2 * Device model for Cadence UART
4 * Copyright (c) 2010 Xilinx Inc.
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written by Haibing Ma
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "hw/sysbus.h"
20 #include "sysemu/char.h"
21 #include "qemu/timer.h"
23 #ifdef CADENCE_UART_ERR_DEBUG
24 #define DB_PRINT(...) do { \
25 fprintf(stderr, ": %s: ", __func__); \
26 fprintf(stderr, ## __VA_ARGS__); \
32 #define UART_SR_INTR_RTRIG 0x00000001
33 #define UART_SR_INTR_REMPTY 0x00000002
34 #define UART_SR_INTR_RFUL 0x00000004
35 #define UART_SR_INTR_TEMPTY 0x00000008
36 #define UART_SR_INTR_TFUL 0x00000010
37 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
38 #define UART_SR_TTRIG 0x00002000
39 #define UART_INTR_TTRIG 0x00000400
40 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
41 * SR, then the same bit in CISR is set high too */
42 #define UART_SR_TO_CISR_MASK 0x0000001F
44 #define UART_INTR_ROVR 0x00000020
45 #define UART_INTR_FRAME 0x00000040
46 #define UART_INTR_PARE 0x00000080
47 #define UART_INTR_TIMEOUT 0x00000100
48 #define UART_INTR_DMSI 0x00000200
49 #define UART_INTR_TOVR 0x00001000
51 #define UART_SR_RACTIVE 0x00000400
52 #define UART_SR_TACTIVE 0x00000800
53 #define UART_SR_FDELT 0x00001000
55 #define UART_CR_RXRST 0x00000001
56 #define UART_CR_TXRST 0x00000002
57 #define UART_CR_RX_EN 0x00000004
58 #define UART_CR_RX_DIS 0x00000008
59 #define UART_CR_TX_EN 0x00000010
60 #define UART_CR_TX_DIS 0x00000020
61 #define UART_CR_RST_TO 0x00000040
62 #define UART_CR_STARTBRK 0x00000080
63 #define UART_CR_STOPBRK 0x00000100
65 #define UART_MR_CLKS 0x00000001
66 #define UART_MR_CHRL 0x00000006
67 #define UART_MR_CHRL_SH 1
68 #define UART_MR_PAR 0x00000038
69 #define UART_MR_PAR_SH 3
70 #define UART_MR_NBSTOP 0x000000C0
71 #define UART_MR_NBSTOP_SH 6
72 #define UART_MR_CHMODE 0x00000300
73 #define UART_MR_CHMODE_SH 8
74 #define UART_MR_UCLKEN 0x00000400
75 #define UART_MR_IRMODE 0x00000800
77 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
78 #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
79 #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
80 #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
81 #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
82 #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
83 #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
84 #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
85 #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
86 #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
88 #define RX_FIFO_SIZE 16
89 #define TX_FIFO_SIZE 16
90 #define UART_INPUT_CLK 50000000
94 #define R_IER (0x08/4)
95 #define R_IDR (0x0C/4)
96 #define R_IMR (0x10/4)
97 #define R_CISR (0x14/4)
98 #define R_BRGR (0x18/4)
99 #define R_RTOR (0x1C/4)
100 #define R_RTRIG (0x20/4)
101 #define R_MCR (0x24/4)
102 #define R_MSR (0x28/4)
103 #define R_SR (0x2C/4)
104 #define R_TX_RX (0x30/4)
105 #define R_BDIV (0x34/4)
106 #define R_FDEL (0x38/4)
107 #define R_PMIN (0x3C/4)
108 #define R_PWID (0x40/4)
109 #define R_TTRIG (0x44/4)
111 #define R_MAX (R_TTRIG + 1)
113 #define TYPE_CADENCE_UART "cadence_uart"
114 #define CADENCE_UART(obj) OBJECT_CHECK(UartState, (obj), TYPE_CADENCE_UART)
118 SysBusDevice parent_obj;
123 uint8_t rx_fifo[RX_FIFO_SIZE];
124 uint8_t tx_fifo[TX_FIFO_SIZE];
128 uint64_t char_tx_time;
129 CharDriverState *chr;
131 QEMUTimer *fifo_trigger_handle;
134 static void uart_update_status(UartState *s)
138 s->r[R_SR] |= s->rx_count == RX_FIFO_SIZE ? UART_SR_INTR_RFUL : 0;
139 s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
140 s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
142 s->r[R_SR] |= s->tx_count == TX_FIFO_SIZE ? UART_SR_INTR_TFUL : 0;
143 s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
144 s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
146 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
147 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
148 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
151 static void fifo_trigger_update(void *opaque)
153 UartState *s = (UartState *)opaque;
155 s->r[R_CISR] |= UART_INTR_TIMEOUT;
157 uart_update_status(s);
160 static void uart_rx_reset(UartState *s)
165 qemu_chr_accept_input(s->chr);
169 static void uart_tx_reset(UartState *s)
174 static void uart_send_breaks(UartState *s)
176 int break_enabled = 1;
178 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
182 static void uart_parameters_setup(UartState *s)
184 QEMUSerialSetParams ssp;
185 unsigned int baud_rate, packet_size;
187 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
188 UART_INPUT_CLK / 8 : UART_INPUT_CLK;
190 ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
193 switch (s->r[R_MR] & UART_MR_PAR) {
194 case UART_PARITY_EVEN:
198 case UART_PARITY_ODD:
207 switch (s->r[R_MR] & UART_MR_CHRL) {
208 case UART_DATA_BITS_6:
211 case UART_DATA_BITS_7:
219 switch (s->r[R_MR] & UART_MR_NBSTOP) {
220 case UART_STOP_BITS_1:
228 packet_size += ssp.data_bits + ssp.stop_bits;
229 s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
230 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
233 static int uart_can_receive(void *opaque)
235 UartState *s = (UartState *)opaque;
236 int ret = MAX(RX_FIFO_SIZE, TX_FIFO_SIZE);
237 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
239 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
240 ret = MIN(ret, RX_FIFO_SIZE - s->rx_count);
242 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
243 ret = MIN(ret, TX_FIFO_SIZE - s->tx_count);
248 static void uart_ctrl_update(UartState *s)
250 if (s->r[R_CR] & UART_CR_TXRST) {
254 if (s->r[R_CR] & UART_CR_RXRST) {
258 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
260 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
265 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
267 UartState *s = (UartState *)opaque;
268 uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
271 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
275 if (s->rx_count == RX_FIFO_SIZE) {
276 s->r[R_CISR] |= UART_INTR_ROVR;
278 for (i = 0; i < size; i++) {
279 s->rx_fifo[s->rx_wpos] = buf[i];
280 s->rx_wpos = (s->rx_wpos + 1) % RX_FIFO_SIZE;
283 timer_mod(s->fifo_trigger_handle, new_rx_time +
284 (s->char_tx_time * 4));
286 uart_update_status(s);
289 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
292 UartState *s = opaque;
295 /* instant drain the fifo when there's no back-end */
304 ret = qemu_chr_fe_write(s->chr, s->tx_fifo, s->tx_count);
306 memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
309 int r = qemu_chr_fe_add_watch(s->chr, G_IO_OUT, cadence_uart_xmit, s);
313 uart_update_status(s);
317 static void uart_write_tx_fifo(UartState *s, const uint8_t *buf, int size)
319 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
323 if (size > TX_FIFO_SIZE - s->tx_count) {
324 size = TX_FIFO_SIZE - s->tx_count;
326 * This can only be a guest error via a bad tx fifo register push,
327 * as can_receive() should stop remote loop and echo modes ever getting
330 qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
331 s->r[R_CISR] |= UART_INTR_ROVR;
334 memcpy(s->tx_fifo + s->tx_count, buf, size);
337 cadence_uart_xmit(NULL, G_IO_OUT, s);
340 static void uart_receive(void *opaque, const uint8_t *buf, int size)
342 UartState *s = (UartState *)opaque;
343 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
345 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
346 uart_write_rx_fifo(opaque, buf, size);
348 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
349 uart_write_tx_fifo(s, buf, size);
353 static void uart_event(void *opaque, int event)
355 UartState *s = (UartState *)opaque;
358 if (event == CHR_EVENT_BREAK) {
359 uart_write_rx_fifo(opaque, &buf, 1);
362 uart_update_status(s);
365 static void uart_read_rx_fifo(UartState *s, uint32_t *c)
367 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
373 (RX_FIFO_SIZE + s->rx_wpos - s->rx_count) % RX_FIFO_SIZE;
374 *c = s->rx_fifo[rx_rpos];
377 qemu_chr_accept_input(s->chr);
382 uart_update_status(s);
385 static void uart_write(void *opaque, hwaddr offset,
386 uint64_t value, unsigned size)
388 UartState *s = (UartState *)opaque;
390 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
393 case R_IER: /* ier (wts imr) */
394 s->r[R_IMR] |= value;
396 case R_IDR: /* idr (wtc imr) */
397 s->r[R_IMR] &= ~value;
399 case R_IMR: /* imr (read only) */
401 case R_CISR: /* cisr (wtc) */
402 s->r[R_CISR] &= ~value;
404 case R_TX_RX: /* UARTDR */
405 switch (s->r[R_MR] & UART_MR_CHMODE) {
407 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
410 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
415 s->r[offset] = value;
423 uart_parameters_setup(s);
426 uart_update_status(s);
429 static uint64_t uart_read(void *opaque, hwaddr offset,
432 UartState *s = (UartState *)opaque;
436 if (offset >= R_MAX) {
438 } else if (offset == R_TX_RX) {
439 uart_read_rx_fifo(s, &c);
444 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
448 static const MemoryRegionOps uart_ops = {
451 .endianness = DEVICE_NATIVE_ENDIAN,
454 static void cadence_uart_reset(DeviceState *dev)
456 UartState *s = CADENCE_UART(dev);
458 s->r[R_CR] = 0x00000128;
461 s->r[R_RTRIG] = 0x00000020;
462 s->r[R_BRGR] = 0x0000000F;
463 s->r[R_TTRIG] = 0x00000020;
468 uart_update_status(s);
471 static int cadence_uart_init(SysBusDevice *dev)
473 UartState *s = CADENCE_UART(dev);
475 memory_region_init_io(&s->iomem, OBJECT(s), &uart_ops, s, "uart", 0x1000);
476 sysbus_init_mmio(dev, &s->iomem);
477 sysbus_init_irq(dev, &s->irq);
479 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
480 (QEMUTimerCB *)fifo_trigger_update, s);
482 s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;
484 s->chr = qemu_char_get_next_serial();
487 qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
494 static int cadence_uart_post_load(void *opaque, int version_id)
496 UartState *s = opaque;
498 uart_parameters_setup(s);
499 uart_update_status(s);
503 static const VMStateDescription vmstate_cadence_uart = {
504 .name = "cadence_uart",
506 .minimum_version_id = 2,
507 .minimum_version_id_old = 2,
508 .post_load = cadence_uart_post_load,
509 .fields = (VMStateField[]) {
510 VMSTATE_UINT32_ARRAY(r, UartState, R_MAX),
511 VMSTATE_UINT8_ARRAY(rx_fifo, UartState, RX_FIFO_SIZE),
512 VMSTATE_UINT8_ARRAY(tx_fifo, UartState, RX_FIFO_SIZE),
513 VMSTATE_UINT32(rx_count, UartState),
514 VMSTATE_UINT32(tx_count, UartState),
515 VMSTATE_UINT32(rx_wpos, UartState),
516 VMSTATE_TIMER(fifo_trigger_handle, UartState),
517 VMSTATE_END_OF_LIST()
521 static void cadence_uart_class_init(ObjectClass *klass, void *data)
523 DeviceClass *dc = DEVICE_CLASS(klass);
524 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
526 sdc->init = cadence_uart_init;
527 dc->vmsd = &vmstate_cadence_uart;
528 dc->reset = cadence_uart_reset;
531 static const TypeInfo cadence_uart_info = {
532 .name = TYPE_CADENCE_UART,
533 .parent = TYPE_SYS_BUS_DEVICE,
534 .instance_size = sizeof(UartState),
535 .class_init = cadence_uart_class_init,
538 static void cadence_uart_register_types(void)
540 type_register_static(&cadence_uart_info);
543 type_init(cadence_uart_register_types)