4 * Copyright (c) 2003 Fabrice Bellard
5 * Copyright (c) 2005 CodeSourcery, LLC
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #define REG (env->regs[0])
25 #include "op_template.h"
28 #define REG (env->regs[1])
29 #include "op_template.h"
32 #define REG (env->regs[2])
33 #include "op_template.h"
36 #define REG (env->regs[3])
37 #include "op_template.h"
40 #define REG (env->regs[4])
41 #include "op_template.h"
44 #define REG (env->regs[5])
45 #include "op_template.h"
48 #define REG (env->regs[6])
49 #include "op_template.h"
52 #define REG (env->regs[7])
53 #include "op_template.h"
56 #define REG (env->regs[8])
57 #include "op_template.h"
60 #define REG (env->regs[9])
61 #include "op_template.h"
64 #define REG (env->regs[10])
65 #include "op_template.h"
68 #define REG (env->regs[11])
69 #include "op_template.h"
72 #define REG (env->regs[12])
73 #include "op_template.h"
76 #define REG (env->regs[13])
77 #include "op_template.h"
80 #define REG (env->regs[14])
81 #include "op_template.h"
84 #define REG (env->regs[15])
85 #define SET_REG(x) REG = x & ~(uint32_t)1
86 #include "op_template.h"
88 void OPPROTO op_bx_T0(void)
90 env->regs[15] = T0 & ~(uint32_t)1;
91 env->thumb = (T0 & 1) != 0;
94 void OPPROTO op_movl_T0_0(void)
99 void OPPROTO op_movl_T0_im(void)
104 void OPPROTO op_movl_T0_T1(void)
109 void OPPROTO op_movl_T1_im(void)
114 void OPPROTO op_mov_CF_T1(void)
116 env->CF = ((uint32_t)T1) >> 31;
119 void OPPROTO op_movl_T2_im(void)
124 void OPPROTO op_addl_T1_im(void)
129 void OPPROTO op_addl_T1_T2(void)
134 void OPPROTO op_subl_T1_T2(void)
139 void OPPROTO op_addl_T0_T1(void)
144 void OPPROTO op_addl_T0_T1_cc(void)
151 env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
154 void OPPROTO op_adcl_T0_T1(void)
159 void OPPROTO op_adcl_T0_T1_cc(void)
168 env->CF = T0 <= src1;
170 env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
175 #define OPSUB(sub, sbc, res, T0, T1) \
177 void OPPROTO op_ ## sub ## l_T0_T1(void) \
182 void OPPROTO op_ ## sub ## l_T0_T1_cc(void) \
188 env->CF = src1 >= T1; \
189 env->VF = (src1 ^ T1) & (src1 ^ T0); \
193 void OPPROTO op_ ## sbc ## l_T0_T1(void) \
195 res = T0 - T1 + env->CF - 1; \
198 void OPPROTO op_ ## sbc ## l_T0_T1_cc(void) \
204 env->CF = src1 > T1; \
207 env->CF = src1 >= T1; \
209 env->VF = (src1 ^ T1) & (src1 ^ T0); \
215 OPSUB(sub, sbc, T0, T0, T1)
217 OPSUB(rsb, rsc, T0, T1, T0)
219 void OPPROTO op_andl_T0_T1(void)
224 void OPPROTO op_xorl_T0_T1(void)
229 void OPPROTO op_orl_T0_T1(void)
234 void OPPROTO op_bicl_T0_T1(void)
239 void OPPROTO op_notl_T1(void)
244 void OPPROTO op_logic_T0_cc(void)
249 void OPPROTO op_logic_T1_cc(void)
254 #define EIP (env->regs[15])
256 void OPPROTO op_test_eq(void)
259 GOTO_LABEL_PARAM(1);;
263 void OPPROTO op_test_ne(void)
266 GOTO_LABEL_PARAM(1);;
270 void OPPROTO op_test_cs(void)
277 void OPPROTO op_test_cc(void)
284 void OPPROTO op_test_mi(void)
286 if ((env->NZF & 0x80000000) != 0)
291 void OPPROTO op_test_pl(void)
293 if ((env->NZF & 0x80000000) == 0)
298 void OPPROTO op_test_vs(void)
300 if ((env->VF & 0x80000000) != 0)
305 void OPPROTO op_test_vc(void)
307 if ((env->VF & 0x80000000) == 0)
312 void OPPROTO op_test_hi(void)
314 if (env->CF != 0 && env->NZF != 0)
319 void OPPROTO op_test_ls(void)
321 if (env->CF == 0 || env->NZF == 0)
326 void OPPROTO op_test_ge(void)
328 if (((env->VF ^ env->NZF) & 0x80000000) == 0)
333 void OPPROTO op_test_lt(void)
335 if (((env->VF ^ env->NZF) & 0x80000000) != 0)
340 void OPPROTO op_test_gt(void)
342 if (env->NZF != 0 && ((env->VF ^ env->NZF) & 0x80000000) == 0)
347 void OPPROTO op_test_le(void)
349 if (env->NZF == 0 || ((env->VF ^ env->NZF) & 0x80000000) != 0)
354 void OPPROTO op_goto_tb0(void)
356 GOTO_TB(op_goto_tb0, PARAM1, 0);
359 void OPPROTO op_goto_tb1(void)
361 GOTO_TB(op_goto_tb1, PARAM1, 1);
364 void OPPROTO op_exit_tb(void)
369 void OPPROTO op_movl_T0_cpsr(void)
375 void OPPROTO op_movl_T0_spsr(void)
380 void OPPROTO op_movl_spsr_T0(void)
382 uint32_t mask = PARAM1;
383 env->spsr = (env->spsr & ~mask) | (T0 & mask);
386 void OPPROTO op_movl_cpsr_T0(void)
388 cpsr_write(env, T0, PARAM1);
392 void OPPROTO op_mul_T0_T1(void)
397 /* 64 bit unsigned mul */
398 void OPPROTO op_mull_T0_T1(void)
401 res = (uint64_t)T0 * (uint64_t)T1;
406 /* 64 bit signed mul */
407 void OPPROTO op_imull_T0_T1(void)
410 res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
415 /* 48 bit signed mul, top 32 bits */
416 void OPPROTO op_imulw_T0_T1(void)
419 res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
423 void OPPROTO op_addq_T0_T1(void)
426 res = ((uint64_t)T1 << 32) | T0;
427 res += ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
432 void OPPROTO op_addq_lo_T0_T1(void)
435 res = ((uint64_t)T1 << 32) | T0;
436 res += (uint64_t)(env->regs[PARAM1]);
441 void OPPROTO op_logicq_cc(void)
443 env->NZF = (T1 & 0x80000000) | ((T0 | T1) != 0);
448 #define MEMSUFFIX _raw
451 #if !defined(CONFIG_USER_ONLY)
452 #define MEMSUFFIX _user
454 #define MEMSUFFIX _kernel
462 void OPPROTO op_shll_T1_im(void)
467 void OPPROTO op_shrl_T1_im(void)
469 T1 = (uint32_t)T1 >> PARAM1;
472 void OPPROTO op_shrl_T1_0(void)
477 void OPPROTO op_sarl_T1_im(void)
479 T1 = (int32_t)T1 >> PARAM1;
482 void OPPROTO op_sarl_T1_0(void)
484 T1 = (int32_t)T1 >> 31;
487 void OPPROTO op_rorl_T1_im(void)
491 T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
494 void OPPROTO op_rrxl_T1(void)
496 T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31);
499 /* T1 based, set C flag */
500 void OPPROTO op_shll_T1_im_cc(void)
502 env->CF = (T1 >> (32 - PARAM1)) & 1;
506 void OPPROTO op_shrl_T1_im_cc(void)
508 env->CF = (T1 >> (PARAM1 - 1)) & 1;
509 T1 = (uint32_t)T1 >> PARAM1;
512 void OPPROTO op_shrl_T1_0_cc(void)
514 env->CF = (T1 >> 31) & 1;
518 void OPPROTO op_sarl_T1_im_cc(void)
520 env->CF = (T1 >> (PARAM1 - 1)) & 1;
521 T1 = (int32_t)T1 >> PARAM1;
524 void OPPROTO op_sarl_T1_0_cc(void)
526 env->CF = (T1 >> 31) & 1;
527 T1 = (int32_t)T1 >> 31;
530 void OPPROTO op_rorl_T1_im_cc(void)
534 env->CF = (T1 >> (shift - 1)) & 1;
535 T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
538 void OPPROTO op_rrxl_T1_cc(void)
542 T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31);
547 void OPPROTO op_shll_T2_im(void)
552 void OPPROTO op_shrl_T2_im(void)
554 T2 = (uint32_t)T2 >> PARAM1;
557 void OPPROTO op_shrl_T2_0(void)
562 void OPPROTO op_sarl_T2_im(void)
564 T2 = (int32_t)T2 >> PARAM1;
567 void OPPROTO op_sarl_T2_0(void)
569 T2 = (int32_t)T2 >> 31;
572 void OPPROTO op_rorl_T2_im(void)
576 T2 = ((uint32_t)T2 >> shift) | (T2 << (32 - shift));
579 void OPPROTO op_rrxl_T2(void)
581 T2 = ((uint32_t)T2 >> 1) | ((uint32_t)env->CF << 31);
584 /* T1 based, use T0 as shift count */
586 void OPPROTO op_shll_T1_T0(void)
597 void OPPROTO op_shrl_T1_T0(void)
604 T1 = (uint32_t)T1 >> shift;
608 void OPPROTO op_sarl_T1_T0(void)
614 T1 = (int32_t)T1 >> shift;
617 void OPPROTO op_rorl_T1_T0(void)
622 T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
627 /* T1 based, use T0 as shift count and compute CF */
629 void OPPROTO op_shll_T1_T0_cc(void)
639 } else if (shift != 0) {
640 env->CF = (T1 >> (32 - shift)) & 1;
646 void OPPROTO op_shrl_T1_T0_cc(void)
652 env->CF = (T1 >> 31) & 1;
656 } else if (shift != 0) {
657 env->CF = (T1 >> (shift - 1)) & 1;
658 T1 = (uint32_t)T1 >> shift;
663 void OPPROTO op_sarl_T1_T0_cc(void)
668 env->CF = (T1 >> 31) & 1;
669 T1 = (int32_t)T1 >> 31;
671 env->CF = (T1 >> (shift - 1)) & 1;
672 T1 = (int32_t)T1 >> shift;
677 void OPPROTO op_rorl_T1_T0_cc(void)
681 shift = shift1 & 0x1f;
684 env->CF = (T1 >> 31) & 1;
686 env->CF = (T1 >> (shift - 1)) & 1;
687 T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
693 void OPPROTO op_clz_T0(void)
696 for (count = 32; T0 > 0; count--)
702 void OPPROTO op_sarl_T0_im(void)
704 T0 = (int32_t)T0 >> PARAM1;
707 /* Sign/zero extend */
708 void OPPROTO op_sxth_T0(void)
713 void OPPROTO op_sxth_T1(void)
718 void OPPROTO op_sxtb_T1(void)
723 void OPPROTO op_uxtb_T1(void)
728 void OPPROTO op_uxth_T1(void)
733 void OPPROTO op_sxtb16_T1(void)
736 res = (uint16_t)(int8_t)T1;
737 res |= (uint32_t)(int8_t)(T1 >> 16) << 16;
741 void OPPROTO op_uxtb16_T1(void)
744 res = (uint16_t)(uint8_t)T1;
745 res |= (uint32_t)(uint8_t)(T1 >> 16) << 16;
749 #define SIGNBIT (uint32_t)0x80000000
750 /* saturating arithmetic */
751 void OPPROTO op_addl_T0_T1_setq(void)
756 if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT))
763 void OPPROTO op_addl_T0_T1_saturate(void)
768 if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT)) {
781 void OPPROTO op_subl_T0_T1_saturate(void)
786 if (((res ^ T0) & SIGNBIT) && ((T0 ^ T1) & SIGNBIT)) {
799 void OPPROTO op_double_T1_saturate(void)
804 if (val >= 0x40000000) {
807 } else if (val <= (int32_t)0xc0000000) {
816 /* thumb shift by immediate */
817 void OPPROTO op_shll_T0_im_thumb(void)
822 env->CF = (T1 >> (32 - shift)) & 1;
829 void OPPROTO op_shrl_T0_im_thumb(void)
835 env->CF = ((uint32_t)shift) >> 31;
838 env->CF = (T0 >> (shift - 1)) & 1;
845 void OPPROTO op_sarl_T0_im_thumb(void)
851 T0 = ((int32_t)T0) >> 31;
854 env->CF = (T0 >> (shift - 1)) & 1;
855 T0 = ((int32_t)T0) >> shift;
863 void OPPROTO op_swi(void)
865 env->exception_index = EXCP_SWI;
869 void OPPROTO op_undef_insn(void)
871 env->exception_index = EXCP_UDEF;
875 void OPPROTO op_debug(void)
877 env->exception_index = EXCP_DEBUG;
881 void OPPROTO op_wfi(void)
883 env->exception_index = EXCP_HLT;
888 void OPPROTO op_bkpt(void)
890 env->exception_index = EXCP_BKPT;
894 /* VFP support. We follow the convention used for VFP instrunctions:
895 Single precition routines have a "s" suffix, double precision a
898 #define VFP_OP(name, p) void OPPROTO op_vfp_##name##p(void)
900 #define VFP_BINOP(name) \
903 FT0s = float32_ ## name (FT0s, FT1s, &env->vfp.fp_status); \
907 FT0d = float64_ ## name (FT0d, FT1d, &env->vfp.fp_status); \
915 #define VFP_HELPER(name) \
918 do_vfp_##name##s(); \
922 do_vfp_##name##d(); \
930 /* XXX: Will this do the right thing for NANs. Should invert the signbit
931 without looking at the rest of the value. */
934 FT0s = float32_chs(FT0s);
939 FT0d = float64_chs(FT0d);
962 /* Helper routines to perform bitwise copies between float and int. */
963 static inline float32 vfp_itos(uint32_t i)
974 static inline uint32_t vfp_stoi(float32 s)
985 /* Integer to float conversion. */
988 FT0s = uint32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
993 FT0d = uint32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
998 FT0s = int32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
1003 FT0d = int32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
1006 /* Float to integer conversion. */
1009 FT0s = vfp_itos(float32_to_uint32(FT0s, &env->vfp.fp_status));
1014 FT0s = vfp_itos(float64_to_uint32(FT0d, &env->vfp.fp_status));
1019 FT0s = vfp_itos(float32_to_int32(FT0s, &env->vfp.fp_status));
1024 FT0s = vfp_itos(float64_to_int32(FT0d, &env->vfp.fp_status));
1027 /* TODO: Set rounding mode properly. */
1030 FT0s = vfp_itos(float32_to_uint32_round_to_zero(FT0s, &env->vfp.fp_status));
1035 FT0s = vfp_itos(float64_to_uint32_round_to_zero(FT0d, &env->vfp.fp_status));
1040 FT0s = vfp_itos(float32_to_int32_round_to_zero(FT0s, &env->vfp.fp_status));
1045 FT0s = vfp_itos(float64_to_int32_round_to_zero(FT0d, &env->vfp.fp_status));
1048 /* floating point conversion */
1051 FT0d = float32_to_float64(FT0s, &env->vfp.fp_status);
1056 FT0s = float64_to_float32(FT0d, &env->vfp.fp_status);
1059 /* Get and Put values from registers. */
1060 VFP_OP(getreg_F0, d)
1062 FT0d = *(float64 *)((char *) env + PARAM1);
1065 VFP_OP(getreg_F0, s)
1067 FT0s = *(float32 *)((char *) env + PARAM1);
1070 VFP_OP(getreg_F1, d)
1072 FT1d = *(float64 *)((char *) env + PARAM1);
1075 VFP_OP(getreg_F1, s)
1077 FT1s = *(float32 *)((char *) env + PARAM1);
1080 VFP_OP(setreg_F0, d)
1082 *(float64 *)((char *) env + PARAM1) = FT0d;
1085 VFP_OP(setreg_F0, s)
1087 *(float32 *)((char *) env + PARAM1) = FT0s;
1090 void OPPROTO op_vfp_movl_T0_fpscr(void)
1092 do_vfp_get_fpscr ();
1095 void OPPROTO op_vfp_movl_T0_fpscr_flags(void)
1097 T0 = env->vfp.fpscr & (0xf << 28);
1100 void OPPROTO op_vfp_movl_fpscr_T0(void)
1105 /* Move between FT0s to T0 */
1106 void OPPROTO op_vfp_mrs(void)
1108 T0 = vfp_stoi(FT0s);
1111 void OPPROTO op_vfp_msr(void)
1113 FT0s = vfp_itos(T0);
1116 /* Move between FT0d and {T0,T1} */
1117 void OPPROTO op_vfp_mrrd(void)
1126 void OPPROTO op_vfp_mdrr(void)
1135 /* Copy the most significant bit to T0 to all bits of T1. */
1136 void OPPROTO op_signbit_T1_T0(void)
1138 T1 = (int32_t)T0 >> 31;
1141 void OPPROTO op_movl_cp15_T0(void)
1143 helper_set_cp15(env, PARAM1, T0);
1147 void OPPROTO op_movl_T0_cp15(void)
1149 T0 = helper_get_cp15(env, PARAM1);
1153 /* Access to user mode registers from privileged modes. */
1154 void OPPROTO op_movl_T0_user(void)
1158 T0 = env->banked_r13[0];
1159 } else if (regno == 14) {
1160 T0 = env->banked_r14[0];
1161 } else if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
1162 T0 = env->usr_regs[regno - 8];
1164 T0 = env->regs[regno];
1170 void OPPROTO op_movl_user_T0(void)
1174 env->banked_r13[0] = T0;
1175 } else if (regno == 14) {
1176 env->banked_r14[0] = T0;
1177 } else if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
1178 env->usr_regs[regno - 8] = T0;
1180 env->regs[regno] = T0;