4 * Generate helpers used by TCG for qemu_ld/st ops and code load
7 * Included from target op helpers and exec.c.
9 * Copyright (c) 2003 Fabrice Bellard
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/timer.h"
25 #include "exec/address-spaces.h"
26 #include "exec/memory.h"
28 #define DATA_SIZE (1 << SHIFT)
33 #define SDATA_TYPE int64_t
34 #define DATA_TYPE uint64_t
38 #define SDATA_TYPE int32_t
39 #define DATA_TYPE uint32_t
43 #define SDATA_TYPE int16_t
44 #define DATA_TYPE uint16_t
48 #define SDATA_TYPE int8_t
49 #define DATA_TYPE uint8_t
51 #error unsupported data size
55 /* For the benefit of TCG generated code, we want to avoid the complication
56 of ABI-specific return type promotion and always return a value extended
57 to the register size of the host. This is tcg_target_long, except in the
58 case of a 32-bit host and 64-bit data, and for that we always have
59 uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
60 #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
61 # define WORD_TYPE DATA_TYPE
62 # define USUFFIX SUFFIX
64 # define WORD_TYPE tcg_target_ulong
65 # define USUFFIX glue(u, SUFFIX)
66 # define SSUFFIX glue(s, SUFFIX)
69 #ifdef SOFTMMU_CODE_ACCESS
70 #define READ_ACCESS_TYPE MMU_INST_FETCH
71 #define ADDR_READ addr_code
73 #define READ_ACCESS_TYPE MMU_DATA_LOAD
74 #define ADDR_READ addr_read
78 # define BSWAP(X) bswap64(X)
80 # define BSWAP(X) bswap32(X)
82 # define BSWAP(X) bswap16(X)
87 #ifdef TARGET_WORDS_BIGENDIAN
88 # define TGT_BE(X) (X)
89 # define TGT_LE(X) BSWAP(X)
91 # define TGT_BE(X) BSWAP(X)
92 # define TGT_LE(X) (X)
96 # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
97 # define helper_be_ld_name helper_le_ld_name
98 # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
99 # define helper_be_lds_name helper_le_lds_name
100 # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
101 # define helper_be_st_name helper_le_st_name
103 # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
104 # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
105 # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
106 # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
107 # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
108 # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
111 #ifdef TARGET_WORDS_BIGENDIAN
112 # define helper_te_ld_name helper_be_ld_name
113 # define helper_te_st_name helper_be_st_name
115 # define helper_te_ld_name helper_le_ld_name
116 # define helper_te_st_name helper_le_st_name
119 #ifndef SOFTMMU_CODE_ACCESS
120 static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
121 CPUIOTLBEntry *iotlbentry,
126 CPUState *cpu = ENV_GET_CPU(env);
127 hwaddr physaddr = iotlbentry->addr;
128 MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
130 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
131 cpu->mem_io_pc = retaddr;
132 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
133 cpu_io_recompile(cpu, retaddr);
136 cpu->mem_io_vaddr = addr;
137 memory_region_dispatch_read(mr, physaddr, &val, 1 << SHIFT,
143 WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr,
144 TCGMemOpIdx oi, uintptr_t retaddr)
146 unsigned mmu_idx = get_mmuidx(oi);
147 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
148 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
149 int a_bits = get_alignment_bits(get_memop(oi));
153 /* Adjust the given return address. */
154 retaddr -= GETPC_ADJ;
156 if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) {
157 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
161 /* If the TLB entry is for a different page, reload and try again. */
162 if ((addr & TARGET_PAGE_MASK)
163 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
164 if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
165 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
168 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
171 /* Handle an IO access. */
172 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
173 CPUIOTLBEntry *iotlbentry;
174 if ((addr & (DATA_SIZE - 1)) != 0) {
175 goto do_unaligned_access;
177 iotlbentry = &env->iotlb[mmu_idx][index];
179 /* ??? Note that the io helpers always read data in the target
180 byte ordering. We should push the LE/BE request down into io. */
181 res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
186 /* Handle slow unaligned access (it spans two pages or IO). */
188 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
189 >= TARGET_PAGE_SIZE)) {
190 target_ulong addr1, addr2;
191 DATA_TYPE res1, res2;
194 addr1 = addr & ~(DATA_SIZE - 1);
195 addr2 = addr1 + DATA_SIZE;
196 /* Note the adjustment at the beginning of the function.
197 Undo that for the recursion. */
198 res1 = helper_le_ld_name(env, addr1, oi, retaddr + GETPC_ADJ);
199 res2 = helper_le_ld_name(env, addr2, oi, retaddr + GETPC_ADJ);
200 shift = (addr & (DATA_SIZE - 1)) * 8;
202 /* Little-endian combine. */
203 res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
207 haddr = addr + env->tlb_table[mmu_idx][index].addend;
209 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
211 res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
217 WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr,
218 TCGMemOpIdx oi, uintptr_t retaddr)
220 unsigned mmu_idx = get_mmuidx(oi);
221 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
222 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
223 int a_bits = get_alignment_bits(get_memop(oi));
227 /* Adjust the given return address. */
228 retaddr -= GETPC_ADJ;
230 if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) {
231 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
235 /* If the TLB entry is for a different page, reload and try again. */
236 if ((addr & TARGET_PAGE_MASK)
237 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
238 if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
239 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
242 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
245 /* Handle an IO access. */
246 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
247 CPUIOTLBEntry *iotlbentry;
248 if ((addr & (DATA_SIZE - 1)) != 0) {
249 goto do_unaligned_access;
251 iotlbentry = &env->iotlb[mmu_idx][index];
253 /* ??? Note that the io helpers always read data in the target
254 byte ordering. We should push the LE/BE request down into io. */
255 res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
260 /* Handle slow unaligned access (it spans two pages or IO). */
262 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
263 >= TARGET_PAGE_SIZE)) {
264 target_ulong addr1, addr2;
265 DATA_TYPE res1, res2;
268 addr1 = addr & ~(DATA_SIZE - 1);
269 addr2 = addr1 + DATA_SIZE;
270 /* Note the adjustment at the beginning of the function.
271 Undo that for the recursion. */
272 res1 = helper_be_ld_name(env, addr1, oi, retaddr + GETPC_ADJ);
273 res2 = helper_be_ld_name(env, addr2, oi, retaddr + GETPC_ADJ);
274 shift = (addr & (DATA_SIZE - 1)) * 8;
276 /* Big-endian combine. */
277 res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
281 haddr = addr + env->tlb_table[mmu_idx][index].addend;
282 res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
285 #endif /* DATA_SIZE > 1 */
287 #ifndef SOFTMMU_CODE_ACCESS
289 /* Provide signed versions of the load routines as well. We can of course
290 avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
291 #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
292 WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
293 TCGMemOpIdx oi, uintptr_t retaddr)
295 return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr);
299 WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
300 TCGMemOpIdx oi, uintptr_t retaddr)
302 return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr);
307 static inline void glue(io_write, SUFFIX)(CPUArchState *env,
308 CPUIOTLBEntry *iotlbentry,
313 CPUState *cpu = ENV_GET_CPU(env);
314 hwaddr physaddr = iotlbentry->addr;
315 MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
317 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
318 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
319 cpu_io_recompile(cpu, retaddr);
322 cpu->mem_io_vaddr = addr;
323 cpu->mem_io_pc = retaddr;
324 memory_region_dispatch_write(mr, physaddr, val, 1 << SHIFT,
328 void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
329 TCGMemOpIdx oi, uintptr_t retaddr)
331 unsigned mmu_idx = get_mmuidx(oi);
332 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
333 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
334 int a_bits = get_alignment_bits(get_memop(oi));
337 /* Adjust the given return address. */
338 retaddr -= GETPC_ADJ;
340 if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) {
341 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
345 /* If the TLB entry is for a different page, reload and try again. */
346 if ((addr & TARGET_PAGE_MASK)
347 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
348 if (!VICTIM_TLB_HIT(addr_write, addr)) {
349 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
351 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
354 /* Handle an IO access. */
355 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
356 CPUIOTLBEntry *iotlbentry;
357 if ((addr & (DATA_SIZE - 1)) != 0) {
358 goto do_unaligned_access;
360 iotlbentry = &env->iotlb[mmu_idx][index];
362 /* ??? Note that the io helpers always read data in the target
363 byte ordering. We should push the LE/BE request down into io. */
365 glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
369 /* Handle slow unaligned access (it spans two pages or IO). */
371 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
372 >= TARGET_PAGE_SIZE)) {
374 target_ulong page2, tlb_addr2;
376 /* Ensure the second page is in the TLB. Note that the first page
377 is already guaranteed to be filled, and that the second page
378 cannot evict the first. */
379 page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
380 index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
381 tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
382 if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK))
383 && !VICTIM_TLB_HIT(addr_write, page2)) {
384 tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE,
388 /* XXX: not efficient, but simple. */
389 /* This loop must go in the forward direction to avoid issues
390 with self-modifying code in Windows 64-bit. */
391 for (i = 0; i < DATA_SIZE; ++i) {
392 /* Little-endian extract. */
393 uint8_t val8 = val >> (i * 8);
394 /* Note the adjustment at the beginning of the function.
395 Undo that for the recursion. */
396 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
397 oi, retaddr + GETPC_ADJ);
402 haddr = addr + env->tlb_table[mmu_idx][index].addend;
404 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
406 glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
411 void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
412 TCGMemOpIdx oi, uintptr_t retaddr)
414 unsigned mmu_idx = get_mmuidx(oi);
415 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
416 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
417 int a_bits = get_alignment_bits(get_memop(oi));
420 /* Adjust the given return address. */
421 retaddr -= GETPC_ADJ;
423 if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) {
424 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
428 /* If the TLB entry is for a different page, reload and try again. */
429 if ((addr & TARGET_PAGE_MASK)
430 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
431 if (!VICTIM_TLB_HIT(addr_write, addr)) {
432 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
434 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
437 /* Handle an IO access. */
438 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
439 CPUIOTLBEntry *iotlbentry;
440 if ((addr & (DATA_SIZE - 1)) != 0) {
441 goto do_unaligned_access;
443 iotlbentry = &env->iotlb[mmu_idx][index];
445 /* ??? Note that the io helpers always read data in the target
446 byte ordering. We should push the LE/BE request down into io. */
448 glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
452 /* Handle slow unaligned access (it spans two pages or IO). */
454 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
455 >= TARGET_PAGE_SIZE)) {
457 target_ulong page2, tlb_addr2;
459 /* Ensure the second page is in the TLB. Note that the first page
460 is already guaranteed to be filled, and that the second page
461 cannot evict the first. */
462 page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
463 index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
464 tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
465 if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK))
466 && !VICTIM_TLB_HIT(addr_write, page2)) {
467 tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE,
471 /* XXX: not efficient, but simple */
472 /* This loop must go in the forward direction to avoid issues
473 with self-modifying code. */
474 for (i = 0; i < DATA_SIZE; ++i) {
475 /* Big-endian extract. */
476 uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
477 /* Note the adjustment at the beginning of the function.
478 Undo that for the recursion. */
479 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
480 oi, retaddr + GETPC_ADJ);
485 haddr = addr + env->tlb_table[mmu_idx][index].addend;
486 glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
488 #endif /* DATA_SIZE > 1 */
491 /* Probe for whether the specified guest write access is permitted.
492 * If it is not permitted then an exception will be taken in the same
493 * way as if this were a real write access (and we will not return).
494 * Otherwise the function will return, and there will be a valid
495 * entry in the TLB for this access.
497 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
500 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
501 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
503 if ((addr & TARGET_PAGE_MASK)
504 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
505 /* TLB entry is for a different page */
506 if (!VICTIM_TLB_HIT(addr_write, addr)) {
507 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
512 #endif /* !defined(SOFTMMU_CODE_ACCESS) */
514 #undef READ_ACCESS_TYPE
530 #undef helper_le_ld_name
531 #undef helper_be_ld_name
532 #undef helper_le_lds_name
533 #undef helper_be_lds_name
534 #undef helper_le_st_name
535 #undef helper_be_st_name
536 #undef helper_te_ld_name
537 #undef helper_te_st_name