2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include "disas/disas.h"
23 #include "qemu/atomic.h"
24 #include "sysemu/qtest.h"
26 bool qemu_cpu_has_work(CPUState *cpu)
28 return cpu_has_work(cpu);
31 void cpu_loop_exit(CPUArchState *env)
33 CPUState *cpu = ENV_GET_CPU(env);
35 cpu->current_tb = NULL;
36 siglongjmp(env->jmp_env, 1);
39 /* exit the current TB from a signal handler. The host registers are
40 restored in a state compatible with the CPU emulator
42 #if defined(CONFIG_SOFTMMU)
43 void cpu_resume_from_signal(CPUArchState *env, void *puc)
45 /* XXX: restore cpu registers saved in host registers */
47 env->exception_index = -1;
48 siglongjmp(env->jmp_env, 1);
52 /* Execute a TB, and fix up the CPU state afterwards if necessary */
53 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, uint8_t *tb_ptr)
55 CPUArchState *env = cpu->env_ptr;
58 #if defined(DEBUG_DISAS)
59 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
60 #if defined(TARGET_I386)
61 log_cpu_state(cpu, CPU_DUMP_CCOP);
62 #elif defined(TARGET_M68K)
63 /* ??? Should not modify env state for dumping. */
64 cpu_m68k_flush_flags(env, env->cc_op);
65 env->cc_op = CC_OP_FLAGS;
66 env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4);
67 log_cpu_state(cpu, 0);
69 log_cpu_state(cpu, 0);
72 #endif /* DEBUG_DISAS */
74 next_tb = tcg_qemu_tb_exec(env, tb_ptr);
75 if ((next_tb & TB_EXIT_MASK) > TB_EXIT_IDX1) {
76 /* We didn't start executing this TB (eg because the instruction
77 * counter hit zero); we must restore the guest PC to the address
78 * of the start of the TB.
80 CPUClass *cc = CPU_GET_CLASS(cpu);
81 TranslationBlock *tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK);
82 if (cc->synchronize_from_tb) {
83 cc->synchronize_from_tb(cpu, tb);
86 cc->set_pc(cpu, tb->pc);
89 if ((next_tb & TB_EXIT_MASK) == TB_EXIT_REQUESTED) {
90 /* We were asked to stop executing TBs (probably a pending
91 * interrupt. We've now stopped, so clear the flag.
93 cpu->tcg_exit_req = 0;
98 /* Execute the code without caching the generated code. An interpreter
99 could be used if available. */
100 static void cpu_exec_nocache(CPUArchState *env, int max_cycles,
101 TranslationBlock *orig_tb)
103 CPUState *cpu = ENV_GET_CPU(env);
104 TranslationBlock *tb;
106 /* Should never happen.
107 We only end up here when an existing TB is too long. */
108 if (max_cycles > CF_COUNT_MASK)
109 max_cycles = CF_COUNT_MASK;
111 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
113 cpu->current_tb = tb;
114 /* execute the generated code */
115 cpu_tb_exec(cpu, tb->tc_ptr);
116 cpu->current_tb = NULL;
117 tb_phys_invalidate(tb, -1);
121 static TranslationBlock *tb_find_slow(CPUArchState *env,
123 target_ulong cs_base,
126 TranslationBlock *tb, **ptb1;
128 tb_page_addr_t phys_pc, phys_page1;
129 target_ulong virt_page2;
131 tcg_ctx.tb_ctx.tb_invalidated_flag = 0;
133 /* find translated block using physical mappings */
134 phys_pc = get_page_addr_code(env, pc);
135 phys_page1 = phys_pc & TARGET_PAGE_MASK;
136 h = tb_phys_hash_func(phys_pc);
137 ptb1 = &tcg_ctx.tb_ctx.tb_phys_hash[h];
143 tb->page_addr[0] == phys_page1 &&
144 tb->cs_base == cs_base &&
145 tb->flags == flags) {
146 /* check next page if needed */
147 if (tb->page_addr[1] != -1) {
148 tb_page_addr_t phys_page2;
150 virt_page2 = (pc & TARGET_PAGE_MASK) +
152 phys_page2 = get_page_addr_code(env, virt_page2);
153 if (tb->page_addr[1] == phys_page2)
159 ptb1 = &tb->phys_hash_next;
162 /* if no translated code available, then translate it now */
163 tb = tb_gen_code(env, pc, cs_base, flags, 0);
166 /* Move the last found TB to the head of the list */
168 *ptb1 = tb->phys_hash_next;
169 tb->phys_hash_next = tcg_ctx.tb_ctx.tb_phys_hash[h];
170 tcg_ctx.tb_ctx.tb_phys_hash[h] = tb;
172 /* we add the TB in the virtual pc hash table */
173 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
177 static inline TranslationBlock *tb_find_fast(CPUArchState *env)
179 TranslationBlock *tb;
180 target_ulong cs_base, pc;
183 /* we record a subset of the CPU state. It will
184 always be the same before a given translated block
186 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
187 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
188 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
189 tb->flags != flags)) {
190 tb = tb_find_slow(env, pc, cs_base, flags);
195 static CPUDebugExcpHandler *debug_excp_handler;
197 void cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
199 debug_excp_handler = handler;
202 static void cpu_handle_debug_exception(CPUArchState *env)
206 if (!env->watchpoint_hit) {
207 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
208 wp->flags &= ~BP_WATCHPOINT_HIT;
211 if (debug_excp_handler) {
212 debug_excp_handler(env);
216 /* main execution loop */
218 volatile sig_atomic_t exit_request;
220 int cpu_exec(CPUArchState *env)
222 CPUState *cpu = ENV_GET_CPU(env);
223 #if !(defined(CONFIG_USER_ONLY) && \
224 (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X)))
225 CPUClass *cc = CPU_GET_CLASS(cpu);
227 int ret, interrupt_request;
228 TranslationBlock *tb;
233 if (!cpu_has_work(cpu)) {
242 /* As long as current_cpu is null, up to the assignment just above,
243 * requests by other threads to exit the execution loop are expected to
244 * be issued using the exit_request global. We must make sure that our
245 * evaluation of the global value is performed past the current_cpu
246 * value transition point, which requires a memory barrier as well as
247 * an instruction scheduling constraint on modern architectures. */
250 if (unlikely(exit_request)) {
251 cpu->exit_request = 1;
254 #if defined(TARGET_I386)
255 /* put eflags in CPU temporary format */
256 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
257 env->df = 1 - (2 * ((env->eflags >> 10) & 1));
258 CC_OP = CC_OP_EFLAGS;
259 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
260 #elif defined(TARGET_SPARC)
261 #elif defined(TARGET_M68K)
262 env->cc_op = CC_OP_FLAGS;
263 env->cc_dest = env->sr & 0xf;
264 env->cc_x = (env->sr >> 4) & 1;
265 #elif defined(TARGET_ALPHA)
266 #elif defined(TARGET_ARM)
267 #elif defined(TARGET_UNICORE32)
268 #elif defined(TARGET_PPC)
269 env->reserve_addr = -1;
270 #elif defined(TARGET_LM32)
271 #elif defined(TARGET_MICROBLAZE)
272 #elif defined(TARGET_MIPS)
273 #elif defined(TARGET_MOXIE)
274 #elif defined(TARGET_OPENRISC)
275 #elif defined(TARGET_SH4)
276 #elif defined(TARGET_CRIS)
277 #elif defined(TARGET_S390X)
278 #elif defined(TARGET_XTENSA)
281 #error unsupported target CPU
283 env->exception_index = -1;
285 /* prepare setjmp context for exception handling */
287 if (sigsetjmp(env->jmp_env, 0) == 0) {
288 /* if an exception is pending, we execute it here */
289 if (env->exception_index >= 0) {
290 if (env->exception_index >= EXCP_INTERRUPT) {
291 /* exit request from the cpu execution loop */
292 ret = env->exception_index;
293 if (ret == EXCP_DEBUG) {
294 cpu_handle_debug_exception(env);
298 #if defined(CONFIG_USER_ONLY)
299 /* if user mode only, we simulate a fake exception
300 which will be handled outside the cpu execution
302 #if defined(TARGET_I386)
303 cc->do_interrupt(cpu);
305 ret = env->exception_index;
308 cc->do_interrupt(cpu);
309 env->exception_index = -1;
314 next_tb = 0; /* force lookup of first TB */
316 interrupt_request = cpu->interrupt_request;
317 if (unlikely(interrupt_request)) {
318 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
319 /* Mask out external interrupts for this step. */
320 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
322 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
323 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
324 env->exception_index = EXCP_DEBUG;
327 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
328 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
329 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
330 if (interrupt_request & CPU_INTERRUPT_HALT) {
331 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
333 env->exception_index = EXCP_HLT;
337 #if defined(TARGET_I386)
338 #if !defined(CONFIG_USER_ONLY)
339 if (interrupt_request & CPU_INTERRUPT_POLL) {
340 cpu->interrupt_request &= ~CPU_INTERRUPT_POLL;
341 apic_poll_irq(env->apic_state);
344 if (interrupt_request & CPU_INTERRUPT_INIT) {
345 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT,
347 do_cpu_init(x86_env_get_cpu(env));
348 env->exception_index = EXCP_HALTED;
350 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
351 do_cpu_sipi(x86_env_get_cpu(env));
352 } else if (env->hflags2 & HF2_GIF_MASK) {
353 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
354 !(env->hflags & HF_SMM_MASK)) {
355 cpu_svm_check_intercept_param(env, SVM_EXIT_SMI,
357 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
358 do_smm_enter(x86_env_get_cpu(env));
360 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
361 !(env->hflags2 & HF2_NMI_MASK)) {
362 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
363 env->hflags2 |= HF2_NMI_MASK;
364 do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
366 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
367 cpu->interrupt_request &= ~CPU_INTERRUPT_MCE;
368 do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
370 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
371 (((env->hflags2 & HF2_VINTR_MASK) &&
372 (env->hflags2 & HF2_HIF_MASK)) ||
373 (!(env->hflags2 & HF2_VINTR_MASK) &&
374 (env->eflags & IF_MASK &&
375 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
377 cpu_svm_check_intercept_param(env, SVM_EXIT_INTR,
379 cpu->interrupt_request &= ~(CPU_INTERRUPT_HARD |
381 intno = cpu_get_pic_interrupt(env);
382 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
383 do_interrupt_x86_hardirq(env, intno, 1);
384 /* ensure that no TB jump will be modified as
385 the program flow was changed */
387 #if !defined(CONFIG_USER_ONLY)
388 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
389 (env->eflags & IF_MASK) &&
390 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
392 /* FIXME: this should respect TPR */
393 cpu_svm_check_intercept_param(env, SVM_EXIT_VINTR,
395 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
396 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
397 do_interrupt_x86_hardirq(env, intno, 1);
398 cpu->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
403 #elif defined(TARGET_PPC)
404 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
407 if (interrupt_request & CPU_INTERRUPT_HARD) {
408 ppc_hw_interrupt(env);
409 if (env->pending_interrupts == 0) {
410 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
414 #elif defined(TARGET_LM32)
415 if ((interrupt_request & CPU_INTERRUPT_HARD)
416 && (env->ie & IE_IE)) {
417 env->exception_index = EXCP_IRQ;
418 cc->do_interrupt(cpu);
421 #elif defined(TARGET_MICROBLAZE)
422 if ((interrupt_request & CPU_INTERRUPT_HARD)
423 && (env->sregs[SR_MSR] & MSR_IE)
424 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
425 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
426 env->exception_index = EXCP_IRQ;
427 cc->do_interrupt(cpu);
430 #elif defined(TARGET_MIPS)
431 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
432 cpu_mips_hw_interrupts_pending(env)) {
434 env->exception_index = EXCP_EXT_INTERRUPT;
436 cc->do_interrupt(cpu);
439 #elif defined(TARGET_OPENRISC)
442 if ((interrupt_request & CPU_INTERRUPT_HARD)
443 && (env->sr & SR_IEE)) {
446 if ((interrupt_request & CPU_INTERRUPT_TIMER)
447 && (env->sr & SR_TEE)) {
451 env->exception_index = idx;
452 cc->do_interrupt(cpu);
456 #elif defined(TARGET_SPARC)
457 if (interrupt_request & CPU_INTERRUPT_HARD) {
458 if (cpu_interrupts_enabled(env) &&
459 env->interrupt_index > 0) {
460 int pil = env->interrupt_index & 0xf;
461 int type = env->interrupt_index & 0xf0;
463 if (((type == TT_EXTINT) &&
464 cpu_pil_allowed(env, pil)) ||
466 env->exception_index = env->interrupt_index;
467 cc->do_interrupt(cpu);
472 #elif defined(TARGET_ARM)
473 if (interrupt_request & CPU_INTERRUPT_FIQ
474 && !(env->uncached_cpsr & CPSR_F)) {
475 env->exception_index = EXCP_FIQ;
476 cc->do_interrupt(cpu);
479 /* ARMv7-M interrupt return works by loading a magic value
480 into the PC. On real hardware the load causes the
481 return to occur. The qemu implementation performs the
482 jump normally, then does the exception return when the
483 CPU tries to execute code at the magic address.
484 This will cause the magic PC value to be pushed to
485 the stack if an interrupt occurred at the wrong time.
486 We avoid this by disabling interrupts when
487 pc contains a magic address. */
488 if (interrupt_request & CPU_INTERRUPT_HARD
489 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
490 || !(env->uncached_cpsr & CPSR_I))) {
491 env->exception_index = EXCP_IRQ;
492 cc->do_interrupt(cpu);
495 #elif defined(TARGET_UNICORE32)
496 if (interrupt_request & CPU_INTERRUPT_HARD
497 && !(env->uncached_asr & ASR_I)) {
498 env->exception_index = UC32_EXCP_INTR;
499 cc->do_interrupt(cpu);
502 #elif defined(TARGET_SH4)
503 if (interrupt_request & CPU_INTERRUPT_HARD) {
504 cc->do_interrupt(cpu);
507 #elif defined(TARGET_ALPHA)
510 /* ??? This hard-codes the OSF/1 interrupt levels. */
511 switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) {
513 if (interrupt_request & CPU_INTERRUPT_HARD) {
514 idx = EXCP_DEV_INTERRUPT;
518 if (interrupt_request & CPU_INTERRUPT_TIMER) {
519 idx = EXCP_CLK_INTERRUPT;
523 if (interrupt_request & CPU_INTERRUPT_SMP) {
524 idx = EXCP_SMP_INTERRUPT;
528 if (interrupt_request & CPU_INTERRUPT_MCHK) {
533 env->exception_index = idx;
535 cc->do_interrupt(cpu);
539 #elif defined(TARGET_CRIS)
540 if (interrupt_request & CPU_INTERRUPT_HARD
541 && (env->pregs[PR_CCS] & I_FLAG)
542 && !env->locked_irq) {
543 env->exception_index = EXCP_IRQ;
544 cc->do_interrupt(cpu);
547 if (interrupt_request & CPU_INTERRUPT_NMI) {
548 unsigned int m_flag_archval;
549 if (env->pregs[PR_VR] < 32) {
550 m_flag_archval = M_FLAG_V10;
552 m_flag_archval = M_FLAG_V32;
554 if ((env->pregs[PR_CCS] & m_flag_archval)) {
555 env->exception_index = EXCP_NMI;
556 cc->do_interrupt(cpu);
560 #elif defined(TARGET_M68K)
561 if (interrupt_request & CPU_INTERRUPT_HARD
562 && ((env->sr & SR_I) >> SR_I_SHIFT)
563 < env->pending_level) {
564 /* Real hardware gets the interrupt vector via an
565 IACK cycle at this point. Current emulated
566 hardware doesn't rely on this, so we
567 provide/save the vector when the interrupt is
569 env->exception_index = env->pending_vector;
570 do_interrupt_m68k_hardirq(env);
573 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
574 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
575 (env->psw.mask & PSW_MASK_EXT)) {
576 cc->do_interrupt(cpu);
579 #elif defined(TARGET_XTENSA)
580 if (interrupt_request & CPU_INTERRUPT_HARD) {
581 env->exception_index = EXC_IRQ;
582 cc->do_interrupt(cpu);
586 /* Don't use the cached interrupt_request value,
587 do_interrupt may have updated the EXITTB flag. */
588 if (cpu->interrupt_request & CPU_INTERRUPT_EXITTB) {
589 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
590 /* ensure that no TB jump will be modified as
591 the program flow was changed */
595 if (unlikely(cpu->exit_request)) {
596 cpu->exit_request = 0;
597 env->exception_index = EXCP_INTERRUPT;
600 spin_lock(&tcg_ctx.tb_ctx.tb_lock);
601 tb = tb_find_fast(env);
602 /* Note: we do it here to avoid a gcc bug on Mac OS X when
603 doing it in tb_find_slow */
604 if (tcg_ctx.tb_ctx.tb_invalidated_flag) {
605 /* as some TB could have been invalidated because
606 of memory exceptions while generating the code, we
607 must recompute the hash index here */
609 tcg_ctx.tb_ctx.tb_invalidated_flag = 0;
611 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
612 qemu_log("Trace %p [" TARGET_FMT_lx "] %s\n",
613 tb->tc_ptr, tb->pc, lookup_symbol(tb->pc));
615 /* see if we can patch the calling TB. When the TB
616 spans two pages, we cannot safely do a direct
618 if (next_tb != 0 && tb->page_addr[1] == -1) {
619 tb_add_jump((TranslationBlock *)(next_tb & ~TB_EXIT_MASK),
620 next_tb & TB_EXIT_MASK, tb);
622 spin_unlock(&tcg_ctx.tb_ctx.tb_lock);
624 /* cpu_interrupt might be called while translating the
625 TB, but before it is linked into a potentially
626 infinite loop and becomes env->current_tb. Avoid
627 starting execution if there is a pending interrupt. */
628 cpu->current_tb = tb;
630 if (likely(!cpu->exit_request)) {
632 /* execute the generated code */
633 next_tb = cpu_tb_exec(cpu, tc_ptr);
634 switch (next_tb & TB_EXIT_MASK) {
635 case TB_EXIT_REQUESTED:
636 /* Something asked us to stop executing
637 * chained TBs; just continue round the main
638 * loop. Whatever requested the exit will also
639 * have set something else (eg exit_request or
640 * interrupt_request) which we will handle
641 * next time around the loop.
643 tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK);
646 case TB_EXIT_ICOUNT_EXPIRED:
648 /* Instruction counter expired. */
650 tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK);
651 insns_left = env->icount_decr.u32;
652 if (env->icount_extra && insns_left >= 0) {
653 /* Refill decrementer and continue execution. */
654 env->icount_extra += insns_left;
655 if (env->icount_extra > 0xffff) {
658 insns_left = env->icount_extra;
660 env->icount_extra -= insns_left;
661 env->icount_decr.u16.low = insns_left;
663 if (insns_left > 0) {
664 /* Execute remaining instructions. */
665 cpu_exec_nocache(env, insns_left, tb);
667 env->exception_index = EXCP_INTERRUPT;
677 cpu->current_tb = NULL;
678 /* reset soft MMU for next block (it can currently
679 only be set by a memory fault) */
682 /* Reload env after longjmp - the compiler may have smashed all
683 * local variables as longjmp is marked 'noreturn'. */
686 #if !(defined(CONFIG_USER_ONLY) && \
687 (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X)))
688 cc = CPU_GET_CLASS(cpu);
694 #if defined(TARGET_I386)
695 /* restore flags in standard format */
696 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
697 | (env->df & DF_MASK);
698 #elif defined(TARGET_ARM)
699 /* XXX: Save/restore host fpu exception state?. */
700 #elif defined(TARGET_UNICORE32)
701 #elif defined(TARGET_SPARC)
702 #elif defined(TARGET_PPC)
703 #elif defined(TARGET_LM32)
704 #elif defined(TARGET_M68K)
705 cpu_m68k_flush_flags(env, env->cc_op);
706 env->cc_op = CC_OP_FLAGS;
707 env->sr = (env->sr & 0xffe0)
708 | env->cc_dest | (env->cc_x << 4);
709 #elif defined(TARGET_MICROBLAZE)
710 #elif defined(TARGET_MIPS)
711 #elif defined(TARGET_MOXIE)
712 #elif defined(TARGET_OPENRISC)
713 #elif defined(TARGET_SH4)
714 #elif defined(TARGET_ALPHA)
715 #elif defined(TARGET_CRIS)
716 #elif defined(TARGET_S390X)
717 #elif defined(TARGET_XTENSA)
720 #error unsupported target CPU
723 /* fail safe : never use current_cpu outside cpu_exec() */