2 * ColdFire Fast Ethernet Controller emulation.
4 * Copyright (c) 2007 CodeSourcery.
6 * This code is licensed under the GPL
8 #include "qemu/osdep.h"
11 #include "hw/m68k/mcf.h"
12 #include "hw/m68k/mcf_fec.h"
13 #include "hw/net/mii.h"
14 #include "hw/sysbus.h"
21 #define DPRINTF(fmt, ...) \
22 do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0)
24 #define DPRINTF(fmt, ...) do {} while(0)
27 #define FEC_MAX_DESC 1024
28 #define FEC_MAX_FRAME_SIZE 2032
29 #define FEC_MIB_SIZE 64
32 SysBusDevice parent_obj;
35 qemu_irq irq[FEC_NUM_IRQ];
42 uint32_t rx_descriptor;
43 uint32_t tx_descriptor;
54 uint32_t mib[FEC_MIB_SIZE];
57 #define FEC_INT_HB 0x80000000
58 #define FEC_INT_BABR 0x40000000
59 #define FEC_INT_BABT 0x20000000
60 #define FEC_INT_GRA 0x10000000
61 #define FEC_INT_TXF 0x08000000
62 #define FEC_INT_TXB 0x04000000
63 #define FEC_INT_RXF 0x02000000
64 #define FEC_INT_RXB 0x01000000
65 #define FEC_INT_MII 0x00800000
66 #define FEC_INT_EB 0x00400000
67 #define FEC_INT_LC 0x00200000
68 #define FEC_INT_RL 0x00100000
69 #define FEC_INT_UN 0x00080000
74 /* Map interrupt flags onto IRQ lines. */
75 static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
91 /* Buffer Descriptor. */
98 #define FEC_BD_R 0x8000
99 #define FEC_BD_E 0x8000
100 #define FEC_BD_O1 0x4000
101 #define FEC_BD_W 0x2000
102 #define FEC_BD_O2 0x1000
103 #define FEC_BD_L 0x0800
104 #define FEC_BD_TC 0x0400
105 #define FEC_BD_ABC 0x0200
106 #define FEC_BD_M 0x0100
107 #define FEC_BD_BC 0x0080
108 #define FEC_BD_MC 0x0040
109 #define FEC_BD_LG 0x0020
110 #define FEC_BD_NO 0x0010
111 #define FEC_BD_CR 0x0004
112 #define FEC_BD_OV 0x0002
113 #define FEC_BD_TR 0x0001
115 #define MIB_RMON_T_DROP 0
116 #define MIB_RMON_T_PACKETS 1
117 #define MIB_RMON_T_BC_PKT 2
118 #define MIB_RMON_T_MC_PKT 3
119 #define MIB_RMON_T_CRC_ALIGN 4
120 #define MIB_RMON_T_UNDERSIZE 5
121 #define MIB_RMON_T_OVERSIZE 6
122 #define MIB_RMON_T_FRAG 7
123 #define MIB_RMON_T_JAB 8
124 #define MIB_RMON_T_COL 9
125 #define MIB_RMON_T_P64 10
126 #define MIB_RMON_T_P65TO127 11
127 #define MIB_RMON_T_P128TO255 12
128 #define MIB_RMON_T_P256TO511 13
129 #define MIB_RMON_T_P512TO1023 14
130 #define MIB_RMON_T_P1024TO2047 15
131 #define MIB_RMON_T_P_GTE2048 16
132 #define MIB_RMON_T_OCTETS 17
133 #define MIB_IEEE_T_DROP 18
134 #define MIB_IEEE_T_FRAME_OK 19
135 #define MIB_IEEE_T_1COL 20
136 #define MIB_IEEE_T_MCOL 21
137 #define MIB_IEEE_T_DEF 22
138 #define MIB_IEEE_T_LCOL 23
139 #define MIB_IEEE_T_EXCOL 24
140 #define MIB_IEEE_T_MACERR 25
141 #define MIB_IEEE_T_CSERR 26
142 #define MIB_IEEE_T_SQE 27
143 #define MIB_IEEE_T_FDXFC 28
144 #define MIB_IEEE_T_OCTETS_OK 29
146 #define MIB_RMON_R_DROP 32
147 #define MIB_RMON_R_PACKETS 33
148 #define MIB_RMON_R_BC_PKT 34
149 #define MIB_RMON_R_MC_PKT 35
150 #define MIB_RMON_R_CRC_ALIGN 36
151 #define MIB_RMON_R_UNDERSIZE 37
152 #define MIB_RMON_R_OVERSIZE 38
153 #define MIB_RMON_R_FRAG 39
154 #define MIB_RMON_R_JAB 40
155 #define MIB_RMON_R_RESVD_0 41
156 #define MIB_RMON_R_P64 42
157 #define MIB_RMON_R_P65TO127 43
158 #define MIB_RMON_R_P128TO255 44
159 #define MIB_RMON_R_P256TO511 45
160 #define MIB_RMON_R_P512TO1023 46
161 #define MIB_RMON_R_P1024TO2047 47
162 #define MIB_RMON_R_P_GTE2048 48
163 #define MIB_RMON_R_OCTETS 49
164 #define MIB_IEEE_R_DROP 50
165 #define MIB_IEEE_R_FRAME_OK 51
166 #define MIB_IEEE_R_CRC 52
167 #define MIB_IEEE_R_ALIGN 53
168 #define MIB_IEEE_R_MACERR 54
169 #define MIB_IEEE_R_FDXFC 55
170 #define MIB_IEEE_R_OCTETS_OK 56
172 static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
174 cpu_physical_memory_read(addr, bd, sizeof(*bd));
175 be16_to_cpus(&bd->flags);
176 be16_to_cpus(&bd->length);
177 be32_to_cpus(&bd->data);
180 static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
183 tmp.flags = cpu_to_be16(bd->flags);
184 tmp.length = cpu_to_be16(bd->length);
185 tmp.data = cpu_to_be32(bd->data);
186 cpu_physical_memory_write(addr, &tmp, sizeof(tmp));
189 static void mcf_fec_update(mcf_fec_state *s)
196 active = s->eir & s->eimr;
197 changed = active ^s->irq_state;
198 for (i = 0; i < FEC_NUM_IRQ; i++) {
199 mask = mcf_fec_irq_map[i];
200 if (changed & mask) {
201 DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
202 qemu_set_irq(s->irq[i], (active & mask) != 0);
205 s->irq_state = active;
208 static void mcf_fec_tx_stats(mcf_fec_state *s, int size)
210 s->mib[MIB_RMON_T_PACKETS]++;
211 s->mib[MIB_RMON_T_OCTETS] += size;
213 s->mib[MIB_RMON_T_FRAG]++;
214 } else if (size == 64) {
215 s->mib[MIB_RMON_T_P64]++;
216 } else if (size < 128) {
217 s->mib[MIB_RMON_T_P65TO127]++;
218 } else if (size < 256) {
219 s->mib[MIB_RMON_T_P128TO255]++;
220 } else if (size < 512) {
221 s->mib[MIB_RMON_T_P256TO511]++;
222 } else if (size < 1024) {
223 s->mib[MIB_RMON_T_P512TO1023]++;
224 } else if (size < 2048) {
225 s->mib[MIB_RMON_T_P1024TO2047]++;
227 s->mib[MIB_RMON_T_P_GTE2048]++;
229 s->mib[MIB_IEEE_T_FRAME_OK]++;
230 s->mib[MIB_IEEE_T_OCTETS_OK] += size;
233 static void mcf_fec_do_tx(mcf_fec_state *s)
239 uint8_t frame[FEC_MAX_FRAME_SIZE];
245 addr = s->tx_descriptor;
246 while (descnt++ < FEC_MAX_DESC) {
247 mcf_fec_read_bd(&bd, addr);
248 DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
249 addr, bd.flags, bd.length, bd.data);
250 if ((bd.flags & FEC_BD_R) == 0) {
251 /* Run out of descriptors to transmit. */
255 if (frame_size + len > FEC_MAX_FRAME_SIZE) {
256 len = FEC_MAX_FRAME_SIZE - frame_size;
257 s->eir |= FEC_INT_BABT;
259 cpu_physical_memory_read(bd.data, ptr, len);
262 if (bd.flags & FEC_BD_L) {
263 /* Last buffer in frame. */
264 DPRINTF("Sending packet\n");
265 qemu_send_packet(qemu_get_queue(s->nic), frame, frame_size);
266 mcf_fec_tx_stats(s, frame_size);
269 s->eir |= FEC_INT_TXF;
271 s->eir |= FEC_INT_TXB;
272 bd.flags &= ~FEC_BD_R;
273 /* Write back the modified descriptor. */
274 mcf_fec_write_bd(&bd, addr);
275 /* Advance to the next descriptor. */
276 if ((bd.flags & FEC_BD_W) != 0) {
282 s->tx_descriptor = addr;
285 static void mcf_fec_enable_rx(mcf_fec_state *s)
287 NetClientState *nc = qemu_get_queue(s->nic);
290 mcf_fec_read_bd(&bd, s->rx_descriptor);
291 s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
293 qemu_flush_queued_packets(nc);
297 static void mcf_fec_reset(DeviceState *dev)
299 mcf_fec_state *s = MCF_FEC_NET(dev);
312 #define MMFR_WRITE_OP (1 << 28)
313 #define MMFR_READ_OP (2 << 28)
314 #define MMFR_PHYADDR(v) (((v) >> 23) & 0x1f)
315 #define MMFR_REGNUM(v) (((v) >> 18) & 0x1f)
317 static uint64_t mcf_fec_read_mdio(mcf_fec_state *s)
321 if (s->mmfr & MMFR_WRITE_OP)
323 if (MMFR_PHYADDR(s->mmfr) != 1)
324 return s->mmfr |= 0xffff;
326 switch (MMFR_REGNUM(s->mmfr)) {
328 v = MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_FD;
331 v = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
332 MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AN_COMP |
333 MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
342 v = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD |
343 MII_ANAR_10 | MII_ANAR_CSMACD;
346 v = MII_ANLPAR_ACK | MII_ANLPAR_TXFD | MII_ANLPAR_TX |
347 MII_ANLPAR_10FD | MII_ANLPAR_10 | MII_ANLPAR_CSMACD;
353 s->mmfr = (s->mmfr & ~0xffff) | v;
357 static uint64_t mcf_fec_read(void *opaque, hwaddr addr,
360 mcf_fec_state *s = (mcf_fec_state *)opaque;
361 switch (addr & 0x3ff) {
362 case 0x004: return s->eir;
363 case 0x008: return s->eimr;
364 case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
365 case 0x014: return 0; /* TDAR */
366 case 0x024: return s->ecr;
367 case 0x040: return mcf_fec_read_mdio(s);
368 case 0x044: return s->mscr;
369 case 0x064: return 0; /* MIBC */
370 case 0x084: return s->rcr;
371 case 0x0c4: return s->tcr;
372 case 0x0e4: /* PALR */
373 return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16)
374 | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3];
376 case 0x0e8: /* PAUR */
377 return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808;
378 case 0x0ec: return 0x10000; /* OPD */
379 case 0x118: return 0;
380 case 0x11c: return 0;
381 case 0x120: return 0;
382 case 0x124: return 0;
383 case 0x144: return s->tfwr;
384 case 0x14c: return 0x600;
385 case 0x150: return s->rfsr;
386 case 0x180: return s->erdsr;
387 case 0x184: return s->etdsr;
388 case 0x188: return s->emrbr;
389 case 0x200 ... 0x2e0: return s->mib[(addr & 0x1ff) / 4];
391 hw_error("mcf_fec_read: Bad address 0x%x\n", (int)addr);
396 static void mcf_fec_write(void *opaque, hwaddr addr,
397 uint64_t value, unsigned size)
399 mcf_fec_state *s = (mcf_fec_state *)opaque;
400 switch (addr & 0x3ff) {
407 case 0x010: /* RDAR */
408 if ((s->ecr & FEC_EN) && !s->rx_enabled) {
409 DPRINTF("RX enable\n");
410 mcf_fec_enable_rx(s);
413 case 0x014: /* TDAR */
414 if (s->ecr & FEC_EN) {
420 if (value & FEC_RESET) {
422 mcf_fec_reset(opaque);
424 if ((s->ecr & FEC_EN) == 0) {
430 s->eir |= FEC_INT_MII;
433 s->mscr = value & 0xfe;
436 /* TODO: Implement MIB. */
439 s->rcr = value & 0x07ff003f;
440 /* TODO: Implement LOOP mode. */
442 case 0x0c4: /* TCR */
443 /* We transmit immediately, so raise GRA immediately. */
446 s->eir |= FEC_INT_GRA;
448 case 0x0e4: /* PALR */
449 s->conf.macaddr.a[0] = value >> 24;
450 s->conf.macaddr.a[1] = value >> 16;
451 s->conf.macaddr.a[2] = value >> 8;
452 s->conf.macaddr.a[3] = value;
454 case 0x0e8: /* PAUR */
455 s->conf.macaddr.a[4] = value >> 24;
456 s->conf.macaddr.a[5] = value >> 16;
465 /* TODO: implement MAC hash filtering. */
471 /* FRBR writes ignored. */
474 s->rfsr = (value & 0x3fc) | 0x400;
477 s->erdsr = value & ~3;
478 s->rx_descriptor = s->erdsr;
481 s->etdsr = value & ~3;
482 s->tx_descriptor = s->etdsr;
485 s->emrbr = value > 0 ? value & 0x7F0 : 0x7F0;
487 case 0x200 ... 0x2e0:
488 s->mib[(addr & 0x1ff) / 4] = value;
491 hw_error("mcf_fec_write Bad address 0x%x\n", (int)addr);
496 static void mcf_fec_rx_stats(mcf_fec_state *s, int size)
498 s->mib[MIB_RMON_R_PACKETS]++;
499 s->mib[MIB_RMON_R_OCTETS] += size;
501 s->mib[MIB_RMON_R_FRAG]++;
502 } else if (size == 64) {
503 s->mib[MIB_RMON_R_P64]++;
504 } else if (size < 128) {
505 s->mib[MIB_RMON_R_P65TO127]++;
506 } else if (size < 256) {
507 s->mib[MIB_RMON_R_P128TO255]++;
508 } else if (size < 512) {
509 s->mib[MIB_RMON_R_P256TO511]++;
510 } else if (size < 1024) {
511 s->mib[MIB_RMON_R_P512TO1023]++;
512 } else if (size < 2048) {
513 s->mib[MIB_RMON_R_P1024TO2047]++;
515 s->mib[MIB_RMON_R_P_GTE2048]++;
517 s->mib[MIB_IEEE_R_FRAME_OK]++;
518 s->mib[MIB_IEEE_R_OCTETS_OK] += size;
521 static int mcf_fec_have_receive_space(mcf_fec_state *s, size_t want)
526 /* Walk descriptor list to determine if we have enough buffer */
527 addr = s->rx_descriptor;
529 mcf_fec_read_bd(&bd, addr);
530 if ((bd.flags & FEC_BD_E) == 0) {
533 if (want < s->emrbr) {
537 /* Advance to the next descriptor. */
538 if ((bd.flags & FEC_BD_W) != 0) {
547 static ssize_t mcf_fec_receive(NetClientState *nc, const uint8_t *buf, size_t size)
549 mcf_fec_state *s = qemu_get_nic_opaque(nc);
556 unsigned int buf_len;
559 DPRINTF("do_rx len %d\n", size);
560 if (!s->rx_enabled) {
563 /* 4 bytes for the CRC. */
565 crc = cpu_to_be32(crc32(~0, buf, size));
566 crc_ptr = (uint8_t *)&crc;
567 /* Huge frames are truncted. */
568 if (size > FEC_MAX_FRAME_SIZE) {
569 size = FEC_MAX_FRAME_SIZE;
570 flags |= FEC_BD_TR | FEC_BD_LG;
572 /* Frames larger than the user limit just set error flags. */
573 if (size > (s->rcr >> 16)) {
576 /* Check if we have enough space in current descriptors */
577 if (!mcf_fec_have_receive_space(s, size)) {
580 addr = s->rx_descriptor;
583 mcf_fec_read_bd(&bd, addr);
584 buf_len = (size <= s->emrbr) ? size: s->emrbr;
587 DPRINTF("rx_bd %x length %d\n", addr, bd.length);
588 /* The last 4 bytes are the CRC. */
592 cpu_physical_memory_write(buf_addr, buf, buf_len);
595 cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
598 bd.flags &= ~FEC_BD_E;
600 /* Last buffer in frame. */
601 bd.flags |= flags | FEC_BD_L;
602 DPRINTF("rx frame flags %04x\n", bd.flags);
603 s->eir |= FEC_INT_RXF;
605 s->eir |= FEC_INT_RXB;
607 mcf_fec_write_bd(&bd, addr);
608 /* Advance to the next descriptor. */
609 if ((bd.flags & FEC_BD_W) != 0) {
615 s->rx_descriptor = addr;
616 mcf_fec_rx_stats(s, retsize);
617 mcf_fec_enable_rx(s);
622 static const MemoryRegionOps mcf_fec_ops = {
623 .read = mcf_fec_read,
624 .write = mcf_fec_write,
625 .endianness = DEVICE_NATIVE_ENDIAN,
628 static NetClientInfo net_mcf_fec_info = {
629 .type = NET_CLIENT_DRIVER_NIC,
630 .size = sizeof(NICState),
631 .receive = mcf_fec_receive,
634 static void mcf_fec_realize(DeviceState *dev, Error **errp)
636 mcf_fec_state *s = MCF_FEC_NET(dev);
638 s->nic = qemu_new_nic(&net_mcf_fec_info, &s->conf,
639 object_get_typename(OBJECT(dev)), dev->id, s);
640 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
643 static void mcf_fec_instance_init(Object *obj)
645 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
646 mcf_fec_state *s = MCF_FEC_NET(obj);
649 memory_region_init_io(&s->iomem, obj, &mcf_fec_ops, s, "fec", 0x400);
650 sysbus_init_mmio(sbd, &s->iomem);
651 for (i = 0; i < FEC_NUM_IRQ; i++) {
652 sysbus_init_irq(sbd, &s->irq[i]);
656 static Property mcf_fec_properties[] = {
657 DEFINE_NIC_PROPERTIES(mcf_fec_state, conf),
658 DEFINE_PROP_END_OF_LIST(),
661 static void mcf_fec_class_init(ObjectClass *oc, void *data)
663 DeviceClass *dc = DEVICE_CLASS(oc);
665 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
666 dc->realize = mcf_fec_realize;
667 dc->desc = "MCF Fast Ethernet Controller network device";
668 dc->reset = mcf_fec_reset;
669 dc->props = mcf_fec_properties;
672 static const TypeInfo mcf_fec_info = {
673 .name = TYPE_MCF_FEC_NET,
674 .parent = TYPE_SYS_BUS_DEVICE,
675 .instance_size = sizeof(mcf_fec_state),
676 .instance_init = mcf_fec_instance_init,
677 .class_init = mcf_fec_class_init,
680 static void mcf_fec_register_types(void)
682 type_register_static(&mcf_fec_info);
685 type_init(mcf_fec_register_types)