2 * QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
4 * Copyright (c) 2003-2005, 2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu-timer.h"
32 #if defined(DEBUG_NVRAM)
33 #define NVRAM_PRINTF(fmt, args...) do { printf(fmt , ##args); } while (0)
35 #define NVRAM_PRINTF(fmt, args...) do { } while (0)
39 * The M48T02, M48T08 and M48T59 chips are very similar. The newer '59 has
40 * alarm and a watchdog timer and related control registers. In the
41 * PPC platform there is also a nvram lock function.
44 /* Model parameters */
45 int type; // 2 = m48t02, 8 = m48t08, 59 = m48t59
46 /* Hardware parameters */
54 /* Alarm & watchdog */
56 struct QEMUTimer *alrm_timer;
57 struct QEMUTimer *wd_timer;
64 /* Fake timer functions */
65 /* Generic helpers for BCD */
66 static inline uint8_t toBCD (uint8_t value)
68 return (((value / 10) % 10) << 4) | (value % 10);
71 static inline uint8_t fromBCD (uint8_t BCD)
73 return ((BCD >> 4) * 10) + (BCD & 0x0F);
76 /* Alarm management */
77 static void alarm_cb (void *opaque)
81 m48t59_t *NVRAM = opaque;
83 qemu_set_irq(NVRAM->IRQ, 1);
84 if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
85 (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
86 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
87 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
88 /* Repeat once a month */
89 qemu_get_timedate(&tm, NVRAM->time_offset);
91 if (tm.tm_mon == 13) {
95 next_time = qemu_timedate_diff(&tm) - NVRAM->time_offset;
96 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
97 (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
98 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
99 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
100 /* Repeat once a day */
101 next_time = 24 * 60 * 60;
102 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
103 (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
104 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
105 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
106 /* Repeat once an hour */
108 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
109 (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
110 (NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
111 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
112 /* Repeat once a minute */
115 /* Repeat once a second */
118 qemu_mod_timer(NVRAM->alrm_timer, qemu_get_clock(vm_clock) +
120 qemu_set_irq(NVRAM->IRQ, 0);
123 static void set_alarm (m48t59_t *NVRAM)
126 if (NVRAM->alrm_timer != NULL) {
127 qemu_del_timer(NVRAM->alrm_timer);
128 diff = qemu_timedate_diff(&NVRAM->alarm) - NVRAM->time_offset;
130 qemu_mod_timer(NVRAM->alrm_timer, diff * 1000);
134 /* RTC management helpers */
135 static inline void get_time (m48t59_t *NVRAM, struct tm *tm)
137 qemu_get_timedate(tm, NVRAM->time_offset);
140 static void set_time (m48t59_t *NVRAM, struct tm *tm)
142 NVRAM->time_offset = qemu_timedate_diff(tm);
146 /* Watchdog management */
147 static void watchdog_cb (void *opaque)
149 m48t59_t *NVRAM = opaque;
151 NVRAM->buffer[0x1FF0] |= 0x80;
152 if (NVRAM->buffer[0x1FF7] & 0x80) {
153 NVRAM->buffer[0x1FF7] = 0x00;
154 NVRAM->buffer[0x1FFC] &= ~0x40;
155 /* May it be a hw CPU Reset instead ? */
156 qemu_system_reset_request();
158 qemu_set_irq(NVRAM->IRQ, 1);
159 qemu_set_irq(NVRAM->IRQ, 0);
163 static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value)
165 uint64_t interval; /* in 1/16 seconds */
167 NVRAM->buffer[0x1FF0] &= ~0x80;
168 if (NVRAM->wd_timer != NULL) {
169 qemu_del_timer(NVRAM->wd_timer);
171 interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
172 qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
173 ((interval * 1000) >> 4));
178 /* Direct access to NVRAM */
179 void m48t59_write (void *opaque, uint32_t addr, uint32_t val)
181 m48t59_t *NVRAM = opaque;
185 if (addr > 0x1FF8 && addr < 0x2000)
186 NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
188 /* check for NVRAM access */
189 if ((NVRAM->type == 2 && addr < 0x7f8) ||
190 (NVRAM->type == 8 && addr < 0x1ff8) ||
191 (NVRAM->type == 59 && addr < 0x1ff0))
197 /* flags register : read-only */
204 tmp = fromBCD(val & 0x7F);
205 if (tmp >= 0 && tmp <= 59) {
206 NVRAM->alarm.tm_sec = tmp;
207 NVRAM->buffer[0x1FF2] = val;
213 tmp = fromBCD(val & 0x7F);
214 if (tmp >= 0 && tmp <= 59) {
215 NVRAM->alarm.tm_min = tmp;
216 NVRAM->buffer[0x1FF3] = val;
222 tmp = fromBCD(val & 0x3F);
223 if (tmp >= 0 && tmp <= 23) {
224 NVRAM->alarm.tm_hour = tmp;
225 NVRAM->buffer[0x1FF4] = val;
231 tmp = fromBCD(val & 0x1F);
233 NVRAM->alarm.tm_mday = tmp;
234 NVRAM->buffer[0x1FF5] = val;
240 NVRAM->buffer[0x1FF6] = val;
244 NVRAM->buffer[0x1FF7] = val;
245 set_up_watchdog(NVRAM, val);
250 NVRAM->buffer[addr] = (val & ~0xA0) | 0x90;
255 tmp = fromBCD(val & 0x7F);
256 if (tmp >= 0 && tmp <= 59) {
257 get_time(NVRAM, &tm);
259 set_time(NVRAM, &tm);
261 if ((val & 0x80) ^ (NVRAM->buffer[addr] & 0x80)) {
263 NVRAM->stop_time = time(NULL);
265 NVRAM->time_offset += NVRAM->stop_time - time(NULL);
266 NVRAM->stop_time = 0;
269 NVRAM->buffer[addr] = val & 0x80;
274 tmp = fromBCD(val & 0x7F);
275 if (tmp >= 0 && tmp <= 59) {
276 get_time(NVRAM, &tm);
278 set_time(NVRAM, &tm);
284 tmp = fromBCD(val & 0x3F);
285 if (tmp >= 0 && tmp <= 23) {
286 get_time(NVRAM, &tm);
288 set_time(NVRAM, &tm);
293 /* day of the week / century */
294 tmp = fromBCD(val & 0x07);
295 get_time(NVRAM, &tm);
297 set_time(NVRAM, &tm);
298 NVRAM->buffer[addr] = val & 0x40;
303 tmp = fromBCD(val & 0x1F);
305 get_time(NVRAM, &tm);
307 set_time(NVRAM, &tm);
313 tmp = fromBCD(val & 0x1F);
314 if (tmp >= 1 && tmp <= 12) {
315 get_time(NVRAM, &tm);
317 set_time(NVRAM, &tm);
324 if (tmp >= 0 && tmp <= 99) {
325 get_time(NVRAM, &tm);
326 if (NVRAM->type == 8)
327 tm.tm_year = fromBCD(val) + 68; // Base year is 1968
329 tm.tm_year = fromBCD(val);
330 set_time(NVRAM, &tm);
334 /* Check lock registers state */
335 if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
337 if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
340 if (addr < NVRAM->size) {
341 NVRAM->buffer[addr] = val & 0xFF;
347 uint32_t m48t59_read (void *opaque, uint32_t addr)
349 m48t59_t *NVRAM = opaque;
351 uint32_t retval = 0xFF;
353 /* check for NVRAM access */
354 if ((NVRAM->type == 2 && addr < 0x078f) ||
355 (NVRAM->type == 8 && addr < 0x1ff8) ||
356 (NVRAM->type == 59 && addr < 0x1ff0))
384 /* A read resets the watchdog */
385 set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
394 get_time(NVRAM, &tm);
395 retval = (NVRAM->buffer[addr] & 0x80) | toBCD(tm.tm_sec);
400 get_time(NVRAM, &tm);
401 retval = toBCD(tm.tm_min);
406 get_time(NVRAM, &tm);
407 retval = toBCD(tm.tm_hour);
411 /* day of the week / century */
412 get_time(NVRAM, &tm);
413 retval = NVRAM->buffer[addr] | tm.tm_wday;
418 get_time(NVRAM, &tm);
419 retval = toBCD(tm.tm_mday);
424 get_time(NVRAM, &tm);
425 retval = toBCD(tm.tm_mon + 1);
430 get_time(NVRAM, &tm);
431 if (NVRAM->type == 8)
432 retval = toBCD(tm.tm_year - 68); // Base year is 1968
434 retval = toBCD(tm.tm_year);
437 /* Check lock registers state */
438 if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
440 if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
443 if (addr < NVRAM->size) {
444 retval = NVRAM->buffer[addr];
448 if (addr > 0x1FF9 && addr < 0x2000)
449 NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
454 void m48t59_set_addr (void *opaque, uint32_t addr)
456 m48t59_t *NVRAM = opaque;
461 void m48t59_toggle_lock (void *opaque, int lock)
463 m48t59_t *NVRAM = opaque;
465 NVRAM->lock ^= 1 << lock;
468 /* IO access to NVRAM */
469 static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
471 m48t59_t *NVRAM = opaque;
473 addr -= NVRAM->io_base;
474 NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
477 NVRAM->addr &= ~0x00FF;
481 NVRAM->addr &= ~0xFF00;
482 NVRAM->addr |= val << 8;
485 m48t59_write(NVRAM, val, NVRAM->addr);
486 NVRAM->addr = 0x0000;
493 static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
495 m48t59_t *NVRAM = opaque;
498 addr -= NVRAM->io_base;
501 retval = m48t59_read(NVRAM, NVRAM->addr);
507 NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
512 static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
514 m48t59_t *NVRAM = opaque;
516 m48t59_write(NVRAM, addr, value & 0xff);
519 static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
521 m48t59_t *NVRAM = opaque;
523 m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
524 m48t59_write(NVRAM, addr + 1, value & 0xff);
527 static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
529 m48t59_t *NVRAM = opaque;
531 m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
532 m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
533 m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
534 m48t59_write(NVRAM, addr + 3, value & 0xff);
537 static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
539 m48t59_t *NVRAM = opaque;
542 retval = m48t59_read(NVRAM, addr);
546 static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
548 m48t59_t *NVRAM = opaque;
551 retval = m48t59_read(NVRAM, addr) << 8;
552 retval |= m48t59_read(NVRAM, addr + 1);
556 static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
558 m48t59_t *NVRAM = opaque;
561 retval = m48t59_read(NVRAM, addr) << 24;
562 retval |= m48t59_read(NVRAM, addr + 1) << 16;
563 retval |= m48t59_read(NVRAM, addr + 2) << 8;
564 retval |= m48t59_read(NVRAM, addr + 3);
568 static CPUWriteMemoryFunc *nvram_write[] = {
574 static CPUReadMemoryFunc *nvram_read[] = {
580 static void m48t59_save(QEMUFile *f, void *opaque)
582 m48t59_t *s = opaque;
584 qemu_put_8s(f, &s->lock);
585 qemu_put_be16s(f, &s->addr);
586 qemu_put_buffer(f, s->buffer, s->size);
589 static int m48t59_load(QEMUFile *f, void *opaque, int version_id)
591 m48t59_t *s = opaque;
596 qemu_get_8s(f, &s->lock);
597 qemu_get_be16s(f, &s->addr);
598 qemu_get_buffer(f, s->buffer, s->size);
603 static void m48t59_reset(void *opaque)
605 m48t59_t *NVRAM = opaque;
609 if (NVRAM->alrm_timer != NULL)
610 qemu_del_timer(NVRAM->alrm_timer);
612 if (NVRAM->wd_timer != NULL)
613 qemu_del_timer(NVRAM->wd_timer);
616 /* Initialisation routine */
617 m48t59_t *m48t59_init (qemu_irq IRQ, target_phys_addr_t mem_base,
618 uint32_t io_base, uint16_t size,
622 target_phys_addr_t save_base;
624 s = qemu_mallocz(sizeof(m48t59_t));
627 s->buffer = qemu_mallocz(size);
634 s->io_base = io_base;
637 register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s);
638 register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s);
641 s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s);
642 cpu_register_physical_memory(mem_base, size, s->mem_index);
645 s->alrm_timer = qemu_new_timer(vm_clock, &alarm_cb, s);
646 s->wd_timer = qemu_new_timer(vm_clock, &watchdog_cb, s);
648 qemu_get_timedate(&s->alarm, 0);
650 qemu_register_reset(m48t59_reset, s);
651 save_base = mem_base ? mem_base : io_base;
652 register_savevm("m48t59", save_base, 1, m48t59_save, m48t59_load, s);