARGET_PAGE_MASK;
1838 l = (page + TARGET_PAGE_SIZE) - addr;
1841 flags = page_get_flags(page);
1842 if (!(flags & PAGE_VALID))
1845 if (!(flags & PAGE_WRITE))
1847 /* XXX: this code should not depend on lock_user */
1848 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1851 unlock_user(p, addr, l);
1853 if (!(flags & PAGE_READ))
1855 /* XXX: this code should not depend on lock_user */
1856 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1859 unlock_user(p, addr, 0);
1870 static void invalidate_and_set_dirty(hwaddr addr,
1873 if (!cpu_physical_memory_is_dirty(addr)) {
1874 /* invalidate code */
1875 tb_invalidate_phys_page_range(addr, addr + length, 0);
1877 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1879 xen_modified_memory(addr, length);
1882 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1884 if (memory_region_is_ram(mr)) {
1885 return !(is_write && mr->readonly);
1887 if (memory_region_is_romd(mr)) {
1894 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
1896 unsigned access_size_max = mr->ops->valid.max_access_size;
1898 /* Regions are assumed to support 1-4 byte accesses unless
1899 otherwise specified. */
1900 if (access_size_max == 0) {
1901 access_size_max = 4;
1904 /* Bound the maximum access by the alignment of the address. */
1905 if (!mr->ops->impl.unaligned) {
1906 unsigned align_size_max = addr & -addr;
1907 if (align_size_max != 0 && align_size_max < access_size_max) {
1908 access_size_max = align_size_max;
1912 /* Don't attempt accesses larger than the maximum. */
1913 if (l > access_size_max) {
1914 l = access_size_max;
1917 l = 1 << (qemu_fls(l) - 1);
1923 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1924 int len, bool is_write)
1935 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1938 if (!memory_access_is_direct(mr, is_write)) {
1939 l = memory_access_size(mr, l, addr1);
1940 /* XXX: could force current_cpu to NULL to avoid
1944 /* 64 bit write access */
1946 error |= io_mem_write(mr, addr1, val, 8);
1949 /* 32 bit write access */
1951 error |= io_mem_write(mr, addr1, val, 4);
1954 /* 16 bit write access */
1956 error |= io_mem_write(mr, addr1, val, 2);
1959 /* 8 bit write access */
1961 error |= io_mem_write(mr, addr1, val, 1);
1967 addr1 += memory_region_get_ram_addr(mr);
1969 ptr = qemu_get_ram_ptr(addr1);
1970 memcpy(ptr, buf, l);
1971 invalidate_and_set_dirty(addr1, l);
1974 if (!memory_access_is_direct(mr, is_write)) {
1976 l = memory_access_size(mr, l, addr1);
1979 /* 64 bit read access */
1980 error |= io_mem_read(mr, addr1, &val, 8);
1984 /* 32 bit read access */
1985 error |= io_mem_read(mr, addr1, &val, 4);
1989 /* 16 bit read access */
1990 error |= io_mem_read(mr, addr1, &val, 2);
1994 /* 8 bit read access */
1995 error |= io_mem_read(mr, addr1, &val, 1);
2003 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2004 memcpy(buf, ptr, l);
2015 bool address_space_write(AddressSpace *as, hwaddr addr,
2016 const uint8_t *buf, int len)
2018 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
2021 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
2023 return address_space_rw(as, addr, buf, len, false);
2027 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2028 int len, int is_write)
2030 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2033 /* used for ROM loading : can write in RAM and ROM */
2034 void cpu_physical_memory_write_rom(hwaddr addr,
2035 const uint8_t *buf, int len)
2044 mr = address_space_translate(&address_space_memory,
2045 addr, &addr1, &l, true);
2047 if (!(memory_region_is_ram(mr) ||
2048 memory_region_is_romd(mr))) {
2051 addr1 += memory_region_get_ram_addr(mr);
2053 ptr = qemu_get_ram_ptr(addr1);
2054 memcpy(ptr, buf, l);
2055 invalidate_and_set_dirty(addr1, l);
2070 static BounceBuffer bounce;
2072 typedef struct MapClient {
2074 void (*callback)(void *opaque);
2075 QLIST_ENTRY(MapClient) link;
2078 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2079 = QLIST_HEAD_INITIALIZER(map_client_list);
2081 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2083 MapClient *client = g_malloc(sizeof(*client));
2085 client->opaque = opaque;
2086 client->callback = callback;
2087 QLIST_INSERT_HEAD(&map_client_list, client, link);
2091 static void cpu_unregister_map_client(void *_client)
2093 MapClient *client = (MapClient *)_client;
2095 QLIST_REMOVE(client, link);
2099 static void cpu_notify_map_clients(void)
2103 while (!QLIST_EMPTY(&map_client_list)) {
2104 client = QLIST_FIRST(&map_client_list);
2105 client->callback(client->opaque);
2106 cpu_unregister_map_client(client);
2110 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2117 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2118 if (!memory_access_is_direct(mr, is_write)) {
2119 l = memory_access_size(mr, l, addr);
2120 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2131 /* Map a physical memory region into a host virtual address.
2132 * May map a subset of the requested range, given by and returned in *plen.
2133 * May return NULL if resources needed to perform the mapping are exhausted.
2134 * Use only for reads OR writes - not for read-modify-write operations.
2135 * Use cpu_register_map_client() to know when retrying the map operation is
2136 * likely to succeed.
2138 void *address_space_map(AddressSpace *as,
2145 hwaddr l, xlat, base;
2146 MemoryRegion *mr, *this_mr;
2154 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2155 if (!memory_access_is_direct(mr, is_write)) {
2156 if (bounce.buffer) {
2159 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2163 memory_region_ref(mr);
2166 address_space_read(as, addr, bounce.buffer, l);
2170 return bounce.buffer;
2174 raddr = memory_region_get_ram_addr(mr);
2185 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2186 if (this_mr != mr || xlat != base + done) {
2191 memory_region_ref(mr);
2193 return qemu_ram_ptr_length(raddr + base, plen);
2196 /* Unmaps a memory region previously mapped by address_space_map().
2197 * Will also mark the memory as dirty if is_write == 1. access_len gives
2198 * the amount of memory that was actually read or written by the caller.
2200 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2201 int is_write, hwaddr access_len)
2203 if (buffer != bounce.buffer) {
2207 mr = qemu_ram_addr_from_host(buffer, &addr1);
2210 while (access_len) {
2212 l = TARGET_PAGE_SIZE;
2215 invalidate_and_set_dirty(addr1, l);
2220 if (xen_enabled()) {
2221 xen_invalidate_map_cache_entry(buffer);
2223 memory_region_unref(mr);
2227 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2229 qemu_vfree(bounce.buffer);
2230 bounce.buffer = NULL;
2231 memory_region_unref(bounce.mr);
2232 cpu_notify_map_clients();
2235 void *cpu_physical_memory_map(hwaddr addr,
2239 return address_space_map(&address_space_memory, addr, plen, is_write);
2242 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2243 int is_write, hwaddr access_len)
2245 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2248 /* warning: addr must be aligned */
2249 static inline uint32_t ldl_phys_internal(hwaddr addr,
2250 enum device_endian endian)
2258 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2260 if (l < 4 || !memory_access_is_direct(mr, false)) {
2262 io_mem_read(mr, addr1, &val, 4);
2263 #if defined(TARGET_WORDS_BIGENDIAN)
2264 if (endian == DEVICE_LITTLE_ENDIAN) {
2268 if (endian == DEVICE_BIG_ENDIAN) {
2274 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2278 case DEVICE_LITTLE_ENDIAN:
2279 val = ldl_le_p(ptr);
2281 case DEVICE_BIG_ENDIAN:
2282 val = ldl_be_p(ptr);
2292 uint32_t ldl_phys(hwaddr addr)
2294 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2297 uint32_t ldl_le_phys(hwaddr addr)
2299 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2302 uint32_t ldl_be_phys(hwaddr addr)
2304 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2307 /* warning: addr must be aligned */
2308 static inline uint64_t ldq_phys_internal(hwaddr addr,
2309 enum device_endian endian)
2317 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2319 if (l < 8 || !memory_access_is_direct(mr, false)) {
2321 io_mem_read(mr, addr1, &val, 8);
2322 #if defined(TARGET_WORDS_BIGENDIAN)
2323 if (endian == DEVICE_LITTLE_ENDIAN) {
2327 if (endian == DEVICE_BIG_ENDIAN) {
2333 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2337 case DEVICE_LITTLE_ENDIAN:
2338 val = ldq_le_p(ptr);
2340 case DEVICE_BIG_ENDIAN:
2341 val = ldq_be_p(ptr);
2351 uint64_t ldq_phys(hwaddr addr)
2353 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2356 uint64_t ldq_le_phys(hwaddr addr)
2358 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2361 uint64_t ldq_be_phys(hwaddr addr)
2363 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2367 uint32_t ldub_phys(hwaddr addr)
2370 cpu_physical_memory_read(addr, &val, 1);
2374 /* warning: addr must be aligned */
2375 static inline uint32_t lduw_phys_internal(hwaddr addr,
2376 enum device_endian endian)
2384 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2386 if (l < 2 || !memory_access_is_direct(mr, false)) {
2388 io_mem_read(mr, addr1, &val, 2);
2389 #if defined(TARGET_WORDS_BIGENDIAN)
2390 if (endian == DEVICE_LITTLE_ENDIAN) {
2394 if (endian == DEVICE_BIG_ENDIAN) {
2400 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2404 case DEVICE_LITTLE_ENDIAN:
2405 val = lduw_le_p(ptr);
2407 case DEVICE_BIG_ENDIAN:
2408 val = lduw_be_p(ptr);
2418 uint32_t lduw_phys(hwaddr addr)
2420 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2423 uint32_t lduw_le_phys(hwaddr addr)
2425 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2428 uint32_t lduw_be_phys(hwaddr addr)
2430 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2433 /* warning: addr must be aligned. The ram page is not masked as dirty
2434 and the code inside is not invalidated. It is useful if the dirty
2435 bits are used to track modified PTEs */
2436 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2443 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2445 if (l < 4 || !memory_access_is_direct(mr, true)) {
2446 io_mem_write(mr, addr1, val, 4);
2448 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2449 ptr = qemu_get_ram_ptr(addr1);
2452 if (unlikely(in_migration)) {
2453 if (!cpu_physical_memory_is_dirty(addr1)) {
2454 /* invalidate code */
2455 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2457 cpu_physical_memory_set_dirty_flags(
2458 addr1, (0xff & ~CODE_DIRTY_FLAG));
2464 /* warning: addr must be aligned */
2465 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2466 enum device_endian endian)
2473 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2475 if (l < 4 || !memory_access_is_direct(mr, true)) {
2476 #if defined(TARGET_WORDS_BIGENDIAN)
2477 if (endian == DEVICE_LITTLE_ENDIAN) {
2481 if (endian == DEVICE_BIG_ENDIAN) {
2485 io_mem_write(mr, addr1, val, 4);
2488 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2489 ptr = qemu_get_ram_ptr(addr1);
2491 case DEVICE_LITTLE_ENDIAN:
2494 case DEVICE_BIG_ENDIAN:
2501 invalidate_and_set_dirty(addr1, 4);
2505 void stl_phys(hwaddr addr, uint32_t val)
2507 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2510 void stl_le_phys(hwaddr addr, uint32_t val)
2512 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2515 void stl_be_phys(hwaddr addr, uint32_t val)
2517 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2521 void stb_phys(hwaddr addr, uint32_t val)
2524 cpu_physical_memory_write(addr, &v, 1);
2527 /* warning: addr must be aligned */
2528 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2529 enum device_endian endian)
2536 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2538 if (l < 2 || !memory_access_is_direct(mr, true)) {
2539 #if defined(TARGET_WORDS_BIGENDIAN)
2540 if (endian == DEVICE_LITTLE_ENDIAN) {
2544 if (endian == DEVICE_BIG_ENDIAN) {
2548 io_mem_write(mr, addr1, val, 2);
2551 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2552 ptr = qemu_get_ram_ptr(addr1);
2554 case DEVICE_LITTLE_ENDIAN:
2557 case DEVICE_BIG_ENDIAN:
2564 invalidate_and_set_dirty(addr1, 2);
2568 void stw_phys(hwaddr addr, uint32_t val)
2570 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2573 void stw_le_phys(hwaddr addr, uint32_t val)
2575 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2578 void stw_be_phys(hwaddr addr, uint32_t val)
2580 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2584 void stq_phys(hwaddr addr, uint64_t val)
2587 cpu_physical_memory_write(addr, &val, 8);
2590 void stq_le_phys(hwaddr addr, uint64_t val)
2592 val = cpu_to_le64(val);
2593 cpu_physical_memory_write(addr, &val, 8);
2596 void stq_be_phys(hwaddr addr, uint64_t val)
2598 val = cpu_to_be64(val);
2599 cpu_physical_memory_write(addr, &val, 8);
2602 /* virtual memory access for debug (includes writing to ROM) */
2603 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2604 uint8_t *buf, int len, int is_write)
2611 page = addr & TARGET_PAGE_MASK;
2612 phys_addr = cpu_get_phys_page_debug(cpu, page);
2613 /* if no physical page mapped, return an error */
2614 if (phys_addr == -1)
2616 l = (page + TARGET_PAGE_SIZE) - addr;
2619 phys_addr += (addr & ~TARGET_PAGE_MASK);
2621 cpu_physical_memory_write_rom(phys_addr, buf, l);
2623 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2632 #if !defined(CONFIG_USER_ONLY)
2635 * A helper function for the _utterly broken_ virtio device model to find out if
2636 * it's running on a big endian machine. Don't do this at home kids!
2638 bool virtio_is_big_endian(void);
2639 bool virtio_is_big_endian(void)
2641 #if defined(TARGET_WORDS_BIGENDIAN)
2650 #ifndef CONFIG_USER_ONLY
2651 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2656 mr = address_space_translate(&address_space_memory,
2657 phys_addr, &phys_addr, &l, false);
2659 return !(memory_region_is_ram(mr) ||
2660 memory_region_is_romd(mr));
2663 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2667 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2668 func(block->host, block->offset, block->length, opaque);