]> Git Repo - qemu.git/blob - hw/i8254.c
Merge branch 'linux-user-for-upstream' of git://gitorious.org/qemu-maemo/qemu
[qemu.git] / hw / i8254.c
1 /*
2  * QEMU 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw.h"
25 #include "pc.h"
26 #include "isa.h"
27 #include "qemu-timer.h"
28
29 //#define DEBUG_PIT
30
31 #define RW_STATE_LSB 1
32 #define RW_STATE_MSB 2
33 #define RW_STATE_WORD0 3
34 #define RW_STATE_WORD1 4
35
36 typedef struct PITChannelState {
37     int count; /* can be 65536 */
38     uint16_t latched_count;
39     uint8_t count_latched;
40     uint8_t status_latched;
41     uint8_t status;
42     uint8_t read_state;
43     uint8_t write_state;
44     uint8_t write_latch;
45     uint8_t rw_mode;
46     uint8_t mode;
47     uint8_t bcd; /* not supported */
48     uint8_t gate; /* timer start */
49     int64_t count_load_time;
50     /* irq handling */
51     int64_t next_transition_time;
52     QEMUTimer *irq_timer;
53     qemu_irq irq;
54 } PITChannelState;
55
56 typedef struct PITState {
57     ISADevice dev;
58     uint32_t irq;
59     uint32_t iobase;
60     PITChannelState channels[3];
61 } PITState;
62
63 static PITState pit_state;
64
65 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time);
66
67 static int pit_get_count(PITChannelState *s)
68 {
69     uint64_t d;
70     int counter;
71
72     d = muldiv64(qemu_get_clock(vm_clock) - s->count_load_time, PIT_FREQ,
73                  get_ticks_per_sec());
74     switch(s->mode) {
75     case 0:
76     case 1:
77     case 4:
78     case 5:
79         counter = (s->count - d) & 0xffff;
80         break;
81     case 3:
82         /* XXX: may be incorrect for odd counts */
83         counter = s->count - ((2 * d) % s->count);
84         break;
85     default:
86         counter = s->count - (d % s->count);
87         break;
88     }
89     return counter;
90 }
91
92 /* get pit output bit */
93 static int pit_get_out1(PITChannelState *s, int64_t current_time)
94 {
95     uint64_t d;
96     int out;
97
98     d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
99                  get_ticks_per_sec());
100     switch(s->mode) {
101     default:
102     case 0:
103         out = (d >= s->count);
104         break;
105     case 1:
106         out = (d < s->count);
107         break;
108     case 2:
109         if ((d % s->count) == 0 && d != 0)
110             out = 1;
111         else
112             out = 0;
113         break;
114     case 3:
115         out = (d % s->count) < ((s->count + 1) >> 1);
116         break;
117     case 4:
118     case 5:
119         out = (d == s->count);
120         break;
121     }
122     return out;
123 }
124
125 int pit_get_out(ISADevice *dev, int channel, int64_t current_time)
126 {
127     PITState *pit = DO_UPCAST(PITState, dev, dev);
128     PITChannelState *s = &pit->channels[channel];
129     return pit_get_out1(s, current_time);
130 }
131
132 /* return -1 if no transition will occur.  */
133 static int64_t pit_get_next_transition_time(PITChannelState *s,
134                                             int64_t current_time)
135 {
136     uint64_t d, next_time, base;
137     int period2;
138
139     d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
140                  get_ticks_per_sec());
141     switch(s->mode) {
142     default:
143     case 0:
144     case 1:
145         if (d < s->count)
146             next_time = s->count;
147         else
148             return -1;
149         break;
150     case 2:
151         base = (d / s->count) * s->count;
152         if ((d - base) == 0 && d != 0)
153             next_time = base + s->count;
154         else
155             next_time = base + s->count + 1;
156         break;
157     case 3:
158         base = (d / s->count) * s->count;
159         period2 = ((s->count + 1) >> 1);
160         if ((d - base) < period2)
161             next_time = base + period2;
162         else
163             next_time = base + s->count;
164         break;
165     case 4:
166     case 5:
167         if (d < s->count)
168             next_time = s->count;
169         else if (d == s->count)
170             next_time = s->count + 1;
171         else
172             return -1;
173         break;
174     }
175     /* convert to timer units */
176     next_time = s->count_load_time + muldiv64(next_time, get_ticks_per_sec(),
177                                               PIT_FREQ);
178     /* fix potential rounding problems */
179     /* XXX: better solution: use a clock at PIT_FREQ Hz */
180     if (next_time <= current_time)
181         next_time = current_time + 1;
182     return next_time;
183 }
184
185 /* val must be 0 or 1 */
186 void pit_set_gate(ISADevice *dev, int channel, int val)
187 {
188     PITState *pit = DO_UPCAST(PITState, dev, dev);
189     PITChannelState *s = &pit->channels[channel];
190
191     switch(s->mode) {
192     default:
193     case 0:
194     case 4:
195         /* XXX: just disable/enable counting */
196         break;
197     case 1:
198     case 5:
199         if (s->gate < val) {
200             /* restart counting on rising edge */
201             s->count_load_time = qemu_get_clock(vm_clock);
202             pit_irq_timer_update(s, s->count_load_time);
203         }
204         break;
205     case 2:
206     case 3:
207         if (s->gate < val) {
208             /* restart counting on rising edge */
209             s->count_load_time = qemu_get_clock(vm_clock);
210             pit_irq_timer_update(s, s->count_load_time);
211         }
212         /* XXX: disable/enable counting */
213         break;
214     }
215     s->gate = val;
216 }
217
218 int pit_get_gate(ISADevice *dev, int channel)
219 {
220     PITState *pit = DO_UPCAST(PITState, dev, dev);
221     PITChannelState *s = &pit->channels[channel];
222     return s->gate;
223 }
224
225 int pit_get_initial_count(ISADevice *dev, int channel)
226 {
227     PITState *pit = DO_UPCAST(PITState, dev, dev);
228     PITChannelState *s = &pit->channels[channel];
229     return s->count;
230 }
231
232 int pit_get_mode(ISADevice *dev, int channel)
233 {
234     PITState *pit = DO_UPCAST(PITState, dev, dev);
235     PITChannelState *s = &pit->channels[channel];
236     return s->mode;
237 }
238
239 static inline void pit_load_count(PITChannelState *s, int val)
240 {
241     if (val == 0)
242         val = 0x10000;
243     s->count_load_time = qemu_get_clock(vm_clock);
244     s->count = val;
245     pit_irq_timer_update(s, s->count_load_time);
246 }
247
248 /* if already latched, do not latch again */
249 static void pit_latch_count(PITChannelState *s)
250 {
251     if (!s->count_latched) {
252         s->latched_count = pit_get_count(s);
253         s->count_latched = s->rw_mode;
254     }
255 }
256
257 static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
258 {
259     PITState *pit = opaque;
260     int channel, access;
261     PITChannelState *s;
262
263     addr &= 3;
264     if (addr == 3) {
265         channel = val >> 6;
266         if (channel == 3) {
267             /* read back command */
268             for(channel = 0; channel < 3; channel++) {
269                 s = &pit->channels[channel];
270                 if (val & (2 << channel)) {
271                     if (!(val & 0x20)) {
272                         pit_latch_count(s);
273                     }
274                     if (!(val & 0x10) && !s->status_latched) {
275                         /* status latch */
276                         /* XXX: add BCD and null count */
277                         s->status =  (pit_get_out1(s, qemu_get_clock(vm_clock)) << 7) |
278                             (s->rw_mode << 4) |
279                             (s->mode << 1) |
280                             s->bcd;
281                         s->status_latched = 1;
282                     }
283                 }
284             }
285         } else {
286             s = &pit->channels[channel];
287             access = (val >> 4) & 3;
288             if (access == 0) {
289                 pit_latch_count(s);
290             } else {
291                 s->rw_mode = access;
292                 s->read_state = access;
293                 s->write_state = access;
294
295                 s->mode = (val >> 1) & 7;
296                 s->bcd = val & 1;
297                 /* XXX: update irq timer ? */
298             }
299         }
300     } else {
301         s = &pit->channels[addr];
302         switch(s->write_state) {
303         default:
304         case RW_STATE_LSB:
305             pit_load_count(s, val);
306             break;
307         case RW_STATE_MSB:
308             pit_load_count(s, val << 8);
309             break;
310         case RW_STATE_WORD0:
311             s->write_latch = val;
312             s->write_state = RW_STATE_WORD1;
313             break;
314         case RW_STATE_WORD1:
315             pit_load_count(s, s->write_latch | (val << 8));
316             s->write_state = RW_STATE_WORD0;
317             break;
318         }
319     }
320 }
321
322 static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
323 {
324     PITState *pit = opaque;
325     int ret, count;
326     PITChannelState *s;
327
328     addr &= 3;
329     s = &pit->channels[addr];
330     if (s->status_latched) {
331         s->status_latched = 0;
332         ret = s->status;
333     } else if (s->count_latched) {
334         switch(s->count_latched) {
335         default:
336         case RW_STATE_LSB:
337             ret = s->latched_count & 0xff;
338             s->count_latched = 0;
339             break;
340         case RW_STATE_MSB:
341             ret = s->latched_count >> 8;
342             s->count_latched = 0;
343             break;
344         case RW_STATE_WORD0:
345             ret = s->latched_count & 0xff;
346             s->count_latched = RW_STATE_MSB;
347             break;
348         }
349     } else {
350         switch(s->read_state) {
351         default:
352         case RW_STATE_LSB:
353             count = pit_get_count(s);
354             ret = count & 0xff;
355             break;
356         case RW_STATE_MSB:
357             count = pit_get_count(s);
358             ret = (count >> 8) & 0xff;
359             break;
360         case RW_STATE_WORD0:
361             count = pit_get_count(s);
362             ret = count & 0xff;
363             s->read_state = RW_STATE_WORD1;
364             break;
365         case RW_STATE_WORD1:
366             count = pit_get_count(s);
367             ret = (count >> 8) & 0xff;
368             s->read_state = RW_STATE_WORD0;
369             break;
370         }
371     }
372     return ret;
373 }
374
375 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
376 {
377     int64_t expire_time;
378     int irq_level;
379
380     if (!s->irq_timer)
381         return;
382     expire_time = pit_get_next_transition_time(s, current_time);
383     irq_level = pit_get_out1(s, current_time);
384     qemu_set_irq(s->irq, irq_level);
385 #ifdef DEBUG_PIT
386     printf("irq_level=%d next_delay=%f\n",
387            irq_level,
388            (double)(expire_time - current_time) / get_ticks_per_sec());
389 #endif
390     s->next_transition_time = expire_time;
391     if (expire_time != -1)
392         qemu_mod_timer(s->irq_timer, expire_time);
393     else
394         qemu_del_timer(s->irq_timer);
395 }
396
397 static void pit_irq_timer(void *opaque)
398 {
399     PITChannelState *s = opaque;
400
401     pit_irq_timer_update(s, s->next_transition_time);
402 }
403
404 static const VMStateDescription vmstate_pit_channel = {
405     .name = "pit channel",
406     .version_id = 2,
407     .minimum_version_id = 2,
408     .minimum_version_id_old = 2,
409     .fields      = (VMStateField []) {
410         VMSTATE_INT32(count, PITChannelState),
411         VMSTATE_UINT16(latched_count, PITChannelState),
412         VMSTATE_UINT8(count_latched, PITChannelState),
413         VMSTATE_UINT8(status_latched, PITChannelState),
414         VMSTATE_UINT8(status, PITChannelState),
415         VMSTATE_UINT8(read_state, PITChannelState),
416         VMSTATE_UINT8(write_state, PITChannelState),
417         VMSTATE_UINT8(write_latch, PITChannelState),
418         VMSTATE_UINT8(rw_mode, PITChannelState),
419         VMSTATE_UINT8(mode, PITChannelState),
420         VMSTATE_UINT8(bcd, PITChannelState),
421         VMSTATE_UINT8(gate, PITChannelState),
422         VMSTATE_INT64(count_load_time, PITChannelState),
423         VMSTATE_INT64(next_transition_time, PITChannelState),
424         VMSTATE_END_OF_LIST()
425     }
426 };
427
428 static int pit_load_old(QEMUFile *f, void *opaque, int version_id)
429 {
430     PITState *pit = opaque;
431     PITChannelState *s;
432     int i;
433
434     if (version_id != 1)
435         return -EINVAL;
436
437     for(i = 0; i < 3; i++) {
438         s = &pit->channels[i];
439         s->count=qemu_get_be32(f);
440         qemu_get_be16s(f, &s->latched_count);
441         qemu_get_8s(f, &s->count_latched);
442         qemu_get_8s(f, &s->status_latched);
443         qemu_get_8s(f, &s->status);
444         qemu_get_8s(f, &s->read_state);
445         qemu_get_8s(f, &s->write_state);
446         qemu_get_8s(f, &s->write_latch);
447         qemu_get_8s(f, &s->rw_mode);
448         qemu_get_8s(f, &s->mode);
449         qemu_get_8s(f, &s->bcd);
450         qemu_get_8s(f, &s->gate);
451         s->count_load_time=qemu_get_be64(f);
452         if (s->irq_timer) {
453             s->next_transition_time=qemu_get_be64(f);
454             qemu_get_timer(f, s->irq_timer);
455         }
456     }
457     return 0;
458 }
459
460 static const VMStateDescription vmstate_pit = {
461     .name = "i8254",
462     .version_id = 2,
463     .minimum_version_id = 2,
464     .minimum_version_id_old = 1,
465     .load_state_old = pit_load_old,
466     .fields      = (VMStateField []) {
467         VMSTATE_STRUCT_ARRAY(channels, PITState, 3, 2, vmstate_pit_channel, PITChannelState),
468         VMSTATE_TIMER(channels[0].irq_timer, PITState),
469         VMSTATE_END_OF_LIST()
470     }
471 };
472
473 static void pit_reset(DeviceState *dev)
474 {
475     PITState *pit = container_of(dev, PITState, dev.qdev);
476     PITChannelState *s;
477     int i;
478
479     for(i = 0;i < 3; i++) {
480         s = &pit->channels[i];
481         s->mode = 3;
482         s->gate = (i != 2);
483         pit_load_count(s, 0);
484     }
485 }
486
487 /* When HPET is operating in legacy mode, i8254 timer0 is disabled */
488 void hpet_pit_disable(void) {
489     PITChannelState *s;
490     s = &pit_state.channels[0];
491     if (s->irq_timer)
492         qemu_del_timer(s->irq_timer);
493 }
494
495 /* When HPET is reset or leaving legacy mode, it must reenable i8254
496  * timer 0
497  */
498
499 void hpet_pit_enable(void)
500 {
501     PITState *pit = &pit_state;
502     PITChannelState *s;
503     s = &pit->channels[0];
504     s->mode = 3;
505     s->gate = 1;
506     pit_load_count(s, 0);
507 }
508
509 static int pit_initfn(ISADevice *dev)
510 {
511     PITState *pit = DO_UPCAST(PITState, dev, dev);
512     PITChannelState *s;
513
514     s = &pit->channels[0];
515     /* the timer 0 is connected to an IRQ */
516     s->irq_timer = qemu_new_timer(vm_clock, pit_irq_timer, s);
517     s->irq = isa_reserve_irq(pit->irq);
518
519     register_ioport_write(pit->iobase, 4, 1, pit_ioport_write, pit);
520     register_ioport_read(pit->iobase, 3, 1, pit_ioport_read, pit);
521     isa_init_ioport(dev, pit->iobase);
522
523     return 0;
524 }
525
526 static ISADeviceInfo pit_info = {
527     .qdev.name     = "isa-pit",
528     .qdev.size     = sizeof(PITState),
529     .qdev.vmsd     = &vmstate_pit,
530     .qdev.reset    = pit_reset,
531     .qdev.no_user  = 1,
532     .init          = pit_initfn,
533     .qdev.props = (Property[]) {
534         DEFINE_PROP_UINT32("irq", PITState, irq,  -1),
535         DEFINE_PROP_HEX32("iobase", PITState, iobase,  -1),
536         DEFINE_PROP_END_OF_LIST(),
537     },
538 };
539
540 static void pit_register(void)
541 {
542     isa_qdev_register(&pit_info);
543 }
544 device_init(pit_register)
This page took 0.051541 seconds and 4 git commands to generate.