]> Git Repo - qemu.git/blob - cpu-common.h
fix spelling in main directory
[qemu.git] / cpu-common.h
1 #ifndef CPU_COMMON_H
2 #define CPU_COMMON_H 1
3
4 /* CPU interfaces that are target independent.  */
5
6 #ifdef TARGET_PHYS_ADDR_BITS
7 #include "targphys.h"
8 #endif
9
10 #ifndef NEED_CPU_H
11 #include "poison.h"
12 #endif
13
14 #include "bswap.h"
15 #include "qemu-queue.h"
16
17 #if !defined(CONFIG_USER_ONLY)
18
19 enum device_endian {
20     DEVICE_NATIVE_ENDIAN,
21     DEVICE_BIG_ENDIAN,
22     DEVICE_LITTLE_ENDIAN,
23 };
24
25 /* address in the RAM (different from a physical address) */
26 #if defined(CONFIG_XEN_BACKEND) && TARGET_PHYS_ADDR_BITS == 64
27 typedef uint64_t ram_addr_t;
28 #  define RAM_ADDR_MAX UINT64_MAX
29 #  define RAM_ADDR_FMT "%" PRIx64
30 #else
31 typedef unsigned long ram_addr_t;
32 #  define RAM_ADDR_MAX ULONG_MAX
33 #  define RAM_ADDR_FMT "%lx"
34 #endif
35
36 /* memory API */
37
38 typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
39 typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
40
41 void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
42                                       ram_addr_t size,
43                                       ram_addr_t phys_offset,
44                                       ram_addr_t region_offset,
45                                       bool log_dirty);
46
47 static inline void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
48                                                        ram_addr_t size,
49                                                        ram_addr_t phys_offset,
50                                                        ram_addr_t region_offset)
51 {
52     cpu_register_physical_memory_log(start_addr, size, phys_offset,
53                                      region_offset, false);
54 }
55
56 static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
57                                                 ram_addr_t size,
58                                                 ram_addr_t phys_offset)
59 {
60     cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
61 }
62
63 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
64 ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
65                         ram_addr_t size, void *host);
66 ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size);
67 void qemu_ram_free(ram_addr_t addr);
68 void qemu_ram_free_from_ptr(ram_addr_t addr);
69 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length);
70 /* This should only be used for ram local to a device.  */
71 void *qemu_get_ram_ptr(ram_addr_t addr);
72 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size);
73 /* Same but slower, to use for migration, where the order of
74  * RAMBlocks must not change. */
75 void *qemu_safe_ram_ptr(ram_addr_t addr);
76 void qemu_put_ram_ptr(void *addr);
77 /* This should not be used by devices.  */
78 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr);
79 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr);
80
81 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
82                            CPUWriteMemoryFunc * const *mem_write,
83                            void *opaque, enum device_endian endian);
84 void cpu_unregister_io_memory(int table_address);
85
86 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
87                             int len, int is_write);
88 static inline void cpu_physical_memory_read(target_phys_addr_t addr,
89                                             void *buf, int len)
90 {
91     cpu_physical_memory_rw(addr, buf, len, 0);
92 }
93 static inline void cpu_physical_memory_write(target_phys_addr_t addr,
94                                              const void *buf, int len)
95 {
96     cpu_physical_memory_rw(addr, (void *)buf, len, 1);
97 }
98 void *cpu_physical_memory_map(target_phys_addr_t addr,
99                               target_phys_addr_t *plen,
100                               int is_write);
101 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
102                                int is_write, target_phys_addr_t access_len);
103 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque));
104 void cpu_unregister_map_client(void *cookie);
105
106 struct CPUPhysMemoryClient;
107 typedef struct CPUPhysMemoryClient CPUPhysMemoryClient;
108 struct CPUPhysMemoryClient {
109     void (*set_memory)(struct CPUPhysMemoryClient *client,
110                        target_phys_addr_t start_addr,
111                        ram_addr_t size,
112                        ram_addr_t phys_offset,
113                        bool log_dirty);
114     int (*sync_dirty_bitmap)(struct CPUPhysMemoryClient *client,
115                              target_phys_addr_t start_addr,
116                              target_phys_addr_t end_addr);
117     int (*migration_log)(struct CPUPhysMemoryClient *client,
118                          int enable);
119     int (*log_start)(struct CPUPhysMemoryClient *client,
120                      target_phys_addr_t phys_addr, ram_addr_t size);
121     int (*log_stop)(struct CPUPhysMemoryClient *client,
122                     target_phys_addr_t phys_addr, ram_addr_t size);
123     QLIST_ENTRY(CPUPhysMemoryClient) list;
124 };
125
126 void cpu_register_phys_memory_client(CPUPhysMemoryClient *);
127 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *);
128
129 /* Coalesced MMIO regions are areas where write operations can be reordered.
130  * This usually implies that write operations are side-effect free.  This allows
131  * batching which can make a major impact on performance when using
132  * virtualization.
133  */
134 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
135
136 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
137
138 void qemu_flush_coalesced_mmio_buffer(void);
139
140 uint32_t ldub_phys(target_phys_addr_t addr);
141 uint32_t lduw_le_phys(target_phys_addr_t addr);
142 uint32_t lduw_be_phys(target_phys_addr_t addr);
143 uint32_t ldl_le_phys(target_phys_addr_t addr);
144 uint32_t ldl_be_phys(target_phys_addr_t addr);
145 uint64_t ldq_le_phys(target_phys_addr_t addr);
146 uint64_t ldq_be_phys(target_phys_addr_t addr);
147 void stb_phys(target_phys_addr_t addr, uint32_t val);
148 void stw_le_phys(target_phys_addr_t addr, uint32_t val);
149 void stw_be_phys(target_phys_addr_t addr, uint32_t val);
150 void stl_le_phys(target_phys_addr_t addr, uint32_t val);
151 void stl_be_phys(target_phys_addr_t addr, uint32_t val);
152 void stq_le_phys(target_phys_addr_t addr, uint64_t val);
153 void stq_be_phys(target_phys_addr_t addr, uint64_t val);
154
155 #ifdef NEED_CPU_H
156 uint32_t lduw_phys(target_phys_addr_t addr);
157 uint32_t ldl_phys(target_phys_addr_t addr);
158 uint64_t ldq_phys(target_phys_addr_t addr);
159 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
160 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
161 void stw_phys(target_phys_addr_t addr, uint32_t val);
162 void stl_phys(target_phys_addr_t addr, uint32_t val);
163 void stq_phys(target_phys_addr_t addr, uint64_t val);
164 #endif
165
166 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
167                                    const uint8_t *buf, int len);
168
169 #define IO_MEM_SHIFT       3
170
171 #define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
172 #define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
173 #define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
174 #define IO_MEM_NOTDIRTY    (3 << IO_MEM_SHIFT)
175
176 /* Acts like a ROM when read and like a device when written.  */
177 #define IO_MEM_ROMD        (1)
178 #define IO_MEM_SUBPAGE     (2)
179
180 #endif
181
182 #endif /* !CPU_COMMON_H */
This page took 0.035675 seconds and 4 git commands to generate.