2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/blockjob_int.h"
30 #include "block/block_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
38 int64_t offset, int bytes, BdrvRequestFlags flags);
40 void bdrv_parent_drained_begin(BlockDriverState *bs)
44 QLIST_FOREACH(c, &bs->parents, next_parent) {
45 if (c->role->drained_begin) {
46 c->role->drained_begin(c);
51 void bdrv_parent_drained_end(BlockDriverState *bs)
55 QLIST_FOREACH(c, &bs->parents, next_parent) {
56 if (c->role->drained_end) {
57 c->role->drained_end(c);
62 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
64 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
65 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
66 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
67 src->opt_mem_alignment);
68 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
69 src->min_mem_alignment);
70 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
73 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
75 BlockDriver *drv = bs->drv;
76 Error *local_err = NULL;
78 memset(&bs->bl, 0, sizeof(bs->bl));
84 /* Default alignment based on whether driver has byte interface */
85 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
87 /* Take some limits from the children as a default */
89 bdrv_refresh_limits(bs->file->bs, &local_err);
91 error_propagate(errp, local_err);
94 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
96 bs->bl.min_mem_alignment = 512;
97 bs->bl.opt_mem_alignment = getpagesize();
99 /* Safe default since most protocols use readv()/writev()/etc */
100 bs->bl.max_iov = IOV_MAX;
104 bdrv_refresh_limits(bs->backing->bs, &local_err);
106 error_propagate(errp, local_err);
109 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
112 /* Then let the driver override it */
113 if (drv->bdrv_refresh_limits) {
114 drv->bdrv_refresh_limits(bs, errp);
119 * The copy-on-read flag is actually a reference count so multiple users may
120 * use the feature without worrying about clobbering its previous state.
121 * Copy-on-read stays enabled until all users have called to disable it.
123 void bdrv_enable_copy_on_read(BlockDriverState *bs)
125 atomic_inc(&bs->copy_on_read);
128 void bdrv_disable_copy_on_read(BlockDriverState *bs)
130 int old = atomic_fetch_dec(&bs->copy_on_read);
134 /* Check if any requests are in-flight (including throttled requests) */
135 bool bdrv_requests_pending(BlockDriverState *bs)
139 if (atomic_read(&bs->in_flight)) {
143 QLIST_FOREACH(child, &bs->children, next) {
144 if (bdrv_requests_pending(child->bs)) {
152 static bool bdrv_drain_recurse(BlockDriverState *bs)
154 BdrvChild *child, *tmp;
157 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
159 if (bs->drv && bs->drv->bdrv_drain) {
160 bs->drv->bdrv_drain(bs);
163 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
164 BlockDriverState *bs = child->bs;
166 qemu_get_current_aio_context() == qemu_get_aio_context();
167 assert(bs->refcnt > 0);
169 /* In case the recursive bdrv_drain_recurse processes a
170 * block_job_defer_to_main_loop BH and modifies the graph,
171 * let's hold a reference to bs until we are done.
173 * IOThread doesn't have such a BH, and it is not safe to call
174 * bdrv_unref without BQL, so skip doing it there.
178 waited |= bdrv_drain_recurse(bs);
189 BlockDriverState *bs;
193 static void bdrv_co_drain_bh_cb(void *opaque)
195 BdrvCoDrainData *data = opaque;
196 Coroutine *co = data->co;
197 BlockDriverState *bs = data->bs;
199 bdrv_dec_in_flight(bs);
200 bdrv_drained_begin(bs);
205 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
207 BdrvCoDrainData data;
209 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
210 * other coroutines run if they were queued from
211 * qemu_co_queue_run_restart(). */
213 assert(qemu_in_coroutine());
214 data = (BdrvCoDrainData) {
215 .co = qemu_coroutine_self(),
219 bdrv_inc_in_flight(bs);
220 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
221 bdrv_co_drain_bh_cb, &data);
223 qemu_coroutine_yield();
224 /* If we are resumed from some other event (such as an aio completion or a
225 * timer callback), it is a bug in the caller that should be fixed. */
229 void bdrv_drained_begin(BlockDriverState *bs)
231 if (qemu_in_coroutine()) {
232 bdrv_co_yield_to_drain(bs);
236 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
237 aio_disable_external(bdrv_get_aio_context(bs));
238 bdrv_parent_drained_begin(bs);
241 bdrv_drain_recurse(bs);
244 void bdrv_drained_end(BlockDriverState *bs)
246 assert(bs->quiesce_counter > 0);
247 if (atomic_fetch_dec(&bs->quiesce_counter) > 1) {
251 bdrv_parent_drained_end(bs);
252 aio_enable_external(bdrv_get_aio_context(bs));
256 * Wait for pending requests to complete on a single BlockDriverState subtree,
257 * and suspend block driver's internal I/O until next request arrives.
259 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
262 * Only this BlockDriverState's AioContext is run, so in-flight requests must
263 * not depend on events in other AioContexts. In that case, use
264 * bdrv_drain_all() instead.
266 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
268 assert(qemu_in_coroutine());
269 bdrv_drained_begin(bs);
270 bdrv_drained_end(bs);
273 void bdrv_drain(BlockDriverState *bs)
275 bdrv_drained_begin(bs);
276 bdrv_drained_end(bs);
280 * Wait for pending requests to complete across all BlockDriverStates
282 * This function does not flush data to disk, use bdrv_flush_all() for that
283 * after calling this function.
285 * This pauses all block jobs and disables external clients. It must
286 * be paired with bdrv_drain_all_end().
288 * NOTE: no new block jobs or BlockDriverStates can be created between
289 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
291 void bdrv_drain_all_begin(void)
293 /* Always run first iteration so any pending completion BHs run */
295 BlockDriverState *bs;
297 GSList *aio_ctxs = NULL, *ctx;
299 block_job_pause_all();
301 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
302 AioContext *aio_context = bdrv_get_aio_context(bs);
304 aio_context_acquire(aio_context);
305 bdrv_parent_drained_begin(bs);
306 aio_disable_external(aio_context);
307 aio_context_release(aio_context);
309 if (!g_slist_find(aio_ctxs, aio_context)) {
310 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
314 /* Note that completion of an asynchronous I/O operation can trigger any
315 * number of other I/O operations on other devices---for example a
316 * coroutine can submit an I/O request to another device in response to
317 * request completion. Therefore we must keep looping until there was no
318 * more activity rather than simply draining each device independently.
323 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
324 AioContext *aio_context = ctx->data;
326 aio_context_acquire(aio_context);
327 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
328 if (aio_context == bdrv_get_aio_context(bs)) {
329 waited |= bdrv_drain_recurse(bs);
332 aio_context_release(aio_context);
336 g_slist_free(aio_ctxs);
339 void bdrv_drain_all_end(void)
341 BlockDriverState *bs;
344 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
345 AioContext *aio_context = bdrv_get_aio_context(bs);
347 aio_context_acquire(aio_context);
348 aio_enable_external(aio_context);
349 bdrv_parent_drained_end(bs);
350 aio_context_release(aio_context);
353 block_job_resume_all();
356 void bdrv_drain_all(void)
358 bdrv_drain_all_begin();
359 bdrv_drain_all_end();
363 * Remove an active request from the tracked requests list
365 * This function should be called when a tracked request is completing.
367 static void tracked_request_end(BdrvTrackedRequest *req)
369 if (req->serialising) {
370 atomic_dec(&req->bs->serialising_in_flight);
373 qemu_co_mutex_lock(&req->bs->reqs_lock);
374 QLIST_REMOVE(req, list);
375 qemu_co_queue_restart_all(&req->wait_queue);
376 qemu_co_mutex_unlock(&req->bs->reqs_lock);
380 * Add an active request to the tracked requests list
382 static void tracked_request_begin(BdrvTrackedRequest *req,
383 BlockDriverState *bs,
386 enum BdrvTrackedRequestType type)
388 *req = (BdrvTrackedRequest){
393 .co = qemu_coroutine_self(),
394 .serialising = false,
395 .overlap_offset = offset,
396 .overlap_bytes = bytes,
399 qemu_co_queue_init(&req->wait_queue);
401 qemu_co_mutex_lock(&bs->reqs_lock);
402 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
403 qemu_co_mutex_unlock(&bs->reqs_lock);
406 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
408 int64_t overlap_offset = req->offset & ~(align - 1);
409 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
412 if (!req->serialising) {
413 atomic_inc(&req->bs->serialising_in_flight);
414 req->serialising = true;
417 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
418 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
422 * Round a region to cluster boundaries
424 void bdrv_round_to_clusters(BlockDriverState *bs,
425 int64_t offset, unsigned int bytes,
426 int64_t *cluster_offset,
427 unsigned int *cluster_bytes)
431 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
432 *cluster_offset = offset;
433 *cluster_bytes = bytes;
435 int64_t c = bdi.cluster_size;
436 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
437 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
441 static int bdrv_get_cluster_size(BlockDriverState *bs)
446 ret = bdrv_get_info(bs, &bdi);
447 if (ret < 0 || bdi.cluster_size == 0) {
448 return bs->bl.request_alignment;
450 return bdi.cluster_size;
454 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
455 int64_t offset, unsigned int bytes)
458 if (offset >= req->overlap_offset + req->overlap_bytes) {
462 if (req->overlap_offset >= offset + bytes) {
468 void bdrv_inc_in_flight(BlockDriverState *bs)
470 atomic_inc(&bs->in_flight);
473 static void dummy_bh_cb(void *opaque)
477 void bdrv_wakeup(BlockDriverState *bs)
479 /* The barrier (or an atomic op) is in the caller. */
480 if (atomic_read(&bs->wakeup)) {
481 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
485 void bdrv_dec_in_flight(BlockDriverState *bs)
487 atomic_dec(&bs->in_flight);
491 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
493 BlockDriverState *bs = self->bs;
494 BdrvTrackedRequest *req;
498 if (!atomic_read(&bs->serialising_in_flight)) {
504 qemu_co_mutex_lock(&bs->reqs_lock);
505 QLIST_FOREACH(req, &bs->tracked_requests, list) {
506 if (req == self || (!req->serialising && !self->serialising)) {
509 if (tracked_request_overlaps(req, self->overlap_offset,
510 self->overlap_bytes))
512 /* Hitting this means there was a reentrant request, for
513 * example, a block driver issuing nested requests. This must
514 * never happen since it means deadlock.
516 assert(qemu_coroutine_self() != req->co);
518 /* If the request is already (indirectly) waiting for us, or
519 * will wait for us as soon as it wakes up, then just go on
520 * (instead of producing a deadlock in the former case). */
521 if (!req->waiting_for) {
522 self->waiting_for = req;
523 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
524 self->waiting_for = NULL;
531 qemu_co_mutex_unlock(&bs->reqs_lock);
537 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
540 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
544 if (!bdrv_is_inserted(bs)) {
555 typedef struct RwCo {
561 BdrvRequestFlags flags;
564 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
568 if (!rwco->is_write) {
569 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
570 rwco->qiov->size, rwco->qiov,
573 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
574 rwco->qiov->size, rwco->qiov,
580 * Process a vectored synchronous request using coroutines
582 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
583 QEMUIOVector *qiov, bool is_write,
584 BdrvRequestFlags flags)
591 .is_write = is_write,
596 if (qemu_in_coroutine()) {
597 /* Fast-path if already in coroutine context */
598 bdrv_rw_co_entry(&rwco);
600 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
601 bdrv_coroutine_enter(child->bs, co);
602 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
608 * Process a synchronous request using coroutines
610 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
611 int nb_sectors, bool is_write, BdrvRequestFlags flags)
615 .iov_base = (void *)buf,
616 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
619 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
623 qemu_iovec_init_external(&qiov, &iov, 1);
624 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
625 &qiov, is_write, flags);
628 /* return < 0 if error. See bdrv_write() for the return codes */
629 int bdrv_read(BdrvChild *child, int64_t sector_num,
630 uint8_t *buf, int nb_sectors)
632 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
635 /* Return < 0 if error. Important errors are:
636 -EIO generic I/O error (may happen for all errors)
637 -ENOMEDIUM No media inserted.
638 -EINVAL Invalid sector number or nb_sectors
639 -EACCES Trying to write a read-only device
641 int bdrv_write(BdrvChild *child, int64_t sector_num,
642 const uint8_t *buf, int nb_sectors)
644 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
647 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
648 int bytes, BdrvRequestFlags flags)
656 qemu_iovec_init_external(&qiov, &iov, 1);
657 return bdrv_prwv_co(child, offset, &qiov, true,
658 BDRV_REQ_ZERO_WRITE | flags);
662 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
663 * The operation is sped up by checking the block status and only writing
664 * zeroes to the device if they currently do not return zeroes. Optional
665 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
668 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
670 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
672 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
673 BlockDriverState *bs = child->bs;
674 BlockDriverState *file;
677 target_sectors = bdrv_nb_sectors(bs);
678 if (target_sectors < 0) {
679 return target_sectors;
683 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
684 if (nb_sectors <= 0) {
687 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
689 error_report("error getting block status at sector %" PRId64 ": %s",
690 sector_num, strerror(-ret));
693 if (ret & BDRV_BLOCK_ZERO) {
697 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
698 n << BDRV_SECTOR_BITS, flags);
700 error_report("error writing zeroes at sector %" PRId64 ": %s",
701 sector_num, strerror(-ret));
708 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
712 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
720 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
724 .iov_base = (void *)buf,
732 qemu_iovec_init_external(&qiov, &iov, 1);
733 return bdrv_preadv(child, offset, &qiov);
736 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
740 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
748 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
752 .iov_base = (void *) buf,
760 qemu_iovec_init_external(&qiov, &iov, 1);
761 return bdrv_pwritev(child, offset, &qiov);
765 * Writes to the file and ensures that no writes are reordered across this
766 * request (acts as a barrier)
768 * Returns 0 on success, -errno in error cases.
770 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
771 const void *buf, int count)
775 ret = bdrv_pwrite(child, offset, buf, count);
780 ret = bdrv_flush(child->bs);
788 typedef struct CoroutineIOCompletion {
789 Coroutine *coroutine;
791 } CoroutineIOCompletion;
793 static void bdrv_co_io_em_complete(void *opaque, int ret)
795 CoroutineIOCompletion *co = opaque;
798 aio_co_wake(co->coroutine);
801 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
802 uint64_t offset, uint64_t bytes,
803 QEMUIOVector *qiov, int flags)
805 BlockDriver *drv = bs->drv;
807 unsigned int nb_sectors;
809 assert(!(flags & ~BDRV_REQ_MASK));
811 if (drv->bdrv_co_preadv) {
812 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
815 sector_num = offset >> BDRV_SECTOR_BITS;
816 nb_sectors = bytes >> BDRV_SECTOR_BITS;
818 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
819 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
820 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
822 if (drv->bdrv_co_readv) {
823 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
826 CoroutineIOCompletion co = {
827 .coroutine = qemu_coroutine_self(),
830 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
831 bdrv_co_io_em_complete, &co);
835 qemu_coroutine_yield();
841 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
842 uint64_t offset, uint64_t bytes,
843 QEMUIOVector *qiov, int flags)
845 BlockDriver *drv = bs->drv;
847 unsigned int nb_sectors;
850 assert(!(flags & ~BDRV_REQ_MASK));
852 if (drv->bdrv_co_pwritev) {
853 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
854 flags & bs->supported_write_flags);
855 flags &= ~bs->supported_write_flags;
859 sector_num = offset >> BDRV_SECTOR_BITS;
860 nb_sectors = bytes >> BDRV_SECTOR_BITS;
862 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
863 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
864 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
866 if (drv->bdrv_co_writev_flags) {
867 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
868 flags & bs->supported_write_flags);
869 flags &= ~bs->supported_write_flags;
870 } else if (drv->bdrv_co_writev) {
871 assert(!bs->supported_write_flags);
872 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
875 CoroutineIOCompletion co = {
876 .coroutine = qemu_coroutine_self(),
879 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
880 bdrv_co_io_em_complete, &co);
884 qemu_coroutine_yield();
890 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
891 ret = bdrv_co_flush(bs);
897 static int coroutine_fn
898 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
899 uint64_t bytes, QEMUIOVector *qiov)
901 BlockDriver *drv = bs->drv;
903 if (!drv->bdrv_co_pwritev_compressed) {
907 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
910 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
911 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
913 BlockDriverState *bs = child->bs;
915 /* Perform I/O through a temporary buffer so that users who scribble over
916 * their read buffer while the operation is in progress do not end up
917 * modifying the image file. This is critical for zero-copy guest I/O
918 * where anything might happen inside guest memory.
922 BlockDriver *drv = bs->drv;
924 QEMUIOVector bounce_qiov;
925 int64_t cluster_offset;
926 unsigned int cluster_bytes;
930 /* FIXME We cannot require callers to have write permissions when all they
931 * are doing is a read request. If we did things right, write permissions
932 * would be obtained anyway, but internally by the copy-on-read code. As
933 * long as it is implemented here rather than in a separat filter driver,
934 * the copy-on-read code doesn't have its own BdrvChild, however, for which
935 * it could request permissions. Therefore we have to bypass the permission
936 * system for the moment. */
937 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
939 /* Cover entire cluster so no additional backing file I/O is required when
940 * allocating cluster in the image file.
942 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
944 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
945 cluster_offset, cluster_bytes);
947 iov.iov_len = cluster_bytes;
948 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
949 if (bounce_buffer == NULL) {
954 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
956 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
962 if (drv->bdrv_co_pwrite_zeroes &&
963 buffer_is_zero(bounce_buffer, iov.iov_len)) {
964 /* FIXME: Should we (perhaps conditionally) be setting
965 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
966 * that still correctly reads as zero? */
967 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
969 /* This does not change the data on the disk, it is not necessary
970 * to flush even in cache=writethrough mode.
972 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
977 /* It might be okay to ignore write errors for guest requests. If this
978 * is a deliberate copy-on-read then we don't want to ignore the error.
979 * Simply report it in all cases.
984 skip_bytes = offset - cluster_offset;
985 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
988 qemu_vfree(bounce_buffer);
993 * Forwards an already correctly aligned request to the BlockDriver. This
994 * handles copy on read, zeroing after EOF, and fragmentation of large
995 * reads; any other features must be implemented by the caller.
997 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
998 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
999 int64_t align, QEMUIOVector *qiov, int flags)
1001 BlockDriverState *bs = child->bs;
1002 int64_t total_bytes, max_bytes;
1004 uint64_t bytes_remaining = bytes;
1007 assert(is_power_of_2(align));
1008 assert((offset & (align - 1)) == 0);
1009 assert((bytes & (align - 1)) == 0);
1010 assert(!qiov || bytes == qiov->size);
1011 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1012 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1015 /* TODO: We would need a per-BDS .supported_read_flags and
1016 * potential fallback support, if we ever implement any read flags
1017 * to pass through to drivers. For now, there aren't any
1018 * passthrough flags. */
1019 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1021 /* Handle Copy on Read and associated serialisation */
1022 if (flags & BDRV_REQ_COPY_ON_READ) {
1023 /* If we touch the same cluster it counts as an overlap. This
1024 * guarantees that allocating writes will be serialized and not race
1025 * with each other for the same cluster. For example, in copy-on-read
1026 * it ensures that the CoR read and write operations are atomic and
1027 * guest writes cannot interleave between them. */
1028 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1031 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1032 wait_serialising_requests(req);
1035 if (flags & BDRV_REQ_COPY_ON_READ) {
1036 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1037 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1038 unsigned int nb_sectors = end_sector - start_sector;
1041 ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum);
1046 if (!ret || pnum != nb_sectors) {
1047 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1052 /* Forward the request to the BlockDriver, possibly fragmenting it */
1053 total_bytes = bdrv_getlength(bs);
1054 if (total_bytes < 0) {
1059 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1060 if (bytes <= max_bytes && bytes <= max_transfer) {
1061 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1065 while (bytes_remaining) {
1069 QEMUIOVector local_qiov;
1071 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1073 qemu_iovec_init(&local_qiov, qiov->niov);
1074 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1076 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1077 num, &local_qiov, 0);
1079 qemu_iovec_destroy(&local_qiov);
1081 num = bytes_remaining;
1082 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1088 bytes_remaining -= num;
1092 return ret < 0 ? ret : 0;
1096 * Handle a read request in coroutine context
1098 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1099 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1100 BdrvRequestFlags flags)
1102 BlockDriverState *bs = child->bs;
1103 BlockDriver *drv = bs->drv;
1104 BdrvTrackedRequest req;
1106 uint64_t align = bs->bl.request_alignment;
1107 uint8_t *head_buf = NULL;
1108 uint8_t *tail_buf = NULL;
1109 QEMUIOVector local_qiov;
1110 bool use_local_qiov = false;
1117 ret = bdrv_check_byte_request(bs, offset, bytes);
1122 bdrv_inc_in_flight(bs);
1124 /* Don't do copy-on-read if we read data before write operation */
1125 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1126 flags |= BDRV_REQ_COPY_ON_READ;
1129 /* Align read if necessary by padding qiov */
1130 if (offset & (align - 1)) {
1131 head_buf = qemu_blockalign(bs, align);
1132 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1133 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1134 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1135 use_local_qiov = true;
1137 bytes += offset & (align - 1);
1138 offset = offset & ~(align - 1);
1141 if ((offset + bytes) & (align - 1)) {
1142 if (!use_local_qiov) {
1143 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1144 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1145 use_local_qiov = true;
1147 tail_buf = qemu_blockalign(bs, align);
1148 qemu_iovec_add(&local_qiov, tail_buf,
1149 align - ((offset + bytes) & (align - 1)));
1151 bytes = ROUND_UP(bytes, align);
1154 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1155 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1156 use_local_qiov ? &local_qiov : qiov,
1158 tracked_request_end(&req);
1159 bdrv_dec_in_flight(bs);
1161 if (use_local_qiov) {
1162 qemu_iovec_destroy(&local_qiov);
1163 qemu_vfree(head_buf);
1164 qemu_vfree(tail_buf);
1170 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1171 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1172 BdrvRequestFlags flags)
1174 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1178 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1179 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1182 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1183 int nb_sectors, QEMUIOVector *qiov)
1185 trace_bdrv_co_readv(child->bs, sector_num, nb_sectors);
1187 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1190 /* Maximum buffer for write zeroes fallback, in bytes */
1191 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1193 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1194 int64_t offset, int bytes, BdrvRequestFlags flags)
1196 BlockDriver *drv = bs->drv;
1198 struct iovec iov = {0};
1200 bool need_flush = false;
1204 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1205 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1206 bs->bl.request_alignment);
1207 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1208 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1210 assert(alignment % bs->bl.request_alignment == 0);
1211 head = offset % alignment;
1212 tail = (offset + bytes) % alignment;
1213 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1214 assert(max_write_zeroes >= bs->bl.request_alignment);
1216 while (bytes > 0 && !ret) {
1219 /* Align request. Block drivers can expect the "bulk" of the request
1220 * to be aligned, and that unaligned requests do not cross cluster
1224 /* Make a small request up to the first aligned sector. For
1225 * convenience, limit this request to max_transfer even if
1226 * we don't need to fall back to writes. */
1227 num = MIN(MIN(bytes, max_transfer), alignment - head);
1228 head = (head + num) % alignment;
1229 assert(num < max_write_zeroes);
1230 } else if (tail && num > alignment) {
1231 /* Shorten the request to the last aligned sector. */
1235 /* limit request size */
1236 if (num > max_write_zeroes) {
1237 num = max_write_zeroes;
1241 /* First try the efficient write zeroes operation */
1242 if (drv->bdrv_co_pwrite_zeroes) {
1243 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1244 flags & bs->supported_zero_flags);
1245 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1246 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1250 assert(!bs->supported_zero_flags);
1253 if (ret == -ENOTSUP) {
1254 /* Fall back to bounce buffer if write zeroes is unsupported */
1255 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1257 if ((flags & BDRV_REQ_FUA) &&
1258 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1259 /* No need for bdrv_driver_pwrite() to do a fallback
1260 * flush on each chunk; use just one at the end */
1261 write_flags &= ~BDRV_REQ_FUA;
1264 num = MIN(num, max_transfer);
1266 if (iov.iov_base == NULL) {
1267 iov.iov_base = qemu_try_blockalign(bs, num);
1268 if (iov.iov_base == NULL) {
1272 memset(iov.iov_base, 0, num);
1274 qemu_iovec_init_external(&qiov, &iov, 1);
1276 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1278 /* Keep bounce buffer around if it is big enough for all
1279 * all future requests.
1281 if (num < max_transfer) {
1282 qemu_vfree(iov.iov_base);
1283 iov.iov_base = NULL;
1292 if (ret == 0 && need_flush) {
1293 ret = bdrv_co_flush(bs);
1295 qemu_vfree(iov.iov_base);
1300 * Forwards an already correctly aligned write request to the BlockDriver,
1301 * after possibly fragmenting it.
1303 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1304 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1305 int64_t align, QEMUIOVector *qiov, int flags)
1307 BlockDriverState *bs = child->bs;
1308 BlockDriver *drv = bs->drv;
1312 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1313 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1314 uint64_t bytes_remaining = bytes;
1317 assert(is_power_of_2(align));
1318 assert((offset & (align - 1)) == 0);
1319 assert((bytes & (align - 1)) == 0);
1320 assert(!qiov || bytes == qiov->size);
1321 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1322 assert(!(flags & ~BDRV_REQ_MASK));
1323 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1326 waited = wait_serialising_requests(req);
1327 assert(!waited || !req->serialising);
1328 assert(req->overlap_offset <= offset);
1329 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1330 assert(child->perm & BLK_PERM_WRITE);
1331 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1333 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1335 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1336 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1337 qemu_iovec_is_zero(qiov)) {
1338 flags |= BDRV_REQ_ZERO_WRITE;
1339 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1340 flags |= BDRV_REQ_MAY_UNMAP;
1345 /* Do nothing, write notifier decided to fail this request */
1346 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1347 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1348 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1349 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1350 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1351 } else if (bytes <= max_transfer) {
1352 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1353 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1355 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1356 while (bytes_remaining) {
1357 int num = MIN(bytes_remaining, max_transfer);
1358 QEMUIOVector local_qiov;
1359 int local_flags = flags;
1362 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1363 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1364 /* If FUA is going to be emulated by flush, we only
1365 * need to flush on the last iteration */
1366 local_flags &= ~BDRV_REQ_FUA;
1368 qemu_iovec_init(&local_qiov, qiov->niov);
1369 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1371 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1372 num, &local_qiov, local_flags);
1373 qemu_iovec_destroy(&local_qiov);
1377 bytes_remaining -= num;
1380 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1382 atomic_inc(&bs->write_gen);
1383 bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1385 stat64_max(&bs->wr_highest_offset, offset + bytes);
1388 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1395 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1398 BdrvRequestFlags flags,
1399 BdrvTrackedRequest *req)
1401 BlockDriverState *bs = child->bs;
1402 uint8_t *buf = NULL;
1403 QEMUIOVector local_qiov;
1405 uint64_t align = bs->bl.request_alignment;
1406 unsigned int head_padding_bytes, tail_padding_bytes;
1409 head_padding_bytes = offset & (align - 1);
1410 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1413 assert(flags & BDRV_REQ_ZERO_WRITE);
1414 if (head_padding_bytes || tail_padding_bytes) {
1415 buf = qemu_blockalign(bs, align);
1416 iov = (struct iovec) {
1420 qemu_iovec_init_external(&local_qiov, &iov, 1);
1422 if (head_padding_bytes) {
1423 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1425 /* RMW the unaligned part before head. */
1426 mark_request_serialising(req, align);
1427 wait_serialising_requests(req);
1428 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1429 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1430 align, &local_qiov, 0);
1434 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1436 memset(buf + head_padding_bytes, 0, zero_bytes);
1437 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1439 flags & ~BDRV_REQ_ZERO_WRITE);
1443 offset += zero_bytes;
1444 bytes -= zero_bytes;
1447 assert(!bytes || (offset & (align - 1)) == 0);
1448 if (bytes >= align) {
1449 /* Write the aligned part in the middle. */
1450 uint64_t aligned_bytes = bytes & ~(align - 1);
1451 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1456 bytes -= aligned_bytes;
1457 offset += aligned_bytes;
1460 assert(!bytes || (offset & (align - 1)) == 0);
1462 assert(align == tail_padding_bytes + bytes);
1463 /* RMW the unaligned part after tail. */
1464 mark_request_serialising(req, align);
1465 wait_serialising_requests(req);
1466 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1467 ret = bdrv_aligned_preadv(child, req, offset, align,
1468 align, &local_qiov, 0);
1472 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1474 memset(buf, 0, bytes);
1475 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1476 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1485 * Handle a write request in coroutine context
1487 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1488 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1489 BdrvRequestFlags flags)
1491 BlockDriverState *bs = child->bs;
1492 BdrvTrackedRequest req;
1493 uint64_t align = bs->bl.request_alignment;
1494 uint8_t *head_buf = NULL;
1495 uint8_t *tail_buf = NULL;
1496 QEMUIOVector local_qiov;
1497 bool use_local_qiov = false;
1503 if (bs->read_only) {
1506 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1508 ret = bdrv_check_byte_request(bs, offset, bytes);
1513 bdrv_inc_in_flight(bs);
1515 * Align write if necessary by performing a read-modify-write cycle.
1516 * Pad qiov with the read parts and be sure to have a tracked request not
1517 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1519 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1522 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1526 if (offset & (align - 1)) {
1527 QEMUIOVector head_qiov;
1528 struct iovec head_iov;
1530 mark_request_serialising(&req, align);
1531 wait_serialising_requests(&req);
1533 head_buf = qemu_blockalign(bs, align);
1534 head_iov = (struct iovec) {
1535 .iov_base = head_buf,
1538 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1540 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1541 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1542 align, &head_qiov, 0);
1546 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1548 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1549 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1550 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1551 use_local_qiov = true;
1553 bytes += offset & (align - 1);
1554 offset = offset & ~(align - 1);
1556 /* We have read the tail already if the request is smaller
1557 * than one aligned block.
1559 if (bytes < align) {
1560 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1565 if ((offset + bytes) & (align - 1)) {
1566 QEMUIOVector tail_qiov;
1567 struct iovec tail_iov;
1571 mark_request_serialising(&req, align);
1572 waited = wait_serialising_requests(&req);
1573 assert(!waited || !use_local_qiov);
1575 tail_buf = qemu_blockalign(bs, align);
1576 tail_iov = (struct iovec) {
1577 .iov_base = tail_buf,
1580 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1582 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1583 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1584 align, align, &tail_qiov, 0);
1588 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1590 if (!use_local_qiov) {
1591 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1592 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1593 use_local_qiov = true;
1596 tail_bytes = (offset + bytes) & (align - 1);
1597 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1599 bytes = ROUND_UP(bytes, align);
1602 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1603 use_local_qiov ? &local_qiov : qiov,
1608 if (use_local_qiov) {
1609 qemu_iovec_destroy(&local_qiov);
1611 qemu_vfree(head_buf);
1612 qemu_vfree(tail_buf);
1614 tracked_request_end(&req);
1615 bdrv_dec_in_flight(bs);
1619 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1620 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1621 BdrvRequestFlags flags)
1623 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1627 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1628 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1631 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1632 int nb_sectors, QEMUIOVector *qiov)
1634 trace_bdrv_co_writev(child->bs, sector_num, nb_sectors);
1636 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1639 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1640 int bytes, BdrvRequestFlags flags)
1642 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1644 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1645 flags &= ~BDRV_REQ_MAY_UNMAP;
1648 return bdrv_co_pwritev(child, offset, bytes, NULL,
1649 BDRV_REQ_ZERO_WRITE | flags);
1653 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1655 int bdrv_flush_all(void)
1657 BdrvNextIterator it;
1658 BlockDriverState *bs = NULL;
1661 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1662 AioContext *aio_context = bdrv_get_aio_context(bs);
1665 aio_context_acquire(aio_context);
1666 ret = bdrv_flush(bs);
1667 if (ret < 0 && !result) {
1670 aio_context_release(aio_context);
1677 typedef struct BdrvCoGetBlockStatusData {
1678 BlockDriverState *bs;
1679 BlockDriverState *base;
1680 BlockDriverState **file;
1686 } BdrvCoGetBlockStatusData;
1689 * Returns the allocation status of the specified sectors.
1690 * Drivers not implementing the functionality are assumed to not support
1691 * backing files, hence all their sectors are reported as allocated.
1693 * If 'sector_num' is beyond the end of the disk image the return value is
1694 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1696 * 'pnum' is set to the number of sectors (including and immediately following
1697 * the specified sector) that are known to be in the same
1698 * allocated/unallocated state.
1700 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1701 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1702 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1704 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1705 * points to the BDS which the sector range is allocated in.
1707 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1709 int nb_sectors, int *pnum,
1710 BlockDriverState **file)
1712 int64_t total_sectors;
1717 total_sectors = bdrv_nb_sectors(bs);
1718 if (total_sectors < 0) {
1719 return total_sectors;
1722 if (sector_num >= total_sectors) {
1724 return BDRV_BLOCK_EOF;
1727 n = total_sectors - sector_num;
1728 if (n < nb_sectors) {
1732 if (!bs->drv->bdrv_co_get_block_status) {
1734 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1735 if (sector_num + nb_sectors == total_sectors) {
1736 ret |= BDRV_BLOCK_EOF;
1738 if (bs->drv->protocol_name) {
1739 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1745 bdrv_inc_in_flight(bs);
1746 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1753 if (ret & BDRV_BLOCK_RAW) {
1754 assert(ret & BDRV_BLOCK_OFFSET_VALID && *file);
1755 ret = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1760 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1761 ret |= BDRV_BLOCK_ALLOCATED;
1763 if (bdrv_unallocated_blocks_are_zero(bs)) {
1764 ret |= BDRV_BLOCK_ZERO;
1765 } else if (bs->backing) {
1766 BlockDriverState *bs2 = bs->backing->bs;
1767 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1768 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1769 ret |= BDRV_BLOCK_ZERO;
1774 if (*file && *file != bs &&
1775 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1776 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1777 BlockDriverState *file2;
1780 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1781 *pnum, &file_pnum, &file2);
1783 /* Ignore errors. This is just providing extra information, it
1784 * is useful but not necessary.
1786 if (ret2 & BDRV_BLOCK_EOF &&
1787 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
1789 * It is valid for the format block driver to read
1790 * beyond the end of the underlying file's current
1791 * size; such areas read as zero.
1793 ret |= BDRV_BLOCK_ZERO;
1795 /* Limit request to the range reported by the protocol driver */
1797 ret |= (ret2 & BDRV_BLOCK_ZERO);
1803 bdrv_dec_in_flight(bs);
1804 if (ret >= 0 && sector_num + *pnum == total_sectors) {
1805 ret |= BDRV_BLOCK_EOF;
1810 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1811 BlockDriverState *base,
1815 BlockDriverState **file)
1817 BlockDriverState *p;
1822 for (p = bs; p != base; p = backing_bs(p)) {
1823 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1827 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
1829 * Reading beyond the end of the file continues to read
1830 * zeroes, but we can only widen the result to the
1831 * unallocated length we learned from an earlier
1836 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
1839 /* [sector_num, pnum] unallocated on this layer, which could be only
1840 * the first part of [sector_num, nb_sectors]. */
1841 nb_sectors = MIN(nb_sectors, *pnum);
1847 /* Coroutine wrapper for bdrv_get_block_status_above() */
1848 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1850 BdrvCoGetBlockStatusData *data = opaque;
1852 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1861 * Synchronous wrapper around bdrv_co_get_block_status_above().
1863 * See bdrv_co_get_block_status_above() for details.
1865 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1866 BlockDriverState *base,
1868 int nb_sectors, int *pnum,
1869 BlockDriverState **file)
1872 BdrvCoGetBlockStatusData data = {
1876 .sector_num = sector_num,
1877 .nb_sectors = nb_sectors,
1882 if (qemu_in_coroutine()) {
1883 /* Fast-path if already in coroutine context */
1884 bdrv_get_block_status_above_co_entry(&data);
1886 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1888 bdrv_coroutine_enter(bs, co);
1889 BDRV_POLL_WHILE(bs, !data.done);
1894 int64_t bdrv_get_block_status(BlockDriverState *bs,
1896 int nb_sectors, int *pnum,
1897 BlockDriverState **file)
1899 return bdrv_get_block_status_above(bs, backing_bs(bs),
1900 sector_num, nb_sectors, pnum, file);
1903 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1904 int nb_sectors, int *pnum)
1906 BlockDriverState *file;
1907 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1912 return !!(ret & BDRV_BLOCK_ALLOCATED);
1916 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1918 * Return true if the given sector is allocated in any image between
1919 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1920 * sector is allocated in any image of the chain. Return false otherwise.
1922 * 'pnum' is set to the number of sectors (including and immediately following
1923 * the specified sector) that are known to be in the same
1924 * allocated/unallocated state.
1927 int bdrv_is_allocated_above(BlockDriverState *top,
1928 BlockDriverState *base,
1930 int nb_sectors, int *pnum)
1932 BlockDriverState *intermediate;
1933 int ret, n = nb_sectors;
1936 while (intermediate && intermediate != base) {
1938 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1948 * [sector_num, nb_sectors] is unallocated on top but intermediate
1951 * [sector_num+x, nr_sectors] allocated.
1953 if (n > pnum_inter &&
1954 (intermediate == top ||
1955 sector_num + pnum_inter < intermediate->total_sectors)) {
1959 intermediate = backing_bs(intermediate);
1966 typedef struct BdrvVmstateCo {
1967 BlockDriverState *bs;
1974 static int coroutine_fn
1975 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1978 BlockDriver *drv = bs->drv;
1981 bdrv_inc_in_flight(bs);
1985 } else if (drv->bdrv_load_vmstate) {
1987 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
1989 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
1991 } else if (bs->file) {
1992 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
1995 bdrv_dec_in_flight(bs);
1999 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2001 BdrvVmstateCo *co = opaque;
2002 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2006 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2009 if (qemu_in_coroutine()) {
2010 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2012 BdrvVmstateCo data = {
2017 .ret = -EINPROGRESS,
2019 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2021 bdrv_coroutine_enter(bs, co);
2022 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2027 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2028 int64_t pos, int size)
2031 struct iovec iov = {
2032 .iov_base = (void *) buf,
2037 qemu_iovec_init_external(&qiov, &iov, 1);
2039 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2047 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2049 return bdrv_rw_vmstate(bs, qiov, pos, false);
2052 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2053 int64_t pos, int size)
2056 struct iovec iov = {
2062 qemu_iovec_init_external(&qiov, &iov, 1);
2063 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2071 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2073 return bdrv_rw_vmstate(bs, qiov, pos, true);
2076 /**************************************************************/
2079 void bdrv_aio_cancel(BlockAIOCB *acb)
2082 bdrv_aio_cancel_async(acb);
2083 while (acb->refcnt > 1) {
2084 if (acb->aiocb_info->get_aio_context) {
2085 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2086 } else if (acb->bs) {
2087 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2088 * assert that we're not using an I/O thread. Thread-safe
2089 * code should use bdrv_aio_cancel_async exclusively.
2091 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2092 aio_poll(bdrv_get_aio_context(acb->bs), true);
2097 qemu_aio_unref(acb);
2100 /* Async version of aio cancel. The caller is not blocked if the acb implements
2101 * cancel_async, otherwise we do nothing and let the request normally complete.
2102 * In either case the completion callback must be called. */
2103 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2105 if (acb->aiocb_info->cancel_async) {
2106 acb->aiocb_info->cancel_async(acb);
2110 /**************************************************************/
2111 /* Coroutine block device emulation */
2113 typedef struct FlushCo {
2114 BlockDriverState *bs;
2119 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2121 FlushCo *rwco = opaque;
2123 rwco->ret = bdrv_co_flush(rwco->bs);
2126 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2131 bdrv_inc_in_flight(bs);
2133 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2138 qemu_co_mutex_lock(&bs->reqs_lock);
2139 current_gen = atomic_read(&bs->write_gen);
2141 /* Wait until any previous flushes are completed */
2142 while (bs->active_flush_req) {
2143 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2146 /* Flushes reach this point in nondecreasing current_gen order. */
2147 bs->active_flush_req = true;
2148 qemu_co_mutex_unlock(&bs->reqs_lock);
2150 /* Write back all layers by calling one driver function */
2151 if (bs->drv->bdrv_co_flush) {
2152 ret = bs->drv->bdrv_co_flush(bs);
2156 /* Write back cached data to the OS even with cache=unsafe */
2157 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2158 if (bs->drv->bdrv_co_flush_to_os) {
2159 ret = bs->drv->bdrv_co_flush_to_os(bs);
2165 /* But don't actually force it to the disk with cache=unsafe */
2166 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2170 /* Check if we really need to flush anything */
2171 if (bs->flushed_gen == current_gen) {
2175 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2176 if (bs->drv->bdrv_co_flush_to_disk) {
2177 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2178 } else if (bs->drv->bdrv_aio_flush) {
2180 CoroutineIOCompletion co = {
2181 .coroutine = qemu_coroutine_self(),
2184 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2188 qemu_coroutine_yield();
2193 * Some block drivers always operate in either writethrough or unsafe
2194 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2195 * know how the server works (because the behaviour is hardcoded or
2196 * depends on server-side configuration), so we can't ensure that
2197 * everything is safe on disk. Returning an error doesn't work because
2198 * that would break guests even if the server operates in writethrough
2201 * Let's hope the user knows what he's doing.
2210 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2211 * in the case of cache=unsafe, so there are no useless flushes.
2214 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2216 /* Notify any pending flushes that we have completed */
2218 bs->flushed_gen = current_gen;
2221 qemu_co_mutex_lock(&bs->reqs_lock);
2222 bs->active_flush_req = false;
2223 /* Return value is ignored - it's ok if wait queue is empty */
2224 qemu_co_queue_next(&bs->flush_queue);
2225 qemu_co_mutex_unlock(&bs->reqs_lock);
2228 bdrv_dec_in_flight(bs);
2232 int bdrv_flush(BlockDriverState *bs)
2235 FlushCo flush_co = {
2240 if (qemu_in_coroutine()) {
2241 /* Fast-path if already in coroutine context */
2242 bdrv_flush_co_entry(&flush_co);
2244 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2245 bdrv_coroutine_enter(bs, co);
2246 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2249 return flush_co.ret;
2252 typedef struct DiscardCo {
2253 BlockDriverState *bs;
2258 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2260 DiscardCo *rwco = opaque;
2262 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2265 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2268 BdrvTrackedRequest req;
2269 int max_pdiscard, ret;
2270 int head, tail, align;
2276 ret = bdrv_check_byte_request(bs, offset, bytes);
2279 } else if (bs->read_only) {
2282 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2284 /* Do nothing if disabled. */
2285 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2289 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2293 /* Discard is advisory, but some devices track and coalesce
2294 * unaligned requests, so we must pass everything down rather than
2295 * round here. Still, most devices will just silently ignore
2296 * unaligned requests (by returning -ENOTSUP), so we must fragment
2297 * the request accordingly. */
2298 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2299 assert(align % bs->bl.request_alignment == 0);
2300 head = offset % align;
2301 tail = (offset + bytes) % align;
2303 bdrv_inc_in_flight(bs);
2304 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2306 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2311 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2313 assert(max_pdiscard >= bs->bl.request_alignment);
2320 /* Make small requests to get to alignment boundaries. */
2321 num = MIN(bytes, align - head);
2322 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2323 num %= bs->bl.request_alignment;
2325 head = (head + num) % align;
2326 assert(num < max_pdiscard);
2329 /* Shorten the request to the last aligned cluster. */
2331 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2332 tail > bs->bl.request_alignment) {
2333 tail %= bs->bl.request_alignment;
2337 /* limit request size */
2338 if (num > max_pdiscard) {
2342 if (bs->drv->bdrv_co_pdiscard) {
2343 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2346 CoroutineIOCompletion co = {
2347 .coroutine = qemu_coroutine_self(),
2350 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2351 bdrv_co_io_em_complete, &co);
2356 qemu_coroutine_yield();
2360 if (ret && ret != -ENOTSUP) {
2369 atomic_inc(&bs->write_gen);
2370 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2371 req.bytes >> BDRV_SECTOR_BITS);
2372 tracked_request_end(&req);
2373 bdrv_dec_in_flight(bs);
2377 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2387 if (qemu_in_coroutine()) {
2388 /* Fast-path if already in coroutine context */
2389 bdrv_pdiscard_co_entry(&rwco);
2391 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2392 bdrv_coroutine_enter(bs, co);
2393 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2399 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2401 BlockDriver *drv = bs->drv;
2402 CoroutineIOCompletion co = {
2403 .coroutine = qemu_coroutine_self(),
2407 bdrv_inc_in_flight(bs);
2408 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2413 if (drv->bdrv_co_ioctl) {
2414 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2416 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2421 qemu_coroutine_yield();
2424 bdrv_dec_in_flight(bs);
2428 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2430 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2433 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2435 return memset(qemu_blockalign(bs, size), 0, size);
2438 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2440 size_t align = bdrv_opt_mem_align(bs);
2442 /* Ensure that NULL is never returned on success */
2448 return qemu_try_memalign(align, size);
2451 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2453 void *mem = qemu_try_blockalign(bs, size);
2456 memset(mem, 0, size);
2463 * Check if all memory in this vector is sector aligned.
2465 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2468 size_t alignment = bdrv_min_mem_align(bs);
2470 for (i = 0; i < qiov->niov; i++) {
2471 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2474 if (qiov->iov[i].iov_len % alignment) {
2482 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2483 NotifierWithReturn *notifier)
2485 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2488 void bdrv_io_plug(BlockDriverState *bs)
2492 QLIST_FOREACH(child, &bs->children, next) {
2493 bdrv_io_plug(child->bs);
2496 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2497 BlockDriver *drv = bs->drv;
2498 if (drv && drv->bdrv_io_plug) {
2499 drv->bdrv_io_plug(bs);
2504 void bdrv_io_unplug(BlockDriverState *bs)
2508 assert(bs->io_plugged);
2509 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2510 BlockDriver *drv = bs->drv;
2511 if (drv && drv->bdrv_io_unplug) {
2512 drv->bdrv_io_unplug(bs);
2516 QLIST_FOREACH(child, &bs->children, next) {
2517 bdrv_io_unplug(child->bs);