]>
Commit | Line | Data |
---|---|---|
1 | #ifndef QEMU_H | |
2 | #define QEMU_H | |
3 | ||
4 | #include <signal.h> | |
5 | #include <string.h> | |
6 | ||
7 | #include "cpu.h" | |
8 | ||
9 | #undef DEBUG_REMAP | |
10 | #ifdef DEBUG_REMAP | |
11 | #include <stdlib.h> | |
12 | #endif /* DEBUG_REMAP */ | |
13 | ||
14 | #include "qemu-types.h" | |
15 | ||
16 | #include "thunk.h" | |
17 | #include "syscall_defs.h" | |
18 | #include "syscall.h" | |
19 | #include "target_signal.h" | |
20 | #include "gdbstub.h" | |
21 | #include "qemu-queue.h" | |
22 | ||
23 | #if defined(CONFIG_USE_NPTL) | |
24 | #define THREAD __thread | |
25 | #else | |
26 | #define THREAD | |
27 | #endif | |
28 | ||
29 | /* This struct is used to hold certain information about the image. | |
30 | * Basically, it replicates in user space what would be certain | |
31 | * task_struct fields in the kernel | |
32 | */ | |
33 | struct image_info { | |
34 | abi_ulong load_bias; | |
35 | abi_ulong load_addr; | |
36 | abi_ulong start_code; | |
37 | abi_ulong end_code; | |
38 | abi_ulong start_data; | |
39 | abi_ulong end_data; | |
40 | abi_ulong start_brk; | |
41 | abi_ulong brk; | |
42 | abi_ulong start_mmap; | |
43 | abi_ulong mmap; | |
44 | abi_ulong rss; | |
45 | abi_ulong start_stack; | |
46 | abi_ulong stack_limit; | |
47 | abi_ulong entry; | |
48 | abi_ulong code_offset; | |
49 | abi_ulong data_offset; | |
50 | abi_ulong saved_auxv; | |
51 | abi_ulong auxv_len; | |
52 | abi_ulong arg_start; | |
53 | abi_ulong arg_end; | |
54 | uint32_t elf_flags; | |
55 | int personality; | |
56 | #ifdef CONFIG_USE_FDPIC | |
57 | abi_ulong loadmap_addr; | |
58 | uint16_t nsegs; | |
59 | void *loadsegs; | |
60 | abi_ulong pt_dynamic_addr; | |
61 | struct image_info *other_info; | |
62 | #endif | |
63 | }; | |
64 | ||
65 | #ifdef TARGET_I386 | |
66 | /* Information about the current linux thread */ | |
67 | struct vm86_saved_state { | |
68 | uint32_t eax; /* return code */ | |
69 | uint32_t ebx; | |
70 | uint32_t ecx; | |
71 | uint32_t edx; | |
72 | uint32_t esi; | |
73 | uint32_t edi; | |
74 | uint32_t ebp; | |
75 | uint32_t esp; | |
76 | uint32_t eflags; | |
77 | uint32_t eip; | |
78 | uint16_t cs, ss, ds, es, fs, gs; | |
79 | }; | |
80 | #endif | |
81 | ||
82 | #ifdef TARGET_ARM | |
83 | /* FPU emulator */ | |
84 | #include "nwfpe/fpa11.h" | |
85 | #endif | |
86 | ||
87 | #define MAX_SIGQUEUE_SIZE 1024 | |
88 | ||
89 | struct sigqueue { | |
90 | struct sigqueue *next; | |
91 | target_siginfo_t info; | |
92 | }; | |
93 | ||
94 | struct emulated_sigtable { | |
95 | int pending; /* true if signal is pending */ | |
96 | struct sigqueue *first; | |
97 | struct sigqueue info; /* in order to always have memory for the | |
98 | first signal, we put it here */ | |
99 | }; | |
100 | ||
101 | /* NOTE: we force a big alignment so that the stack stored after is | |
102 | aligned too */ | |
103 | typedef struct TaskState { | |
104 | pid_t ts_tid; /* tid (or pid) of this task */ | |
105 | #ifdef TARGET_ARM | |
106 | /* FPA state */ | |
107 | FPA11 fpa; | |
108 | int swi_errno; | |
109 | #endif | |
110 | #ifdef TARGET_UNICORE32 | |
111 | int swi_errno; | |
112 | #endif | |
113 | #if defined(TARGET_I386) && !defined(TARGET_X86_64) | |
114 | abi_ulong target_v86; | |
115 | struct vm86_saved_state vm86_saved_regs; | |
116 | struct target_vm86plus_struct vm86plus; | |
117 | uint32_t v86flags; | |
118 | uint32_t v86mask; | |
119 | #endif | |
120 | #ifdef CONFIG_USE_NPTL | |
121 | abi_ulong child_tidptr; | |
122 | #endif | |
123 | #ifdef TARGET_M68K | |
124 | int sim_syscalls; | |
125 | #endif | |
126 | #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) | |
127 | /* Extra fields for semihosted binaries. */ | |
128 | uint32_t heap_base; | |
129 | uint32_t heap_limit; | |
130 | #endif | |
131 | uint32_t stack_base; | |
132 | int used; /* non zero if used */ | |
133 | struct image_info *info; | |
134 | struct linux_binprm *bprm; | |
135 | ||
136 | struct emulated_sigtable sigtab[TARGET_NSIG]; | |
137 | struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ | |
138 | struct sigqueue *first_free; /* first free siginfo queue entry */ | |
139 | int signal_pending; /* non zero if a signal may be pending */ | |
140 | } __attribute__((aligned(16))) TaskState; | |
141 | ||
142 | extern char *exec_path; | |
143 | void init_task_state(TaskState *ts); | |
144 | void task_settid(TaskState *); | |
145 | void stop_all_tasks(void); | |
146 | extern const char *qemu_uname_release; | |
147 | extern unsigned long mmap_min_addr; | |
148 | ||
149 | /* ??? See if we can avoid exposing so much of the loader internals. */ | |
150 | /* | |
151 | * MAX_ARG_PAGES defines the number of pages allocated for arguments | |
152 | * and envelope for the new program. 32 should suffice, this gives | |
153 | * a maximum env+arg of 128kB w/4KB pages! | |
154 | */ | |
155 | #define MAX_ARG_PAGES 33 | |
156 | ||
157 | /* Read a good amount of data initially, to hopefully get all the | |
158 | program headers loaded. */ | |
159 | #define BPRM_BUF_SIZE 1024 | |
160 | ||
161 | /* | |
162 | * This structure is used to hold the arguments that are | |
163 | * used when loading binaries. | |
164 | */ | |
165 | struct linux_binprm { | |
166 | char buf[BPRM_BUF_SIZE] __attribute__((aligned)); | |
167 | void *page[MAX_ARG_PAGES]; | |
168 | abi_ulong p; | |
169 | int fd; | |
170 | int e_uid, e_gid; | |
171 | int argc, envc; | |
172 | char **argv; | |
173 | char **envp; | |
174 | char * filename; /* Name of binary */ | |
175 | int (*core_dump)(int, const CPUArchState *); /* coredump routine */ | |
176 | }; | |
177 | ||
178 | void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); | |
179 | abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, | |
180 | abi_ulong stringp, int push_ptr); | |
181 | int loader_exec(const char * filename, char ** argv, char ** envp, | |
182 | struct target_pt_regs * regs, struct image_info *infop, | |
183 | struct linux_binprm *); | |
184 | ||
185 | int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, | |
186 | struct image_info * info); | |
187 | int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, | |
188 | struct image_info * info); | |
189 | ||
190 | abi_long memcpy_to_target(abi_ulong dest, const void *src, | |
191 | unsigned long len); | |
192 | void target_set_brk(abi_ulong new_brk); | |
193 | abi_long do_brk(abi_ulong new_brk); | |
194 | void syscall_init(void); | |
195 | abi_long do_syscall(void *cpu_env, int num, abi_long arg1, | |
196 | abi_long arg2, abi_long arg3, abi_long arg4, | |
197 | abi_long arg5, abi_long arg6, abi_long arg7, | |
198 | abi_long arg8); | |
199 | void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); | |
200 | extern THREAD CPUArchState *thread_env; | |
201 | void cpu_loop(CPUArchState *env); | |
202 | char *target_strerror(int err); | |
203 | int get_osversion(void); | |
204 | void fork_start(void); | |
205 | void fork_end(int child); | |
206 | ||
207 | /* Creates the initial guest address space in the host memory space using | |
208 | * the given host start address hint and size. The guest_start parameter | |
209 | * specifies the start address of the guest space. guest_base will be the | |
210 | * difference between the host start address computed by this function and | |
211 | * guest_start. If fixed is specified, then the mapped address space must | |
212 | * start at host_start. The real start address of the mapped memory space is | |
213 | * returned or -1 if there was an error. | |
214 | */ | |
215 | unsigned long init_guest_space(unsigned long host_start, | |
216 | unsigned long host_size, | |
217 | unsigned long guest_start, | |
218 | bool fixed); | |
219 | ||
220 | #include "qemu-log.h" | |
221 | ||
222 | /* strace.c */ | |
223 | void print_syscall(int num, | |
224 | abi_long arg1, abi_long arg2, abi_long arg3, | |
225 | abi_long arg4, abi_long arg5, abi_long arg6); | |
226 | void print_syscall_ret(int num, abi_long arg1); | |
227 | extern int do_strace; | |
228 | ||
229 | /* signal.c */ | |
230 | void process_pending_signals(CPUArchState *cpu_env); | |
231 | void signal_init(void); | |
232 | int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); | |
233 | void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); | |
234 | void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); | |
235 | int target_to_host_signal(int sig); | |
236 | int host_to_target_signal(int sig); | |
237 | long do_sigreturn(CPUArchState *env); | |
238 | long do_rt_sigreturn(CPUArchState *env); | |
239 | abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); | |
240 | ||
241 | #ifdef TARGET_I386 | |
242 | /* vm86.c */ | |
243 | void save_v86_state(CPUX86State *env); | |
244 | void handle_vm86_trap(CPUX86State *env, int trapno); | |
245 | void handle_vm86_fault(CPUX86State *env); | |
246 | int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); | |
247 | #elif defined(TARGET_SPARC64) | |
248 | void sparc64_set_context(CPUSPARCState *env); | |
249 | void sparc64_get_context(CPUSPARCState *env); | |
250 | #endif | |
251 | ||
252 | /* mmap.c */ | |
253 | int target_mprotect(abi_ulong start, abi_ulong len, int prot); | |
254 | abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, | |
255 | int flags, int fd, abi_ulong offset); | |
256 | int target_munmap(abi_ulong start, abi_ulong len); | |
257 | abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, | |
258 | abi_ulong new_size, unsigned long flags, | |
259 | abi_ulong new_addr); | |
260 | int target_msync(abi_ulong start, abi_ulong len, int flags); | |
261 | extern unsigned long last_brk; | |
262 | extern abi_ulong mmap_next_start; | |
263 | void mmap_lock(void); | |
264 | void mmap_unlock(void); | |
265 | abi_ulong mmap_find_vma(abi_ulong, abi_ulong); | |
266 | void cpu_list_lock(void); | |
267 | void cpu_list_unlock(void); | |
268 | #if defined(CONFIG_USE_NPTL) | |
269 | void mmap_fork_start(void); | |
270 | void mmap_fork_end(int child); | |
271 | #endif | |
272 | ||
273 | /* main.c */ | |
274 | extern unsigned long guest_stack_size; | |
275 | ||
276 | /* user access */ | |
277 | ||
278 | #define VERIFY_READ 0 | |
279 | #define VERIFY_WRITE 1 /* implies read access */ | |
280 | ||
281 | static inline int access_ok(int type, abi_ulong addr, abi_ulong size) | |
282 | { | |
283 | return page_check_range((target_ulong)addr, size, | |
284 | (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; | |
285 | } | |
286 | ||
287 | /* NOTE __get_user and __put_user use host pointers and don't check access. */ | |
288 | /* These are usually used to access struct data members once the | |
289 | * struct has been locked - usually with lock_user_struct(). | |
290 | */ | |
291 | #define __put_user(x, hptr)\ | |
292 | ({\ | |
293 | switch(sizeof(*hptr)) {\ | |
294 | case 1:\ | |
295 | *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ | |
296 | break;\ | |
297 | case 2:\ | |
298 | *(uint16_t *)(hptr) = tswap16((uint16_t)(typeof(*hptr))(x));\ | |
299 | break;\ | |
300 | case 4:\ | |
301 | *(uint32_t *)(hptr) = tswap32((uint32_t)(typeof(*hptr))(x));\ | |
302 | break;\ | |
303 | case 8:\ | |
304 | *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ | |
305 | break;\ | |
306 | default:\ | |
307 | abort();\ | |
308 | }\ | |
309 | 0;\ | |
310 | }) | |
311 | ||
312 | #define __get_user(x, hptr) \ | |
313 | ({\ | |
314 | switch(sizeof(*hptr)) {\ | |
315 | case 1:\ | |
316 | x = (typeof(*hptr))*(uint8_t *)(hptr);\ | |
317 | break;\ | |
318 | case 2:\ | |
319 | x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ | |
320 | break;\ | |
321 | case 4:\ | |
322 | x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ | |
323 | break;\ | |
324 | case 8:\ | |
325 | x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ | |
326 | break;\ | |
327 | default:\ | |
328 | /* avoid warning */\ | |
329 | x = 0;\ | |
330 | abort();\ | |
331 | }\ | |
332 | 0;\ | |
333 | }) | |
334 | ||
335 | /* put_user()/get_user() take a guest address and check access */ | |
336 | /* These are usually used to access an atomic data type, such as an int, | |
337 | * that has been passed by address. These internally perform locking | |
338 | * and unlocking on the data type. | |
339 | */ | |
340 | #define put_user(x, gaddr, target_type) \ | |
341 | ({ \ | |
342 | abi_ulong __gaddr = (gaddr); \ | |
343 | target_type *__hptr; \ | |
344 | abi_long __ret; \ | |
345 | if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ | |
346 | __ret = __put_user((x), __hptr); \ | |
347 | unlock_user(__hptr, __gaddr, sizeof(target_type)); \ | |
348 | } else \ | |
349 | __ret = -TARGET_EFAULT; \ | |
350 | __ret; \ | |
351 | }) | |
352 | ||
353 | #define get_user(x, gaddr, target_type) \ | |
354 | ({ \ | |
355 | abi_ulong __gaddr = (gaddr); \ | |
356 | target_type *__hptr; \ | |
357 | abi_long __ret; \ | |
358 | if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ | |
359 | __ret = __get_user((x), __hptr); \ | |
360 | unlock_user(__hptr, __gaddr, 0); \ | |
361 | } else { \ | |
362 | /* avoid warning */ \ | |
363 | (x) = 0; \ | |
364 | __ret = -TARGET_EFAULT; \ | |
365 | } \ | |
366 | __ret; \ | |
367 | }) | |
368 | ||
369 | #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) | |
370 | #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) | |
371 | #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) | |
372 | #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) | |
373 | #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) | |
374 | #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) | |
375 | #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) | |
376 | #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) | |
377 | #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) | |
378 | #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) | |
379 | ||
380 | #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) | |
381 | #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) | |
382 | #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) | |
383 | #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) | |
384 | #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) | |
385 | #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) | |
386 | #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) | |
387 | #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) | |
388 | #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) | |
389 | #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) | |
390 | ||
391 | /* copy_from_user() and copy_to_user() are usually used to copy data | |
392 | * buffers between the target and host. These internally perform | |
393 | * locking/unlocking of the memory. | |
394 | */ | |
395 | abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); | |
396 | abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); | |
397 | ||
398 | /* Functions for accessing guest memory. The tget and tput functions | |
399 | read/write single values, byteswapping as necessary. The lock_user | |
400 | gets a pointer to a contiguous area of guest memory, but does not perform | |
401 | and byteswapping. lock_user may return either a pointer to the guest | |
402 | memory, or a temporary buffer. */ | |
403 | ||
404 | /* Lock an area of guest memory into the host. If copy is true then the | |
405 | host area will have the same contents as the guest. */ | |
406 | static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) | |
407 | { | |
408 | if (!access_ok(type, guest_addr, len)) | |
409 | return NULL; | |
410 | #ifdef DEBUG_REMAP | |
411 | { | |
412 | void *addr; | |
413 | addr = malloc(len); | |
414 | if (copy) | |
415 | memcpy(addr, g2h(guest_addr), len); | |
416 | else | |
417 | memset(addr, 0, len); | |
418 | return addr; | |
419 | } | |
420 | #else | |
421 | return g2h(guest_addr); | |
422 | #endif | |
423 | } | |
424 | ||
425 | /* Unlock an area of guest memory. The first LEN bytes must be | |
426 | flushed back to guest memory. host_ptr = NULL is explicitly | |
427 | allowed and does nothing. */ | |
428 | static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, | |
429 | long len) | |
430 | { | |
431 | ||
432 | #ifdef DEBUG_REMAP | |
433 | if (!host_ptr) | |
434 | return; | |
435 | if (host_ptr == g2h(guest_addr)) | |
436 | return; | |
437 | if (len > 0) | |
438 | memcpy(g2h(guest_addr), host_ptr, len); | |
439 | free(host_ptr); | |
440 | #endif | |
441 | } | |
442 | ||
443 | /* Return the length of a string in target memory or -TARGET_EFAULT if | |
444 | access error. */ | |
445 | abi_long target_strlen(abi_ulong gaddr); | |
446 | ||
447 | /* Like lock_user but for null terminated strings. */ | |
448 | static inline void *lock_user_string(abi_ulong guest_addr) | |
449 | { | |
450 | abi_long len; | |
451 | len = target_strlen(guest_addr); | |
452 | if (len < 0) | |
453 | return NULL; | |
454 | return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); | |
455 | } | |
456 | ||
457 | /* Helper macros for locking/ulocking a target struct. */ | |
458 | #define lock_user_struct(type, host_ptr, guest_addr, copy) \ | |
459 | (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) | |
460 | #define unlock_user_struct(host_ptr, guest_addr, copy) \ | |
461 | unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) | |
462 | ||
463 | #if defined(CONFIG_USE_NPTL) | |
464 | #include <pthread.h> | |
465 | #endif | |
466 | ||
467 | #endif /* QEMU_H */ |