4 #include "host-utils.h"
7 #ifndef CONFIG_USER_ONLY
8 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
9 int access_type, int is_user,
10 uint32_t *phys_ptr, int *prot,
11 target_ulong *page_size);
14 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
18 /* VFP data registers are always little-endian. */
19 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
21 stfq_le_p(buf, env->vfp.regs[reg]);
24 if (arm_feature(env, ARM_FEATURE_NEON)) {
25 /* Aliases for Q regs. */
28 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
29 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
33 switch (reg - nregs) {
34 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
35 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
36 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
41 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
47 env->vfp.regs[reg] = ldfq_le_p(buf);
50 if (arm_feature(env, ARM_FEATURE_NEON)) {
53 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
54 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
58 switch (reg - nregs) {
59 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
60 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
61 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
66 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
69 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
73 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
75 if (env->cp15.c13_fcse != value) {
76 /* Unlike real hardware the qemu TLB uses virtual addresses,
77 * not modified virtual addresses, so this causes a TLB flush.
80 env->cp15.c13_fcse = value;
84 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
87 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
88 /* For VMSA (when not using the LPAE long descriptor page table
89 * format) this register includes the ASID, so do a TLB flush.
90 * For PMSA it is purely a process ID and no action is needed.
94 env->cp15.c13_context = value;
98 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
101 /* Invalidate all (TLBIALL) */
106 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
109 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
110 tlb_flush_page(env, value & TARGET_PAGE_MASK);
114 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
117 /* Invalidate by ASID (TLBIASID) */
118 tlb_flush(env, value == 0);
122 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
125 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
126 tlb_flush_page(env, value & TARGET_PAGE_MASK);
130 static const ARMCPRegInfo cp_reginfo[] = {
131 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
132 * version" bits will read as a reserved value, which should cause
133 * Linux to not try to use the debug hardware.
135 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
136 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
137 /* MMU Domain access control / MPU write buffer control */
138 { .name = "DACR", .cp = 15,
139 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
140 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
141 .resetvalue = 0, .writefn = dacr_write },
142 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
143 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
144 .resetvalue = 0, .writefn = fcse_write },
145 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
146 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
147 .resetvalue = 0, .writefn = contextidr_write },
148 /* ??? This covers not just the impdef TLB lockdown registers but also
149 * some v7VMSA registers relating to TEX remap, so it is overly broad.
151 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
152 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
153 /* MMU TLB control. Note that the wildcarding means we cover not just
154 * the unified TLB ops but also the dside/iside/inner-shareable variants.
156 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
157 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, },
158 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
159 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, },
160 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
161 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, },
162 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
163 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, },
164 /* Cache maintenance ops; some of this space may be overridden later. */
165 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
166 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
167 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
171 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
172 /* Not all pre-v6 cores implemented this WFI, so this is slightly
175 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
176 .access = PL1_W, .type = ARM_CP_WFI },
180 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
181 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
182 * is UNPREDICTABLE; we choose to NOP as most implementations do).
184 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
185 .access = PL1_W, .type = ARM_CP_WFI },
189 static const ARMCPRegInfo v6_cp_reginfo[] = {
190 /* prefetch by MVA in v6, NOP in v7 */
191 { .name = "MVA_prefetch",
192 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
193 .access = PL1_W, .type = ARM_CP_NOP },
194 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
195 .access = PL0_W, .type = ARM_CP_NOP },
196 { .name = "ISB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
197 .access = PL0_W, .type = ARM_CP_NOP },
198 { .name = "ISB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
199 .access = PL0_W, .type = ARM_CP_NOP },
200 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
201 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
203 /* Watchpoint Fault Address Register : should actually only be present
204 * for 1136, 1176, 11MPCore.
206 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
207 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
211 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
214 /* Generic performance monitor register read function for where
215 * user access may be allowed by PMUSERENR.
217 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
220 *value = CPREG_FIELD32(env, ri);
224 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
227 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
230 /* only the DP, X, D and E bits are writable */
231 env->cp15.c9_pmcr &= ~0x39;
232 env->cp15.c9_pmcr |= (value & 0x39);
236 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
239 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
243 env->cp15.c9_pmcnten |= value;
247 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
250 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
254 env->cp15.c9_pmcnten &= ~value;
258 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
261 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
264 env->cp15.c9_pmovsr &= ~value;
268 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
271 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
274 env->cp15.c9_pmxevtyper = value & 0xff;
278 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
281 env->cp15.c9_pmuserenr = value & 1;
285 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
288 /* We have no event counters so only the C bit can be changed */
290 env->cp15.c9_pminten |= value;
294 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
298 env->cp15.c9_pminten &= ~value;
302 static const ARMCPRegInfo v7_cp_reginfo[] = {
303 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
306 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
307 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
308 { .name = "DBGDRAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
309 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
310 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
311 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
312 .access = PL1_W, .type = ARM_CP_NOP },
313 /* Performance monitors are implementation defined in v7,
314 * but with an ARM recommended set of registers, which we
315 * follow (although we don't actually implement any counters)
317 * Performance registers fall into three categories:
318 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
319 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
320 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
321 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
322 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
324 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
325 .access = PL0_RW, .resetvalue = 0,
326 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
327 .readfn = pmreg_read, .writefn = pmcntenset_write },
328 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
329 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
330 .readfn = pmreg_read, .writefn = pmcntenclr_write },
331 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
332 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
333 .readfn = pmreg_read, .writefn = pmovsr_write },
334 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
337 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
338 .access = PL0_W, .type = ARM_CP_NOP },
339 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
340 * We choose to RAZ/WI. XXX should respect PMUSERENR.
342 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
343 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
344 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
345 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
346 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
347 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
349 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
350 .readfn = pmreg_read, .writefn = pmxevtyper_write },
351 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
352 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
353 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
354 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
355 .access = PL0_R | PL1_RW,
356 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
358 .writefn = pmuserenr_write },
359 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
361 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
363 .writefn = pmintenset_write },
364 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
366 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
368 .writefn = pmintenclr_write },
372 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
379 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
382 /* This is a helper function because the user access rights
383 * depend on the value of the TEECR.
385 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
388 *value = env->teehbr;
392 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
395 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
402 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
403 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
404 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
406 .writefn = teecr_write },
407 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
408 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
410 .readfn = teehbr_read, .writefn = teehbr_write },
414 static const ARMCPRegInfo v6k_cp_reginfo[] = {
415 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
417 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
419 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
420 .access = PL0_R|PL1_W,
421 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
423 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
425 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
430 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
431 /* Dummy implementation: RAZ/WI the whole crn=14 space */
432 { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
433 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
434 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
438 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
440 if (arm_feature(env, ARM_FEATURE_V7)) {
441 env->cp15.c7_par = value & 0xfffff6ff;
443 env->cp15.c7_par = value & 0xfffff1ff;
448 #ifndef CONFIG_USER_ONLY
449 /* get_phys_addr() isn't present for user-mode-only targets */
450 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
453 target_ulong page_size;
455 int ret, is_user = ri->opc2 & 2;
456 int access_type = ri->opc2 & 1;
459 /* Other states are only available with TrustZone */
462 ret = get_phys_addr(env, value, access_type, is_user,
463 &phys_addr, &prot, &page_size);
465 /* We do not set any attribute bits in the PAR */
466 if (page_size == (1 << 24)
467 && arm_feature(env, ARM_FEATURE_V7)) {
468 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
470 env->cp15.c7_par = phys_addr & 0xfffff000;
473 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
474 ((ret & (12 << 1)) >> 6) |
475 ((ret & 0xf) << 1) | 1;
481 static const ARMCPRegInfo vapa_cp_reginfo[] = {
482 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
483 .access = PL1_RW, .resetvalue = 0,
484 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
485 .writefn = par_write },
486 #ifndef CONFIG_USER_ONLY
487 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
488 .access = PL1_W, .writefn = ats_write },
493 /* Return basic MPU access permission bits. */
494 static uint32_t simple_mpu_ap_bits(uint32_t val)
501 for (i = 0; i < 16; i += 2) {
502 ret |= (val >> i) & mask;
508 /* Pad basic MPU access permission bits to extended format. */
509 static uint32_t extended_mpu_ap_bits(uint32_t val)
516 for (i = 0; i < 16; i += 2) {
517 ret |= (val & mask) << i;
523 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
526 env->cp15.c5_data = extended_mpu_ap_bits(value);
530 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
533 *value = simple_mpu_ap_bits(env->cp15.c5_data);
537 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
540 env->cp15.c5_insn = extended_mpu_ap_bits(value);
544 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
547 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
551 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
557 *value = env->cp15.c6_region[ri->crm];
561 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
567 env->cp15.c6_region[ri->crm] = value;
571 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
572 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
574 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
575 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
576 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
578 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
579 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
580 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
582 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
583 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
585 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
586 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
588 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
589 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
591 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
592 /* Protection region base and size registers */
593 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
594 .opc2 = CP_ANY, .access = PL1_RW,
595 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
599 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
603 env->cp15.c2_control = value;
604 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value);
605 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value);
609 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
611 env->cp15.c2_base_mask = 0xffffc000u;
612 env->cp15.c2_control = 0;
613 env->cp15.c2_mask = 0;
616 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
617 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
619 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
620 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
622 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
623 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
625 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
626 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
628 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
629 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
630 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
631 .resetfn = vmsa_ttbcr_reset,
632 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
633 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
634 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
639 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
642 env->cp15.c15_ticonfig = value & 0xe7;
643 /* The OS_TYPE bit in this register changes the reported CPUID! */
644 env->cp15.c0_cpuid = (value & (1 << 5)) ?
645 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
649 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
652 env->cp15.c15_threadid = value & 0xffff;
656 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
659 /* Wait-for-interrupt (deprecated) */
660 cpu_interrupt(env, CPU_INTERRUPT_HALT);
664 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
667 /* On OMAP there are registers indicating the max/min index of dcache lines
668 * containing a dirty line; cache flush operations have to reset these.
670 env->cp15.c15_i_max = 0x000;
671 env->cp15.c15_i_min = 0xff0;
675 static const ARMCPRegInfo omap_cp_reginfo[] = {
676 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
677 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
678 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
679 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
680 .access = PL1_RW, .type = ARM_CP_NOP },
681 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
683 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
684 .writefn = omap_ticonfig_write },
685 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
687 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
688 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
689 .access = PL1_RW, .resetvalue = 0xff0,
690 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
691 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
693 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
694 .writefn = omap_threadid_write },
695 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
696 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
697 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
698 /* TODO: Peripheral port remap register:
699 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
700 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
703 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
704 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE,
705 .writefn = omap_cachemaint_write },
709 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
713 if (env->cp15.c15_cpar != value) {
714 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
716 env->cp15.c15_cpar = value;
721 static const ARMCPRegInfo xscale_cp_reginfo[] = {
722 { .name = "XSCALE_CPAR",
723 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
724 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
725 .writefn = xscale_cpar_write, },
729 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
730 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
731 * implementation of this implementation-defined space.
732 * Ideally this should eventually disappear in favour of actually
733 * implementing the correct behaviour for all cores.
735 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
736 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
737 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
741 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
742 /* Cache status: RAZ because we have no cache so it's always clean */
743 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
744 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
748 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
749 /* We never have a a block transfer operation in progress */
750 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
751 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
755 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
756 /* The cache test-and-clean instructions always return (1 << 30)
757 * to indicate that there are no dirty cache lines.
759 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
760 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
761 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
762 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
766 void register_cp_regs_for_features(ARMCPU *cpu)
768 /* Register all the coprocessor registers based on feature bits */
769 CPUARMState *env = &cpu->env;
770 if (arm_feature(env, ARM_FEATURE_M)) {
771 /* M profile has no coprocessor registers */
775 define_arm_cp_regs(cpu, cp_reginfo);
776 if (arm_feature(env, ARM_FEATURE_V6)) {
777 define_arm_cp_regs(cpu, v6_cp_reginfo);
779 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
781 if (arm_feature(env, ARM_FEATURE_V6K)) {
782 define_arm_cp_regs(cpu, v6k_cp_reginfo);
784 if (arm_feature(env, ARM_FEATURE_V7)) {
785 /* v7 performance monitor control register: same implementor
786 * field as main ID register, and we implement no event counters.
788 ARMCPRegInfo pmcr = {
789 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
790 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
791 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
792 .readfn = pmreg_read, .writefn = pmcr_write
794 define_one_arm_cp_reg(cpu, &pmcr);
795 define_arm_cp_regs(cpu, v7_cp_reginfo);
797 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
799 if (arm_feature(env, ARM_FEATURE_MPU)) {
800 /* These are the MPU registers prior to PMSAv6. Any new
801 * PMSA core later than the ARM946 will require that we
802 * implement the PMSAv6 or PMSAv7 registers, which are
803 * completely different.
805 assert(!arm_feature(env, ARM_FEATURE_V6));
806 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
808 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
810 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
811 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
813 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
814 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
816 if (arm_feature(env, ARM_FEATURE_VAPA)) {
817 define_arm_cp_regs(cpu, vapa_cp_reginfo);
819 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
820 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
822 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
823 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
825 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
826 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
828 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
829 define_arm_cp_regs(cpu, omap_cp_reginfo);
831 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
832 define_arm_cp_regs(cpu, xscale_cp_reginfo);
834 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
835 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
839 ARMCPU *cpu_arm_init(const char *cpu_model)
843 static int inited = 0;
845 if (!object_class_by_name(cpu_model)) {
848 cpu = ARM_CPU(object_new(cpu_model));
850 env->cpu_model_str = cpu_model;
851 arm_cpu_realize(cpu);
853 if (tcg_enabled() && !inited) {
855 arm_translate_init();
859 if (arm_feature(env, ARM_FEATURE_NEON)) {
860 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
861 51, "arm-neon.xml", 0);
862 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
863 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
864 35, "arm-vfp3.xml", 0);
865 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
866 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
867 19, "arm-vfp.xml", 0);
873 typedef struct ARMCPUListState {
874 fprintf_function cpu_fprintf;
878 /* Sort alphabetically by type name, except for "any". */
879 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
881 ObjectClass *class_a = (ObjectClass *)a;
882 ObjectClass *class_b = (ObjectClass *)b;
883 const char *name_a, *name_b;
885 name_a = object_class_get_name(class_a);
886 name_b = object_class_get_name(class_b);
887 if (strcmp(name_a, "any") == 0) {
889 } else if (strcmp(name_b, "any") == 0) {
892 return strcmp(name_a, name_b);
896 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
898 ObjectClass *oc = data;
899 ARMCPUListState *s = user_data;
901 (*s->cpu_fprintf)(s->file, " %s\n",
902 object_class_get_name(oc));
905 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
907 ARMCPUListState s = {
909 .cpu_fprintf = cpu_fprintf,
913 list = object_class_get_list(TYPE_ARM_CPU, false);
914 list = g_slist_sort(list, arm_cpu_list_compare);
915 (*cpu_fprintf)(f, "Available CPUs:\n");
916 g_slist_foreach(list, arm_cpu_list_entry, &s);
920 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
921 const ARMCPRegInfo *r, void *opaque)
923 /* Define implementations of coprocessor registers.
924 * We store these in a hashtable because typically
925 * there are less than 150 registers in a space which
926 * is 16*16*16*8*8 = 262144 in size.
927 * Wildcarding is supported for the crm, opc1 and opc2 fields.
928 * If a register is defined twice then the second definition is
929 * used, so this can be used to define some generic registers and
930 * then override them with implementation specific variations.
931 * At least one of the original and the second definition should
932 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
933 * against accidental use.
936 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
937 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
938 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
939 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
940 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
941 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
942 /* 64 bit registers have only CRm and Opc1 fields */
943 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
944 /* Check that the register definition has enough info to handle
945 * reads and writes if they are permitted.
947 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
948 if (r->access & PL3_R) {
949 assert(r->fieldoffset || r->readfn);
951 if (r->access & PL3_W) {
952 assert(r->fieldoffset || r->writefn);
955 /* Bad type field probably means missing sentinel at end of reg list */
956 assert(cptype_valid(r->type));
957 for (crm = crmmin; crm <= crmmax; crm++) {
958 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
959 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
960 uint32_t *key = g_new(uint32_t, 1);
961 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
962 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
963 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
965 /* Make sure reginfo passed to helpers for wildcarded regs
966 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
971 /* Overriding of an existing definition must be explicitly
974 if (!(r->type & ARM_CP_OVERRIDE)) {
975 ARMCPRegInfo *oldreg;
976 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
977 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
978 fprintf(stderr, "Register redefined: cp=%d %d bit "
979 "crn=%d crm=%d opc1=%d opc2=%d, "
980 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
981 r2->crn, r2->crm, r2->opc1, r2->opc2,
982 oldreg->name, r2->name);
986 g_hash_table_insert(cpu->cp_regs, key, r2);
992 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
993 const ARMCPRegInfo *regs, void *opaque)
995 /* Define a whole list of registers */
996 const ARMCPRegInfo *r;
997 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
998 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1002 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1004 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1007 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1010 /* Helper coprocessor write function for write-ignore registers */
1014 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1016 /* Helper coprocessor write function for read-as-zero registers */
1021 static int bad_mode_switch(CPUARMState *env, int mode)
1023 /* Return true if it is not valid for us to switch to
1024 * this CPU mode (ie all the UNPREDICTABLE cases in
1025 * the ARM ARM CPSRWriteByInstr pseudocode).
1028 case ARM_CPU_MODE_USR:
1029 case ARM_CPU_MODE_SYS:
1030 case ARM_CPU_MODE_SVC:
1031 case ARM_CPU_MODE_ABT:
1032 case ARM_CPU_MODE_UND:
1033 case ARM_CPU_MODE_IRQ:
1034 case ARM_CPU_MODE_FIQ:
1041 uint32_t cpsr_read(CPUARMState *env)
1044 ZF = (env->ZF == 0);
1045 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
1046 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1047 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
1048 | ((env->condexec_bits & 0xfc) << 8)
1052 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1054 if (mask & CPSR_NZCV) {
1055 env->ZF = (~val) & CPSR_Z;
1057 env->CF = (val >> 29) & 1;
1058 env->VF = (val << 3) & 0x80000000;
1061 env->QF = ((val & CPSR_Q) != 0);
1063 env->thumb = ((val & CPSR_T) != 0);
1064 if (mask & CPSR_IT_0_1) {
1065 env->condexec_bits &= ~3;
1066 env->condexec_bits |= (val >> 25) & 3;
1068 if (mask & CPSR_IT_2_7) {
1069 env->condexec_bits &= 3;
1070 env->condexec_bits |= (val >> 8) & 0xfc;
1072 if (mask & CPSR_GE) {
1073 env->GE = (val >> 16) & 0xf;
1076 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
1077 if (bad_mode_switch(env, val & CPSR_M)) {
1078 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
1079 * We choose to ignore the attempt and leave the CPSR M field
1084 switch_mode(env, val & CPSR_M);
1087 mask &= ~CACHED_CPSR_BITS;
1088 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
1091 /* Sign/zero extend */
1092 uint32_t HELPER(sxtb16)(uint32_t x)
1095 res = (uint16_t)(int8_t)x;
1096 res |= (uint32_t)(int8_t)(x >> 16) << 16;
1100 uint32_t HELPER(uxtb16)(uint32_t x)
1103 res = (uint16_t)(uint8_t)x;
1104 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
1108 uint32_t HELPER(clz)(uint32_t x)
1113 int32_t HELPER(sdiv)(int32_t num, int32_t den)
1117 if (num == INT_MIN && den == -1)
1122 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
1129 uint32_t HELPER(rbit)(uint32_t x)
1131 x = ((x & 0xff000000) >> 24)
1132 | ((x & 0x00ff0000) >> 8)
1133 | ((x & 0x0000ff00) << 8)
1134 | ((x & 0x000000ff) << 24);
1135 x = ((x & 0xf0f0f0f0) >> 4)
1136 | ((x & 0x0f0f0f0f) << 4);
1137 x = ((x & 0x88888888) >> 3)
1138 | ((x & 0x44444444) >> 1)
1139 | ((x & 0x22222222) << 1)
1140 | ((x & 0x11111111) << 3);
1144 uint32_t HELPER(abs)(uint32_t x)
1146 return ((int32_t)x < 0) ? -x : x;
1149 #if defined(CONFIG_USER_ONLY)
1151 void do_interrupt (CPUARMState *env)
1153 env->exception_index = -1;
1156 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
1160 env->exception_index = EXCP_PREFETCH_ABORT;
1161 env->cp15.c6_insn = address;
1163 env->exception_index = EXCP_DATA_ABORT;
1164 env->cp15.c6_data = address;
1169 void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
1171 cpu_abort(env, "cp15 insn %08x\n", insn);
1174 uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
1176 cpu_abort(env, "cp15 insn %08x\n", insn);
1179 /* These should probably raise undefined insn exceptions. */
1180 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
1182 cpu_abort(env, "v7m_mrs %d\n", reg);
1185 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
1187 cpu_abort(env, "v7m_mrs %d\n", reg);
1191 void switch_mode(CPUARMState *env, int mode)
1193 if (mode != ARM_CPU_MODE_USR)
1194 cpu_abort(env, "Tried to switch out of user mode\n");
1197 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
1199 cpu_abort(env, "banked r13 write\n");
1202 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
1204 cpu_abort(env, "banked r13 read\n");
1210 /* Map CPU modes onto saved register banks. */
1211 static inline int bank_number(CPUARMState *env, int mode)
1214 case ARM_CPU_MODE_USR:
1215 case ARM_CPU_MODE_SYS:
1217 case ARM_CPU_MODE_SVC:
1219 case ARM_CPU_MODE_ABT:
1221 case ARM_CPU_MODE_UND:
1223 case ARM_CPU_MODE_IRQ:
1225 case ARM_CPU_MODE_FIQ:
1228 cpu_abort(env, "Bad mode %x\n", mode);
1232 void switch_mode(CPUARMState *env, int mode)
1237 old_mode = env->uncached_cpsr & CPSR_M;
1238 if (mode == old_mode)
1241 if (old_mode == ARM_CPU_MODE_FIQ) {
1242 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
1243 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
1244 } else if (mode == ARM_CPU_MODE_FIQ) {
1245 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
1246 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
1249 i = bank_number(env, old_mode);
1250 env->banked_r13[i] = env->regs[13];
1251 env->banked_r14[i] = env->regs[14];
1252 env->banked_spsr[i] = env->spsr;
1254 i = bank_number(env, mode);
1255 env->regs[13] = env->banked_r13[i];
1256 env->regs[14] = env->banked_r14[i];
1257 env->spsr = env->banked_spsr[i];
1260 static void v7m_push(CPUARMState *env, uint32_t val)
1263 stl_phys(env->regs[13], val);
1266 static uint32_t v7m_pop(CPUARMState *env)
1269 val = ldl_phys(env->regs[13]);
1274 /* Switch to V7M main or process stack pointer. */
1275 static void switch_v7m_sp(CPUARMState *env, int process)
1278 if (env->v7m.current_sp != process) {
1279 tmp = env->v7m.other_sp;
1280 env->v7m.other_sp = env->regs[13];
1281 env->regs[13] = tmp;
1282 env->v7m.current_sp = process;
1286 static void do_v7m_exception_exit(CPUARMState *env)
1291 type = env->regs[15];
1292 if (env->v7m.exception != 0)
1293 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
1295 /* Switch to the target stack. */
1296 switch_v7m_sp(env, (type & 4) != 0);
1297 /* Pop registers. */
1298 env->regs[0] = v7m_pop(env);
1299 env->regs[1] = v7m_pop(env);
1300 env->regs[2] = v7m_pop(env);
1301 env->regs[3] = v7m_pop(env);
1302 env->regs[12] = v7m_pop(env);
1303 env->regs[14] = v7m_pop(env);
1304 env->regs[15] = v7m_pop(env);
1305 xpsr = v7m_pop(env);
1306 xpsr_write(env, xpsr, 0xfffffdff);
1307 /* Undo stack alignment. */
1310 /* ??? The exception return type specifies Thread/Handler mode. However
1311 this is also implied by the xPSR value. Not sure what to do
1312 if there is a mismatch. */
1313 /* ??? Likewise for mismatches between the CONTROL register and the stack
1317 static void do_interrupt_v7m(CPUARMState *env)
1319 uint32_t xpsr = xpsr_read(env);
1324 if (env->v7m.current_sp)
1326 if (env->v7m.exception == 0)
1329 /* For exceptions we just mark as pending on the NVIC, and let that
1331 /* TODO: Need to escalate if the current priority is higher than the
1332 one we're raising. */
1333 switch (env->exception_index) {
1335 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
1339 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
1341 case EXCP_PREFETCH_ABORT:
1342 case EXCP_DATA_ABORT:
1343 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
1346 if (semihosting_enabled) {
1348 nr = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
1351 env->regs[0] = do_arm_semihosting(env);
1355 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
1358 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
1360 case EXCP_EXCEPTION_EXIT:
1361 do_v7m_exception_exit(env);
1364 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1365 return; /* Never happens. Keep compiler happy. */
1368 /* Align stack pointer. */
1369 /* ??? Should only do this if Configuration Control Register
1370 STACKALIGN bit is set. */
1371 if (env->regs[13] & 4) {
1375 /* Switch to the handler mode. */
1376 v7m_push(env, xpsr);
1377 v7m_push(env, env->regs[15]);
1378 v7m_push(env, env->regs[14]);
1379 v7m_push(env, env->regs[12]);
1380 v7m_push(env, env->regs[3]);
1381 v7m_push(env, env->regs[2]);
1382 v7m_push(env, env->regs[1]);
1383 v7m_push(env, env->regs[0]);
1384 switch_v7m_sp(env, 0);
1386 env->condexec_bits = 0;
1388 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
1389 env->regs[15] = addr & 0xfffffffe;
1390 env->thumb = addr & 1;
1393 /* Handle a CPU exception. */
1394 void do_interrupt(CPUARMState *env)
1402 do_interrupt_v7m(env);
1405 /* TODO: Vectored interrupt controller. */
1406 switch (env->exception_index) {
1408 new_mode = ARM_CPU_MODE_UND;
1417 if (semihosting_enabled) {
1418 /* Check for semihosting interrupt. */
1420 mask = arm_lduw_code(env->regs[15] - 2, env->bswap_code) & 0xff;
1422 mask = arm_ldl_code(env->regs[15] - 4, env->bswap_code)
1425 /* Only intercept calls from privileged modes, to provide some
1426 semblance of security. */
1427 if (((mask == 0x123456 && !env->thumb)
1428 || (mask == 0xab && env->thumb))
1429 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1430 env->regs[0] = do_arm_semihosting(env);
1434 new_mode = ARM_CPU_MODE_SVC;
1437 /* The PC already points to the next instruction. */
1441 /* See if this is a semihosting syscall. */
1442 if (env->thumb && semihosting_enabled) {
1443 mask = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
1445 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1447 env->regs[0] = do_arm_semihosting(env);
1451 env->cp15.c5_insn = 2;
1452 /* Fall through to prefetch abort. */
1453 case EXCP_PREFETCH_ABORT:
1454 new_mode = ARM_CPU_MODE_ABT;
1456 mask = CPSR_A | CPSR_I;
1459 case EXCP_DATA_ABORT:
1460 new_mode = ARM_CPU_MODE_ABT;
1462 mask = CPSR_A | CPSR_I;
1466 new_mode = ARM_CPU_MODE_IRQ;
1468 /* Disable IRQ and imprecise data aborts. */
1469 mask = CPSR_A | CPSR_I;
1473 new_mode = ARM_CPU_MODE_FIQ;
1475 /* Disable FIQ, IRQ and imprecise data aborts. */
1476 mask = CPSR_A | CPSR_I | CPSR_F;
1480 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1481 return; /* Never happens. Keep compiler happy. */
1484 if (env->cp15.c1_sys & (1 << 13)) {
1487 switch_mode (env, new_mode);
1488 env->spsr = cpsr_read(env);
1489 /* Clear IT bits. */
1490 env->condexec_bits = 0;
1491 /* Switch to the new mode, and to the correct instruction set. */
1492 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
1493 env->uncached_cpsr |= mask;
1494 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
1495 * and we should just guard the thumb mode on V4 */
1496 if (arm_feature(env, ARM_FEATURE_V4T)) {
1497 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
1499 env->regs[14] = env->regs[15] + offset;
1500 env->regs[15] = addr;
1501 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1504 /* Check section/page access permissions.
1505 Returns the page protection flags, or zero if the access is not
1507 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
1508 int access_type, int is_user)
1512 if (domain_prot == 3) {
1513 return PAGE_READ | PAGE_WRITE;
1516 if (access_type == 1)
1519 prot_ro = PAGE_READ;
1523 if (access_type == 1)
1525 switch ((env->cp15.c1_sys >> 8) & 3) {
1527 return is_user ? 0 : PAGE_READ;
1534 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
1539 return PAGE_READ | PAGE_WRITE;
1541 return PAGE_READ | PAGE_WRITE;
1542 case 4: /* Reserved. */
1545 return is_user ? 0 : prot_ro;
1549 if (!arm_feature (env, ARM_FEATURE_V6K))
1557 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
1561 if (address & env->cp15.c2_mask)
1562 table = env->cp15.c2_base1 & 0xffffc000;
1564 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
1566 table |= (address >> 18) & 0x3ffc;
1570 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
1571 int is_user, uint32_t *phys_ptr, int *prot,
1572 target_ulong *page_size)
1583 /* Pagetable walk. */
1584 /* Lookup l1 descriptor. */
1585 table = get_level1_table_address(env, address);
1586 desc = ldl_phys(table);
1588 domain = (desc >> 5) & 0x0f;
1589 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1591 /* Section translation fault. */
1595 if (domain_prot == 0 || domain_prot == 2) {
1597 code = 9; /* Section domain fault. */
1599 code = 11; /* Page domain fault. */
1604 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1605 ap = (desc >> 10) & 3;
1607 *page_size = 1024 * 1024;
1609 /* Lookup l2 entry. */
1611 /* Coarse pagetable. */
1612 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1614 /* Fine pagetable. */
1615 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1617 desc = ldl_phys(table);
1619 case 0: /* Page translation fault. */
1622 case 1: /* 64k page. */
1623 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1624 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1625 *page_size = 0x10000;
1627 case 2: /* 4k page. */
1628 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1629 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1630 *page_size = 0x1000;
1632 case 3: /* 1k page. */
1634 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1635 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1637 /* Page translation fault. */
1642 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1644 ap = (desc >> 4) & 3;
1648 /* Never happens, but compiler isn't smart enough to tell. */
1653 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
1655 /* Access permission fault. */
1659 *phys_ptr = phys_addr;
1662 return code | (domain << 4);
1665 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
1666 int is_user, uint32_t *phys_ptr, int *prot,
1667 target_ulong *page_size)
1679 /* Pagetable walk. */
1680 /* Lookup l1 descriptor. */
1681 table = get_level1_table_address(env, address);
1682 desc = ldl_phys(table);
1685 /* Section translation fault. */
1689 } else if (type == 2 && (desc & (1 << 18))) {
1693 /* Section or page. */
1694 domain = (desc >> 5) & 0x0f;
1696 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1697 if (domain_prot == 0 || domain_prot == 2) {
1699 code = 9; /* Section domain fault. */
1701 code = 11; /* Page domain fault. */
1705 if (desc & (1 << 18)) {
1707 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1708 *page_size = 0x1000000;
1711 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1712 *page_size = 0x100000;
1714 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1715 xn = desc & (1 << 4);
1718 /* Lookup l2 entry. */
1719 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1720 desc = ldl_phys(table);
1721 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1723 case 0: /* Page translation fault. */
1726 case 1: /* 64k page. */
1727 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1728 xn = desc & (1 << 15);
1729 *page_size = 0x10000;
1731 case 2: case 3: /* 4k page. */
1732 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1734 *page_size = 0x1000;
1737 /* Never happens, but compiler isn't smart enough to tell. */
1742 if (domain_prot == 3) {
1743 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1745 if (xn && access_type == 2)
1748 /* The simplified model uses AP[0] as an access control bit. */
1749 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1750 /* Access flag fault. */
1751 code = (code == 15) ? 6 : 3;
1754 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
1756 /* Access permission fault. */
1763 *phys_ptr = phys_addr;
1766 return code | (domain << 4);
1769 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type,
1770 int is_user, uint32_t *phys_ptr, int *prot)
1776 *phys_ptr = address;
1777 for (n = 7; n >= 0; n--) {
1778 base = env->cp15.c6_region[n];
1779 if ((base & 1) == 0)
1781 mask = 1 << ((base >> 1) & 0x1f);
1782 /* Keep this shift separate from the above to avoid an
1783 (undefined) << 32. */
1784 mask = (mask << 1) - 1;
1785 if (((base ^ address) & ~mask) == 0)
1791 if (access_type == 2) {
1792 mask = env->cp15.c5_insn;
1794 mask = env->cp15.c5_data;
1796 mask = (mask >> (n * 4)) & 0xf;
1803 *prot = PAGE_READ | PAGE_WRITE;
1808 *prot |= PAGE_WRITE;
1811 *prot = PAGE_READ | PAGE_WRITE;
1822 /* Bad permission. */
1829 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
1830 int access_type, int is_user,
1831 uint32_t *phys_ptr, int *prot,
1832 target_ulong *page_size)
1834 /* Fast Context Switch Extension. */
1835 if (address < 0x02000000)
1836 address += env->cp15.c13_fcse;
1838 if ((env->cp15.c1_sys & 1) == 0) {
1839 /* MMU/MPU disabled. */
1840 *phys_ptr = address;
1841 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1842 *page_size = TARGET_PAGE_SIZE;
1844 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1845 *page_size = TARGET_PAGE_SIZE;
1846 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1848 } else if (env->cp15.c1_sys & (1 << 23)) {
1849 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1852 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1857 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
1858 int access_type, int mmu_idx)
1861 target_ulong page_size;
1865 is_user = mmu_idx == MMU_USER_IDX;
1866 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1869 /* Map a single [sub]page. */
1870 phys_addr &= ~(uint32_t)0x3ff;
1871 address &= ~(uint32_t)0x3ff;
1872 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1876 if (access_type == 2) {
1877 env->cp15.c5_insn = ret;
1878 env->cp15.c6_insn = address;
1879 env->exception_index = EXCP_PREFETCH_ABORT;
1881 env->cp15.c5_data = ret;
1882 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1883 env->cp15.c5_data |= (1 << 11);
1884 env->cp15.c6_data = address;
1885 env->exception_index = EXCP_DATA_ABORT;
1890 target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
1893 target_ulong page_size;
1897 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1905 void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
1911 op1 = (insn >> 21) & 7;
1912 op2 = (insn >> 5) & 7;
1914 switch ((insn >> 16) & 0xf) {
1917 if (arm_feature(env, ARM_FEATURE_XSCALE))
1919 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1921 if (arm_feature(env, ARM_FEATURE_V7)
1922 && op1 == 2 && crm == 0 && op2 == 0) {
1923 env->cp15.c0_cssel = val & 0xf;
1927 case 1: /* System configuration. */
1928 if (arm_feature(env, ARM_FEATURE_V7)
1929 && op1 == 0 && crm == 1 && op2 == 0) {
1930 env->cp15.c1_scr = val;
1933 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1937 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1938 env->cp15.c1_sys = val;
1939 /* ??? Lots of these bits are not implemented. */
1940 /* This may enable/disable the MMU, so do a TLB flush. */
1943 case 1: /* Auxiliary control register. */
1944 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1945 env->cp15.c1_xscaleauxcr = val;
1948 /* Not implemented. */
1951 if (arm_feature(env, ARM_FEATURE_XSCALE))
1953 if (env->cp15.c1_coproc != val) {
1954 env->cp15.c1_coproc = val;
1955 /* ??? Is this safe when called from within a TB? */
1963 case 4: /* Reserved. */
1966 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1968 if (arm_feature(env, ARM_FEATURE_STRONGARM))
1969 break; /* Ignore ReadBuffer access */
1971 case 0: /* Cache lockdown. */
1973 case 0: /* L1 cache. */
1976 env->cp15.c9_data = val;
1979 env->cp15.c9_insn = val;
1985 case 1: /* L2 cache. */
1986 /* Ignore writes to L2 lockdown/auxiliary registers. */
1992 case 1: /* TCM memory region registers. */
1993 /* Not implemented. */
1999 case 12: /* Reserved. */
2004 /* ??? For debugging only. Should raise illegal instruction exception. */
2005 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
2006 (insn >> 16) & 0xf, crm, op1, op2);
2009 uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
2015 op1 = (insn >> 21) & 7;
2016 op2 = (insn >> 5) & 7;
2018 switch ((insn >> 16) & 0xf) {
2019 case 0: /* ID codes. */
2025 case 0: /* Device ID. */
2026 return env->cp15.c0_cpuid;
2027 case 1: /* Cache Type. */
2028 return env->cp15.c0_cachetype;
2029 case 2: /* TCM status. */
2031 case 3: /* TLB type register. */
2032 return 0; /* No lockable TLB entries. */
2034 /* The MPIDR was standardised in v7; prior to
2035 * this it was implemented only in the 11MPCore.
2036 * For all other pre-v7 cores it does not exist.
2038 if (arm_feature(env, ARM_FEATURE_V7) ||
2039 ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
2040 int mpidr = env->cpu_index;
2041 /* We don't support setting cluster ID ([8..11])
2042 * so these bits always RAZ.
2044 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2046 /* Cores which are uniprocessor (non-coherent)
2047 * but still implement the MP extensions set
2048 * bit 30. (For instance, A9UP.) However we do
2049 * not currently model any of those cores.
2054 /* otherwise fall through to the unimplemented-reg case */
2059 if (!arm_feature(env, ARM_FEATURE_V6))
2061 return env->cp15.c0_c1[op2];
2063 if (!arm_feature(env, ARM_FEATURE_V6))
2065 return env->cp15.c0_c2[op2];
2066 case 3: case 4: case 5: case 6: case 7:
2072 /* These registers aren't documented on arm11 cores. However
2073 Linux looks at them anyway. */
2074 if (!arm_feature(env, ARM_FEATURE_V6))
2078 if (!arm_feature(env, ARM_FEATURE_V7))
2083 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
2085 return env->cp15.c0_clid;
2091 if (op2 != 0 || crm != 0)
2093 return env->cp15.c0_cssel;
2097 case 1: /* System configuration. */
2098 if (arm_feature(env, ARM_FEATURE_V7)
2099 && op1 == 0 && crm == 1 && op2 == 0) {
2100 return env->cp15.c1_scr;
2102 if (arm_feature(env, ARM_FEATURE_OMAPCP))
2105 case 0: /* Control register. */
2106 return env->cp15.c1_sys;
2107 case 1: /* Auxiliary control register. */
2108 if (arm_feature(env, ARM_FEATURE_XSCALE))
2109 return env->cp15.c1_xscaleauxcr;
2110 if (!arm_feature(env, ARM_FEATURE_AUXCR))
2112 switch (ARM_CPUID(env)) {
2113 case ARM_CPUID_ARM1026:
2115 case ARM_CPUID_ARM1136:
2116 case ARM_CPUID_ARM1136_R2:
2117 case ARM_CPUID_ARM1176:
2119 case ARM_CPUID_ARM11MPCORE:
2121 case ARM_CPUID_CORTEXA8:
2123 case ARM_CPUID_CORTEXA9:
2124 case ARM_CPUID_CORTEXA15:
2129 case 2: /* Coprocessor access register. */
2130 if (arm_feature(env, ARM_FEATURE_XSCALE))
2132 return env->cp15.c1_coproc;
2136 case 4: /* Reserved. */
2140 case 0: /* Cache lockdown */
2142 case 0: /* L1 cache. */
2143 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2148 return env->cp15.c9_data;
2150 return env->cp15.c9_insn;
2154 case 1: /* L2 cache */
2155 /* L2 Lockdown and Auxiliary control. */
2158 /* L2 cache lockdown (A8 only) */
2161 /* L2 cache auxiliary control (A8) or control (A15) */
2162 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA15) {
2163 /* Linux wants the number of processors from here.
2164 * Might as well set the interrupt-controller bit too.
2166 return ((smp_cpus - 1) << 24) | (1 << 23);
2170 /* L2 cache extended control (A15) */
2183 case 11: /* TCM DMA control. */
2184 case 12: /* Reserved. */
2188 /* ??? For debugging only. Should raise illegal instruction exception. */
2189 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
2190 (insn >> 16) & 0xf, crm, op1, op2);
2194 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2196 if ((env->uncached_cpsr & CPSR_M) == mode) {
2197 env->regs[13] = val;
2199 env->banked_r13[bank_number(env, mode)] = val;
2203 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2205 if ((env->uncached_cpsr & CPSR_M) == mode) {
2206 return env->regs[13];
2208 return env->banked_r13[bank_number(env, mode)];
2212 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2216 return xpsr_read(env) & 0xf8000000;
2218 return xpsr_read(env) & 0xf80001ff;
2220 return xpsr_read(env) & 0xff00fc00;
2222 return xpsr_read(env) & 0xff00fdff;
2224 return xpsr_read(env) & 0x000001ff;
2226 return xpsr_read(env) & 0x0700fc00;
2228 return xpsr_read(env) & 0x0700edff;
2230 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2232 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2233 case 16: /* PRIMASK */
2234 return (env->uncached_cpsr & CPSR_I) != 0;
2235 case 17: /* BASEPRI */
2236 case 18: /* BASEPRI_MAX */
2237 return env->v7m.basepri;
2238 case 19: /* FAULTMASK */
2239 return (env->uncached_cpsr & CPSR_F) != 0;
2240 case 20: /* CONTROL */
2241 return env->v7m.control;
2243 /* ??? For debugging only. */
2244 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2249 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2253 xpsr_write(env, val, 0xf8000000);
2256 xpsr_write(env, val, 0xf8000000);
2259 xpsr_write(env, val, 0xfe00fc00);
2262 xpsr_write(env, val, 0xfe00fc00);
2265 /* IPSR bits are readonly. */
2268 xpsr_write(env, val, 0x0600fc00);
2271 xpsr_write(env, val, 0x0600fc00);
2274 if (env->v7m.current_sp)
2275 env->v7m.other_sp = val;
2277 env->regs[13] = val;
2280 if (env->v7m.current_sp)
2281 env->regs[13] = val;
2283 env->v7m.other_sp = val;
2285 case 16: /* PRIMASK */
2287 env->uncached_cpsr |= CPSR_I;
2289 env->uncached_cpsr &= ~CPSR_I;
2291 case 17: /* BASEPRI */
2292 env->v7m.basepri = val & 0xff;
2294 case 18: /* BASEPRI_MAX */
2296 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2297 env->v7m.basepri = val;
2299 case 19: /* FAULTMASK */
2301 env->uncached_cpsr |= CPSR_F;
2303 env->uncached_cpsr &= ~CPSR_F;
2305 case 20: /* CONTROL */
2306 env->v7m.control = val & 3;
2307 switch_v7m_sp(env, (val & 2) != 0);
2310 /* ??? For debugging only. */
2311 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2318 /* Note that signed overflow is undefined in C. The following routines are
2319 careful to use unsigned types where modulo arithmetic is required.
2320 Failure to do so _will_ break on newer gcc. */
2322 /* Signed saturating arithmetic. */
2324 /* Perform 16-bit signed saturating addition. */
2325 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2330 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2339 /* Perform 8-bit signed saturating addition. */
2340 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2345 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2354 /* Perform 16-bit signed saturating subtraction. */
2355 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2360 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2369 /* Perform 8-bit signed saturating subtraction. */
2370 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2375 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2384 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2385 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2386 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2387 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2390 #include "op_addsub.h"
2392 /* Unsigned saturating arithmetic. */
2393 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2402 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2410 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2419 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2427 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2428 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2429 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2430 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2433 #include "op_addsub.h"
2435 /* Signed modulo arithmetic. */
2436 #define SARITH16(a, b, n, op) do { \
2438 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2439 RESULT(sum, n, 16); \
2441 ge |= 3 << (n * 2); \
2444 #define SARITH8(a, b, n, op) do { \
2446 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2447 RESULT(sum, n, 8); \
2453 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2454 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2455 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2456 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2460 #include "op_addsub.h"
2462 /* Unsigned modulo arithmetic. */
2463 #define ADD16(a, b, n) do { \
2465 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2466 RESULT(sum, n, 16); \
2467 if ((sum >> 16) == 1) \
2468 ge |= 3 << (n * 2); \
2471 #define ADD8(a, b, n) do { \
2473 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2474 RESULT(sum, n, 8); \
2475 if ((sum >> 8) == 1) \
2479 #define SUB16(a, b, n) do { \
2481 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2482 RESULT(sum, n, 16); \
2483 if ((sum >> 16) == 0) \
2484 ge |= 3 << (n * 2); \
2487 #define SUB8(a, b, n) do { \
2489 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2490 RESULT(sum, n, 8); \
2491 if ((sum >> 8) == 0) \
2498 #include "op_addsub.h"
2500 /* Halved signed arithmetic. */
2501 #define ADD16(a, b, n) \
2502 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2503 #define SUB16(a, b, n) \
2504 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2505 #define ADD8(a, b, n) \
2506 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2507 #define SUB8(a, b, n) \
2508 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2511 #include "op_addsub.h"
2513 /* Halved unsigned arithmetic. */
2514 #define ADD16(a, b, n) \
2515 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2516 #define SUB16(a, b, n) \
2517 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2518 #define ADD8(a, b, n) \
2519 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2520 #define SUB8(a, b, n) \
2521 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2524 #include "op_addsub.h"
2526 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2534 /* Unsigned sum of absolute byte differences. */
2535 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2538 sum = do_usad(a, b);
2539 sum += do_usad(a >> 8, b >> 8);
2540 sum += do_usad(a >> 16, b >>16);
2541 sum += do_usad(a >> 24, b >> 24);
2545 /* For ARMv6 SEL instruction. */
2546 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2559 return (a & mask) | (b & ~mask);
2562 uint32_t HELPER(logicq_cc)(uint64_t val)
2564 return (val >> 32) | (val != 0);
2567 /* VFP support. We follow the convention used for VFP instrunctions:
2568 Single precition routines have a "s" suffix, double precision a
2571 /* Convert host exception flags to vfp form. */
2572 static inline int vfp_exceptbits_from_host(int host_bits)
2574 int target_bits = 0;
2576 if (host_bits & float_flag_invalid)
2578 if (host_bits & float_flag_divbyzero)
2580 if (host_bits & float_flag_overflow)
2582 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2584 if (host_bits & float_flag_inexact)
2585 target_bits |= 0x10;
2586 if (host_bits & float_flag_input_denormal)
2587 target_bits |= 0x80;
2591 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
2596 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2597 | (env->vfp.vec_len << 16)
2598 | (env->vfp.vec_stride << 20);
2599 i = get_float_exception_flags(&env->vfp.fp_status);
2600 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2601 fpscr |= vfp_exceptbits_from_host(i);
2605 uint32_t vfp_get_fpscr(CPUARMState *env)
2607 return HELPER(vfp_get_fpscr)(env);
2610 /* Convert vfp exception flags to target form. */
2611 static inline int vfp_exceptbits_to_host(int target_bits)
2615 if (target_bits & 1)
2616 host_bits |= float_flag_invalid;
2617 if (target_bits & 2)
2618 host_bits |= float_flag_divbyzero;
2619 if (target_bits & 4)
2620 host_bits |= float_flag_overflow;
2621 if (target_bits & 8)
2622 host_bits |= float_flag_underflow;
2623 if (target_bits & 0x10)
2624 host_bits |= float_flag_inexact;
2625 if (target_bits & 0x80)
2626 host_bits |= float_flag_input_denormal;
2630 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
2635 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2636 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2637 env->vfp.vec_len = (val >> 16) & 7;
2638 env->vfp.vec_stride = (val >> 20) & 3;
2641 if (changed & (3 << 22)) {
2642 i = (val >> 22) & 3;
2645 i = float_round_nearest_even;
2651 i = float_round_down;
2654 i = float_round_to_zero;
2657 set_float_rounding_mode(i, &env->vfp.fp_status);
2659 if (changed & (1 << 24)) {
2660 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2661 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2663 if (changed & (1 << 25))
2664 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2666 i = vfp_exceptbits_to_host(val);
2667 set_float_exception_flags(i, &env->vfp.fp_status);
2668 set_float_exception_flags(0, &env->vfp.standard_fp_status);
2671 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
2673 HELPER(vfp_set_fpscr)(env, val);
2676 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2678 #define VFP_BINOP(name) \
2679 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2681 float_status *fpst = fpstp; \
2682 return float32_ ## name(a, b, fpst); \
2684 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2686 float_status *fpst = fpstp; \
2687 return float64_ ## name(a, b, fpst); \
2695 float32 VFP_HELPER(neg, s)(float32 a)
2697 return float32_chs(a);
2700 float64 VFP_HELPER(neg, d)(float64 a)
2702 return float64_chs(a);
2705 float32 VFP_HELPER(abs, s)(float32 a)
2707 return float32_abs(a);
2710 float64 VFP_HELPER(abs, d)(float64 a)
2712 return float64_abs(a);
2715 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
2717 return float32_sqrt(a, &env->vfp.fp_status);
2720 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
2722 return float64_sqrt(a, &env->vfp.fp_status);
2725 /* XXX: check quiet/signaling case */
2726 #define DO_VFP_cmp(p, type) \
2727 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
2730 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2731 case 0: flags = 0x6; break; \
2732 case -1: flags = 0x8; break; \
2733 case 1: flags = 0x2; break; \
2734 default: case 2: flags = 0x3; break; \
2736 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2737 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2739 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
2742 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2743 case 0: flags = 0x6; break; \
2744 case -1: flags = 0x8; break; \
2745 case 1: flags = 0x2; break; \
2746 default: case 2: flags = 0x3; break; \
2748 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2749 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2751 DO_VFP_cmp(s, float32)
2752 DO_VFP_cmp(d, float64)
2755 /* Integer to float and float to integer conversions */
2757 #define CONV_ITOF(name, fsz, sign) \
2758 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2760 float_status *fpst = fpstp; \
2761 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
2764 #define CONV_FTOI(name, fsz, sign, round) \
2765 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2767 float_status *fpst = fpstp; \
2768 if (float##fsz##_is_any_nan(x)) { \
2769 float_raise(float_flag_invalid, fpst); \
2772 return float##fsz##_to_##sign##int32##round(x, fpst); \
2775 #define FLOAT_CONVS(name, p, fsz, sign) \
2776 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2777 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2778 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2780 FLOAT_CONVS(si, s, 32, )
2781 FLOAT_CONVS(si, d, 64, )
2782 FLOAT_CONVS(ui, s, 32, u)
2783 FLOAT_CONVS(ui, d, 64, u)
2789 /* floating point conversion */
2790 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
2792 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2793 /* ARM requires that S<->D conversion of any kind of NaN generates
2794 * a quiet NaN by forcing the most significant frac bit to 1.
2796 return float64_maybe_silence_nan(r);
2799 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
2801 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2802 /* ARM requires that S<->D conversion of any kind of NaN generates
2803 * a quiet NaN by forcing the most significant frac bit to 1.
2805 return float32_maybe_silence_nan(r);
2808 /* VFP3 fixed point conversion. */
2809 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2810 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2813 float_status *fpst = fpstp; \
2815 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2816 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2818 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2821 float_status *fpst = fpstp; \
2823 if (float##fsz##_is_any_nan(x)) { \
2824 float_raise(float_flag_invalid, fpst); \
2827 tmp = float##fsz##_scalbn(x, shift, fpst); \
2828 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2831 VFP_CONV_FIX(sh, d, 64, int16, )
2832 VFP_CONV_FIX(sl, d, 64, int32, )
2833 VFP_CONV_FIX(uh, d, 64, uint16, u)
2834 VFP_CONV_FIX(ul, d, 64, uint32, u)
2835 VFP_CONV_FIX(sh, s, 32, int16, )
2836 VFP_CONV_FIX(sl, s, 32, int32, )
2837 VFP_CONV_FIX(uh, s, 32, uint16, u)
2838 VFP_CONV_FIX(ul, s, 32, uint32, u)
2841 /* Half precision conversions. */
2842 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
2844 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2845 float32 r = float16_to_float32(make_float16(a), ieee, s);
2847 return float32_maybe_silence_nan(r);
2852 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
2854 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2855 float16 r = float32_to_float16(a, ieee, s);
2857 r = float16_maybe_silence_nan(r);
2859 return float16_val(r);
2862 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2864 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2867 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2869 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2872 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2874 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2877 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2879 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2882 #define float32_two make_float32(0x40000000)
2883 #define float32_three make_float32(0x40400000)
2884 #define float32_one_point_five make_float32(0x3fc00000)
2886 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
2888 float_status *s = &env->vfp.standard_fp_status;
2889 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2890 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2891 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2892 float_raise(float_flag_input_denormal, s);
2896 return float32_sub(float32_two, float32_mul(a, b, s), s);
2899 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
2901 float_status *s = &env->vfp.standard_fp_status;
2903 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2904 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2905 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2906 float_raise(float_flag_input_denormal, s);
2908 return float32_one_point_five;
2910 product = float32_mul(a, b, s);
2911 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
2916 /* Constants 256 and 512 are used in some helpers; we avoid relying on
2917 * int->float conversions at run-time. */
2918 #define float64_256 make_float64(0x4070000000000000LL)
2919 #define float64_512 make_float64(0x4080000000000000LL)
2921 /* The algorithm that must be used to calculate the estimate
2922 * is specified by the ARM ARM.
2924 static float64 recip_estimate(float64 a, CPUARMState *env)
2926 /* These calculations mustn't set any fp exception flags,
2927 * so we use a local copy of the fp_status.
2929 float_status dummy_status = env->vfp.standard_fp_status;
2930 float_status *s = &dummy_status;
2931 /* q = (int)(a * 512.0) */
2932 float64 q = float64_mul(float64_512, a, s);
2933 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2935 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2936 q = int64_to_float64(q_int, s);
2937 q = float64_add(q, float64_half, s);
2938 q = float64_div(q, float64_512, s);
2939 q = float64_div(float64_one, q, s);
2941 /* s = (int)(256.0 * r + 0.5) */
2942 q = float64_mul(q, float64_256, s);
2943 q = float64_add(q, float64_half, s);
2944 q_int = float64_to_int64_round_to_zero(q, s);
2946 /* return (double)s / 256.0 */
2947 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2950 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
2952 float_status *s = &env->vfp.standard_fp_status;
2954 uint32_t val32 = float32_val(a);
2957 int a_exp = (val32 & 0x7f800000) >> 23;
2958 int sign = val32 & 0x80000000;
2960 if (float32_is_any_nan(a)) {
2961 if (float32_is_signaling_nan(a)) {
2962 float_raise(float_flag_invalid, s);
2964 return float32_default_nan;
2965 } else if (float32_is_infinity(a)) {
2966 return float32_set_sign(float32_zero, float32_is_neg(a));
2967 } else if (float32_is_zero_or_denormal(a)) {
2968 if (!float32_is_zero(a)) {
2969 float_raise(float_flag_input_denormal, s);
2971 float_raise(float_flag_divbyzero, s);
2972 return float32_set_sign(float32_infinity, float32_is_neg(a));
2973 } else if (a_exp >= 253) {
2974 float_raise(float_flag_underflow, s);
2975 return float32_set_sign(float32_zero, float32_is_neg(a));
2978 f64 = make_float64((0x3feULL << 52)
2979 | ((int64_t)(val32 & 0x7fffff) << 29));
2981 result_exp = 253 - a_exp;
2983 f64 = recip_estimate(f64, env);
2986 | ((result_exp & 0xff) << 23)
2987 | ((float64_val(f64) >> 29) & 0x7fffff);
2988 return make_float32(val32);
2991 /* The algorithm that must be used to calculate the estimate
2992 * is specified by the ARM ARM.
2994 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
2996 /* These calculations mustn't set any fp exception flags,
2997 * so we use a local copy of the fp_status.
2999 float_status dummy_status = env->vfp.standard_fp_status;
3000 float_status *s = &dummy_status;
3004 if (float64_lt(a, float64_half, s)) {
3005 /* range 0.25 <= a < 0.5 */
3007 /* a in units of 1/512 rounded down */
3008 /* q0 = (int)(a * 512.0); */
3009 q = float64_mul(float64_512, a, s);
3010 q_int = float64_to_int64_round_to_zero(q, s);
3012 /* reciprocal root r */
3013 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3014 q = int64_to_float64(q_int, s);
3015 q = float64_add(q, float64_half, s);
3016 q = float64_div(q, float64_512, s);
3017 q = float64_sqrt(q, s);
3018 q = float64_div(float64_one, q, s);
3020 /* range 0.5 <= a < 1.0 */
3022 /* a in units of 1/256 rounded down */
3023 /* q1 = (int)(a * 256.0); */
3024 q = float64_mul(float64_256, a, s);
3025 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3027 /* reciprocal root r */
3028 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3029 q = int64_to_float64(q_int, s);
3030 q = float64_add(q, float64_half, s);
3031 q = float64_div(q, float64_256, s);
3032 q = float64_sqrt(q, s);
3033 q = float64_div(float64_one, q, s);
3035 /* r in units of 1/256 rounded to nearest */
3036 /* s = (int)(256.0 * r + 0.5); */
3038 q = float64_mul(q, float64_256,s );
3039 q = float64_add(q, float64_half, s);
3040 q_int = float64_to_int64_round_to_zero(q, s);
3042 /* return (double)s / 256.0;*/
3043 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3046 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3048 float_status *s = &env->vfp.standard_fp_status;
3054 val = float32_val(a);
3056 if (float32_is_any_nan(a)) {
3057 if (float32_is_signaling_nan(a)) {
3058 float_raise(float_flag_invalid, s);
3060 return float32_default_nan;
3061 } else if (float32_is_zero_or_denormal(a)) {
3062 if (!float32_is_zero(a)) {
3063 float_raise(float_flag_input_denormal, s);
3065 float_raise(float_flag_divbyzero, s);
3066 return float32_set_sign(float32_infinity, float32_is_neg(a));
3067 } else if (float32_is_neg(a)) {
3068 float_raise(float_flag_invalid, s);
3069 return float32_default_nan;
3070 } else if (float32_is_infinity(a)) {
3071 return float32_zero;
3074 /* Normalize to a double-precision value between 0.25 and 1.0,
3075 * preserving the parity of the exponent. */
3076 if ((val & 0x800000) == 0) {
3077 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3079 | ((uint64_t)(val & 0x7fffff) << 29));
3081 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3083 | ((uint64_t)(val & 0x7fffff) << 29));
3086 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3088 f64 = recip_sqrt_estimate(f64, env);
3090 val64 = float64_val(f64);
3092 val = ((result_exp & 0xff) << 23)
3093 | ((val64 >> 29) & 0x7fffff);
3094 return make_float32(val);
3097 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3101 if ((a & 0x80000000) == 0) {
3105 f64 = make_float64((0x3feULL << 52)
3106 | ((int64_t)(a & 0x7fffffff) << 21));
3108 f64 = recip_estimate (f64, env);
3110 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3113 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3117 if ((a & 0xc0000000) == 0) {
3121 if (a & 0x80000000) {
3122 f64 = make_float64((0x3feULL << 52)
3123 | ((uint64_t)(a & 0x7fffffff) << 21));
3124 } else { /* bits 31-30 == '01' */
3125 f64 = make_float64((0x3fdULL << 52)
3126 | ((uint64_t)(a & 0x3fffffff) << 22));
3129 f64 = recip_sqrt_estimate(f64, env);
3131 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3134 /* VFPv4 fused multiply-accumulate */
3135 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3137 float_status *fpst = fpstp;
3138 return float32_muladd(a, b, c, 0, fpst);
3141 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3143 float_status *fpst = fpstp;
3144 return float64_muladd(a, b, c, 0, fpst);