2 #include "exec/gdbstub.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/sysemu.h"
6 #include "qemu/bitops.h"
8 #ifndef CONFIG_USER_ONLY
9 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
10 int access_type, int is_user,
11 hwaddr *phys_ptr, int *prot,
12 target_ulong *page_size);
15 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
19 /* VFP data registers are always little-endian. */
20 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
22 stfq_le_p(buf, env->vfp.regs[reg]);
25 if (arm_feature(env, ARM_FEATURE_NEON)) {
26 /* Aliases for Q regs. */
29 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
30 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
34 switch (reg - nregs) {
35 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
36 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
37 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
42 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
46 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
48 env->vfp.regs[reg] = ldfq_le_p(buf);
51 if (arm_feature(env, ARM_FEATURE_NEON)) {
54 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
55 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
59 switch (reg - nregs) {
60 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
61 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
62 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
67 static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri,
70 *value = CPREG_FIELD32(env, ri);
74 static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
77 CPREG_FIELD32(env, ri) = value;
81 static bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
84 /* Raw read of a coprocessor register (as needed for migration, etc)
85 * return true on success, false if the read is impossible for some reason.
87 if (ri->type & ARM_CP_CONST) {
89 } else if (ri->raw_readfn) {
90 return (ri->raw_readfn(env, ri, v) == 0);
91 } else if (ri->readfn) {
92 return (ri->readfn(env, ri, v) == 0);
94 if (ri->type & ARM_CP_64BIT) {
95 *v = CPREG_FIELD64(env, ri);
97 *v = CPREG_FIELD32(env, ri);
103 static bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
106 /* Raw write of a coprocessor register (as needed for migration, etc).
107 * Return true on success, false if the write is impossible for some reason.
108 * Note that constant registers are treated as write-ignored; the
109 * caller should check for success by whether a readback gives the
112 if (ri->type & ARM_CP_CONST) {
114 } else if (ri->raw_writefn) {
115 return (ri->raw_writefn(env, ri, v) == 0);
116 } else if (ri->writefn) {
117 return (ri->writefn(env, ri, v) == 0);
119 if (ri->type & ARM_CP_64BIT) {
120 CPREG_FIELD64(env, ri) = v;
122 CPREG_FIELD32(env, ri) = v;
128 bool write_cpustate_to_list(ARMCPU *cpu)
130 /* Write the coprocessor state from cpu->env to the (index,value) list. */
134 for (i = 0; i < cpu->cpreg_array_len; i++) {
135 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
136 const ARMCPRegInfo *ri;
138 ri = get_arm_cp_reginfo(cpu, regidx);
143 if (ri->type & ARM_CP_NO_MIGRATE) {
146 if (!read_raw_cp_reg(&cpu->env, ri, &v)) {
150 cpu->cpreg_values[i] = v;
155 bool write_list_to_cpustate(ARMCPU *cpu)
160 for (i = 0; i < cpu->cpreg_array_len; i++) {
161 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
162 uint64_t v = cpu->cpreg_values[i];
164 const ARMCPRegInfo *ri;
166 ri = get_arm_cp_reginfo(cpu, regidx);
171 if (ri->type & ARM_CP_NO_MIGRATE) {
174 /* Write value and confirm it reads back as written
175 * (to catch read-only registers and partially read-only
176 * registers where the incoming migration value doesn't match)
178 if (!write_raw_cp_reg(&cpu->env, ri, v) ||
179 !read_raw_cp_reg(&cpu->env, ri, &readback) ||
187 static void add_cpreg_to_list(gpointer key, gpointer opaque)
189 ARMCPU *cpu = opaque;
191 const ARMCPRegInfo *ri;
193 regidx = *(uint32_t *)key;
194 ri = get_arm_cp_reginfo(cpu, regidx);
196 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
197 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
198 /* The value array need not be initialized at this point */
199 cpu->cpreg_array_len++;
203 static void count_cpreg(gpointer key, gpointer opaque)
205 ARMCPU *cpu = opaque;
207 const ARMCPRegInfo *ri;
209 regidx = *(uint32_t *)key;
210 ri = get_arm_cp_reginfo(cpu, regidx);
212 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
213 cpu->cpreg_array_len++;
217 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
219 uint32_t aidx = *(uint32_t *)a;
220 uint32_t bidx = *(uint32_t *)b;
225 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
227 GList **plist = udata;
229 *plist = g_list_prepend(*plist, key);
232 void init_cpreg_list(ARMCPU *cpu)
234 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
235 * Note that we require cpreg_tuples[] to be sorted by key ID.
240 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
242 keys = g_list_sort(keys, cpreg_key_compare);
244 cpu->cpreg_array_len = 0;
246 g_list_foreach(keys, count_cpreg, cpu);
248 arraylen = cpu->cpreg_array_len;
249 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
250 cpu->cpreg_values = g_new(uint64_t, arraylen);
251 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
252 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
253 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
254 cpu->cpreg_array_len = 0;
256 g_list_foreach(keys, add_cpreg_to_list, cpu);
258 assert(cpu->cpreg_array_len == arraylen);
263 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
265 env->cp15.c3 = value;
266 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
270 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
272 if (env->cp15.c13_fcse != value) {
273 /* Unlike real hardware the qemu TLB uses virtual addresses,
274 * not modified virtual addresses, so this causes a TLB flush.
277 env->cp15.c13_fcse = value;
281 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
284 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
285 /* For VMSA (when not using the LPAE long descriptor page table
286 * format) this register includes the ASID, so do a TLB flush.
287 * For PMSA it is purely a process ID and no action is needed.
291 env->cp15.c13_context = value;
295 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
298 /* Invalidate all (TLBIALL) */
303 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
306 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
307 tlb_flush_page(env, value & TARGET_PAGE_MASK);
311 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
314 /* Invalidate by ASID (TLBIASID) */
315 tlb_flush(env, value == 0);
319 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
322 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
323 tlb_flush_page(env, value & TARGET_PAGE_MASK);
327 static const ARMCPRegInfo cp_reginfo[] = {
328 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
329 * version" bits will read as a reserved value, which should cause
330 * Linux to not try to use the debug hardware.
332 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
333 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
334 /* MMU Domain access control / MPU write buffer control */
335 { .name = "DACR", .cp = 15,
336 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
337 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
338 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
339 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
340 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
341 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
342 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
343 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
344 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
345 /* ??? This covers not just the impdef TLB lockdown registers but also
346 * some v7VMSA registers relating to TEX remap, so it is overly broad.
348 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
349 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
350 /* MMU TLB control. Note that the wildcarding means we cover not just
351 * the unified TLB ops but also the dside/iside/inner-shareable variants.
353 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
354 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
355 .type = ARM_CP_NO_MIGRATE },
356 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
357 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
358 .type = ARM_CP_NO_MIGRATE },
359 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
360 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
361 .type = ARM_CP_NO_MIGRATE },
362 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
363 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
364 .type = ARM_CP_NO_MIGRATE },
365 /* Cache maintenance ops; some of this space may be overridden later. */
366 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
367 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
368 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
372 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
373 /* Not all pre-v6 cores implemented this WFI, so this is slightly
376 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
377 .access = PL1_W, .type = ARM_CP_WFI },
381 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
382 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
383 * is UNPREDICTABLE; we choose to NOP as most implementations do).
385 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
386 .access = PL1_W, .type = ARM_CP_WFI },
387 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
388 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
389 * OMAPCP will override this space.
391 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
392 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
394 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
395 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
397 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
398 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
399 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
404 static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
406 if (env->cp15.c1_coproc != value) {
407 env->cp15.c1_coproc = value;
408 /* ??? Is this safe when called from within a TB? */
414 static const ARMCPRegInfo v6_cp_reginfo[] = {
415 /* prefetch by MVA in v6, NOP in v7 */
416 { .name = "MVA_prefetch",
417 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
418 .access = PL1_W, .type = ARM_CP_NOP },
419 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
420 .access = PL0_W, .type = ARM_CP_NOP },
421 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
422 .access = PL0_W, .type = ARM_CP_NOP },
423 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
424 .access = PL0_W, .type = ARM_CP_NOP },
425 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
426 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
428 /* Watchpoint Fault Address Register : should actually only be present
429 * for 1136, 1176, 11MPCore.
431 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
432 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
433 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
434 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
435 .resetvalue = 0, .writefn = cpacr_write },
440 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
443 /* Generic performance monitor register read function for where
444 * user access may be allowed by PMUSERENR.
446 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
449 *value = CPREG_FIELD32(env, ri);
453 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
456 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
459 /* only the DP, X, D and E bits are writable */
460 env->cp15.c9_pmcr &= ~0x39;
461 env->cp15.c9_pmcr |= (value & 0x39);
465 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
468 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
472 env->cp15.c9_pmcnten |= value;
476 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
479 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
483 env->cp15.c9_pmcnten &= ~value;
487 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
490 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
493 env->cp15.c9_pmovsr &= ~value;
497 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
503 env->cp15.c9_pmxevtyper = value & 0xff;
507 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
510 env->cp15.c9_pmuserenr = value & 1;
514 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
517 /* We have no event counters so only the C bit can be changed */
519 env->cp15.c9_pminten |= value;
523 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 env->cp15.c9_pminten &= ~value;
531 static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
534 ARMCPU *cpu = arm_env_get_cpu(env);
535 *value = cpu->ccsidr[env->cp15.c0_cssel];
539 static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
542 env->cp15.c0_cssel = value & 0xf;
546 static const ARMCPRegInfo v7_cp_reginfo[] = {
547 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
550 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
551 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
552 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
553 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
554 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
555 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
556 .access = PL1_W, .type = ARM_CP_NOP },
557 /* Performance monitors are implementation defined in v7,
558 * but with an ARM recommended set of registers, which we
559 * follow (although we don't actually implement any counters)
561 * Performance registers fall into three categories:
562 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
563 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
564 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
565 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
566 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
568 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
569 .access = PL0_RW, .resetvalue = 0,
570 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
571 .readfn = pmreg_read, .writefn = pmcntenset_write,
572 .raw_readfn = raw_read, .raw_writefn = raw_write },
573 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
574 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
575 .readfn = pmreg_read, .writefn = pmcntenclr_write,
576 .type = ARM_CP_NO_MIGRATE },
577 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
578 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
579 .readfn = pmreg_read, .writefn = pmovsr_write,
580 .raw_readfn = raw_read, .raw_writefn = raw_write },
581 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
584 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
585 .access = PL0_W, .type = ARM_CP_NOP },
586 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
587 * We choose to RAZ/WI. XXX should respect PMUSERENR.
589 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
590 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
591 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
592 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
593 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
594 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
596 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
597 .readfn = pmreg_read, .writefn = pmxevtyper_write,
598 .raw_readfn = raw_read, .raw_writefn = raw_write },
599 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
600 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
601 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
602 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
603 .access = PL0_R | PL1_RW,
604 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
606 .writefn = pmuserenr_write, .raw_writefn = raw_write },
607 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
609 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
611 .writefn = pmintenset_write, .raw_writefn = raw_write },
612 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
613 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
614 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
615 .resetvalue = 0, .writefn = pmintenclr_write, },
616 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
617 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
619 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
620 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
621 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
622 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
623 .writefn = csselr_write, .resetvalue = 0 },
624 /* Auxiliary ID register: this actually has an IMPDEF value but for now
625 * just RAZ for all cores:
627 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
628 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
632 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
639 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
642 /* This is a helper function because the user access rights
643 * depend on the value of the TEECR.
645 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
648 *value = env->teehbr;
652 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
655 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
662 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
663 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
664 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
666 .writefn = teecr_write },
667 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
668 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
669 .resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write,
670 .readfn = teehbr_read, .writefn = teehbr_write },
674 static const ARMCPRegInfo v6k_cp_reginfo[] = {
675 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
677 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
679 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
680 .access = PL0_R|PL1_W,
681 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
683 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
685 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
690 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
691 /* Dummy implementation: RAZ/WI the whole crn=14 space */
692 { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
693 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
694 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
699 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
701 if (arm_feature(env, ARM_FEATURE_LPAE)) {
702 env->cp15.c7_par = value;
703 } else if (arm_feature(env, ARM_FEATURE_V7)) {
704 env->cp15.c7_par = value & 0xfffff6ff;
706 env->cp15.c7_par = value & 0xfffff1ff;
711 #ifndef CONFIG_USER_ONLY
712 /* get_phys_addr() isn't present for user-mode-only targets */
714 /* Return true if extended addresses are enabled, ie this is an
715 * LPAE implementation and we are using the long-descriptor translation
716 * table format because the TTBCR EAE bit is set.
718 static inline bool extended_addresses_enabled(CPUARMState *env)
720 return arm_feature(env, ARM_FEATURE_LPAE)
721 && (env->cp15.c2_control & (1 << 31));
724 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
727 target_ulong page_size;
729 int ret, is_user = ri->opc2 & 2;
730 int access_type = ri->opc2 & 1;
733 /* Other states are only available with TrustZone */
736 ret = get_phys_addr(env, value, access_type, is_user,
737 &phys_addr, &prot, &page_size);
738 if (extended_addresses_enabled(env)) {
739 /* ret is a DFSR/IFSR value for the long descriptor
740 * translation table format, but with WnR always clear.
741 * Convert it to a 64-bit PAR.
743 uint64_t par64 = (1 << 11); /* LPAE bit always set */
745 par64 |= phys_addr & ~0xfffULL;
746 /* We don't set the ATTR or SH fields in the PAR. */
749 par64 |= (ret & 0x3f) << 1; /* FS */
750 /* Note that S2WLK and FSTAGE are always zero, because we don't
751 * implement virtualization and therefore there can't be a stage 2
755 env->cp15.c7_par = par64;
756 env->cp15.c7_par_hi = par64 >> 32;
758 /* ret is a DFSR/IFSR value for the short descriptor
759 * translation table format (with WnR always clear).
760 * Convert it to a 32-bit PAR.
763 /* We do not set any attribute bits in the PAR */
764 if (page_size == (1 << 24)
765 && arm_feature(env, ARM_FEATURE_V7)) {
766 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
768 env->cp15.c7_par = phys_addr & 0xfffff000;
771 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
772 ((ret & (12 << 1)) >> 6) |
773 ((ret & 0xf) << 1) | 1;
775 env->cp15.c7_par_hi = 0;
781 static const ARMCPRegInfo vapa_cp_reginfo[] = {
782 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
783 .access = PL1_RW, .resetvalue = 0,
784 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
785 .writefn = par_write },
786 #ifndef CONFIG_USER_ONLY
787 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
788 .access = PL1_W, .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
793 /* Return basic MPU access permission bits. */
794 static uint32_t simple_mpu_ap_bits(uint32_t val)
801 for (i = 0; i < 16; i += 2) {
802 ret |= (val >> i) & mask;
808 /* Pad basic MPU access permission bits to extended format. */
809 static uint32_t extended_mpu_ap_bits(uint32_t val)
816 for (i = 0; i < 16; i += 2) {
817 ret |= (val & mask) << i;
823 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
826 env->cp15.c5_data = extended_mpu_ap_bits(value);
830 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
833 *value = simple_mpu_ap_bits(env->cp15.c5_data);
837 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
840 env->cp15.c5_insn = extended_mpu_ap_bits(value);
844 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
847 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
851 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
857 *value = env->cp15.c6_region[ri->crm];
861 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
867 env->cp15.c6_region[ri->crm] = value;
871 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
872 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
873 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
874 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
875 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
876 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
877 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
878 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
879 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
880 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
882 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
883 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
885 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
886 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
888 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
889 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
891 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
892 /* Protection region base and size registers */
893 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
894 .opc2 = CP_ANY, .access = PL1_RW,
895 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
899 static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
902 int maskshift = extract32(value, 0, 3);
904 if (arm_feature(env, ARM_FEATURE_LPAE)) {
905 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
909 /* Note that we always calculate c2_mask and c2_base_mask, but
910 * they are only used for short-descriptor tables (ie if EAE is 0);
911 * for long-descriptor tables the TTBCR fields are used differently
912 * and the c2_mask and c2_base_mask values are meaningless.
914 env->cp15.c2_control = value;
915 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
916 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
920 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
923 if (arm_feature(env, ARM_FEATURE_LPAE)) {
924 /* With LPAE the TTBCR could result in a change of ASID
925 * via the TTBCR.A1 bit, so do a TLB flush.
929 return vmsa_ttbcr_raw_write(env, ri, value);
932 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
934 env->cp15.c2_base_mask = 0xffffc000u;
935 env->cp15.c2_control = 0;
936 env->cp15.c2_mask = 0;
939 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
940 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
942 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
943 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
945 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
946 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
948 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
949 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
951 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
952 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
953 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
954 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
955 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
956 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
957 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
962 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
965 env->cp15.c15_ticonfig = value & 0xe7;
966 /* The OS_TYPE bit in this register changes the reported CPUID! */
967 env->cp15.c0_cpuid = (value & (1 << 5)) ?
968 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
972 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
975 env->cp15.c15_threadid = value & 0xffff;
979 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
982 /* Wait-for-interrupt (deprecated) */
983 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
987 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
990 /* On OMAP there are registers indicating the max/min index of dcache lines
991 * containing a dirty line; cache flush operations have to reset these.
993 env->cp15.c15_i_max = 0x000;
994 env->cp15.c15_i_min = 0xff0;
998 static const ARMCPRegInfo omap_cp_reginfo[] = {
999 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1000 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1001 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1002 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1003 .access = PL1_RW, .type = ARM_CP_NOP },
1004 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1006 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1007 .writefn = omap_ticonfig_write },
1008 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1010 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1011 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1012 .access = PL1_RW, .resetvalue = 0xff0,
1013 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1014 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1016 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1017 .writefn = omap_threadid_write },
1018 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1019 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1020 .type = ARM_CP_NO_MIGRATE,
1021 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1022 /* TODO: Peripheral port remap register:
1023 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1024 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1027 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1028 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1029 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1030 .writefn = omap_cachemaint_write },
1031 { .name = "C9", .cp = 15, .crn = 9,
1032 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1033 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1037 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1041 if (env->cp15.c15_cpar != value) {
1042 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1044 env->cp15.c15_cpar = value;
1049 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1050 { .name = "XSCALE_CPAR",
1051 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1052 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1053 .writefn = xscale_cpar_write, },
1054 { .name = "XSCALE_AUXCR",
1055 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1056 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1061 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1062 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1063 * implementation of this implementation-defined space.
1064 * Ideally this should eventually disappear in favour of actually
1065 * implementing the correct behaviour for all cores.
1067 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1068 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1069 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1074 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1075 /* Cache status: RAZ because we have no cache so it's always clean */
1076 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1077 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1082 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1083 /* We never have a a block transfer operation in progress */
1084 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1085 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1087 /* The cache ops themselves: these all NOP for QEMU */
1088 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1089 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1090 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1091 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1092 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1093 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1094 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1095 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1096 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1097 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1098 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1099 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1103 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1104 /* The cache test-and-clean instructions always return (1 << 30)
1105 * to indicate that there are no dirty cache lines.
1107 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1108 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1109 .resetvalue = (1 << 30) },
1110 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1111 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1112 .resetvalue = (1 << 30) },
1116 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1117 /* Ignore ReadBuffer accesses */
1118 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1119 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1120 .access = PL1_RW, .resetvalue = 0,
1121 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1125 static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1128 CPUState *cs = CPU(arm_env_get_cpu(env));
1129 uint32_t mpidr = cs->cpu_index;
1130 /* We don't support setting cluster ID ([8..11])
1131 * so these bits always RAZ.
1133 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1135 /* Cores which are uniprocessor (non-coherent)
1136 * but still implement the MP extensions set
1137 * bit 30. (For instance, A9UP.) However we do
1138 * not currently model any of those cores.
1145 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1146 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1147 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1151 static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1153 *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1157 static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1159 env->cp15.c7_par_hi = value >> 32;
1160 env->cp15.c7_par = value;
1164 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1166 env->cp15.c7_par_hi = 0;
1167 env->cp15.c7_par = 0;
1170 static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
1173 *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
1177 static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1180 env->cp15.c2_base0_hi = value >> 32;
1181 env->cp15.c2_base0 = value;
1185 static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
1188 /* Writes to the 64 bit format TTBRs may change the ASID */
1190 return ttbr064_raw_write(env, ri, value);
1193 static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1195 env->cp15.c2_base0_hi = 0;
1196 env->cp15.c2_base0 = 0;
1199 static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
1202 *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
1206 static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
1209 env->cp15.c2_base1_hi = value >> 32;
1210 env->cp15.c2_base1 = value;
1214 static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1216 env->cp15.c2_base1_hi = 0;
1217 env->cp15.c2_base1 = 0;
1220 static const ARMCPRegInfo lpae_cp_reginfo[] = {
1221 /* NOP AMAIR0/1: the override is because these clash with the rather
1222 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1224 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1225 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1227 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1228 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1230 /* 64 bit access versions of the (dummy) debug registers */
1231 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1232 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1233 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1234 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1235 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1236 .access = PL1_RW, .type = ARM_CP_64BIT,
1237 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1238 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1239 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1240 .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write,
1241 .resetfn = ttbr064_reset },
1242 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1243 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1244 .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1248 static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1250 env->cp15.c1_sys = value;
1251 /* ??? Lots of these bits are not implemented. */
1252 /* This may enable/disable the MMU, so do a TLB flush. */
1257 void register_cp_regs_for_features(ARMCPU *cpu)
1259 /* Register all the coprocessor registers based on feature bits */
1260 CPUARMState *env = &cpu->env;
1261 if (arm_feature(env, ARM_FEATURE_M)) {
1262 /* M profile has no coprocessor registers */
1266 define_arm_cp_regs(cpu, cp_reginfo);
1267 if (arm_feature(env, ARM_FEATURE_V6)) {
1268 /* The ID registers all have impdef reset values */
1269 ARMCPRegInfo v6_idregs[] = {
1270 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1271 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1272 .resetvalue = cpu->id_pfr0 },
1273 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1274 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1275 .resetvalue = cpu->id_pfr1 },
1276 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1277 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1278 .resetvalue = cpu->id_dfr0 },
1279 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1280 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1281 .resetvalue = cpu->id_afr0 },
1282 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1283 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1284 .resetvalue = cpu->id_mmfr0 },
1285 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1286 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1287 .resetvalue = cpu->id_mmfr1 },
1288 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1289 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1290 .resetvalue = cpu->id_mmfr2 },
1291 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1292 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1293 .resetvalue = cpu->id_mmfr3 },
1294 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1295 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1296 .resetvalue = cpu->id_isar0 },
1297 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1298 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1299 .resetvalue = cpu->id_isar1 },
1300 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1301 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1302 .resetvalue = cpu->id_isar2 },
1303 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1304 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1305 .resetvalue = cpu->id_isar3 },
1306 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1307 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1308 .resetvalue = cpu->id_isar4 },
1309 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1310 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1311 .resetvalue = cpu->id_isar5 },
1312 /* 6..7 are as yet unallocated and must RAZ */
1313 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1314 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1316 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1317 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1321 define_arm_cp_regs(cpu, v6_idregs);
1322 define_arm_cp_regs(cpu, v6_cp_reginfo);
1324 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1326 if (arm_feature(env, ARM_FEATURE_V6K)) {
1327 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1329 if (arm_feature(env, ARM_FEATURE_V7)) {
1330 /* v7 performance monitor control register: same implementor
1331 * field as main ID register, and we implement no event counters.
1333 ARMCPRegInfo pmcr = {
1334 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1335 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1336 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1337 .readfn = pmreg_read, .writefn = pmcr_write,
1338 .raw_readfn = raw_read, .raw_writefn = raw_write,
1340 ARMCPRegInfo clidr = {
1341 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1342 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1344 define_one_arm_cp_reg(cpu, &pmcr);
1345 define_one_arm_cp_reg(cpu, &clidr);
1346 define_arm_cp_regs(cpu, v7_cp_reginfo);
1348 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1350 if (arm_feature(env, ARM_FEATURE_MPU)) {
1351 /* These are the MPU registers prior to PMSAv6. Any new
1352 * PMSA core later than the ARM946 will require that we
1353 * implement the PMSAv6 or PMSAv7 registers, which are
1354 * completely different.
1356 assert(!arm_feature(env, ARM_FEATURE_V6));
1357 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1359 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1361 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1362 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1364 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1365 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1367 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1368 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1370 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1371 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1373 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1374 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1376 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1377 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1379 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1380 define_arm_cp_regs(cpu, omap_cp_reginfo);
1382 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1383 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1385 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1386 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1388 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1389 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1391 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1392 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1394 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1395 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1396 * be read-only (ie write causes UNDEF exception).
1399 ARMCPRegInfo id_cp_reginfo[] = {
1400 /* Note that the MIDR isn't a simple constant register because
1401 * of the TI925 behaviour where writes to another register can
1402 * cause the MIDR value to change.
1404 * Unimplemented registers in the c15 0 0 0 space default to
1405 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
1406 * and friends override accordingly.
1409 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
1410 .access = PL1_R, .resetvalue = cpu->midr,
1411 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
1412 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
1413 .type = ARM_CP_OVERRIDE },
1415 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1416 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1418 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1419 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1421 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1422 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1423 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1425 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1426 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1428 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1429 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1431 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1432 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1434 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1435 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1437 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1438 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1441 ARMCPRegInfo crn0_wi_reginfo = {
1442 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1443 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1444 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1446 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1447 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1449 /* Register the blanket "writes ignored" value first to cover the
1450 * whole space. Then update the specific ID registers to allow write
1451 * access, so that they ignore writes rather than causing them to
1454 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1455 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1459 define_arm_cp_regs(cpu, id_cp_reginfo);
1462 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1463 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1466 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1467 ARMCPRegInfo auxcr = {
1468 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1469 .access = PL1_RW, .type = ARM_CP_CONST,
1470 .resetvalue = cpu->reset_auxcr
1472 define_one_arm_cp_reg(cpu, &auxcr);
1475 /* Generic registers whose values depend on the implementation */
1477 ARMCPRegInfo sctlr = {
1478 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1479 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1480 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
1481 .raw_writefn = raw_write,
1483 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1484 /* Normally we would always end the TB on an SCTLR write, but Linux
1485 * arch/arm/mach-pxa/sleep.S expects two instructions following
1486 * an MMU enable to execute from cache. Imitate this behaviour.
1488 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1490 define_one_arm_cp_reg(cpu, &sctlr);
1494 ARMCPU *cpu_arm_init(const char *cpu_model)
1500 oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
1504 cpu = ARM_CPU(object_new(object_class_get_name(oc)));
1506 env->cpu_model_str = cpu_model;
1508 /* TODO this should be set centrally, once possible */
1509 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
1514 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
1516 CPUARMState *env = &cpu->env;
1518 if (arm_feature(env, ARM_FEATURE_NEON)) {
1519 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1520 51, "arm-neon.xml", 0);
1521 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1522 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1523 35, "arm-vfp3.xml", 0);
1524 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1525 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1526 19, "arm-vfp.xml", 0);
1530 /* Sort alphabetically by type name, except for "any". */
1531 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1533 ObjectClass *class_a = (ObjectClass *)a;
1534 ObjectClass *class_b = (ObjectClass *)b;
1535 const char *name_a, *name_b;
1537 name_a = object_class_get_name(class_a);
1538 name_b = object_class_get_name(class_b);
1539 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
1541 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
1544 return strcmp(name_a, name_b);
1548 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1550 ObjectClass *oc = data;
1551 CPUListState *s = user_data;
1552 const char *typename;
1555 typename = object_class_get_name(oc);
1556 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
1557 (*s->cpu_fprintf)(s->file, " %s\n",
1562 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1566 .cpu_fprintf = cpu_fprintf,
1570 list = object_class_get_list(TYPE_ARM_CPU, false);
1571 list = g_slist_sort(list, arm_cpu_list_compare);
1572 (*cpu_fprintf)(f, "Available CPUs:\n");
1573 g_slist_foreach(list, arm_cpu_list_entry, &s);
1577 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1578 const ARMCPRegInfo *r, void *opaque)
1580 /* Define implementations of coprocessor registers.
1581 * We store these in a hashtable because typically
1582 * there are less than 150 registers in a space which
1583 * is 16*16*16*8*8 = 262144 in size.
1584 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1585 * If a register is defined twice then the second definition is
1586 * used, so this can be used to define some generic registers and
1587 * then override them with implementation specific variations.
1588 * At least one of the original and the second definition should
1589 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1590 * against accidental use.
1592 int crm, opc1, opc2;
1593 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1594 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1595 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1596 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1597 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1598 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1599 /* 64 bit registers have only CRm and Opc1 fields */
1600 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1601 /* Check that the register definition has enough info to handle
1602 * reads and writes if they are permitted.
1604 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1605 if (r->access & PL3_R) {
1606 assert(r->fieldoffset || r->readfn);
1608 if (r->access & PL3_W) {
1609 assert(r->fieldoffset || r->writefn);
1612 /* Bad type field probably means missing sentinel at end of reg list */
1613 assert(cptype_valid(r->type));
1614 for (crm = crmmin; crm <= crmmax; crm++) {
1615 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1616 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1617 uint32_t *key = g_new(uint32_t, 1);
1618 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1619 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1620 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1622 r2->opaque = opaque;
1624 /* Make sure reginfo passed to helpers for wildcarded regs
1625 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1630 /* By convention, for wildcarded registers only the first
1631 * entry is used for migration; the others are marked as
1632 * NO_MIGRATE so we don't try to transfer the register
1633 * multiple times. Special registers (ie NOP/WFI) are
1636 if ((r->type & ARM_CP_SPECIAL) ||
1637 ((r->crm == CP_ANY) && crm != 0) ||
1638 ((r->opc1 == CP_ANY) && opc1 != 0) ||
1639 ((r->opc2 == CP_ANY) && opc2 != 0)) {
1640 r2->type |= ARM_CP_NO_MIGRATE;
1643 /* Overriding of an existing definition must be explicitly
1646 if (!(r->type & ARM_CP_OVERRIDE)) {
1647 ARMCPRegInfo *oldreg;
1648 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1649 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1650 fprintf(stderr, "Register redefined: cp=%d %d bit "
1651 "crn=%d crm=%d opc1=%d opc2=%d, "
1652 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1653 r2->crn, r2->crm, r2->opc1, r2->opc2,
1654 oldreg->name, r2->name);
1658 g_hash_table_insert(cpu->cp_regs, key, r2);
1664 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1665 const ARMCPRegInfo *regs, void *opaque)
1667 /* Define a whole list of registers */
1668 const ARMCPRegInfo *r;
1669 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1670 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1674 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1676 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1679 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1682 /* Helper coprocessor write function for write-ignore registers */
1686 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1688 /* Helper coprocessor write function for read-as-zero registers */
1693 static int bad_mode_switch(CPUARMState *env, int mode)
1695 /* Return true if it is not valid for us to switch to
1696 * this CPU mode (ie all the UNPREDICTABLE cases in
1697 * the ARM ARM CPSRWriteByInstr pseudocode).
1700 case ARM_CPU_MODE_USR:
1701 case ARM_CPU_MODE_SYS:
1702 case ARM_CPU_MODE_SVC:
1703 case ARM_CPU_MODE_ABT:
1704 case ARM_CPU_MODE_UND:
1705 case ARM_CPU_MODE_IRQ:
1706 case ARM_CPU_MODE_FIQ:
1713 uint32_t cpsr_read(CPUARMState *env)
1716 ZF = (env->ZF == 0);
1717 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
1718 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1719 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
1720 | ((env->condexec_bits & 0xfc) << 8)
1724 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1726 if (mask & CPSR_NZCV) {
1727 env->ZF = (~val) & CPSR_Z;
1729 env->CF = (val >> 29) & 1;
1730 env->VF = (val << 3) & 0x80000000;
1733 env->QF = ((val & CPSR_Q) != 0);
1735 env->thumb = ((val & CPSR_T) != 0);
1736 if (mask & CPSR_IT_0_1) {
1737 env->condexec_bits &= ~3;
1738 env->condexec_bits |= (val >> 25) & 3;
1740 if (mask & CPSR_IT_2_7) {
1741 env->condexec_bits &= 3;
1742 env->condexec_bits |= (val >> 8) & 0xfc;
1744 if (mask & CPSR_GE) {
1745 env->GE = (val >> 16) & 0xf;
1748 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
1749 if (bad_mode_switch(env, val & CPSR_M)) {
1750 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
1751 * We choose to ignore the attempt and leave the CPSR M field
1756 switch_mode(env, val & CPSR_M);
1759 mask &= ~CACHED_CPSR_BITS;
1760 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
1763 /* Sign/zero extend */
1764 uint32_t HELPER(sxtb16)(uint32_t x)
1767 res = (uint16_t)(int8_t)x;
1768 res |= (uint32_t)(int8_t)(x >> 16) << 16;
1772 uint32_t HELPER(uxtb16)(uint32_t x)
1775 res = (uint16_t)(uint8_t)x;
1776 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
1780 uint32_t HELPER(clz)(uint32_t x)
1785 int32_t HELPER(sdiv)(int32_t num, int32_t den)
1789 if (num == INT_MIN && den == -1)
1794 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
1801 uint32_t HELPER(rbit)(uint32_t x)
1803 x = ((x & 0xff000000) >> 24)
1804 | ((x & 0x00ff0000) >> 8)
1805 | ((x & 0x0000ff00) << 8)
1806 | ((x & 0x000000ff) << 24);
1807 x = ((x & 0xf0f0f0f0) >> 4)
1808 | ((x & 0x0f0f0f0f) << 4);
1809 x = ((x & 0x88888888) >> 3)
1810 | ((x & 0x44444444) >> 1)
1811 | ((x & 0x22222222) << 1)
1812 | ((x & 0x11111111) << 3);
1816 #if defined(CONFIG_USER_ONLY)
1818 void arm_cpu_do_interrupt(CPUState *cs)
1820 ARMCPU *cpu = ARM_CPU(cs);
1821 CPUARMState *env = &cpu->env;
1823 env->exception_index = -1;
1826 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
1830 env->exception_index = EXCP_PREFETCH_ABORT;
1831 env->cp15.c6_insn = address;
1833 env->exception_index = EXCP_DATA_ABORT;
1834 env->cp15.c6_data = address;
1839 /* These should probably raise undefined insn exceptions. */
1840 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
1842 cpu_abort(env, "v7m_mrs %d\n", reg);
1845 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
1847 cpu_abort(env, "v7m_mrs %d\n", reg);
1851 void switch_mode(CPUARMState *env, int mode)
1853 if (mode != ARM_CPU_MODE_USR)
1854 cpu_abort(env, "Tried to switch out of user mode\n");
1857 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
1859 cpu_abort(env, "banked r13 write\n");
1862 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
1864 cpu_abort(env, "banked r13 read\n");
1870 /* Map CPU modes onto saved register banks. */
1871 int bank_number(int mode)
1874 case ARM_CPU_MODE_USR:
1875 case ARM_CPU_MODE_SYS:
1877 case ARM_CPU_MODE_SVC:
1879 case ARM_CPU_MODE_ABT:
1881 case ARM_CPU_MODE_UND:
1883 case ARM_CPU_MODE_IRQ:
1885 case ARM_CPU_MODE_FIQ:
1888 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
1891 void switch_mode(CPUARMState *env, int mode)
1896 old_mode = env->uncached_cpsr & CPSR_M;
1897 if (mode == old_mode)
1900 if (old_mode == ARM_CPU_MODE_FIQ) {
1901 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
1902 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
1903 } else if (mode == ARM_CPU_MODE_FIQ) {
1904 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
1905 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
1908 i = bank_number(old_mode);
1909 env->banked_r13[i] = env->regs[13];
1910 env->banked_r14[i] = env->regs[14];
1911 env->banked_spsr[i] = env->spsr;
1913 i = bank_number(mode);
1914 env->regs[13] = env->banked_r13[i];
1915 env->regs[14] = env->banked_r14[i];
1916 env->spsr = env->banked_spsr[i];
1919 static void v7m_push(CPUARMState *env, uint32_t val)
1922 stl_phys(env->regs[13], val);
1925 static uint32_t v7m_pop(CPUARMState *env)
1928 val = ldl_phys(env->regs[13]);
1933 /* Switch to V7M main or process stack pointer. */
1934 static void switch_v7m_sp(CPUARMState *env, int process)
1937 if (env->v7m.current_sp != process) {
1938 tmp = env->v7m.other_sp;
1939 env->v7m.other_sp = env->regs[13];
1940 env->regs[13] = tmp;
1941 env->v7m.current_sp = process;
1945 static void do_v7m_exception_exit(CPUARMState *env)
1950 type = env->regs[15];
1951 if (env->v7m.exception != 0)
1952 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
1954 /* Switch to the target stack. */
1955 switch_v7m_sp(env, (type & 4) != 0);
1956 /* Pop registers. */
1957 env->regs[0] = v7m_pop(env);
1958 env->regs[1] = v7m_pop(env);
1959 env->regs[2] = v7m_pop(env);
1960 env->regs[3] = v7m_pop(env);
1961 env->regs[12] = v7m_pop(env);
1962 env->regs[14] = v7m_pop(env);
1963 env->regs[15] = v7m_pop(env);
1964 xpsr = v7m_pop(env);
1965 xpsr_write(env, xpsr, 0xfffffdff);
1966 /* Undo stack alignment. */
1969 /* ??? The exception return type specifies Thread/Handler mode. However
1970 this is also implied by the xPSR value. Not sure what to do
1971 if there is a mismatch. */
1972 /* ??? Likewise for mismatches between the CONTROL register and the stack
1976 void arm_v7m_cpu_do_interrupt(CPUState *cs)
1978 ARMCPU *cpu = ARM_CPU(cs);
1979 CPUARMState *env = &cpu->env;
1980 uint32_t xpsr = xpsr_read(env);
1985 if (env->v7m.current_sp)
1987 if (env->v7m.exception == 0)
1990 /* For exceptions we just mark as pending on the NVIC, and let that
1992 /* TODO: Need to escalate if the current priority is higher than the
1993 one we're raising. */
1994 switch (env->exception_index) {
1996 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
1999 /* The PC already points to the next instruction. */
2000 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
2002 case EXCP_PREFETCH_ABORT:
2003 case EXCP_DATA_ABORT:
2004 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
2007 if (semihosting_enabled) {
2009 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2012 env->regs[0] = do_arm_semihosting(env);
2016 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
2019 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
2021 case EXCP_EXCEPTION_EXIT:
2022 do_v7m_exception_exit(env);
2025 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2026 return; /* Never happens. Keep compiler happy. */
2029 /* Align stack pointer. */
2030 /* ??? Should only do this if Configuration Control Register
2031 STACKALIGN bit is set. */
2032 if (env->regs[13] & 4) {
2036 /* Switch to the handler mode. */
2037 v7m_push(env, xpsr);
2038 v7m_push(env, env->regs[15]);
2039 v7m_push(env, env->regs[14]);
2040 v7m_push(env, env->regs[12]);
2041 v7m_push(env, env->regs[3]);
2042 v7m_push(env, env->regs[2]);
2043 v7m_push(env, env->regs[1]);
2044 v7m_push(env, env->regs[0]);
2045 switch_v7m_sp(env, 0);
2047 env->condexec_bits = 0;
2049 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
2050 env->regs[15] = addr & 0xfffffffe;
2051 env->thumb = addr & 1;
2054 /* Handle a CPU exception. */
2055 void arm_cpu_do_interrupt(CPUState *cs)
2057 ARMCPU *cpu = ARM_CPU(cs);
2058 CPUARMState *env = &cpu->env;
2066 /* TODO: Vectored interrupt controller. */
2067 switch (env->exception_index) {
2069 new_mode = ARM_CPU_MODE_UND;
2078 if (semihosting_enabled) {
2079 /* Check for semihosting interrupt. */
2081 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
2084 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
2087 /* Only intercept calls from privileged modes, to provide some
2088 semblance of security. */
2089 if (((mask == 0x123456 && !env->thumb)
2090 || (mask == 0xab && env->thumb))
2091 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2092 env->regs[0] = do_arm_semihosting(env);
2096 new_mode = ARM_CPU_MODE_SVC;
2099 /* The PC already points to the next instruction. */
2103 /* See if this is a semihosting syscall. */
2104 if (env->thumb && semihosting_enabled) {
2105 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2107 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2109 env->regs[0] = do_arm_semihosting(env);
2113 env->cp15.c5_insn = 2;
2114 /* Fall through to prefetch abort. */
2115 case EXCP_PREFETCH_ABORT:
2116 new_mode = ARM_CPU_MODE_ABT;
2118 mask = CPSR_A | CPSR_I;
2121 case EXCP_DATA_ABORT:
2122 new_mode = ARM_CPU_MODE_ABT;
2124 mask = CPSR_A | CPSR_I;
2128 new_mode = ARM_CPU_MODE_IRQ;
2130 /* Disable IRQ and imprecise data aborts. */
2131 mask = CPSR_A | CPSR_I;
2135 new_mode = ARM_CPU_MODE_FIQ;
2137 /* Disable FIQ, IRQ and imprecise data aborts. */
2138 mask = CPSR_A | CPSR_I | CPSR_F;
2142 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2143 return; /* Never happens. Keep compiler happy. */
2146 if (env->cp15.c1_sys & (1 << 13)) {
2149 switch_mode (env, new_mode);
2150 env->spsr = cpsr_read(env);
2151 /* Clear IT bits. */
2152 env->condexec_bits = 0;
2153 /* Switch to the new mode, and to the correct instruction set. */
2154 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
2155 env->uncached_cpsr |= mask;
2156 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
2157 * and we should just guard the thumb mode on V4 */
2158 if (arm_feature(env, ARM_FEATURE_V4T)) {
2159 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
2161 env->regs[14] = env->regs[15] + offset;
2162 env->regs[15] = addr;
2163 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
2166 /* Check section/page access permissions.
2167 Returns the page protection flags, or zero if the access is not
2169 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
2170 int access_type, int is_user)
2174 if (domain_prot == 3) {
2175 return PAGE_READ | PAGE_WRITE;
2178 if (access_type == 1)
2181 prot_ro = PAGE_READ;
2185 if (access_type == 1)
2187 switch ((env->cp15.c1_sys >> 8) & 3) {
2189 return is_user ? 0 : PAGE_READ;
2196 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
2201 return PAGE_READ | PAGE_WRITE;
2203 return PAGE_READ | PAGE_WRITE;
2204 case 4: /* Reserved. */
2207 return is_user ? 0 : prot_ro;
2211 if (!arm_feature (env, ARM_FEATURE_V6K))
2219 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
2223 if (address & env->cp15.c2_mask)
2224 table = env->cp15.c2_base1 & 0xffffc000;
2226 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
2228 table |= (address >> 18) & 0x3ffc;
2232 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
2233 int is_user, hwaddr *phys_ptr,
2234 int *prot, target_ulong *page_size)
2245 /* Pagetable walk. */
2246 /* Lookup l1 descriptor. */
2247 table = get_level1_table_address(env, address);
2248 desc = ldl_phys(table);
2250 domain = (desc >> 5) & 0x0f;
2251 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2253 /* Section translation fault. */
2257 if (domain_prot == 0 || domain_prot == 2) {
2259 code = 9; /* Section domain fault. */
2261 code = 11; /* Page domain fault. */
2266 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2267 ap = (desc >> 10) & 3;
2269 *page_size = 1024 * 1024;
2271 /* Lookup l2 entry. */
2273 /* Coarse pagetable. */
2274 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2276 /* Fine pagetable. */
2277 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2279 desc = ldl_phys(table);
2281 case 0: /* Page translation fault. */
2284 case 1: /* 64k page. */
2285 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2286 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2287 *page_size = 0x10000;
2289 case 2: /* 4k page. */
2290 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2291 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2292 *page_size = 0x1000;
2294 case 3: /* 1k page. */
2296 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2297 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2299 /* Page translation fault. */
2304 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2306 ap = (desc >> 4) & 3;
2310 /* Never happens, but compiler isn't smart enough to tell. */
2315 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2317 /* Access permission fault. */
2321 *phys_ptr = phys_addr;
2324 return code | (domain << 4);
2327 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2328 int is_user, hwaddr *phys_ptr,
2329 int *prot, target_ulong *page_size)
2342 /* Pagetable walk. */
2343 /* Lookup l1 descriptor. */
2344 table = get_level1_table_address(env, address);
2345 desc = ldl_phys(table);
2347 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2348 /* Section translation fault, or attempt to use the encoding
2349 * which is Reserved on implementations without PXN.
2354 if ((type == 1) || !(desc & (1 << 18))) {
2355 /* Page or Section. */
2356 domain = (desc >> 5) & 0x0f;
2358 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2359 if (domain_prot == 0 || domain_prot == 2) {
2361 code = 9; /* Section domain fault. */
2363 code = 11; /* Page domain fault. */
2368 if (desc & (1 << 18)) {
2370 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2371 *page_size = 0x1000000;
2374 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2375 *page_size = 0x100000;
2377 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2378 xn = desc & (1 << 4);
2382 if (arm_feature(env, ARM_FEATURE_PXN)) {
2383 pxn = (desc >> 2) & 1;
2385 /* Lookup l2 entry. */
2386 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2387 desc = ldl_phys(table);
2388 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2390 case 0: /* Page translation fault. */
2393 case 1: /* 64k page. */
2394 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2395 xn = desc & (1 << 15);
2396 *page_size = 0x10000;
2398 case 2: case 3: /* 4k page. */
2399 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2401 *page_size = 0x1000;
2404 /* Never happens, but compiler isn't smart enough to tell. */
2409 if (domain_prot == 3) {
2410 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2412 if (pxn && !is_user) {
2415 if (xn && access_type == 2)
2418 /* The simplified model uses AP[0] as an access control bit. */
2419 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2420 /* Access flag fault. */
2421 code = (code == 15) ? 6 : 3;
2424 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2426 /* Access permission fault. */
2433 *phys_ptr = phys_addr;
2436 return code | (domain << 4);
2439 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2440 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2443 translation_fault = 1,
2445 permission_fault = 3,
2448 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2449 int access_type, int is_user,
2450 hwaddr *phys_ptr, int *prot,
2451 target_ulong *page_size_ptr)
2453 /* Read an LPAE long-descriptor translation table. */
2454 MMUFaultType fault_type = translation_fault;
2462 uint32_t tableattrs;
2463 target_ulong page_size;
2466 /* Determine whether this address is in the region controlled by
2467 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2468 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2469 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2471 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
2472 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
2473 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
2474 /* there is a ttbr0 region and we are in it (high bits all zero) */
2476 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
2477 /* there is a ttbr1 region and we are in it (high bits all one) */
2480 /* ttbr0 region is "everything not in the ttbr1 region" */
2483 /* ttbr1 region is "everything not in the ttbr0 region" */
2486 /* in the gap between the two regions, this is a Translation fault */
2487 fault_type = translation_fault;
2491 /* Note that QEMU ignores shareability and cacheability attributes,
2492 * so we don't need to do anything with the SH, ORGN, IRGN fields
2493 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2494 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2495 * implement any ASID-like capability so we can ignore it (instead
2496 * we will always flush the TLB any time the ASID is changed).
2498 if (ttbr_select == 0) {
2499 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
2500 epd = extract32(env->cp15.c2_control, 7, 1);
2503 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
2504 epd = extract32(env->cp15.c2_control, 23, 1);
2509 /* Translation table walk disabled => Translation fault on TLB miss */
2513 /* If the region is small enough we will skip straight to a 2nd level
2514 * lookup. This affects the number of bits of the address used in
2515 * combination with the TTBR to find the first descriptor. ('n' here
2516 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2517 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2526 /* Clear the vaddr bits which aren't part of the within-region address,
2527 * so that we don't have to special case things when calculating the
2528 * first descriptor address.
2530 address &= (0xffffffffU >> tsz);
2532 /* Now we can extract the actual base address from the TTBR */
2533 descaddr = extract64(ttbr, 0, 40);
2534 descaddr &= ~((1ULL << n) - 1);
2538 uint64_t descriptor;
2540 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2541 descriptor = ldq_phys(descaddr);
2542 if (!(descriptor & 1) ||
2543 (!(descriptor & 2) && (level == 3))) {
2544 /* Invalid, or the Reserved level 3 encoding */
2547 descaddr = descriptor & 0xfffffff000ULL;
2549 if ((descriptor & 2) && (level < 3)) {
2550 /* Table entry. The top five bits are attributes which may
2551 * propagate down through lower levels of the table (and
2552 * which are all arranged so that 0 means "no effect", so
2553 * we can gather them up by ORing in the bits at each level).
2555 tableattrs |= extract64(descriptor, 59, 5);
2559 /* Block entry at level 1 or 2, or page entry at level 3.
2560 * These are basically the same thing, although the number
2561 * of bits we pull in from the vaddr varies.
2563 page_size = (1 << (39 - (9 * level)));
2564 descaddr |= (address & (page_size - 1));
2565 /* Extract attributes from the descriptor and merge with table attrs */
2566 attrs = extract64(descriptor, 2, 10)
2567 | (extract64(descriptor, 52, 12) << 10);
2568 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
2569 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
2570 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2571 * means "force PL1 access only", which means forcing AP[1] to 0.
2573 if (extract32(tableattrs, 2, 1)) {
2576 /* Since we're always in the Non-secure state, NSTable is ignored. */
2579 /* Here descaddr is the final physical address, and attributes
2582 fault_type = access_fault;
2583 if ((attrs & (1 << 8)) == 0) {
2587 fault_type = permission_fault;
2588 if (is_user && !(attrs & (1 << 4))) {
2589 /* Unprivileged access not enabled */
2592 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2593 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
2595 if (access_type == 2) {
2598 *prot &= ~PAGE_EXEC;
2600 if (attrs & (1 << 5)) {
2601 /* Write access forbidden */
2602 if (access_type == 1) {
2605 *prot &= ~PAGE_WRITE;
2608 *phys_ptr = descaddr;
2609 *page_size_ptr = page_size;
2613 /* Long-descriptor format IFSR/DFSR value */
2614 return (1 << 9) | (fault_type << 2) | level;
2617 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
2618 int access_type, int is_user,
2619 hwaddr *phys_ptr, int *prot)
2625 *phys_ptr = address;
2626 for (n = 7; n >= 0; n--) {
2627 base = env->cp15.c6_region[n];
2628 if ((base & 1) == 0)
2630 mask = 1 << ((base >> 1) & 0x1f);
2631 /* Keep this shift separate from the above to avoid an
2632 (undefined) << 32. */
2633 mask = (mask << 1) - 1;
2634 if (((base ^ address) & ~mask) == 0)
2640 if (access_type == 2) {
2641 mask = env->cp15.c5_insn;
2643 mask = env->cp15.c5_data;
2645 mask = (mask >> (n * 4)) & 0xf;
2652 *prot = PAGE_READ | PAGE_WRITE;
2657 *prot |= PAGE_WRITE;
2660 *prot = PAGE_READ | PAGE_WRITE;
2671 /* Bad permission. */
2678 /* get_phys_addr - get the physical address for this virtual address
2680 * Find the physical address corresponding to the given virtual address,
2681 * by doing a translation table walk on MMU based systems or using the
2682 * MPU state on MPU based systems.
2684 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
2685 * prot and page_size are not filled in, and the return value provides
2686 * information on why the translation aborted, in the format of a
2687 * DFSR/IFSR fault register, with the following caveats:
2688 * * we honour the short vs long DFSR format differences.
2689 * * the WnR bit is never set (the caller must do this).
2690 * * for MPU based systems we don't bother to return a full FSR format
2694 * @address: virtual address to get physical address for
2695 * @access_type: 0 for read, 1 for write, 2 for execute
2696 * @is_user: 0 for privileged access, 1 for user
2697 * @phys_ptr: set to the physical address corresponding to the virtual address
2698 * @prot: set to the permissions for the page containing phys_ptr
2699 * @page_size: set to the size of the page containing phys_ptr
2701 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
2702 int access_type, int is_user,
2703 hwaddr *phys_ptr, int *prot,
2704 target_ulong *page_size)
2706 /* Fast Context Switch Extension. */
2707 if (address < 0x02000000)
2708 address += env->cp15.c13_fcse;
2710 if ((env->cp15.c1_sys & 1) == 0) {
2711 /* MMU/MPU disabled. */
2712 *phys_ptr = address;
2713 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2714 *page_size = TARGET_PAGE_SIZE;
2716 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
2717 *page_size = TARGET_PAGE_SIZE;
2718 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
2720 } else if (extended_addresses_enabled(env)) {
2721 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
2723 } else if (env->cp15.c1_sys & (1 << 23)) {
2724 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
2727 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
2732 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
2733 int access_type, int mmu_idx)
2736 target_ulong page_size;
2740 is_user = mmu_idx == MMU_USER_IDX;
2741 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
2744 /* Map a single [sub]page. */
2745 phys_addr &= ~(hwaddr)0x3ff;
2746 address &= ~(uint32_t)0x3ff;
2747 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
2751 if (access_type == 2) {
2752 env->cp15.c5_insn = ret;
2753 env->cp15.c6_insn = address;
2754 env->exception_index = EXCP_PREFETCH_ABORT;
2756 env->cp15.c5_data = ret;
2757 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
2758 env->cp15.c5_data |= (1 << 11);
2759 env->cp15.c6_data = address;
2760 env->exception_index = EXCP_DATA_ABORT;
2765 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
2767 ARMCPU *cpu = ARM_CPU(cs);
2769 target_ulong page_size;
2773 ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
2782 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2784 if ((env->uncached_cpsr & CPSR_M) == mode) {
2785 env->regs[13] = val;
2787 env->banked_r13[bank_number(mode)] = val;
2791 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2793 if ((env->uncached_cpsr & CPSR_M) == mode) {
2794 return env->regs[13];
2796 return env->banked_r13[bank_number(mode)];
2800 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2804 return xpsr_read(env) & 0xf8000000;
2806 return xpsr_read(env) & 0xf80001ff;
2808 return xpsr_read(env) & 0xff00fc00;
2810 return xpsr_read(env) & 0xff00fdff;
2812 return xpsr_read(env) & 0x000001ff;
2814 return xpsr_read(env) & 0x0700fc00;
2816 return xpsr_read(env) & 0x0700edff;
2818 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2820 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2821 case 16: /* PRIMASK */
2822 return (env->uncached_cpsr & CPSR_I) != 0;
2823 case 17: /* BASEPRI */
2824 case 18: /* BASEPRI_MAX */
2825 return env->v7m.basepri;
2826 case 19: /* FAULTMASK */
2827 return (env->uncached_cpsr & CPSR_F) != 0;
2828 case 20: /* CONTROL */
2829 return env->v7m.control;
2831 /* ??? For debugging only. */
2832 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2837 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2841 xpsr_write(env, val, 0xf8000000);
2844 xpsr_write(env, val, 0xf8000000);
2847 xpsr_write(env, val, 0xfe00fc00);
2850 xpsr_write(env, val, 0xfe00fc00);
2853 /* IPSR bits are readonly. */
2856 xpsr_write(env, val, 0x0600fc00);
2859 xpsr_write(env, val, 0x0600fc00);
2862 if (env->v7m.current_sp)
2863 env->v7m.other_sp = val;
2865 env->regs[13] = val;
2868 if (env->v7m.current_sp)
2869 env->regs[13] = val;
2871 env->v7m.other_sp = val;
2873 case 16: /* PRIMASK */
2875 env->uncached_cpsr |= CPSR_I;
2877 env->uncached_cpsr &= ~CPSR_I;
2879 case 17: /* BASEPRI */
2880 env->v7m.basepri = val & 0xff;
2882 case 18: /* BASEPRI_MAX */
2884 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2885 env->v7m.basepri = val;
2887 case 19: /* FAULTMASK */
2889 env->uncached_cpsr |= CPSR_F;
2891 env->uncached_cpsr &= ~CPSR_F;
2893 case 20: /* CONTROL */
2894 env->v7m.control = val & 3;
2895 switch_v7m_sp(env, (val & 2) != 0);
2898 /* ??? For debugging only. */
2899 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2906 /* Note that signed overflow is undefined in C. The following routines are
2907 careful to use unsigned types where modulo arithmetic is required.
2908 Failure to do so _will_ break on newer gcc. */
2910 /* Signed saturating arithmetic. */
2912 /* Perform 16-bit signed saturating addition. */
2913 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2918 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2927 /* Perform 8-bit signed saturating addition. */
2928 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2933 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2942 /* Perform 16-bit signed saturating subtraction. */
2943 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2948 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2957 /* Perform 8-bit signed saturating subtraction. */
2958 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2963 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2972 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2973 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2974 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2975 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2978 #include "op_addsub.h"
2980 /* Unsigned saturating arithmetic. */
2981 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2990 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2998 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
3007 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
3015 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3016 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3017 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3018 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3021 #include "op_addsub.h"
3023 /* Signed modulo arithmetic. */
3024 #define SARITH16(a, b, n, op) do { \
3026 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3027 RESULT(sum, n, 16); \
3029 ge |= 3 << (n * 2); \
3032 #define SARITH8(a, b, n, op) do { \
3034 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3035 RESULT(sum, n, 8); \
3041 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3042 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3043 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3044 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3048 #include "op_addsub.h"
3050 /* Unsigned modulo arithmetic. */
3051 #define ADD16(a, b, n) do { \
3053 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3054 RESULT(sum, n, 16); \
3055 if ((sum >> 16) == 1) \
3056 ge |= 3 << (n * 2); \
3059 #define ADD8(a, b, n) do { \
3061 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3062 RESULT(sum, n, 8); \
3063 if ((sum >> 8) == 1) \
3067 #define SUB16(a, b, n) do { \
3069 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3070 RESULT(sum, n, 16); \
3071 if ((sum >> 16) == 0) \
3072 ge |= 3 << (n * 2); \
3075 #define SUB8(a, b, n) do { \
3077 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3078 RESULT(sum, n, 8); \
3079 if ((sum >> 8) == 0) \
3086 #include "op_addsub.h"
3088 /* Halved signed arithmetic. */
3089 #define ADD16(a, b, n) \
3090 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3091 #define SUB16(a, b, n) \
3092 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3093 #define ADD8(a, b, n) \
3094 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3095 #define SUB8(a, b, n) \
3096 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3099 #include "op_addsub.h"
3101 /* Halved unsigned arithmetic. */
3102 #define ADD16(a, b, n) \
3103 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3104 #define SUB16(a, b, n) \
3105 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3106 #define ADD8(a, b, n) \
3107 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3108 #define SUB8(a, b, n) \
3109 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3112 #include "op_addsub.h"
3114 static inline uint8_t do_usad(uint8_t a, uint8_t b)
3122 /* Unsigned sum of absolute byte differences. */
3123 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
3126 sum = do_usad(a, b);
3127 sum += do_usad(a >> 8, b >> 8);
3128 sum += do_usad(a >> 16, b >>16);
3129 sum += do_usad(a >> 24, b >> 24);
3133 /* For ARMv6 SEL instruction. */
3134 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
3147 return (a & mask) | (b & ~mask);
3150 /* VFP support. We follow the convention used for VFP instructions:
3151 Single precision routines have a "s" suffix, double precision a
3154 /* Convert host exception flags to vfp form. */
3155 static inline int vfp_exceptbits_from_host(int host_bits)
3157 int target_bits = 0;
3159 if (host_bits & float_flag_invalid)
3161 if (host_bits & float_flag_divbyzero)
3163 if (host_bits & float_flag_overflow)
3165 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
3167 if (host_bits & float_flag_inexact)
3168 target_bits |= 0x10;
3169 if (host_bits & float_flag_input_denormal)
3170 target_bits |= 0x80;
3174 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
3179 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
3180 | (env->vfp.vec_len << 16)
3181 | (env->vfp.vec_stride << 20);
3182 i = get_float_exception_flags(&env->vfp.fp_status);
3183 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
3184 fpscr |= vfp_exceptbits_from_host(i);
3188 uint32_t vfp_get_fpscr(CPUARMState *env)
3190 return HELPER(vfp_get_fpscr)(env);
3193 /* Convert vfp exception flags to target form. */
3194 static inline int vfp_exceptbits_to_host(int target_bits)
3198 if (target_bits & 1)
3199 host_bits |= float_flag_invalid;
3200 if (target_bits & 2)
3201 host_bits |= float_flag_divbyzero;
3202 if (target_bits & 4)
3203 host_bits |= float_flag_overflow;
3204 if (target_bits & 8)
3205 host_bits |= float_flag_underflow;
3206 if (target_bits & 0x10)
3207 host_bits |= float_flag_inexact;
3208 if (target_bits & 0x80)
3209 host_bits |= float_flag_input_denormal;
3213 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
3218 changed = env->vfp.xregs[ARM_VFP_FPSCR];
3219 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
3220 env->vfp.vec_len = (val >> 16) & 7;
3221 env->vfp.vec_stride = (val >> 20) & 3;
3224 if (changed & (3 << 22)) {
3225 i = (val >> 22) & 3;
3228 i = float_round_nearest_even;
3234 i = float_round_down;
3237 i = float_round_to_zero;
3240 set_float_rounding_mode(i, &env->vfp.fp_status);
3242 if (changed & (1 << 24)) {
3243 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3244 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3246 if (changed & (1 << 25))
3247 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
3249 i = vfp_exceptbits_to_host(val);
3250 set_float_exception_flags(i, &env->vfp.fp_status);
3251 set_float_exception_flags(0, &env->vfp.standard_fp_status);
3254 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3256 HELPER(vfp_set_fpscr)(env, val);
3259 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3261 #define VFP_BINOP(name) \
3262 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3264 float_status *fpst = fpstp; \
3265 return float32_ ## name(a, b, fpst); \
3267 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3269 float_status *fpst = fpstp; \
3270 return float64_ ## name(a, b, fpst); \
3278 float32 VFP_HELPER(neg, s)(float32 a)
3280 return float32_chs(a);
3283 float64 VFP_HELPER(neg, d)(float64 a)
3285 return float64_chs(a);
3288 float32 VFP_HELPER(abs, s)(float32 a)
3290 return float32_abs(a);
3293 float64 VFP_HELPER(abs, d)(float64 a)
3295 return float64_abs(a);
3298 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
3300 return float32_sqrt(a, &env->vfp.fp_status);
3303 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
3305 return float64_sqrt(a, &env->vfp.fp_status);
3308 /* XXX: check quiet/signaling case */
3309 #define DO_VFP_cmp(p, type) \
3310 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3313 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3314 case 0: flags = 0x6; break; \
3315 case -1: flags = 0x8; break; \
3316 case 1: flags = 0x2; break; \
3317 default: case 2: flags = 0x3; break; \
3319 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3320 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3322 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3325 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3326 case 0: flags = 0x6; break; \
3327 case -1: flags = 0x8; break; \
3328 case 1: flags = 0x2; break; \
3329 default: case 2: flags = 0x3; break; \
3331 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3332 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3334 DO_VFP_cmp(s, float32)
3335 DO_VFP_cmp(d, float64)
3338 /* Integer to float and float to integer conversions */
3340 #define CONV_ITOF(name, fsz, sign) \
3341 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3343 float_status *fpst = fpstp; \
3344 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3347 #define CONV_FTOI(name, fsz, sign, round) \
3348 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3350 float_status *fpst = fpstp; \
3351 if (float##fsz##_is_any_nan(x)) { \
3352 float_raise(float_flag_invalid, fpst); \
3355 return float##fsz##_to_##sign##int32##round(x, fpst); \
3358 #define FLOAT_CONVS(name, p, fsz, sign) \
3359 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3360 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3361 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3363 FLOAT_CONVS(si, s, 32, )
3364 FLOAT_CONVS(si, d, 64, )
3365 FLOAT_CONVS(ui, s, 32, u)
3366 FLOAT_CONVS(ui, d, 64, u)
3372 /* floating point conversion */
3373 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
3375 float64 r = float32_to_float64(x, &env->vfp.fp_status);
3376 /* ARM requires that S<->D conversion of any kind of NaN generates
3377 * a quiet NaN by forcing the most significant frac bit to 1.
3379 return float64_maybe_silence_nan(r);
3382 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
3384 float32 r = float64_to_float32(x, &env->vfp.fp_status);
3385 /* ARM requires that S<->D conversion of any kind of NaN generates
3386 * a quiet NaN by forcing the most significant frac bit to 1.
3388 return float32_maybe_silence_nan(r);
3391 /* VFP3 fixed point conversion. */
3392 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3393 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3396 float_status *fpst = fpstp; \
3398 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3399 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3401 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3404 float_status *fpst = fpstp; \
3406 if (float##fsz##_is_any_nan(x)) { \
3407 float_raise(float_flag_invalid, fpst); \
3410 tmp = float##fsz##_scalbn(x, shift, fpst); \
3411 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3414 VFP_CONV_FIX(sh, d, 64, int16, )
3415 VFP_CONV_FIX(sl, d, 64, int32, )
3416 VFP_CONV_FIX(uh, d, 64, uint16, u)
3417 VFP_CONV_FIX(ul, d, 64, uint32, u)
3418 VFP_CONV_FIX(sh, s, 32, int16, )
3419 VFP_CONV_FIX(sl, s, 32, int32, )
3420 VFP_CONV_FIX(uh, s, 32, uint16, u)
3421 VFP_CONV_FIX(ul, s, 32, uint32, u)
3424 /* Half precision conversions. */
3425 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
3427 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3428 float32 r = float16_to_float32(make_float16(a), ieee, s);
3430 return float32_maybe_silence_nan(r);
3435 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
3437 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3438 float16 r = float32_to_float16(a, ieee, s);
3440 r = float16_maybe_silence_nan(r);
3442 return float16_val(r);
3445 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3447 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
3450 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3452 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
3455 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3457 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
3460 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3462 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
3465 #define float32_two make_float32(0x40000000)
3466 #define float32_three make_float32(0x40400000)
3467 #define float32_one_point_five make_float32(0x3fc00000)
3469 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
3471 float_status *s = &env->vfp.standard_fp_status;
3472 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3473 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3474 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3475 float_raise(float_flag_input_denormal, s);
3479 return float32_sub(float32_two, float32_mul(a, b, s), s);
3482 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
3484 float_status *s = &env->vfp.standard_fp_status;
3486 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3487 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3488 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3489 float_raise(float_flag_input_denormal, s);
3491 return float32_one_point_five;
3493 product = float32_mul(a, b, s);
3494 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3499 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3500 * int->float conversions at run-time. */
3501 #define float64_256 make_float64(0x4070000000000000LL)
3502 #define float64_512 make_float64(0x4080000000000000LL)
3504 /* The algorithm that must be used to calculate the estimate
3505 * is specified by the ARM ARM.
3507 static float64 recip_estimate(float64 a, CPUARMState *env)
3509 /* These calculations mustn't set any fp exception flags,
3510 * so we use a local copy of the fp_status.
3512 float_status dummy_status = env->vfp.standard_fp_status;
3513 float_status *s = &dummy_status;
3514 /* q = (int)(a * 512.0) */
3515 float64 q = float64_mul(float64_512, a, s);
3516 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3518 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3519 q = int64_to_float64(q_int, s);
3520 q = float64_add(q, float64_half, s);
3521 q = float64_div(q, float64_512, s);
3522 q = float64_div(float64_one, q, s);
3524 /* s = (int)(256.0 * r + 0.5) */
3525 q = float64_mul(q, float64_256, s);
3526 q = float64_add(q, float64_half, s);
3527 q_int = float64_to_int64_round_to_zero(q, s);
3529 /* return (double)s / 256.0 */
3530 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3533 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3535 float_status *s = &env->vfp.standard_fp_status;
3537 uint32_t val32 = float32_val(a);
3540 int a_exp = (val32 & 0x7f800000) >> 23;
3541 int sign = val32 & 0x80000000;
3543 if (float32_is_any_nan(a)) {
3544 if (float32_is_signaling_nan(a)) {
3545 float_raise(float_flag_invalid, s);
3547 return float32_default_nan;
3548 } else if (float32_is_infinity(a)) {
3549 return float32_set_sign(float32_zero, float32_is_neg(a));
3550 } else if (float32_is_zero_or_denormal(a)) {
3551 if (!float32_is_zero(a)) {
3552 float_raise(float_flag_input_denormal, s);
3554 float_raise(float_flag_divbyzero, s);
3555 return float32_set_sign(float32_infinity, float32_is_neg(a));
3556 } else if (a_exp >= 253) {
3557 float_raise(float_flag_underflow, s);
3558 return float32_set_sign(float32_zero, float32_is_neg(a));
3561 f64 = make_float64((0x3feULL << 52)
3562 | ((int64_t)(val32 & 0x7fffff) << 29));
3564 result_exp = 253 - a_exp;
3566 f64 = recip_estimate(f64, env);
3569 | ((result_exp & 0xff) << 23)
3570 | ((float64_val(f64) >> 29) & 0x7fffff);
3571 return make_float32(val32);
3574 /* The algorithm that must be used to calculate the estimate
3575 * is specified by the ARM ARM.
3577 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3579 /* These calculations mustn't set any fp exception flags,
3580 * so we use a local copy of the fp_status.
3582 float_status dummy_status = env->vfp.standard_fp_status;
3583 float_status *s = &dummy_status;
3587 if (float64_lt(a, float64_half, s)) {
3588 /* range 0.25 <= a < 0.5 */
3590 /* a in units of 1/512 rounded down */
3591 /* q0 = (int)(a * 512.0); */
3592 q = float64_mul(float64_512, a, s);
3593 q_int = float64_to_int64_round_to_zero(q, s);
3595 /* reciprocal root r */
3596 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3597 q = int64_to_float64(q_int, s);
3598 q = float64_add(q, float64_half, s);
3599 q = float64_div(q, float64_512, s);
3600 q = float64_sqrt(q, s);
3601 q = float64_div(float64_one, q, s);
3603 /* range 0.5 <= a < 1.0 */
3605 /* a in units of 1/256 rounded down */
3606 /* q1 = (int)(a * 256.0); */
3607 q = float64_mul(float64_256, a, s);
3608 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3610 /* reciprocal root r */
3611 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3612 q = int64_to_float64(q_int, s);
3613 q = float64_add(q, float64_half, s);
3614 q = float64_div(q, float64_256, s);
3615 q = float64_sqrt(q, s);
3616 q = float64_div(float64_one, q, s);
3618 /* r in units of 1/256 rounded to nearest */
3619 /* s = (int)(256.0 * r + 0.5); */
3621 q = float64_mul(q, float64_256,s );
3622 q = float64_add(q, float64_half, s);
3623 q_int = float64_to_int64_round_to_zero(q, s);
3625 /* return (double)s / 256.0;*/
3626 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3629 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3631 float_status *s = &env->vfp.standard_fp_status;
3637 val = float32_val(a);
3639 if (float32_is_any_nan(a)) {
3640 if (float32_is_signaling_nan(a)) {
3641 float_raise(float_flag_invalid, s);
3643 return float32_default_nan;
3644 } else if (float32_is_zero_or_denormal(a)) {
3645 if (!float32_is_zero(a)) {
3646 float_raise(float_flag_input_denormal, s);
3648 float_raise(float_flag_divbyzero, s);
3649 return float32_set_sign(float32_infinity, float32_is_neg(a));
3650 } else if (float32_is_neg(a)) {
3651 float_raise(float_flag_invalid, s);
3652 return float32_default_nan;
3653 } else if (float32_is_infinity(a)) {
3654 return float32_zero;
3657 /* Normalize to a double-precision value between 0.25 and 1.0,
3658 * preserving the parity of the exponent. */
3659 if ((val & 0x800000) == 0) {
3660 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3662 | ((uint64_t)(val & 0x7fffff) << 29));
3664 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3666 | ((uint64_t)(val & 0x7fffff) << 29));
3669 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3671 f64 = recip_sqrt_estimate(f64, env);
3673 val64 = float64_val(f64);
3675 val = ((result_exp & 0xff) << 23)
3676 | ((val64 >> 29) & 0x7fffff);
3677 return make_float32(val);
3680 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3684 if ((a & 0x80000000) == 0) {
3688 f64 = make_float64((0x3feULL << 52)
3689 | ((int64_t)(a & 0x7fffffff) << 21));
3691 f64 = recip_estimate (f64, env);
3693 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3696 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3700 if ((a & 0xc0000000) == 0) {
3704 if (a & 0x80000000) {
3705 f64 = make_float64((0x3feULL << 52)
3706 | ((uint64_t)(a & 0x7fffffff) << 21));
3707 } else { /* bits 31-30 == '01' */
3708 f64 = make_float64((0x3fdULL << 52)
3709 | ((uint64_t)(a & 0x3fffffff) << 22));
3712 f64 = recip_sqrt_estimate(f64, env);
3714 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3717 /* VFPv4 fused multiply-accumulate */
3718 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3720 float_status *fpst = fpstp;
3721 return float32_muladd(a, b, c, 0, fpst);
3724 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3726 float_status *fpst = fpstp;
3727 return float64_muladd(a, b, c, 0, fpst);