]>
Commit | Line | Data |
---|---|---|
31e31b8a | 1 | /* This is the Linux kernel elf-loading code, ported into user space */ |
edf8e2af MW |
2 | #include <sys/time.h> |
3 | #include <sys/param.h> | |
31e31b8a FB |
4 | |
5 | #include <stdio.h> | |
6 | #include <sys/types.h> | |
7 | #include <fcntl.h> | |
31e31b8a FB |
8 | #include <errno.h> |
9 | #include <unistd.h> | |
10 | #include <sys/mman.h> | |
edf8e2af | 11 | #include <sys/resource.h> |
31e31b8a FB |
12 | #include <stdlib.h> |
13 | #include <string.h> | |
edf8e2af | 14 | #include <time.h> |
31e31b8a | 15 | |
3ef693a0 | 16 | #include "qemu.h" |
689f936f | 17 | #include "disas.h" |
31e31b8a | 18 | |
e58ffeb3 | 19 | #ifdef _ARCH_PPC64 |
a6cc84f4 | 20 | #undef ARCH_DLINFO |
21 | #undef ELF_PLATFORM | |
22 | #undef ELF_HWCAP | |
23 | #undef ELF_CLASS | |
24 | #undef ELF_DATA | |
25 | #undef ELF_ARCH | |
26 | #endif | |
27 | ||
edf8e2af MW |
28 | #define ELF_OSABI ELFOSABI_SYSV |
29 | ||
cb33da57 BS |
30 | /* from personality.h */ |
31 | ||
32 | /* | |
33 | * Flags for bug emulation. | |
34 | * | |
35 | * These occupy the top three bytes. | |
36 | */ | |
37 | enum { | |
d97ef72e RH |
38 | ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ |
39 | FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to | |
40 | descriptors (signal handling) */ | |
41 | MMAP_PAGE_ZERO = 0x0100000, | |
42 | ADDR_COMPAT_LAYOUT = 0x0200000, | |
43 | READ_IMPLIES_EXEC = 0x0400000, | |
44 | ADDR_LIMIT_32BIT = 0x0800000, | |
45 | SHORT_INODE = 0x1000000, | |
46 | WHOLE_SECONDS = 0x2000000, | |
47 | STICKY_TIMEOUTS = 0x4000000, | |
48 | ADDR_LIMIT_3GB = 0x8000000, | |
cb33da57 BS |
49 | }; |
50 | ||
51 | /* | |
52 | * Personality types. | |
53 | * | |
54 | * These go in the low byte. Avoid using the top bit, it will | |
55 | * conflict with error returns. | |
56 | */ | |
57 | enum { | |
d97ef72e RH |
58 | PER_LINUX = 0x0000, |
59 | PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, | |
60 | PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, | |
61 | PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | |
62 | PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, | |
63 | PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, | |
64 | PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, | |
65 | PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, | |
66 | PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, | |
67 | PER_BSD = 0x0006, | |
68 | PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, | |
69 | PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, | |
70 | PER_LINUX32 = 0x0008, | |
71 | PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, | |
72 | PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ | |
73 | PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ | |
74 | PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ | |
75 | PER_RISCOS = 0x000c, | |
76 | PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, | |
77 | PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | |
78 | PER_OSF4 = 0x000f, /* OSF/1 v4 */ | |
79 | PER_HPUX = 0x0010, | |
80 | PER_MASK = 0x00ff, | |
cb33da57 BS |
81 | }; |
82 | ||
83 | /* | |
84 | * Return the base personality without flags. | |
85 | */ | |
d97ef72e | 86 | #define personality(pers) (pers & PER_MASK) |
cb33da57 | 87 | |
83fb7adf FB |
88 | /* this flag is uneffective under linux too, should be deleted */ |
89 | #ifndef MAP_DENYWRITE | |
90 | #define MAP_DENYWRITE 0 | |
91 | #endif | |
92 | ||
93 | /* should probably go in elf.h */ | |
94 | #ifndef ELIBBAD | |
95 | #define ELIBBAD 80 | |
96 | #endif | |
97 | ||
28490231 RH |
98 | #ifdef TARGET_WORDS_BIGENDIAN |
99 | #define ELF_DATA ELFDATA2MSB | |
100 | #else | |
101 | #define ELF_DATA ELFDATA2LSB | |
102 | #endif | |
103 | ||
d97ef72e | 104 | typedef target_ulong target_elf_greg_t; |
21e807fa | 105 | #ifdef USE_UID16 |
80f5ce75 LV |
106 | typedef target_ushort target_uid_t; |
107 | typedef target_ushort target_gid_t; | |
21e807fa | 108 | #else |
80f5ce75 LV |
109 | typedef target_uint target_uid_t; |
110 | typedef target_uint target_gid_t; | |
21e807fa | 111 | #endif |
80f5ce75 | 112 | typedef target_int target_pid_t; |
21e807fa | 113 | |
30ac07d4 FB |
114 | #ifdef TARGET_I386 |
115 | ||
15338fd7 FB |
116 | #define ELF_PLATFORM get_elf_platform() |
117 | ||
118 | static const char *get_elf_platform(void) | |
119 | { | |
120 | static char elf_platform[] = "i386"; | |
d5975363 | 121 | int family = (thread_env->cpuid_version >> 8) & 0xff; |
15338fd7 FB |
122 | if (family > 6) |
123 | family = 6; | |
124 | if (family >= 3) | |
125 | elf_platform[1] = '0' + family; | |
126 | return elf_platform; | |
127 | } | |
128 | ||
129 | #define ELF_HWCAP get_elf_hwcap() | |
130 | ||
131 | static uint32_t get_elf_hwcap(void) | |
132 | { | |
d97ef72e | 133 | return thread_env->cpuid_features; |
15338fd7 FB |
134 | } |
135 | ||
84409ddb JM |
136 | #ifdef TARGET_X86_64 |
137 | #define ELF_START_MMAP 0x2aaaaab000ULL | |
138 | #define elf_check_arch(x) ( ((x) == ELF_ARCH) ) | |
139 | ||
140 | #define ELF_CLASS ELFCLASS64 | |
84409ddb JM |
141 | #define ELF_ARCH EM_X86_64 |
142 | ||
143 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
144 | { | |
145 | regs->rax = 0; | |
146 | regs->rsp = infop->start_stack; | |
147 | regs->rip = infop->entry; | |
148 | } | |
149 | ||
9edc5d79 | 150 | #define ELF_NREG 27 |
c227f099 | 151 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
9edc5d79 MW |
152 | |
153 | /* | |
154 | * Note that ELF_NREG should be 29 as there should be place for | |
155 | * TRAPNO and ERR "registers" as well but linux doesn't dump | |
156 | * those. | |
157 | * | |
158 | * See linux kernel: arch/x86/include/asm/elf.h | |
159 | */ | |
c227f099 | 160 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) |
9edc5d79 MW |
161 | { |
162 | (*regs)[0] = env->regs[15]; | |
163 | (*regs)[1] = env->regs[14]; | |
164 | (*regs)[2] = env->regs[13]; | |
165 | (*regs)[3] = env->regs[12]; | |
166 | (*regs)[4] = env->regs[R_EBP]; | |
167 | (*regs)[5] = env->regs[R_EBX]; | |
168 | (*regs)[6] = env->regs[11]; | |
169 | (*regs)[7] = env->regs[10]; | |
170 | (*regs)[8] = env->regs[9]; | |
171 | (*regs)[9] = env->regs[8]; | |
172 | (*regs)[10] = env->regs[R_EAX]; | |
173 | (*regs)[11] = env->regs[R_ECX]; | |
174 | (*regs)[12] = env->regs[R_EDX]; | |
175 | (*regs)[13] = env->regs[R_ESI]; | |
176 | (*regs)[14] = env->regs[R_EDI]; | |
177 | (*regs)[15] = env->regs[R_EAX]; /* XXX */ | |
178 | (*regs)[16] = env->eip; | |
179 | (*regs)[17] = env->segs[R_CS].selector & 0xffff; | |
180 | (*regs)[18] = env->eflags; | |
181 | (*regs)[19] = env->regs[R_ESP]; | |
182 | (*regs)[20] = env->segs[R_SS].selector & 0xffff; | |
183 | (*regs)[21] = env->segs[R_FS].selector & 0xffff; | |
184 | (*regs)[22] = env->segs[R_GS].selector & 0xffff; | |
185 | (*regs)[23] = env->segs[R_DS].selector & 0xffff; | |
186 | (*regs)[24] = env->segs[R_ES].selector & 0xffff; | |
187 | (*regs)[25] = env->segs[R_FS].selector & 0xffff; | |
188 | (*regs)[26] = env->segs[R_GS].selector & 0xffff; | |
189 | } | |
190 | ||
84409ddb JM |
191 | #else |
192 | ||
30ac07d4 FB |
193 | #define ELF_START_MMAP 0x80000000 |
194 | ||
30ac07d4 FB |
195 | /* |
196 | * This is used to ensure we don't load something for the wrong architecture. | |
197 | */ | |
198 | #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) | |
199 | ||
200 | /* | |
201 | * These are used to set parameters in the core dumps. | |
202 | */ | |
d97ef72e | 203 | #define ELF_CLASS ELFCLASS32 |
d97ef72e | 204 | #define ELF_ARCH EM_386 |
30ac07d4 | 205 | |
d97ef72e RH |
206 | static inline void init_thread(struct target_pt_regs *regs, |
207 | struct image_info *infop) | |
b346ff46 FB |
208 | { |
209 | regs->esp = infop->start_stack; | |
210 | regs->eip = infop->entry; | |
e5fe0c52 PB |
211 | |
212 | /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program | |
213 | starts %edx contains a pointer to a function which might be | |
214 | registered using `atexit'. This provides a mean for the | |
215 | dynamic linker to call DT_FINI functions for shared libraries | |
216 | that have been loaded before the code runs. | |
217 | ||
218 | A value of 0 tells we have no such handler. */ | |
219 | regs->edx = 0; | |
b346ff46 | 220 | } |
9edc5d79 | 221 | |
9edc5d79 | 222 | #define ELF_NREG 17 |
c227f099 | 223 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
9edc5d79 MW |
224 | |
225 | /* | |
226 | * Note that ELF_NREG should be 19 as there should be place for | |
227 | * TRAPNO and ERR "registers" as well but linux doesn't dump | |
228 | * those. | |
229 | * | |
230 | * See linux kernel: arch/x86/include/asm/elf.h | |
231 | */ | |
c227f099 | 232 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) |
9edc5d79 MW |
233 | { |
234 | (*regs)[0] = env->regs[R_EBX]; | |
235 | (*regs)[1] = env->regs[R_ECX]; | |
236 | (*regs)[2] = env->regs[R_EDX]; | |
237 | (*regs)[3] = env->regs[R_ESI]; | |
238 | (*regs)[4] = env->regs[R_EDI]; | |
239 | (*regs)[5] = env->regs[R_EBP]; | |
240 | (*regs)[6] = env->regs[R_EAX]; | |
241 | (*regs)[7] = env->segs[R_DS].selector & 0xffff; | |
242 | (*regs)[8] = env->segs[R_ES].selector & 0xffff; | |
243 | (*regs)[9] = env->segs[R_FS].selector & 0xffff; | |
244 | (*regs)[10] = env->segs[R_GS].selector & 0xffff; | |
245 | (*regs)[11] = env->regs[R_EAX]; /* XXX */ | |
246 | (*regs)[12] = env->eip; | |
247 | (*regs)[13] = env->segs[R_CS].selector & 0xffff; | |
248 | (*regs)[14] = env->eflags; | |
249 | (*regs)[15] = env->regs[R_ESP]; | |
250 | (*regs)[16] = env->segs[R_SS].selector & 0xffff; | |
251 | } | |
84409ddb | 252 | #endif |
b346ff46 | 253 | |
9edc5d79 | 254 | #define USE_ELF_CORE_DUMP |
d97ef72e | 255 | #define ELF_EXEC_PAGESIZE 4096 |
b346ff46 FB |
256 | |
257 | #endif | |
258 | ||
259 | #ifdef TARGET_ARM | |
260 | ||
261 | #define ELF_START_MMAP 0x80000000 | |
262 | ||
263 | #define elf_check_arch(x) ( (x) == EM_ARM ) | |
264 | ||
d97ef72e | 265 | #define ELF_CLASS ELFCLASS32 |
d97ef72e | 266 | #define ELF_ARCH EM_ARM |
b346ff46 | 267 | |
d97ef72e RH |
268 | static inline void init_thread(struct target_pt_regs *regs, |
269 | struct image_info *infop) | |
b346ff46 | 270 | { |
992f48a0 | 271 | abi_long stack = infop->start_stack; |
b346ff46 FB |
272 | memset(regs, 0, sizeof(*regs)); |
273 | regs->ARM_cpsr = 0x10; | |
0240ded8 | 274 | if (infop->entry & 1) |
d97ef72e | 275 | regs->ARM_cpsr |= CPSR_T; |
0240ded8 | 276 | regs->ARM_pc = infop->entry & 0xfffffffe; |
b346ff46 | 277 | regs->ARM_sp = infop->start_stack; |
2f619698 FB |
278 | /* FIXME - what to for failure of get_user()? */ |
279 | get_user_ual(regs->ARM_r2, stack + 8); /* envp */ | |
280 | get_user_ual(regs->ARM_r1, stack + 4); /* envp */ | |
a1516e92 | 281 | /* XXX: it seems that r0 is zeroed after ! */ |
e5fe0c52 PB |
282 | regs->ARM_r0 = 0; |
283 | /* For uClinux PIC binaries. */ | |
863cf0b7 | 284 | /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ |
e5fe0c52 | 285 | regs->ARM_r10 = infop->start_data; |
b346ff46 FB |
286 | } |
287 | ||
edf8e2af | 288 | #define ELF_NREG 18 |
c227f099 | 289 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
edf8e2af | 290 | |
c227f099 | 291 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) |
edf8e2af | 292 | { |
d049e626 NF |
293 | (*regs)[0] = tswapl(env->regs[0]); |
294 | (*regs)[1] = tswapl(env->regs[1]); | |
295 | (*regs)[2] = tswapl(env->regs[2]); | |
296 | (*regs)[3] = tswapl(env->regs[3]); | |
297 | (*regs)[4] = tswapl(env->regs[4]); | |
298 | (*regs)[5] = tswapl(env->regs[5]); | |
299 | (*regs)[6] = tswapl(env->regs[6]); | |
300 | (*regs)[7] = tswapl(env->regs[7]); | |
301 | (*regs)[8] = tswapl(env->regs[8]); | |
302 | (*regs)[9] = tswapl(env->regs[9]); | |
303 | (*regs)[10] = tswapl(env->regs[10]); | |
304 | (*regs)[11] = tswapl(env->regs[11]); | |
305 | (*regs)[12] = tswapl(env->regs[12]); | |
306 | (*regs)[13] = tswapl(env->regs[13]); | |
307 | (*regs)[14] = tswapl(env->regs[14]); | |
308 | (*regs)[15] = tswapl(env->regs[15]); | |
309 | ||
310 | (*regs)[16] = tswapl(cpsr_read((CPUState *)env)); | |
311 | (*regs)[17] = tswapl(env->regs[0]); /* XXX */ | |
edf8e2af MW |
312 | } |
313 | ||
30ac07d4 | 314 | #define USE_ELF_CORE_DUMP |
d97ef72e | 315 | #define ELF_EXEC_PAGESIZE 4096 |
30ac07d4 | 316 | |
afce2927 FB |
317 | enum |
318 | { | |
d97ef72e RH |
319 | ARM_HWCAP_ARM_SWP = 1 << 0, |
320 | ARM_HWCAP_ARM_HALF = 1 << 1, | |
321 | ARM_HWCAP_ARM_THUMB = 1 << 2, | |
322 | ARM_HWCAP_ARM_26BIT = 1 << 3, | |
323 | ARM_HWCAP_ARM_FAST_MULT = 1 << 4, | |
324 | ARM_HWCAP_ARM_FPA = 1 << 5, | |
325 | ARM_HWCAP_ARM_VFP = 1 << 6, | |
326 | ARM_HWCAP_ARM_EDSP = 1 << 7, | |
327 | ARM_HWCAP_ARM_JAVA = 1 << 8, | |
328 | ARM_HWCAP_ARM_IWMMXT = 1 << 9, | |
329 | ARM_HWCAP_ARM_THUMBEE = 1 << 10, | |
330 | ARM_HWCAP_ARM_NEON = 1 << 11, | |
331 | ARM_HWCAP_ARM_VFPv3 = 1 << 12, | |
332 | ARM_HWCAP_ARM_VFPv3D16 = 1 << 13, | |
afce2927 FB |
333 | }; |
334 | ||
97cc7560 DDAG |
335 | #define TARGET_HAS_GUEST_VALIDATE_BASE |
336 | /* We want the opportunity to check the suggested base */ | |
337 | bool guest_validate_base(unsigned long guest_base) | |
338 | { | |
339 | unsigned long real_start, test_page_addr; | |
340 | ||
341 | /* We need to check that we can force a fault on access to the | |
342 | * commpage at 0xffff0fxx | |
343 | */ | |
344 | test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); | |
345 | /* Note it needs to be writeable to let us initialise it */ | |
346 | real_start = (unsigned long) | |
347 | mmap((void *)test_page_addr, qemu_host_page_size, | |
348 | PROT_READ | PROT_WRITE, | |
349 | MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
350 | ||
351 | /* If we can't map it then try another address */ | |
352 | if (real_start == -1ul) { | |
353 | return 0; | |
354 | } | |
355 | ||
356 | if (real_start != test_page_addr) { | |
357 | /* OS didn't put the page where we asked - unmap and reject */ | |
358 | munmap((void *)real_start, qemu_host_page_size); | |
359 | return 0; | |
360 | } | |
361 | ||
362 | /* Leave the page mapped | |
363 | * Populate it (mmap should have left it all 0'd) | |
364 | */ | |
365 | ||
366 | /* Kernel helper versions */ | |
367 | __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); | |
368 | ||
369 | /* Now it's populated make it RO */ | |
370 | if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { | |
371 | perror("Protecting guest commpage"); | |
372 | exit(-1); | |
373 | } | |
374 | ||
375 | return 1; /* All good */ | |
376 | } | |
377 | ||
d97ef72e RH |
378 | #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \ |
379 | | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \ | |
380 | | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \ | |
381 | | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 ) | |
afce2927 | 382 | |
30ac07d4 FB |
383 | #endif |
384 | ||
d2fbca94 GX |
385 | #ifdef TARGET_UNICORE32 |
386 | ||
387 | #define ELF_START_MMAP 0x80000000 | |
388 | ||
389 | #define elf_check_arch(x) ((x) == EM_UNICORE32) | |
390 | ||
391 | #define ELF_CLASS ELFCLASS32 | |
392 | #define ELF_DATA ELFDATA2LSB | |
393 | #define ELF_ARCH EM_UNICORE32 | |
394 | ||
395 | static inline void init_thread(struct target_pt_regs *regs, | |
396 | struct image_info *infop) | |
397 | { | |
398 | abi_long stack = infop->start_stack; | |
399 | memset(regs, 0, sizeof(*regs)); | |
400 | regs->UC32_REG_asr = 0x10; | |
401 | regs->UC32_REG_pc = infop->entry & 0xfffffffe; | |
402 | regs->UC32_REG_sp = infop->start_stack; | |
403 | /* FIXME - what to for failure of get_user()? */ | |
404 | get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ | |
405 | get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ | |
406 | /* XXX: it seems that r0 is zeroed after ! */ | |
407 | regs->UC32_REG_00 = 0; | |
408 | } | |
409 | ||
410 | #define ELF_NREG 34 | |
411 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
412 | ||
413 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) | |
414 | { | |
415 | (*regs)[0] = env->regs[0]; | |
416 | (*regs)[1] = env->regs[1]; | |
417 | (*regs)[2] = env->regs[2]; | |
418 | (*regs)[3] = env->regs[3]; | |
419 | (*regs)[4] = env->regs[4]; | |
420 | (*regs)[5] = env->regs[5]; | |
421 | (*regs)[6] = env->regs[6]; | |
422 | (*regs)[7] = env->regs[7]; | |
423 | (*regs)[8] = env->regs[8]; | |
424 | (*regs)[9] = env->regs[9]; | |
425 | (*regs)[10] = env->regs[10]; | |
426 | (*regs)[11] = env->regs[11]; | |
427 | (*regs)[12] = env->regs[12]; | |
428 | (*regs)[13] = env->regs[13]; | |
429 | (*regs)[14] = env->regs[14]; | |
430 | (*regs)[15] = env->regs[15]; | |
431 | (*regs)[16] = env->regs[16]; | |
432 | (*regs)[17] = env->regs[17]; | |
433 | (*regs)[18] = env->regs[18]; | |
434 | (*regs)[19] = env->regs[19]; | |
435 | (*regs)[20] = env->regs[20]; | |
436 | (*regs)[21] = env->regs[21]; | |
437 | (*regs)[22] = env->regs[22]; | |
438 | (*regs)[23] = env->regs[23]; | |
439 | (*regs)[24] = env->regs[24]; | |
440 | (*regs)[25] = env->regs[25]; | |
441 | (*regs)[26] = env->regs[26]; | |
442 | (*regs)[27] = env->regs[27]; | |
443 | (*regs)[28] = env->regs[28]; | |
444 | (*regs)[29] = env->regs[29]; | |
445 | (*regs)[30] = env->regs[30]; | |
446 | (*regs)[31] = env->regs[31]; | |
447 | ||
448 | (*regs)[32] = cpu_asr_read((CPUState *)env); | |
449 | (*regs)[33] = env->regs[0]; /* XXX */ | |
450 | } | |
451 | ||
452 | #define USE_ELF_CORE_DUMP | |
453 | #define ELF_EXEC_PAGESIZE 4096 | |
454 | ||
455 | #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) | |
456 | ||
457 | #endif | |
458 | ||
853d6f7a | 459 | #ifdef TARGET_SPARC |
a315a145 | 460 | #ifdef TARGET_SPARC64 |
853d6f7a FB |
461 | |
462 | #define ELF_START_MMAP 0x80000000 | |
cf973e46 AT |
463 | #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ |
464 | | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) | |
992f48a0 | 465 | #ifndef TARGET_ABI32 |
cb33da57 | 466 | #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) |
992f48a0 BS |
467 | #else |
468 | #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) | |
469 | #endif | |
853d6f7a | 470 | |
a315a145 | 471 | #define ELF_CLASS ELFCLASS64 |
5ef54116 FB |
472 | #define ELF_ARCH EM_SPARCV9 |
473 | ||
d97ef72e | 474 | #define STACK_BIAS 2047 |
a315a145 | 475 | |
d97ef72e RH |
476 | static inline void init_thread(struct target_pt_regs *regs, |
477 | struct image_info *infop) | |
a315a145 | 478 | { |
992f48a0 | 479 | #ifndef TARGET_ABI32 |
a315a145 | 480 | regs->tstate = 0; |
992f48a0 | 481 | #endif |
a315a145 FB |
482 | regs->pc = infop->entry; |
483 | regs->npc = regs->pc + 4; | |
484 | regs->y = 0; | |
992f48a0 BS |
485 | #ifdef TARGET_ABI32 |
486 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
487 | #else | |
cb33da57 BS |
488 | if (personality(infop->personality) == PER_LINUX32) |
489 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
490 | else | |
491 | regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; | |
992f48a0 | 492 | #endif |
a315a145 FB |
493 | } |
494 | ||
495 | #else | |
496 | #define ELF_START_MMAP 0x80000000 | |
cf973e46 AT |
497 | #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ |
498 | | HWCAP_SPARC_MULDIV) | |
a315a145 FB |
499 | #define elf_check_arch(x) ( (x) == EM_SPARC ) |
500 | ||
853d6f7a | 501 | #define ELF_CLASS ELFCLASS32 |
853d6f7a FB |
502 | #define ELF_ARCH EM_SPARC |
503 | ||
d97ef72e RH |
504 | static inline void init_thread(struct target_pt_regs *regs, |
505 | struct image_info *infop) | |
853d6f7a | 506 | { |
f5155289 FB |
507 | regs->psr = 0; |
508 | regs->pc = infop->entry; | |
509 | regs->npc = regs->pc + 4; | |
510 | regs->y = 0; | |
511 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
853d6f7a FB |
512 | } |
513 | ||
a315a145 | 514 | #endif |
853d6f7a FB |
515 | #endif |
516 | ||
67867308 FB |
517 | #ifdef TARGET_PPC |
518 | ||
519 | #define ELF_START_MMAP 0x80000000 | |
520 | ||
e85e7c6e | 521 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
84409ddb JM |
522 | |
523 | #define elf_check_arch(x) ( (x) == EM_PPC64 ) | |
524 | ||
d97ef72e | 525 | #define ELF_CLASS ELFCLASS64 |
84409ddb JM |
526 | |
527 | #else | |
528 | ||
67867308 FB |
529 | #define elf_check_arch(x) ( (x) == EM_PPC ) |
530 | ||
d97ef72e | 531 | #define ELF_CLASS ELFCLASS32 |
84409ddb JM |
532 | |
533 | #endif | |
534 | ||
d97ef72e | 535 | #define ELF_ARCH EM_PPC |
67867308 | 536 | |
df84e4f3 NF |
537 | /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). |
538 | See arch/powerpc/include/asm/cputable.h. */ | |
539 | enum { | |
3efa9a67 | 540 | QEMU_PPC_FEATURE_32 = 0x80000000, |
541 | QEMU_PPC_FEATURE_64 = 0x40000000, | |
542 | QEMU_PPC_FEATURE_601_INSTR = 0x20000000, | |
543 | QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, | |
544 | QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, | |
545 | QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, | |
546 | QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, | |
547 | QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, | |
548 | QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, | |
549 | QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, | |
550 | QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, | |
551 | QEMU_PPC_FEATURE_NO_TB = 0x00100000, | |
552 | QEMU_PPC_FEATURE_POWER4 = 0x00080000, | |
553 | QEMU_PPC_FEATURE_POWER5 = 0x00040000, | |
554 | QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, | |
555 | QEMU_PPC_FEATURE_CELL = 0x00010000, | |
556 | QEMU_PPC_FEATURE_BOOKE = 0x00008000, | |
557 | QEMU_PPC_FEATURE_SMT = 0x00004000, | |
558 | QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, | |
559 | QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, | |
560 | QEMU_PPC_FEATURE_PA6T = 0x00000800, | |
561 | QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, | |
562 | QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, | |
563 | QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, | |
564 | QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, | |
565 | QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, | |
566 | ||
567 | QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, | |
568 | QEMU_PPC_FEATURE_PPC_LE = 0x00000001, | |
df84e4f3 NF |
569 | }; |
570 | ||
571 | #define ELF_HWCAP get_elf_hwcap() | |
572 | ||
573 | static uint32_t get_elf_hwcap(void) | |
574 | { | |
575 | CPUState *e = thread_env; | |
576 | uint32_t features = 0; | |
577 | ||
578 | /* We don't have to be terribly complete here; the high points are | |
579 | Altivec/FP/SPE support. Anything else is just a bonus. */ | |
d97ef72e | 580 | #define GET_FEATURE(flag, feature) \ |
df84e4f3 | 581 | do {if (e->insns_flags & flag) features |= feature; } while(0) |
3efa9a67 | 582 | GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); |
583 | GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); | |
584 | GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); | |
585 | GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); | |
586 | GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); | |
587 | GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); | |
588 | GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); | |
589 | GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); | |
df84e4f3 NF |
590 | #undef GET_FEATURE |
591 | ||
592 | return features; | |
593 | } | |
594 | ||
f5155289 FB |
595 | /* |
596 | * The requirements here are: | |
597 | * - keep the final alignment of sp (sp & 0xf) | |
598 | * - make sure the 32-bit value at the first 16 byte aligned position of | |
599 | * AUXV is greater than 16 for glibc compatibility. | |
600 | * AT_IGNOREPPC is used for that. | |
601 | * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, | |
602 | * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. | |
603 | */ | |
0bccf03d | 604 | #define DLINFO_ARCH_ITEMS 5 |
d97ef72e RH |
605 | #define ARCH_DLINFO \ |
606 | do { \ | |
607 | NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \ | |
608 | NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \ | |
609 | NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ | |
610 | /* \ | |
611 | * Now handle glibc compatibility. \ | |
612 | */ \ | |
613 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ | |
614 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ | |
615 | } while (0) | |
f5155289 | 616 | |
67867308 FB |
617 | static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) |
618 | { | |
67867308 | 619 | _regs->gpr[1] = infop->start_stack; |
e85e7c6e | 620 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
7983f435 RL |
621 | _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_addr; |
622 | infop->entry = ldq_raw(infop->entry) + infop->load_addr; | |
84409ddb | 623 | #endif |
67867308 FB |
624 | _regs->nip = infop->entry; |
625 | } | |
626 | ||
e2f3e741 NF |
627 | /* See linux kernel: arch/powerpc/include/asm/elf.h. */ |
628 | #define ELF_NREG 48 | |
629 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
630 | ||
631 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) | |
632 | { | |
633 | int i; | |
634 | target_ulong ccr = 0; | |
635 | ||
636 | for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { | |
637 | (*regs)[i] = tswapl(env->gpr[i]); | |
638 | } | |
639 | ||
640 | (*regs)[32] = tswapl(env->nip); | |
641 | (*regs)[33] = tswapl(env->msr); | |
642 | (*regs)[35] = tswapl(env->ctr); | |
643 | (*regs)[36] = tswapl(env->lr); | |
644 | (*regs)[37] = tswapl(env->xer); | |
645 | ||
646 | for (i = 0; i < ARRAY_SIZE(env->crf); i++) { | |
647 | ccr |= env->crf[i] << (32 - ((i + 1) * 4)); | |
648 | } | |
649 | (*regs)[38] = tswapl(ccr); | |
650 | } | |
651 | ||
652 | #define USE_ELF_CORE_DUMP | |
d97ef72e | 653 | #define ELF_EXEC_PAGESIZE 4096 |
67867308 FB |
654 | |
655 | #endif | |
656 | ||
048f6b4d FB |
657 | #ifdef TARGET_MIPS |
658 | ||
659 | #define ELF_START_MMAP 0x80000000 | |
660 | ||
661 | #define elf_check_arch(x) ( (x) == EM_MIPS ) | |
662 | ||
388bb21a TS |
663 | #ifdef TARGET_MIPS64 |
664 | #define ELF_CLASS ELFCLASS64 | |
665 | #else | |
048f6b4d | 666 | #define ELF_CLASS ELFCLASS32 |
388bb21a | 667 | #endif |
048f6b4d FB |
668 | #define ELF_ARCH EM_MIPS |
669 | ||
d97ef72e RH |
670 | static inline void init_thread(struct target_pt_regs *regs, |
671 | struct image_info *infop) | |
048f6b4d | 672 | { |
623a930e | 673 | regs->cp0_status = 2 << CP0St_KSU; |
048f6b4d FB |
674 | regs->cp0_epc = infop->entry; |
675 | regs->regs[29] = infop->start_stack; | |
676 | } | |
677 | ||
51e52606 NF |
678 | /* See linux kernel: arch/mips/include/asm/elf.h. */ |
679 | #define ELF_NREG 45 | |
680 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
681 | ||
682 | /* See linux kernel: arch/mips/include/asm/reg.h. */ | |
683 | enum { | |
684 | #ifdef TARGET_MIPS64 | |
685 | TARGET_EF_R0 = 0, | |
686 | #else | |
687 | TARGET_EF_R0 = 6, | |
688 | #endif | |
689 | TARGET_EF_R26 = TARGET_EF_R0 + 26, | |
690 | TARGET_EF_R27 = TARGET_EF_R0 + 27, | |
691 | TARGET_EF_LO = TARGET_EF_R0 + 32, | |
692 | TARGET_EF_HI = TARGET_EF_R0 + 33, | |
693 | TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, | |
694 | TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, | |
695 | TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, | |
696 | TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 | |
697 | }; | |
698 | ||
699 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
700 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) | |
701 | { | |
702 | int i; | |
703 | ||
704 | for (i = 0; i < TARGET_EF_R0; i++) { | |
705 | (*regs)[i] = 0; | |
706 | } | |
707 | (*regs)[TARGET_EF_R0] = 0; | |
708 | ||
709 | for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { | |
710 | (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]); | |
711 | } | |
712 | ||
713 | (*regs)[TARGET_EF_R26] = 0; | |
714 | (*regs)[TARGET_EF_R27] = 0; | |
715 | (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]); | |
716 | (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]); | |
717 | (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC); | |
718 | (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr); | |
719 | (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status); | |
720 | (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause); | |
721 | } | |
722 | ||
723 | #define USE_ELF_CORE_DUMP | |
388bb21a TS |
724 | #define ELF_EXEC_PAGESIZE 4096 |
725 | ||
048f6b4d FB |
726 | #endif /* TARGET_MIPS */ |
727 | ||
b779e29e EI |
728 | #ifdef TARGET_MICROBLAZE |
729 | ||
730 | #define ELF_START_MMAP 0x80000000 | |
731 | ||
0d5d4699 | 732 | #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) |
b779e29e EI |
733 | |
734 | #define ELF_CLASS ELFCLASS32 | |
0d5d4699 | 735 | #define ELF_ARCH EM_MICROBLAZE |
b779e29e | 736 | |
d97ef72e RH |
737 | static inline void init_thread(struct target_pt_regs *regs, |
738 | struct image_info *infop) | |
b779e29e EI |
739 | { |
740 | regs->pc = infop->entry; | |
741 | regs->r1 = infop->start_stack; | |
742 | ||
743 | } | |
744 | ||
b779e29e EI |
745 | #define ELF_EXEC_PAGESIZE 4096 |
746 | ||
e4cbd44d EI |
747 | #define USE_ELF_CORE_DUMP |
748 | #define ELF_NREG 38 | |
749 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
750 | ||
751 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
752 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) | |
753 | { | |
754 | int i, pos = 0; | |
755 | ||
756 | for (i = 0; i < 32; i++) { | |
757 | (*regs)[pos++] = tswapl(env->regs[i]); | |
758 | } | |
759 | ||
760 | for (i = 0; i < 6; i++) { | |
761 | (*regs)[pos++] = tswapl(env->sregs[i]); | |
762 | } | |
763 | } | |
764 | ||
b779e29e EI |
765 | #endif /* TARGET_MICROBLAZE */ |
766 | ||
fdf9b3e8 FB |
767 | #ifdef TARGET_SH4 |
768 | ||
769 | #define ELF_START_MMAP 0x80000000 | |
770 | ||
771 | #define elf_check_arch(x) ( (x) == EM_SH ) | |
772 | ||
773 | #define ELF_CLASS ELFCLASS32 | |
fdf9b3e8 FB |
774 | #define ELF_ARCH EM_SH |
775 | ||
d97ef72e RH |
776 | static inline void init_thread(struct target_pt_regs *regs, |
777 | struct image_info *infop) | |
fdf9b3e8 | 778 | { |
d97ef72e RH |
779 | /* Check other registers XXXXX */ |
780 | regs->pc = infop->entry; | |
781 | regs->regs[15] = infop->start_stack; | |
fdf9b3e8 FB |
782 | } |
783 | ||
7631c97e NF |
784 | /* See linux kernel: arch/sh/include/asm/elf.h. */ |
785 | #define ELF_NREG 23 | |
786 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
787 | ||
788 | /* See linux kernel: arch/sh/include/asm/ptrace.h. */ | |
789 | enum { | |
790 | TARGET_REG_PC = 16, | |
791 | TARGET_REG_PR = 17, | |
792 | TARGET_REG_SR = 18, | |
793 | TARGET_REG_GBR = 19, | |
794 | TARGET_REG_MACH = 20, | |
795 | TARGET_REG_MACL = 21, | |
796 | TARGET_REG_SYSCALL = 22 | |
797 | }; | |
798 | ||
d97ef72e RH |
799 | static inline void elf_core_copy_regs(target_elf_gregset_t *regs, |
800 | const CPUState *env) | |
7631c97e NF |
801 | { |
802 | int i; | |
803 | ||
804 | for (i = 0; i < 16; i++) { | |
805 | (*regs[i]) = tswapl(env->gregs[i]); | |
806 | } | |
807 | ||
808 | (*regs)[TARGET_REG_PC] = tswapl(env->pc); | |
809 | (*regs)[TARGET_REG_PR] = tswapl(env->pr); | |
810 | (*regs)[TARGET_REG_SR] = tswapl(env->sr); | |
811 | (*regs)[TARGET_REG_GBR] = tswapl(env->gbr); | |
812 | (*regs)[TARGET_REG_MACH] = tswapl(env->mach); | |
813 | (*regs)[TARGET_REG_MACL] = tswapl(env->macl); | |
814 | (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ | |
815 | } | |
816 | ||
817 | #define USE_ELF_CORE_DUMP | |
fdf9b3e8 FB |
818 | #define ELF_EXEC_PAGESIZE 4096 |
819 | ||
820 | #endif | |
821 | ||
48733d19 TS |
822 | #ifdef TARGET_CRIS |
823 | ||
824 | #define ELF_START_MMAP 0x80000000 | |
825 | ||
826 | #define elf_check_arch(x) ( (x) == EM_CRIS ) | |
827 | ||
828 | #define ELF_CLASS ELFCLASS32 | |
48733d19 TS |
829 | #define ELF_ARCH EM_CRIS |
830 | ||
d97ef72e RH |
831 | static inline void init_thread(struct target_pt_regs *regs, |
832 | struct image_info *infop) | |
48733d19 | 833 | { |
d97ef72e | 834 | regs->erp = infop->entry; |
48733d19 TS |
835 | } |
836 | ||
48733d19 TS |
837 | #define ELF_EXEC_PAGESIZE 8192 |
838 | ||
839 | #endif | |
840 | ||
e6e5906b PB |
841 | #ifdef TARGET_M68K |
842 | ||
843 | #define ELF_START_MMAP 0x80000000 | |
844 | ||
845 | #define elf_check_arch(x) ( (x) == EM_68K ) | |
846 | ||
d97ef72e | 847 | #define ELF_CLASS ELFCLASS32 |
d97ef72e | 848 | #define ELF_ARCH EM_68K |
e6e5906b PB |
849 | |
850 | /* ??? Does this need to do anything? | |
d97ef72e | 851 | #define ELF_PLAT_INIT(_r) */ |
e6e5906b | 852 | |
d97ef72e RH |
853 | static inline void init_thread(struct target_pt_regs *regs, |
854 | struct image_info *infop) | |
e6e5906b PB |
855 | { |
856 | regs->usp = infop->start_stack; | |
857 | regs->sr = 0; | |
858 | regs->pc = infop->entry; | |
859 | } | |
860 | ||
7a93cc55 NF |
861 | /* See linux kernel: arch/m68k/include/asm/elf.h. */ |
862 | #define ELF_NREG 20 | |
863 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
864 | ||
865 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) | |
866 | { | |
867 | (*regs)[0] = tswapl(env->dregs[1]); | |
868 | (*regs)[1] = tswapl(env->dregs[2]); | |
869 | (*regs)[2] = tswapl(env->dregs[3]); | |
870 | (*regs)[3] = tswapl(env->dregs[4]); | |
871 | (*regs)[4] = tswapl(env->dregs[5]); | |
872 | (*regs)[5] = tswapl(env->dregs[6]); | |
873 | (*regs)[6] = tswapl(env->dregs[7]); | |
874 | (*regs)[7] = tswapl(env->aregs[0]); | |
875 | (*regs)[8] = tswapl(env->aregs[1]); | |
876 | (*regs)[9] = tswapl(env->aregs[2]); | |
877 | (*regs)[10] = tswapl(env->aregs[3]); | |
878 | (*regs)[11] = tswapl(env->aregs[4]); | |
879 | (*regs)[12] = tswapl(env->aregs[5]); | |
880 | (*regs)[13] = tswapl(env->aregs[6]); | |
881 | (*regs)[14] = tswapl(env->dregs[0]); | |
882 | (*regs)[15] = tswapl(env->aregs[7]); | |
883 | (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */ | |
884 | (*regs)[17] = tswapl(env->sr); | |
885 | (*regs)[18] = tswapl(env->pc); | |
886 | (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ | |
887 | } | |
888 | ||
889 | #define USE_ELF_CORE_DUMP | |
d97ef72e | 890 | #define ELF_EXEC_PAGESIZE 8192 |
e6e5906b PB |
891 | |
892 | #endif | |
893 | ||
7a3148a9 JM |
894 | #ifdef TARGET_ALPHA |
895 | ||
896 | #define ELF_START_MMAP (0x30000000000ULL) | |
897 | ||
898 | #define elf_check_arch(x) ( (x) == ELF_ARCH ) | |
899 | ||
900 | #define ELF_CLASS ELFCLASS64 | |
7a3148a9 JM |
901 | #define ELF_ARCH EM_ALPHA |
902 | ||
d97ef72e RH |
903 | static inline void init_thread(struct target_pt_regs *regs, |
904 | struct image_info *infop) | |
7a3148a9 JM |
905 | { |
906 | regs->pc = infop->entry; | |
907 | regs->ps = 8; | |
908 | regs->usp = infop->start_stack; | |
7a3148a9 JM |
909 | } |
910 | ||
7a3148a9 JM |
911 | #define ELF_EXEC_PAGESIZE 8192 |
912 | ||
913 | #endif /* TARGET_ALPHA */ | |
914 | ||
a4c075f1 UH |
915 | #ifdef TARGET_S390X |
916 | ||
917 | #define ELF_START_MMAP (0x20000000000ULL) | |
918 | ||
919 | #define elf_check_arch(x) ( (x) == ELF_ARCH ) | |
920 | ||
921 | #define ELF_CLASS ELFCLASS64 | |
922 | #define ELF_DATA ELFDATA2MSB | |
923 | #define ELF_ARCH EM_S390 | |
924 | ||
925 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
926 | { | |
927 | regs->psw.addr = infop->entry; | |
928 | regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; | |
929 | regs->gprs[15] = infop->start_stack; | |
930 | } | |
931 | ||
932 | #endif /* TARGET_S390X */ | |
933 | ||
15338fd7 FB |
934 | #ifndef ELF_PLATFORM |
935 | #define ELF_PLATFORM (NULL) | |
936 | #endif | |
937 | ||
938 | #ifndef ELF_HWCAP | |
939 | #define ELF_HWCAP 0 | |
940 | #endif | |
941 | ||
992f48a0 | 942 | #ifdef TARGET_ABI32 |
cb33da57 | 943 | #undef ELF_CLASS |
992f48a0 | 944 | #define ELF_CLASS ELFCLASS32 |
cb33da57 BS |
945 | #undef bswaptls |
946 | #define bswaptls(ptr) bswap32s(ptr) | |
947 | #endif | |
948 | ||
31e31b8a | 949 | #include "elf.h" |
09bfb054 | 950 | |
09bfb054 FB |
951 | struct exec |
952 | { | |
d97ef72e RH |
953 | unsigned int a_info; /* Use macros N_MAGIC, etc for access */ |
954 | unsigned int a_text; /* length of text, in bytes */ | |
955 | unsigned int a_data; /* length of data, in bytes */ | |
956 | unsigned int a_bss; /* length of uninitialized data area, in bytes */ | |
957 | unsigned int a_syms; /* length of symbol table data in file, in bytes */ | |
958 | unsigned int a_entry; /* start address */ | |
959 | unsigned int a_trsize; /* length of relocation info for text, in bytes */ | |
960 | unsigned int a_drsize; /* length of relocation info for data, in bytes */ | |
09bfb054 FB |
961 | }; |
962 | ||
963 | ||
964 | #define N_MAGIC(exec) ((exec).a_info & 0xffff) | |
965 | #define OMAGIC 0407 | |
966 | #define NMAGIC 0410 | |
967 | #define ZMAGIC 0413 | |
968 | #define QMAGIC 0314 | |
969 | ||
31e31b8a | 970 | /* Necessary parameters */ |
54936004 FB |
971 | #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE |
972 | #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1)) | |
973 | #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) | |
31e31b8a | 974 | |
14322bad | 975 | #define DLINFO_ITEMS 13 |
31e31b8a | 976 | |
09bfb054 FB |
977 | static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) |
978 | { | |
d97ef72e | 979 | memcpy(to, from, n); |
09bfb054 | 980 | } |
d691f669 | 981 | |
31e31b8a | 982 | #ifdef BSWAP_NEEDED |
92a31b1f | 983 | static void bswap_ehdr(struct elfhdr *ehdr) |
31e31b8a | 984 | { |
d97ef72e RH |
985 | bswap16s(&ehdr->e_type); /* Object file type */ |
986 | bswap16s(&ehdr->e_machine); /* Architecture */ | |
987 | bswap32s(&ehdr->e_version); /* Object file version */ | |
988 | bswaptls(&ehdr->e_entry); /* Entry point virtual address */ | |
989 | bswaptls(&ehdr->e_phoff); /* Program header table file offset */ | |
990 | bswaptls(&ehdr->e_shoff); /* Section header table file offset */ | |
991 | bswap32s(&ehdr->e_flags); /* Processor-specific flags */ | |
992 | bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ | |
993 | bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ | |
994 | bswap16s(&ehdr->e_phnum); /* Program header table entry count */ | |
995 | bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ | |
996 | bswap16s(&ehdr->e_shnum); /* Section header table entry count */ | |
997 | bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ | |
31e31b8a FB |
998 | } |
999 | ||
991f8f0c | 1000 | static void bswap_phdr(struct elf_phdr *phdr, int phnum) |
31e31b8a | 1001 | { |
991f8f0c RH |
1002 | int i; |
1003 | for (i = 0; i < phnum; ++i, ++phdr) { | |
1004 | bswap32s(&phdr->p_type); /* Segment type */ | |
1005 | bswap32s(&phdr->p_flags); /* Segment flags */ | |
1006 | bswaptls(&phdr->p_offset); /* Segment file offset */ | |
1007 | bswaptls(&phdr->p_vaddr); /* Segment virtual address */ | |
1008 | bswaptls(&phdr->p_paddr); /* Segment physical address */ | |
1009 | bswaptls(&phdr->p_filesz); /* Segment size in file */ | |
1010 | bswaptls(&phdr->p_memsz); /* Segment size in memory */ | |
1011 | bswaptls(&phdr->p_align); /* Segment alignment */ | |
1012 | } | |
31e31b8a | 1013 | } |
689f936f | 1014 | |
991f8f0c | 1015 | static void bswap_shdr(struct elf_shdr *shdr, int shnum) |
689f936f | 1016 | { |
991f8f0c RH |
1017 | int i; |
1018 | for (i = 0; i < shnum; ++i, ++shdr) { | |
1019 | bswap32s(&shdr->sh_name); | |
1020 | bswap32s(&shdr->sh_type); | |
1021 | bswaptls(&shdr->sh_flags); | |
1022 | bswaptls(&shdr->sh_addr); | |
1023 | bswaptls(&shdr->sh_offset); | |
1024 | bswaptls(&shdr->sh_size); | |
1025 | bswap32s(&shdr->sh_link); | |
1026 | bswap32s(&shdr->sh_info); | |
1027 | bswaptls(&shdr->sh_addralign); | |
1028 | bswaptls(&shdr->sh_entsize); | |
1029 | } | |
689f936f FB |
1030 | } |
1031 | ||
7a3148a9 | 1032 | static void bswap_sym(struct elf_sym *sym) |
689f936f FB |
1033 | { |
1034 | bswap32s(&sym->st_name); | |
7a3148a9 JM |
1035 | bswaptls(&sym->st_value); |
1036 | bswaptls(&sym->st_size); | |
689f936f FB |
1037 | bswap16s(&sym->st_shndx); |
1038 | } | |
991f8f0c RH |
1039 | #else |
1040 | static inline void bswap_ehdr(struct elfhdr *ehdr) { } | |
1041 | static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } | |
1042 | static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } | |
1043 | static inline void bswap_sym(struct elf_sym *sym) { } | |
31e31b8a FB |
1044 | #endif |
1045 | ||
edf8e2af MW |
1046 | #ifdef USE_ELF_CORE_DUMP |
1047 | static int elf_core_dump(int, const CPUState *); | |
edf8e2af | 1048 | #endif /* USE_ELF_CORE_DUMP */ |
682674b8 | 1049 | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); |
edf8e2af | 1050 | |
9058abdd RH |
1051 | /* Verify the portions of EHDR within E_IDENT for the target. |
1052 | This can be performed before bswapping the entire header. */ | |
1053 | static bool elf_check_ident(struct elfhdr *ehdr) | |
1054 | { | |
1055 | return (ehdr->e_ident[EI_MAG0] == ELFMAG0 | |
1056 | && ehdr->e_ident[EI_MAG1] == ELFMAG1 | |
1057 | && ehdr->e_ident[EI_MAG2] == ELFMAG2 | |
1058 | && ehdr->e_ident[EI_MAG3] == ELFMAG3 | |
1059 | && ehdr->e_ident[EI_CLASS] == ELF_CLASS | |
1060 | && ehdr->e_ident[EI_DATA] == ELF_DATA | |
1061 | && ehdr->e_ident[EI_VERSION] == EV_CURRENT); | |
1062 | } | |
1063 | ||
1064 | /* Verify the portions of EHDR outside of E_IDENT for the target. | |
1065 | This has to wait until after bswapping the header. */ | |
1066 | static bool elf_check_ehdr(struct elfhdr *ehdr) | |
1067 | { | |
1068 | return (elf_check_arch(ehdr->e_machine) | |
1069 | && ehdr->e_ehsize == sizeof(struct elfhdr) | |
1070 | && ehdr->e_phentsize == sizeof(struct elf_phdr) | |
1071 | && ehdr->e_shentsize == sizeof(struct elf_shdr) | |
1072 | && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); | |
1073 | } | |
1074 | ||
31e31b8a | 1075 | /* |
e5fe0c52 | 1076 | * 'copy_elf_strings()' copies argument/envelope strings from user |
31e31b8a FB |
1077 | * memory to free pages in kernel mem. These are in a format ready |
1078 | * to be put directly into the top of new user memory. | |
1079 | * | |
1080 | */ | |
992f48a0 BS |
1081 | static abi_ulong copy_elf_strings(int argc,char ** argv, void **page, |
1082 | abi_ulong p) | |
31e31b8a FB |
1083 | { |
1084 | char *tmp, *tmp1, *pag = NULL; | |
1085 | int len, offset = 0; | |
1086 | ||
1087 | if (!p) { | |
d97ef72e | 1088 | return 0; /* bullet-proofing */ |
31e31b8a FB |
1089 | } |
1090 | while (argc-- > 0) { | |
edf779ff FB |
1091 | tmp = argv[argc]; |
1092 | if (!tmp) { | |
d97ef72e RH |
1093 | fprintf(stderr, "VFS: argc is wrong"); |
1094 | exit(-1); | |
1095 | } | |
edf779ff | 1096 | tmp1 = tmp; |
d97ef72e RH |
1097 | while (*tmp++); |
1098 | len = tmp - tmp1; | |
1099 | if (p < len) { /* this shouldn't happen - 128kB */ | |
1100 | return 0; | |
1101 | } | |
1102 | while (len) { | |
1103 | --p; --tmp; --len; | |
1104 | if (--offset < 0) { | |
1105 | offset = p % TARGET_PAGE_SIZE; | |
53a5960a | 1106 | pag = (char *)page[p/TARGET_PAGE_SIZE]; |
44a91cae | 1107 | if (!pag) { |
53a5960a | 1108 | pag = (char *)malloc(TARGET_PAGE_SIZE); |
4118a970 | 1109 | memset(pag, 0, TARGET_PAGE_SIZE); |
53a5960a | 1110 | page[p/TARGET_PAGE_SIZE] = pag; |
44a91cae FB |
1111 | if (!pag) |
1112 | return 0; | |
d97ef72e RH |
1113 | } |
1114 | } | |
1115 | if (len == 0 || offset == 0) { | |
1116 | *(pag + offset) = *tmp; | |
1117 | } | |
1118 | else { | |
1119 | int bytes_to_copy = (len > offset) ? offset : len; | |
1120 | tmp -= bytes_to_copy; | |
1121 | p -= bytes_to_copy; | |
1122 | offset -= bytes_to_copy; | |
1123 | len -= bytes_to_copy; | |
1124 | memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); | |
1125 | } | |
1126 | } | |
31e31b8a FB |
1127 | } |
1128 | return p; | |
1129 | } | |
1130 | ||
992f48a0 BS |
1131 | static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm, |
1132 | struct image_info *info) | |
53a5960a | 1133 | { |
60dcbcb5 | 1134 | abi_ulong stack_base, size, error, guard; |
31e31b8a | 1135 | int i; |
31e31b8a | 1136 | |
09bfb054 | 1137 | /* Create enough stack to hold everything. If we don't use |
60dcbcb5 | 1138 | it for args, we'll use it for something else. */ |
703e0e89 | 1139 | size = guest_stack_size; |
60dcbcb5 | 1140 | if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) { |
54936004 | 1141 | size = MAX_ARG_PAGES*TARGET_PAGE_SIZE; |
60dcbcb5 RH |
1142 | } |
1143 | guard = TARGET_PAGE_SIZE; | |
1144 | if (guard < qemu_real_host_page_size) { | |
1145 | guard = qemu_real_host_page_size; | |
1146 | } | |
1147 | ||
1148 | error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, | |
1149 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
09bfb054 | 1150 | if (error == -1) { |
60dcbcb5 | 1151 | perror("mmap stack"); |
09bfb054 FB |
1152 | exit(-1); |
1153 | } | |
31e31b8a | 1154 | |
60dcbcb5 RH |
1155 | /* We reserve one extra page at the top of the stack as guard. */ |
1156 | target_mprotect(error, guard, PROT_NONE); | |
1157 | ||
1158 | info->stack_limit = error + guard; | |
1159 | stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE; | |
31e31b8a | 1160 | p += stack_base; |
09bfb054 | 1161 | |
31e31b8a | 1162 | for (i = 0 ; i < MAX_ARG_PAGES ; i++) { |
d97ef72e RH |
1163 | if (bprm->page[i]) { |
1164 | info->rss++; | |
579a97f7 | 1165 | /* FIXME - check return value of memcpy_to_target() for failure */ |
d97ef72e RH |
1166 | memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE); |
1167 | free(bprm->page[i]); | |
1168 | } | |
53a5960a | 1169 | stack_base += TARGET_PAGE_SIZE; |
31e31b8a FB |
1170 | } |
1171 | return p; | |
1172 | } | |
1173 | ||
cf129f3a RH |
1174 | /* Map and zero the bss. We need to explicitly zero any fractional pages |
1175 | after the data section (i.e. bss). */ | |
1176 | static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) | |
31e31b8a | 1177 | { |
cf129f3a RH |
1178 | uintptr_t host_start, host_map_start, host_end; |
1179 | ||
1180 | last_bss = TARGET_PAGE_ALIGN(last_bss); | |
1181 | ||
1182 | /* ??? There is confusion between qemu_real_host_page_size and | |
1183 | qemu_host_page_size here and elsewhere in target_mmap, which | |
1184 | may lead to the end of the data section mapping from the file | |
1185 | not being mapped. At least there was an explicit test and | |
1186 | comment for that here, suggesting that "the file size must | |
1187 | be known". The comment probably pre-dates the introduction | |
1188 | of the fstat system call in target_mmap which does in fact | |
1189 | find out the size. What isn't clear is if the workaround | |
1190 | here is still actually needed. For now, continue with it, | |
1191 | but merge it with the "normal" mmap that would allocate the bss. */ | |
1192 | ||
1193 | host_start = (uintptr_t) g2h(elf_bss); | |
1194 | host_end = (uintptr_t) g2h(last_bss); | |
1195 | host_map_start = (host_start + qemu_real_host_page_size - 1); | |
1196 | host_map_start &= -qemu_real_host_page_size; | |
1197 | ||
1198 | if (host_map_start < host_end) { | |
1199 | void *p = mmap((void *)host_map_start, host_end - host_map_start, | |
1200 | prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
1201 | if (p == MAP_FAILED) { | |
1202 | perror("cannot mmap brk"); | |
1203 | exit(-1); | |
853d6f7a FB |
1204 | } |
1205 | ||
cf129f3a RH |
1206 | /* Since we didn't use target_mmap, make sure to record |
1207 | the validity of the pages with qemu. */ | |
1208 | page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID); | |
1209 | } | |
31e31b8a | 1210 | |
cf129f3a RH |
1211 | if (host_start < host_map_start) { |
1212 | memset((void *)host_start, 0, host_map_start - host_start); | |
1213 | } | |
1214 | } | |
53a5960a | 1215 | |
1af02e83 MF |
1216 | #ifdef CONFIG_USE_FDPIC |
1217 | static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) | |
1218 | { | |
1219 | uint16_t n; | |
1220 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; | |
1221 | ||
1222 | /* elf32_fdpic_loadseg */ | |
1223 | n = info->nsegs; | |
1224 | while (n--) { | |
1225 | sp -= 12; | |
1226 | put_user_u32(loadsegs[n].addr, sp+0); | |
1227 | put_user_u32(loadsegs[n].p_vaddr, sp+4); | |
1228 | put_user_u32(loadsegs[n].p_memsz, sp+8); | |
1229 | } | |
1230 | ||
1231 | /* elf32_fdpic_loadmap */ | |
1232 | sp -= 4; | |
1233 | put_user_u16(0, sp+0); /* version */ | |
1234 | put_user_u16(info->nsegs, sp+2); /* nsegs */ | |
1235 | ||
1236 | info->personality = PER_LINUX_FDPIC; | |
1237 | info->loadmap_addr = sp; | |
1238 | ||
1239 | return sp; | |
1240 | } | |
1241 | #endif | |
1242 | ||
992f48a0 | 1243 | static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, |
8e62a717 RH |
1244 | struct elfhdr *exec, |
1245 | struct image_info *info, | |
1246 | struct image_info *interp_info) | |
31e31b8a | 1247 | { |
d97ef72e RH |
1248 | abi_ulong sp; |
1249 | int size; | |
14322bad LA |
1250 | int i; |
1251 | abi_ulong u_rand_bytes; | |
1252 | uint8_t k_rand_bytes[16]; | |
d97ef72e RH |
1253 | abi_ulong u_platform; |
1254 | const char *k_platform; | |
1255 | const int n = sizeof(elf_addr_t); | |
1256 | ||
1257 | sp = p; | |
1af02e83 MF |
1258 | |
1259 | #ifdef CONFIG_USE_FDPIC | |
1260 | /* Needs to be before we load the env/argc/... */ | |
1261 | if (elf_is_fdpic(exec)) { | |
1262 | /* Need 4 byte alignment for these structs */ | |
1263 | sp &= ~3; | |
1264 | sp = loader_build_fdpic_loadmap(info, sp); | |
1265 | info->other_info = interp_info; | |
1266 | if (interp_info) { | |
1267 | interp_info->other_info = info; | |
1268 | sp = loader_build_fdpic_loadmap(interp_info, sp); | |
1269 | } | |
1270 | } | |
1271 | #endif | |
1272 | ||
d97ef72e RH |
1273 | u_platform = 0; |
1274 | k_platform = ELF_PLATFORM; | |
1275 | if (k_platform) { | |
1276 | size_t len = strlen(k_platform) + 1; | |
1277 | sp -= (len + n - 1) & ~(n - 1); | |
1278 | u_platform = sp; | |
1279 | /* FIXME - check return value of memcpy_to_target() for failure */ | |
1280 | memcpy_to_target(sp, k_platform, len); | |
1281 | } | |
14322bad LA |
1282 | |
1283 | /* | |
1284 | * Generate 16 random bytes for userspace PRNG seeding (not | |
1285 | * cryptically secure but it's not the aim of QEMU). | |
1286 | */ | |
1287 | srand((unsigned int) time(NULL)); | |
1288 | for (i = 0; i < 16; i++) { | |
1289 | k_rand_bytes[i] = rand(); | |
1290 | } | |
1291 | sp -= 16; | |
1292 | u_rand_bytes = sp; | |
1293 | /* FIXME - check return value of memcpy_to_target() for failure */ | |
1294 | memcpy_to_target(sp, k_rand_bytes, 16); | |
1295 | ||
d97ef72e RH |
1296 | /* |
1297 | * Force 16 byte _final_ alignment here for generality. | |
1298 | */ | |
1299 | sp = sp &~ (abi_ulong)15; | |
1300 | size = (DLINFO_ITEMS + 1) * 2; | |
1301 | if (k_platform) | |
1302 | size += 2; | |
f5155289 | 1303 | #ifdef DLINFO_ARCH_ITEMS |
d97ef72e | 1304 | size += DLINFO_ARCH_ITEMS * 2; |
f5155289 | 1305 | #endif |
d97ef72e | 1306 | size += envc + argc + 2; |
b9329d4b | 1307 | size += 1; /* argc itself */ |
d97ef72e RH |
1308 | size *= n; |
1309 | if (size & 15) | |
1310 | sp -= 16 - (size & 15); | |
1311 | ||
1312 | /* This is correct because Linux defines | |
1313 | * elf_addr_t as Elf32_Off / Elf64_Off | |
1314 | */ | |
1315 | #define NEW_AUX_ENT(id, val) do { \ | |
1316 | sp -= n; put_user_ual(val, sp); \ | |
1317 | sp -= n; put_user_ual(id, sp); \ | |
1318 | } while(0) | |
1319 | ||
1320 | NEW_AUX_ENT (AT_NULL, 0); | |
1321 | ||
1322 | /* There must be exactly DLINFO_ITEMS entries here. */ | |
8e62a717 | 1323 | NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); |
d97ef72e RH |
1324 | NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); |
1325 | NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); | |
1326 | NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); | |
8e62a717 | 1327 | NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); |
d97ef72e | 1328 | NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); |
8e62a717 | 1329 | NEW_AUX_ENT(AT_ENTRY, info->entry); |
d97ef72e RH |
1330 | NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); |
1331 | NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); | |
1332 | NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); | |
1333 | NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); | |
1334 | NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); | |
1335 | NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); | |
14322bad LA |
1336 | NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); |
1337 | ||
d97ef72e RH |
1338 | if (k_platform) |
1339 | NEW_AUX_ENT(AT_PLATFORM, u_platform); | |
f5155289 | 1340 | #ifdef ARCH_DLINFO |
d97ef72e RH |
1341 | /* |
1342 | * ARCH_DLINFO must come last so platform specific code can enforce | |
1343 | * special alignment requirements on the AUXV if necessary (eg. PPC). | |
1344 | */ | |
1345 | ARCH_DLINFO; | |
f5155289 FB |
1346 | #endif |
1347 | #undef NEW_AUX_ENT | |
1348 | ||
d97ef72e | 1349 | info->saved_auxv = sp; |
edf8e2af | 1350 | |
b9329d4b | 1351 | sp = loader_build_argptr(envc, argc, sp, p, 0); |
d97ef72e | 1352 | return sp; |
31e31b8a FB |
1353 | } |
1354 | ||
97cc7560 DDAG |
1355 | #ifndef TARGET_HAS_GUEST_VALIDATE_BASE |
1356 | /* If the guest doesn't have a validation function just agree */ | |
1357 | bool guest_validate_base(unsigned long guest_base) | |
1358 | { | |
1359 | return 1; | |
1360 | } | |
1361 | #endif | |
1362 | ||
f3ed1f5d PM |
1363 | static void probe_guest_base(const char *image_name, |
1364 | abi_ulong loaddr, abi_ulong hiaddr) | |
1365 | { | |
1366 | /* Probe for a suitable guest base address, if the user has not set | |
1367 | * it explicitly, and set guest_base appropriately. | |
1368 | * In case of error we will print a suitable message and exit. | |
1369 | */ | |
1370 | #if defined(CONFIG_USE_GUEST_BASE) | |
1371 | const char *errmsg; | |
1372 | if (!have_guest_base && !reserved_va) { | |
1373 | unsigned long host_start, real_start, host_size; | |
1374 | ||
1375 | /* Round addresses to page boundaries. */ | |
1376 | loaddr &= qemu_host_page_mask; | |
1377 | hiaddr = HOST_PAGE_ALIGN(hiaddr); | |
1378 | ||
1379 | if (loaddr < mmap_min_addr) { | |
1380 | host_start = HOST_PAGE_ALIGN(mmap_min_addr); | |
1381 | } else { | |
1382 | host_start = loaddr; | |
1383 | if (host_start != loaddr) { | |
1384 | errmsg = "Address overflow loading ELF binary"; | |
1385 | goto exit_errmsg; | |
1386 | } | |
1387 | } | |
1388 | host_size = hiaddr - loaddr; | |
1389 | while (1) { | |
1390 | /* Do not use mmap_find_vma here because that is limited to the | |
1391 | guest address space. We are going to make the | |
1392 | guest address space fit whatever we're given. */ | |
1393 | real_start = (unsigned long) | |
1394 | mmap((void *)host_start, host_size, PROT_NONE, | |
1395 | MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0); | |
1396 | if (real_start == (unsigned long)-1) { | |
1397 | goto exit_perror; | |
1398 | } | |
97cc7560 DDAG |
1399 | guest_base = real_start - loaddr; |
1400 | if ((real_start == host_start) && | |
1401 | guest_validate_base(guest_base)) { | |
f3ed1f5d PM |
1402 | break; |
1403 | } | |
1404 | /* That address didn't work. Unmap and try a different one. | |
1405 | The address the host picked because is typically right at | |
1406 | the top of the host address space and leaves the guest with | |
1407 | no usable address space. Resort to a linear search. We | |
1408 | already compensated for mmap_min_addr, so this should not | |
1409 | happen often. Probably means we got unlucky and host | |
1410 | address space randomization put a shared library somewhere | |
1411 | inconvenient. */ | |
1412 | munmap((void *)real_start, host_size); | |
1413 | host_start += qemu_host_page_size; | |
1414 | if (host_start == loaddr) { | |
1415 | /* Theoretically possible if host doesn't have any suitably | |
1416 | aligned areas. Normally the first mmap will fail. */ | |
1417 | errmsg = "Unable to find space for application"; | |
1418 | goto exit_errmsg; | |
1419 | } | |
1420 | } | |
1421 | qemu_log("Relocating guest address space from 0x" | |
1422 | TARGET_ABI_FMT_lx " to 0x%lx\n", | |
1423 | loaddr, real_start); | |
f3ed1f5d PM |
1424 | } |
1425 | return; | |
1426 | ||
1427 | exit_perror: | |
1428 | errmsg = strerror(errno); | |
1429 | exit_errmsg: | |
1430 | fprintf(stderr, "%s: %s\n", image_name, errmsg); | |
1431 | exit(-1); | |
1432 | #endif | |
1433 | } | |
1434 | ||
1435 | ||
8e62a717 | 1436 | /* Load an ELF image into the address space. |
31e31b8a | 1437 | |
8e62a717 RH |
1438 | IMAGE_NAME is the filename of the image, to use in error messages. |
1439 | IMAGE_FD is the open file descriptor for the image. | |
1440 | ||
1441 | BPRM_BUF is a copy of the beginning of the file; this of course | |
1442 | contains the elf file header at offset 0. It is assumed that this | |
1443 | buffer is sufficiently aligned to present no problems to the host | |
1444 | in accessing data at aligned offsets within the buffer. | |
1445 | ||
1446 | On return: INFO values will be filled in, as necessary or available. */ | |
1447 | ||
1448 | static void load_elf_image(const char *image_name, int image_fd, | |
bf858897 | 1449 | struct image_info *info, char **pinterp_name, |
8e62a717 | 1450 | char bprm_buf[BPRM_BUF_SIZE]) |
31e31b8a | 1451 | { |
8e62a717 RH |
1452 | struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; |
1453 | struct elf_phdr *phdr; | |
1454 | abi_ulong load_addr, load_bias, loaddr, hiaddr, error; | |
1455 | int i, retval; | |
1456 | const char *errmsg; | |
5fafdf24 | 1457 | |
8e62a717 RH |
1458 | /* First of all, some simple consistency checks */ |
1459 | errmsg = "Invalid ELF image for this architecture"; | |
1460 | if (!elf_check_ident(ehdr)) { | |
1461 | goto exit_errmsg; | |
1462 | } | |
1463 | bswap_ehdr(ehdr); | |
1464 | if (!elf_check_ehdr(ehdr)) { | |
1465 | goto exit_errmsg; | |
d97ef72e | 1466 | } |
5fafdf24 | 1467 | |
8e62a717 RH |
1468 | i = ehdr->e_phnum * sizeof(struct elf_phdr); |
1469 | if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { | |
1470 | phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); | |
9955ffac | 1471 | } else { |
8e62a717 RH |
1472 | phdr = (struct elf_phdr *) alloca(i); |
1473 | retval = pread(image_fd, phdr, i, ehdr->e_phoff); | |
9955ffac | 1474 | if (retval != i) { |
8e62a717 | 1475 | goto exit_read; |
9955ffac | 1476 | } |
d97ef72e | 1477 | } |
8e62a717 | 1478 | bswap_phdr(phdr, ehdr->e_phnum); |
09bfb054 | 1479 | |
1af02e83 MF |
1480 | #ifdef CONFIG_USE_FDPIC |
1481 | info->nsegs = 0; | |
1482 | info->pt_dynamic_addr = 0; | |
1483 | #endif | |
1484 | ||
682674b8 RH |
1485 | /* Find the maximum size of the image and allocate an appropriate |
1486 | amount of memory to handle that. */ | |
1487 | loaddr = -1, hiaddr = 0; | |
8e62a717 RH |
1488 | for (i = 0; i < ehdr->e_phnum; ++i) { |
1489 | if (phdr[i].p_type == PT_LOAD) { | |
1490 | abi_ulong a = phdr[i].p_vaddr; | |
682674b8 RH |
1491 | if (a < loaddr) { |
1492 | loaddr = a; | |
1493 | } | |
8e62a717 | 1494 | a += phdr[i].p_memsz; |
682674b8 RH |
1495 | if (a > hiaddr) { |
1496 | hiaddr = a; | |
1497 | } | |
1af02e83 MF |
1498 | #ifdef CONFIG_USE_FDPIC |
1499 | ++info->nsegs; | |
1500 | #endif | |
682674b8 RH |
1501 | } |
1502 | } | |
1503 | ||
1504 | load_addr = loaddr; | |
8e62a717 | 1505 | if (ehdr->e_type == ET_DYN) { |
682674b8 RH |
1506 | /* The image indicates that it can be loaded anywhere. Find a |
1507 | location that can hold the memory space required. If the | |
1508 | image is pre-linked, LOADDR will be non-zero. Since we do | |
1509 | not supply MAP_FIXED here we'll use that address if and | |
1510 | only if it remains available. */ | |
1511 | load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, | |
1512 | MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, | |
1513 | -1, 0); | |
1514 | if (load_addr == -1) { | |
8e62a717 | 1515 | goto exit_perror; |
d97ef72e | 1516 | } |
bf858897 RH |
1517 | } else if (pinterp_name != NULL) { |
1518 | /* This is the main executable. Make sure that the low | |
1519 | address does not conflict with MMAP_MIN_ADDR or the | |
1520 | QEMU application itself. */ | |
f3ed1f5d | 1521 | probe_guest_base(image_name, loaddr, hiaddr); |
d97ef72e | 1522 | } |
682674b8 | 1523 | load_bias = load_addr - loaddr; |
d97ef72e | 1524 | |
1af02e83 MF |
1525 | #ifdef CONFIG_USE_FDPIC |
1526 | { | |
1527 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = | |
7267c094 | 1528 | g_malloc(sizeof(*loadsegs) * info->nsegs); |
1af02e83 MF |
1529 | |
1530 | for (i = 0; i < ehdr->e_phnum; ++i) { | |
1531 | switch (phdr[i].p_type) { | |
1532 | case PT_DYNAMIC: | |
1533 | info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; | |
1534 | break; | |
1535 | case PT_LOAD: | |
1536 | loadsegs->addr = phdr[i].p_vaddr + load_bias; | |
1537 | loadsegs->p_vaddr = phdr[i].p_vaddr; | |
1538 | loadsegs->p_memsz = phdr[i].p_memsz; | |
1539 | ++loadsegs; | |
1540 | break; | |
1541 | } | |
1542 | } | |
1543 | } | |
1544 | #endif | |
1545 | ||
8e62a717 RH |
1546 | info->load_bias = load_bias; |
1547 | info->load_addr = load_addr; | |
1548 | info->entry = ehdr->e_entry + load_bias; | |
1549 | info->start_code = -1; | |
1550 | info->end_code = 0; | |
1551 | info->start_data = -1; | |
1552 | info->end_data = 0; | |
1553 | info->brk = 0; | |
1554 | ||
1555 | for (i = 0; i < ehdr->e_phnum; i++) { | |
1556 | struct elf_phdr *eppnt = phdr + i; | |
d97ef72e | 1557 | if (eppnt->p_type == PT_LOAD) { |
682674b8 | 1558 | abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; |
d97ef72e | 1559 | int elf_prot = 0; |
d97ef72e RH |
1560 | |
1561 | if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; | |
1562 | if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; | |
1563 | if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; | |
d97ef72e | 1564 | |
682674b8 RH |
1565 | vaddr = load_bias + eppnt->p_vaddr; |
1566 | vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); | |
1567 | vaddr_ps = TARGET_ELF_PAGESTART(vaddr); | |
1568 | ||
1569 | error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, | |
1570 | elf_prot, MAP_PRIVATE | MAP_FIXED, | |
8e62a717 | 1571 | image_fd, eppnt->p_offset - vaddr_po); |
09bfb054 | 1572 | if (error == -1) { |
8e62a717 | 1573 | goto exit_perror; |
09bfb054 | 1574 | } |
09bfb054 | 1575 | |
682674b8 RH |
1576 | vaddr_ef = vaddr + eppnt->p_filesz; |
1577 | vaddr_em = vaddr + eppnt->p_memsz; | |
31e31b8a | 1578 | |
cf129f3a | 1579 | /* If the load segment requests extra zeros (e.g. bss), map it. */ |
682674b8 RH |
1580 | if (vaddr_ef < vaddr_em) { |
1581 | zero_bss(vaddr_ef, vaddr_em, elf_prot); | |
cf129f3a | 1582 | } |
8e62a717 RH |
1583 | |
1584 | /* Find the full program boundaries. */ | |
1585 | if (elf_prot & PROT_EXEC) { | |
1586 | if (vaddr < info->start_code) { | |
1587 | info->start_code = vaddr; | |
1588 | } | |
1589 | if (vaddr_ef > info->end_code) { | |
1590 | info->end_code = vaddr_ef; | |
1591 | } | |
1592 | } | |
1593 | if (elf_prot & PROT_WRITE) { | |
1594 | if (vaddr < info->start_data) { | |
1595 | info->start_data = vaddr; | |
1596 | } | |
1597 | if (vaddr_ef > info->end_data) { | |
1598 | info->end_data = vaddr_ef; | |
1599 | } | |
1600 | if (vaddr_em > info->brk) { | |
1601 | info->brk = vaddr_em; | |
1602 | } | |
1603 | } | |
bf858897 RH |
1604 | } else if (eppnt->p_type == PT_INTERP && pinterp_name) { |
1605 | char *interp_name; | |
1606 | ||
1607 | if (*pinterp_name) { | |
1608 | errmsg = "Multiple PT_INTERP entries"; | |
1609 | goto exit_errmsg; | |
1610 | } | |
1611 | interp_name = malloc(eppnt->p_filesz); | |
1612 | if (!interp_name) { | |
1613 | goto exit_perror; | |
1614 | } | |
1615 | ||
1616 | if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { | |
1617 | memcpy(interp_name, bprm_buf + eppnt->p_offset, | |
1618 | eppnt->p_filesz); | |
1619 | } else { | |
1620 | retval = pread(image_fd, interp_name, eppnt->p_filesz, | |
1621 | eppnt->p_offset); | |
1622 | if (retval != eppnt->p_filesz) { | |
1623 | goto exit_perror; | |
1624 | } | |
1625 | } | |
1626 | if (interp_name[eppnt->p_filesz - 1] != 0) { | |
1627 | errmsg = "Invalid PT_INTERP entry"; | |
1628 | goto exit_errmsg; | |
1629 | } | |
1630 | *pinterp_name = interp_name; | |
d97ef72e | 1631 | } |
682674b8 | 1632 | } |
5fafdf24 | 1633 | |
8e62a717 RH |
1634 | if (info->end_data == 0) { |
1635 | info->start_data = info->end_code; | |
1636 | info->end_data = info->end_code; | |
1637 | info->brk = info->end_code; | |
1638 | } | |
1639 | ||
682674b8 | 1640 | if (qemu_log_enabled()) { |
8e62a717 | 1641 | load_symbols(ehdr, image_fd, load_bias); |
682674b8 | 1642 | } |
31e31b8a | 1643 | |
8e62a717 RH |
1644 | close(image_fd); |
1645 | return; | |
1646 | ||
1647 | exit_read: | |
1648 | if (retval >= 0) { | |
1649 | errmsg = "Incomplete read of file header"; | |
1650 | goto exit_errmsg; | |
1651 | } | |
1652 | exit_perror: | |
1653 | errmsg = strerror(errno); | |
1654 | exit_errmsg: | |
1655 | fprintf(stderr, "%s: %s\n", image_name, errmsg); | |
1656 | exit(-1); | |
1657 | } | |
1658 | ||
1659 | static void load_elf_interp(const char *filename, struct image_info *info, | |
1660 | char bprm_buf[BPRM_BUF_SIZE]) | |
1661 | { | |
1662 | int fd, retval; | |
1663 | ||
1664 | fd = open(path(filename), O_RDONLY); | |
1665 | if (fd < 0) { | |
1666 | goto exit_perror; | |
1667 | } | |
31e31b8a | 1668 | |
8e62a717 RH |
1669 | retval = read(fd, bprm_buf, BPRM_BUF_SIZE); |
1670 | if (retval < 0) { | |
1671 | goto exit_perror; | |
1672 | } | |
1673 | if (retval < BPRM_BUF_SIZE) { | |
1674 | memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); | |
1675 | } | |
1676 | ||
bf858897 | 1677 | load_elf_image(filename, fd, info, NULL, bprm_buf); |
8e62a717 RH |
1678 | return; |
1679 | ||
1680 | exit_perror: | |
1681 | fprintf(stderr, "%s: %s\n", filename, strerror(errno)); | |
1682 | exit(-1); | |
31e31b8a FB |
1683 | } |
1684 | ||
49918a75 PB |
1685 | static int symfind(const void *s0, const void *s1) |
1686 | { | |
1687 | struct elf_sym *key = (struct elf_sym *)s0; | |
1688 | struct elf_sym *sym = (struct elf_sym *)s1; | |
1689 | int result = 0; | |
1690 | if (key->st_value < sym->st_value) { | |
1691 | result = -1; | |
ec822001 | 1692 | } else if (key->st_value >= sym->st_value + sym->st_size) { |
49918a75 PB |
1693 | result = 1; |
1694 | } | |
1695 | return result; | |
1696 | } | |
1697 | ||
1698 | static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) | |
1699 | { | |
1700 | #if ELF_CLASS == ELFCLASS32 | |
1701 | struct elf_sym *syms = s->disas_symtab.elf32; | |
1702 | #else | |
1703 | struct elf_sym *syms = s->disas_symtab.elf64; | |
1704 | #endif | |
1705 | ||
1706 | // binary search | |
1707 | struct elf_sym key; | |
1708 | struct elf_sym *sym; | |
1709 | ||
1710 | key.st_value = orig_addr; | |
1711 | ||
1712 | sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind); | |
7cba04f6 | 1713 | if (sym != NULL) { |
49918a75 PB |
1714 | return s->disas_strtab + sym->st_name; |
1715 | } | |
1716 | ||
1717 | return ""; | |
1718 | } | |
1719 | ||
1720 | /* FIXME: This should use elf_ops.h */ | |
1721 | static int symcmp(const void *s0, const void *s1) | |
1722 | { | |
1723 | struct elf_sym *sym0 = (struct elf_sym *)s0; | |
1724 | struct elf_sym *sym1 = (struct elf_sym *)s1; | |
1725 | return (sym0->st_value < sym1->st_value) | |
1726 | ? -1 | |
1727 | : ((sym0->st_value > sym1->st_value) ? 1 : 0); | |
1728 | } | |
1729 | ||
689f936f | 1730 | /* Best attempt to load symbols from this ELF object. */ |
682674b8 | 1731 | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) |
689f936f | 1732 | { |
682674b8 RH |
1733 | int i, shnum, nsyms, sym_idx = 0, str_idx = 0; |
1734 | struct elf_shdr *shdr; | |
b9475279 CV |
1735 | char *strings = NULL; |
1736 | struct syminfo *s = NULL; | |
1737 | struct elf_sym *new_syms, *syms = NULL; | |
689f936f | 1738 | |
682674b8 RH |
1739 | shnum = hdr->e_shnum; |
1740 | i = shnum * sizeof(struct elf_shdr); | |
1741 | shdr = (struct elf_shdr *)alloca(i); | |
1742 | if (pread(fd, shdr, i, hdr->e_shoff) != i) { | |
1743 | return; | |
1744 | } | |
1745 | ||
1746 | bswap_shdr(shdr, shnum); | |
1747 | for (i = 0; i < shnum; ++i) { | |
1748 | if (shdr[i].sh_type == SHT_SYMTAB) { | |
1749 | sym_idx = i; | |
1750 | str_idx = shdr[i].sh_link; | |
49918a75 PB |
1751 | goto found; |
1752 | } | |
689f936f | 1753 | } |
682674b8 RH |
1754 | |
1755 | /* There will be no symbol table if the file was stripped. */ | |
1756 | return; | |
689f936f FB |
1757 | |
1758 | found: | |
682674b8 | 1759 | /* Now know where the strtab and symtab are. Snarf them. */ |
e80cfcfc | 1760 | s = malloc(sizeof(*s)); |
682674b8 | 1761 | if (!s) { |
b9475279 | 1762 | goto give_up; |
682674b8 | 1763 | } |
5fafdf24 | 1764 | |
682674b8 RH |
1765 | i = shdr[str_idx].sh_size; |
1766 | s->disas_strtab = strings = malloc(i); | |
1767 | if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { | |
b9475279 | 1768 | goto give_up; |
682674b8 | 1769 | } |
49918a75 | 1770 | |
682674b8 RH |
1771 | i = shdr[sym_idx].sh_size; |
1772 | syms = malloc(i); | |
1773 | if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { | |
b9475279 | 1774 | goto give_up; |
682674b8 | 1775 | } |
31e31b8a | 1776 | |
682674b8 RH |
1777 | nsyms = i / sizeof(struct elf_sym); |
1778 | for (i = 0; i < nsyms; ) { | |
49918a75 | 1779 | bswap_sym(syms + i); |
682674b8 RH |
1780 | /* Throw away entries which we do not need. */ |
1781 | if (syms[i].st_shndx == SHN_UNDEF | |
1782 | || syms[i].st_shndx >= SHN_LORESERVE | |
1783 | || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { | |
1784 | if (i < --nsyms) { | |
49918a75 PB |
1785 | syms[i] = syms[nsyms]; |
1786 | } | |
682674b8 | 1787 | } else { |
49918a75 | 1788 | #if defined(TARGET_ARM) || defined (TARGET_MIPS) |
682674b8 RH |
1789 | /* The bottom address bit marks a Thumb or MIPS16 symbol. */ |
1790 | syms[i].st_value &= ~(target_ulong)1; | |
0774bed1 | 1791 | #endif |
682674b8 RH |
1792 | syms[i].st_value += load_bias; |
1793 | i++; | |
1794 | } | |
0774bed1 | 1795 | } |
49918a75 | 1796 | |
b9475279 CV |
1797 | /* No "useful" symbol. */ |
1798 | if (nsyms == 0) { | |
1799 | goto give_up; | |
1800 | } | |
1801 | ||
5d5c9930 RH |
1802 | /* Attempt to free the storage associated with the local symbols |
1803 | that we threw away. Whether or not this has any effect on the | |
1804 | memory allocation depends on the malloc implementation and how | |
1805 | many symbols we managed to discard. */ | |
8d79de6e SW |
1806 | new_syms = realloc(syms, nsyms * sizeof(*syms)); |
1807 | if (new_syms == NULL) { | |
b9475279 | 1808 | goto give_up; |
5d5c9930 | 1809 | } |
8d79de6e | 1810 | syms = new_syms; |
5d5c9930 | 1811 | |
49918a75 | 1812 | qsort(syms, nsyms, sizeof(*syms), symcmp); |
689f936f | 1813 | |
49918a75 PB |
1814 | s->disas_num_syms = nsyms; |
1815 | #if ELF_CLASS == ELFCLASS32 | |
1816 | s->disas_symtab.elf32 = syms; | |
49918a75 PB |
1817 | #else |
1818 | s->disas_symtab.elf64 = syms; | |
49918a75 | 1819 | #endif |
682674b8 | 1820 | s->lookup_symbol = lookup_symbolxx; |
e80cfcfc FB |
1821 | s->next = syminfos; |
1822 | syminfos = s; | |
b9475279 CV |
1823 | |
1824 | return; | |
1825 | ||
1826 | give_up: | |
1827 | free(s); | |
1828 | free(strings); | |
1829 | free(syms); | |
689f936f | 1830 | } |
31e31b8a | 1831 | |
e5fe0c52 PB |
1832 | int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, |
1833 | struct image_info * info) | |
31e31b8a | 1834 | { |
8e62a717 | 1835 | struct image_info interp_info; |
31e31b8a | 1836 | struct elfhdr elf_ex; |
8e62a717 | 1837 | char *elf_interpreter = NULL; |
31e31b8a | 1838 | |
bf858897 RH |
1839 | info->start_mmap = (abi_ulong)ELF_START_MMAP; |
1840 | info->mmap = 0; | |
1841 | info->rss = 0; | |
1842 | ||
1843 | load_elf_image(bprm->filename, bprm->fd, info, | |
1844 | &elf_interpreter, bprm->buf); | |
31e31b8a | 1845 | |
bf858897 RH |
1846 | /* ??? We need a copy of the elf header for passing to create_elf_tables. |
1847 | If we do nothing, we'll have overwritten this when we re-use bprm->buf | |
1848 | when we load the interpreter. */ | |
1849 | elf_ex = *(struct elfhdr *)bprm->buf; | |
31e31b8a | 1850 | |
e5fe0c52 PB |
1851 | bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); |
1852 | bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p); | |
1853 | bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p); | |
1854 | if (!bprm->p) { | |
bf858897 RH |
1855 | fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); |
1856 | exit(-1); | |
379f6698 | 1857 | } |
379f6698 | 1858 | |
31e31b8a FB |
1859 | /* Do this so that we can load the interpreter, if need be. We will |
1860 | change some of these later */ | |
31e31b8a | 1861 | bprm->p = setup_arg_pages(bprm->p, bprm, info); |
31e31b8a | 1862 | |
8e62a717 RH |
1863 | if (elf_interpreter) { |
1864 | load_elf_interp(elf_interpreter, &interp_info, bprm->buf); | |
31e31b8a | 1865 | |
8e62a717 RH |
1866 | /* If the program interpreter is one of these two, then assume |
1867 | an iBCS2 image. Otherwise assume a native linux image. */ | |
1868 | ||
1869 | if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 | |
1870 | || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { | |
1871 | info->personality = PER_SVR4; | |
31e31b8a | 1872 | |
8e62a717 RH |
1873 | /* Why this, you ask??? Well SVr4 maps page 0 as read-only, |
1874 | and some applications "depend" upon this behavior. Since | |
1875 | we do not have the power to recompile these, we emulate | |
1876 | the SVr4 behavior. Sigh. */ | |
1877 | target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, | |
1878 | MAP_FIXED | MAP_PRIVATE, -1, 0); | |
1879 | } | |
31e31b8a FB |
1880 | } |
1881 | ||
8e62a717 RH |
1882 | bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, |
1883 | info, (elf_interpreter ? &interp_info : NULL)); | |
1884 | info->start_stack = bprm->p; | |
1885 | ||
1886 | /* If we have an interpreter, set that as the program's entry point. | |
1887 | Copy the load_addr as well, to help PPC64 interpret the entry | |
1888 | point as a function descriptor. Do this after creating elf tables | |
1889 | so that we copy the original program entry point into the AUXV. */ | |
1890 | if (elf_interpreter) { | |
1891 | info->load_addr = interp_info.load_addr; | |
1892 | info->entry = interp_info.entry; | |
bf858897 | 1893 | free(elf_interpreter); |
8e62a717 | 1894 | } |
31e31b8a | 1895 | |
edf8e2af MW |
1896 | #ifdef USE_ELF_CORE_DUMP |
1897 | bprm->core_dump = &elf_core_dump; | |
1898 | #endif | |
1899 | ||
31e31b8a FB |
1900 | return 0; |
1901 | } | |
1902 | ||
edf8e2af | 1903 | #ifdef USE_ELF_CORE_DUMP |
edf8e2af MW |
1904 | /* |
1905 | * Definitions to generate Intel SVR4-like core files. | |
a2547a13 | 1906 | * These mostly have the same names as the SVR4 types with "target_elf_" |
edf8e2af MW |
1907 | * tacked on the front to prevent clashes with linux definitions, |
1908 | * and the typedef forms have been avoided. This is mostly like | |
1909 | * the SVR4 structure, but more Linuxy, with things that Linux does | |
1910 | * not support and which gdb doesn't really use excluded. | |
1911 | * | |
1912 | * Fields we don't dump (their contents is zero) in linux-user qemu | |
1913 | * are marked with XXX. | |
1914 | * | |
1915 | * Core dump code is copied from linux kernel (fs/binfmt_elf.c). | |
1916 | * | |
1917 | * Porting ELF coredump for target is (quite) simple process. First you | |
dd0a3651 | 1918 | * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for |
edf8e2af MW |
1919 | * the target resides): |
1920 | * | |
1921 | * #define USE_ELF_CORE_DUMP | |
1922 | * | |
1923 | * Next you define type of register set used for dumping. ELF specification | |
1924 | * says that it needs to be array of elf_greg_t that has size of ELF_NREG. | |
1925 | * | |
c227f099 | 1926 | * typedef <target_regtype> target_elf_greg_t; |
edf8e2af | 1927 | * #define ELF_NREG <number of registers> |
c227f099 | 1928 | * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
edf8e2af | 1929 | * |
edf8e2af MW |
1930 | * Last step is to implement target specific function that copies registers |
1931 | * from given cpu into just specified register set. Prototype is: | |
1932 | * | |
c227f099 | 1933 | * static void elf_core_copy_regs(taret_elf_gregset_t *regs, |
a2547a13 | 1934 | * const CPUState *env); |
edf8e2af MW |
1935 | * |
1936 | * Parameters: | |
1937 | * regs - copy register values into here (allocated and zeroed by caller) | |
1938 | * env - copy registers from here | |
1939 | * | |
1940 | * Example for ARM target is provided in this file. | |
1941 | */ | |
1942 | ||
1943 | /* An ELF note in memory */ | |
1944 | struct memelfnote { | |
1945 | const char *name; | |
1946 | size_t namesz; | |
1947 | size_t namesz_rounded; | |
1948 | int type; | |
1949 | size_t datasz; | |
80f5ce75 | 1950 | size_t datasz_rounded; |
edf8e2af MW |
1951 | void *data; |
1952 | size_t notesz; | |
1953 | }; | |
1954 | ||
a2547a13 | 1955 | struct target_elf_siginfo { |
80f5ce75 LV |
1956 | target_int si_signo; /* signal number */ |
1957 | target_int si_code; /* extra code */ | |
1958 | target_int si_errno; /* errno */ | |
edf8e2af MW |
1959 | }; |
1960 | ||
a2547a13 LD |
1961 | struct target_elf_prstatus { |
1962 | struct target_elf_siginfo pr_info; /* Info associated with signal */ | |
80f5ce75 | 1963 | target_short pr_cursig; /* Current signal */ |
edf8e2af MW |
1964 | target_ulong pr_sigpend; /* XXX */ |
1965 | target_ulong pr_sighold; /* XXX */ | |
c227f099 AL |
1966 | target_pid_t pr_pid; |
1967 | target_pid_t pr_ppid; | |
1968 | target_pid_t pr_pgrp; | |
1969 | target_pid_t pr_sid; | |
edf8e2af MW |
1970 | struct target_timeval pr_utime; /* XXX User time */ |
1971 | struct target_timeval pr_stime; /* XXX System time */ | |
1972 | struct target_timeval pr_cutime; /* XXX Cumulative user time */ | |
1973 | struct target_timeval pr_cstime; /* XXX Cumulative system time */ | |
c227f099 | 1974 | target_elf_gregset_t pr_reg; /* GP registers */ |
80f5ce75 | 1975 | target_int pr_fpvalid; /* XXX */ |
edf8e2af MW |
1976 | }; |
1977 | ||
1978 | #define ELF_PRARGSZ (80) /* Number of chars for args */ | |
1979 | ||
a2547a13 | 1980 | struct target_elf_prpsinfo { |
edf8e2af MW |
1981 | char pr_state; /* numeric process state */ |
1982 | char pr_sname; /* char for pr_state */ | |
1983 | char pr_zomb; /* zombie */ | |
1984 | char pr_nice; /* nice val */ | |
1985 | target_ulong pr_flag; /* flags */ | |
c227f099 AL |
1986 | target_uid_t pr_uid; |
1987 | target_gid_t pr_gid; | |
1988 | target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; | |
edf8e2af MW |
1989 | /* Lots missing */ |
1990 | char pr_fname[16]; /* filename of executable */ | |
1991 | char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ | |
1992 | }; | |
1993 | ||
1994 | /* Here is the structure in which status of each thread is captured. */ | |
1995 | struct elf_thread_status { | |
72cf2d4f | 1996 | QTAILQ_ENTRY(elf_thread_status) ets_link; |
a2547a13 | 1997 | struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ |
edf8e2af MW |
1998 | #if 0 |
1999 | elf_fpregset_t fpu; /* NT_PRFPREG */ | |
2000 | struct task_struct *thread; | |
2001 | elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ | |
2002 | #endif | |
2003 | struct memelfnote notes[1]; | |
2004 | int num_notes; | |
2005 | }; | |
2006 | ||
2007 | struct elf_note_info { | |
2008 | struct memelfnote *notes; | |
a2547a13 LD |
2009 | struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ |
2010 | struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ | |
edf8e2af | 2011 | |
72cf2d4f | 2012 | QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; |
edf8e2af MW |
2013 | #if 0 |
2014 | /* | |
2015 | * Current version of ELF coredump doesn't support | |
2016 | * dumping fp regs etc. | |
2017 | */ | |
2018 | elf_fpregset_t *fpu; | |
2019 | elf_fpxregset_t *xfpu; | |
2020 | int thread_status_size; | |
2021 | #endif | |
2022 | int notes_size; | |
2023 | int numnote; | |
2024 | }; | |
2025 | ||
2026 | struct vm_area_struct { | |
2027 | abi_ulong vma_start; /* start vaddr of memory region */ | |
2028 | abi_ulong vma_end; /* end vaddr of memory region */ | |
2029 | abi_ulong vma_flags; /* protection etc. flags for the region */ | |
72cf2d4f | 2030 | QTAILQ_ENTRY(vm_area_struct) vma_link; |
edf8e2af MW |
2031 | }; |
2032 | ||
2033 | struct mm_struct { | |
72cf2d4f | 2034 | QTAILQ_HEAD(, vm_area_struct) mm_mmap; |
edf8e2af MW |
2035 | int mm_count; /* number of mappings */ |
2036 | }; | |
2037 | ||
2038 | static struct mm_struct *vma_init(void); | |
2039 | static void vma_delete(struct mm_struct *); | |
2040 | static int vma_add_mapping(struct mm_struct *, abi_ulong, | |
d97ef72e | 2041 | abi_ulong, abi_ulong); |
edf8e2af MW |
2042 | static int vma_get_mapping_count(const struct mm_struct *); |
2043 | static struct vm_area_struct *vma_first(const struct mm_struct *); | |
2044 | static struct vm_area_struct *vma_next(struct vm_area_struct *); | |
2045 | static abi_ulong vma_dump_size(const struct vm_area_struct *); | |
b480d9b7 | 2046 | static int vma_walker(void *priv, abi_ulong start, abi_ulong end, |
d97ef72e | 2047 | unsigned long flags); |
edf8e2af MW |
2048 | |
2049 | static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); | |
2050 | static void fill_note(struct memelfnote *, const char *, int, | |
d97ef72e | 2051 | unsigned int, void *); |
a2547a13 LD |
2052 | static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); |
2053 | static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); | |
edf8e2af MW |
2054 | static void fill_auxv_note(struct memelfnote *, const TaskState *); |
2055 | static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); | |
2056 | static size_t note_size(const struct memelfnote *); | |
2057 | static void free_note_info(struct elf_note_info *); | |
2058 | static int fill_note_info(struct elf_note_info *, long, const CPUState *); | |
2059 | static void fill_thread_info(struct elf_note_info *, const CPUState *); | |
2060 | static int core_dump_filename(const TaskState *, char *, size_t); | |
2061 | ||
2062 | static int dump_write(int, const void *, size_t); | |
2063 | static int write_note(struct memelfnote *, int); | |
2064 | static int write_note_info(struct elf_note_info *, int); | |
2065 | ||
2066 | #ifdef BSWAP_NEEDED | |
a2547a13 | 2067 | static void bswap_prstatus(struct target_elf_prstatus *prstatus) |
edf8e2af MW |
2068 | { |
2069 | prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo); | |
2070 | prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code); | |
2071 | prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno); | |
2072 | prstatus->pr_cursig = tswap16(prstatus->pr_cursig); | |
2073 | prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend); | |
2074 | prstatus->pr_sighold = tswapl(prstatus->pr_sighold); | |
2075 | prstatus->pr_pid = tswap32(prstatus->pr_pid); | |
2076 | prstatus->pr_ppid = tswap32(prstatus->pr_ppid); | |
2077 | prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); | |
2078 | prstatus->pr_sid = tswap32(prstatus->pr_sid); | |
2079 | /* cpu times are not filled, so we skip them */ | |
2080 | /* regs should be in correct format already */ | |
2081 | prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); | |
2082 | } | |
2083 | ||
a2547a13 | 2084 | static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) |
edf8e2af MW |
2085 | { |
2086 | psinfo->pr_flag = tswapl(psinfo->pr_flag); | |
2087 | psinfo->pr_uid = tswap16(psinfo->pr_uid); | |
2088 | psinfo->pr_gid = tswap16(psinfo->pr_gid); | |
2089 | psinfo->pr_pid = tswap32(psinfo->pr_pid); | |
2090 | psinfo->pr_ppid = tswap32(psinfo->pr_ppid); | |
2091 | psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); | |
2092 | psinfo->pr_sid = tswap32(psinfo->pr_sid); | |
2093 | } | |
991f8f0c RH |
2094 | |
2095 | static void bswap_note(struct elf_note *en) | |
2096 | { | |
2097 | bswap32s(&en->n_namesz); | |
2098 | bswap32s(&en->n_descsz); | |
2099 | bswap32s(&en->n_type); | |
2100 | } | |
2101 | #else | |
2102 | static inline void bswap_prstatus(struct target_elf_prstatus *p) { } | |
2103 | static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} | |
2104 | static inline void bswap_note(struct elf_note *en) { } | |
edf8e2af MW |
2105 | #endif /* BSWAP_NEEDED */ |
2106 | ||
2107 | /* | |
2108 | * Minimal support for linux memory regions. These are needed | |
2109 | * when we are finding out what memory exactly belongs to | |
2110 | * emulated process. No locks needed here, as long as | |
2111 | * thread that received the signal is stopped. | |
2112 | */ | |
2113 | ||
2114 | static struct mm_struct *vma_init(void) | |
2115 | { | |
2116 | struct mm_struct *mm; | |
2117 | ||
7267c094 | 2118 | if ((mm = g_malloc(sizeof (*mm))) == NULL) |
edf8e2af MW |
2119 | return (NULL); |
2120 | ||
2121 | mm->mm_count = 0; | |
72cf2d4f | 2122 | QTAILQ_INIT(&mm->mm_mmap); |
edf8e2af MW |
2123 | |
2124 | return (mm); | |
2125 | } | |
2126 | ||
2127 | static void vma_delete(struct mm_struct *mm) | |
2128 | { | |
2129 | struct vm_area_struct *vma; | |
2130 | ||
2131 | while ((vma = vma_first(mm)) != NULL) { | |
72cf2d4f | 2132 | QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); |
7267c094 | 2133 | g_free(vma); |
edf8e2af | 2134 | } |
7267c094 | 2135 | g_free(mm); |
edf8e2af MW |
2136 | } |
2137 | ||
2138 | static int vma_add_mapping(struct mm_struct *mm, abi_ulong start, | |
d97ef72e | 2139 | abi_ulong end, abi_ulong flags) |
edf8e2af MW |
2140 | { |
2141 | struct vm_area_struct *vma; | |
2142 | ||
7267c094 | 2143 | if ((vma = g_malloc0(sizeof (*vma))) == NULL) |
edf8e2af MW |
2144 | return (-1); |
2145 | ||
2146 | vma->vma_start = start; | |
2147 | vma->vma_end = end; | |
2148 | vma->vma_flags = flags; | |
2149 | ||
72cf2d4f | 2150 | QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); |
edf8e2af MW |
2151 | mm->mm_count++; |
2152 | ||
2153 | return (0); | |
2154 | } | |
2155 | ||
2156 | static struct vm_area_struct *vma_first(const struct mm_struct *mm) | |
2157 | { | |
72cf2d4f | 2158 | return (QTAILQ_FIRST(&mm->mm_mmap)); |
edf8e2af MW |
2159 | } |
2160 | ||
2161 | static struct vm_area_struct *vma_next(struct vm_area_struct *vma) | |
2162 | { | |
72cf2d4f | 2163 | return (QTAILQ_NEXT(vma, vma_link)); |
edf8e2af MW |
2164 | } |
2165 | ||
2166 | static int vma_get_mapping_count(const struct mm_struct *mm) | |
2167 | { | |
2168 | return (mm->mm_count); | |
2169 | } | |
2170 | ||
2171 | /* | |
2172 | * Calculate file (dump) size of given memory region. | |
2173 | */ | |
2174 | static abi_ulong vma_dump_size(const struct vm_area_struct *vma) | |
2175 | { | |
2176 | /* if we cannot even read the first page, skip it */ | |
2177 | if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) | |
2178 | return (0); | |
2179 | ||
2180 | /* | |
2181 | * Usually we don't dump executable pages as they contain | |
2182 | * non-writable code that debugger can read directly from | |
2183 | * target library etc. However, thread stacks are marked | |
2184 | * also executable so we read in first page of given region | |
2185 | * and check whether it contains elf header. If there is | |
2186 | * no elf header, we dump it. | |
2187 | */ | |
2188 | if (vma->vma_flags & PROT_EXEC) { | |
2189 | char page[TARGET_PAGE_SIZE]; | |
2190 | ||
2191 | copy_from_user(page, vma->vma_start, sizeof (page)); | |
2192 | if ((page[EI_MAG0] == ELFMAG0) && | |
2193 | (page[EI_MAG1] == ELFMAG1) && | |
2194 | (page[EI_MAG2] == ELFMAG2) && | |
2195 | (page[EI_MAG3] == ELFMAG3)) { | |
2196 | /* | |
2197 | * Mappings are possibly from ELF binary. Don't dump | |
2198 | * them. | |
2199 | */ | |
2200 | return (0); | |
2201 | } | |
2202 | } | |
2203 | ||
2204 | return (vma->vma_end - vma->vma_start); | |
2205 | } | |
2206 | ||
b480d9b7 | 2207 | static int vma_walker(void *priv, abi_ulong start, abi_ulong end, |
d97ef72e | 2208 | unsigned long flags) |
edf8e2af MW |
2209 | { |
2210 | struct mm_struct *mm = (struct mm_struct *)priv; | |
2211 | ||
edf8e2af MW |
2212 | vma_add_mapping(mm, start, end, flags); |
2213 | return (0); | |
2214 | } | |
2215 | ||
2216 | static void fill_note(struct memelfnote *note, const char *name, int type, | |
d97ef72e | 2217 | unsigned int sz, void *data) |
edf8e2af MW |
2218 | { |
2219 | unsigned int namesz; | |
2220 | ||
2221 | namesz = strlen(name) + 1; | |
2222 | note->name = name; | |
2223 | note->namesz = namesz; | |
2224 | note->namesz_rounded = roundup(namesz, sizeof (int32_t)); | |
2225 | note->type = type; | |
80f5ce75 LV |
2226 | note->datasz = sz; |
2227 | note->datasz_rounded = roundup(sz, sizeof (int32_t)); | |
2228 | ||
edf8e2af MW |
2229 | note->data = data; |
2230 | ||
2231 | /* | |
2232 | * We calculate rounded up note size here as specified by | |
2233 | * ELF document. | |
2234 | */ | |
2235 | note->notesz = sizeof (struct elf_note) + | |
80f5ce75 | 2236 | note->namesz_rounded + note->datasz_rounded; |
edf8e2af MW |
2237 | } |
2238 | ||
2239 | static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, | |
d97ef72e | 2240 | uint32_t flags) |
edf8e2af MW |
2241 | { |
2242 | (void) memset(elf, 0, sizeof(*elf)); | |
2243 | ||
2244 | (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); | |
2245 | elf->e_ident[EI_CLASS] = ELF_CLASS; | |
2246 | elf->e_ident[EI_DATA] = ELF_DATA; | |
2247 | elf->e_ident[EI_VERSION] = EV_CURRENT; | |
2248 | elf->e_ident[EI_OSABI] = ELF_OSABI; | |
2249 | ||
2250 | elf->e_type = ET_CORE; | |
2251 | elf->e_machine = machine; | |
2252 | elf->e_version = EV_CURRENT; | |
2253 | elf->e_phoff = sizeof(struct elfhdr); | |
2254 | elf->e_flags = flags; | |
2255 | elf->e_ehsize = sizeof(struct elfhdr); | |
2256 | elf->e_phentsize = sizeof(struct elf_phdr); | |
2257 | elf->e_phnum = segs; | |
2258 | ||
edf8e2af | 2259 | bswap_ehdr(elf); |
edf8e2af MW |
2260 | } |
2261 | ||
2262 | static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) | |
2263 | { | |
2264 | phdr->p_type = PT_NOTE; | |
2265 | phdr->p_offset = offset; | |
2266 | phdr->p_vaddr = 0; | |
2267 | phdr->p_paddr = 0; | |
2268 | phdr->p_filesz = sz; | |
2269 | phdr->p_memsz = 0; | |
2270 | phdr->p_flags = 0; | |
2271 | phdr->p_align = 0; | |
2272 | ||
991f8f0c | 2273 | bswap_phdr(phdr, 1); |
edf8e2af MW |
2274 | } |
2275 | ||
2276 | static size_t note_size(const struct memelfnote *note) | |
2277 | { | |
2278 | return (note->notesz); | |
2279 | } | |
2280 | ||
a2547a13 | 2281 | static void fill_prstatus(struct target_elf_prstatus *prstatus, |
d97ef72e | 2282 | const TaskState *ts, int signr) |
edf8e2af MW |
2283 | { |
2284 | (void) memset(prstatus, 0, sizeof (*prstatus)); | |
2285 | prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; | |
2286 | prstatus->pr_pid = ts->ts_tid; | |
2287 | prstatus->pr_ppid = getppid(); | |
2288 | prstatus->pr_pgrp = getpgrp(); | |
2289 | prstatus->pr_sid = getsid(0); | |
2290 | ||
edf8e2af | 2291 | bswap_prstatus(prstatus); |
edf8e2af MW |
2292 | } |
2293 | ||
a2547a13 | 2294 | static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) |
edf8e2af MW |
2295 | { |
2296 | char *filename, *base_filename; | |
2297 | unsigned int i, len; | |
2298 | ||
2299 | (void) memset(psinfo, 0, sizeof (*psinfo)); | |
2300 | ||
2301 | len = ts->info->arg_end - ts->info->arg_start; | |
2302 | if (len >= ELF_PRARGSZ) | |
2303 | len = ELF_PRARGSZ - 1; | |
2304 | if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) | |
2305 | return -EFAULT; | |
2306 | for (i = 0; i < len; i++) | |
2307 | if (psinfo->pr_psargs[i] == 0) | |
2308 | psinfo->pr_psargs[i] = ' '; | |
2309 | psinfo->pr_psargs[len] = 0; | |
2310 | ||
2311 | psinfo->pr_pid = getpid(); | |
2312 | psinfo->pr_ppid = getppid(); | |
2313 | psinfo->pr_pgrp = getpgrp(); | |
2314 | psinfo->pr_sid = getsid(0); | |
2315 | psinfo->pr_uid = getuid(); | |
2316 | psinfo->pr_gid = getgid(); | |
2317 | ||
2318 | filename = strdup(ts->bprm->filename); | |
2319 | base_filename = strdup(basename(filename)); | |
2320 | (void) strncpy(psinfo->pr_fname, base_filename, | |
d97ef72e | 2321 | sizeof(psinfo->pr_fname)); |
edf8e2af MW |
2322 | free(base_filename); |
2323 | free(filename); | |
2324 | ||
edf8e2af | 2325 | bswap_psinfo(psinfo); |
edf8e2af MW |
2326 | return (0); |
2327 | } | |
2328 | ||
2329 | static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) | |
2330 | { | |
2331 | elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; | |
2332 | elf_addr_t orig_auxv = auxv; | |
2333 | abi_ulong val; | |
2334 | void *ptr; | |
2335 | int i, len; | |
2336 | ||
2337 | /* | |
2338 | * Auxiliary vector is stored in target process stack. It contains | |
2339 | * {type, value} pairs that we need to dump into note. This is not | |
2340 | * strictly necessary but we do it here for sake of completeness. | |
2341 | */ | |
2342 | ||
2343 | /* find out lenght of the vector, AT_NULL is terminator */ | |
2344 | i = len = 0; | |
2345 | do { | |
2346 | get_user_ual(val, auxv); | |
2347 | i += 2; | |
2348 | auxv += 2 * sizeof (elf_addr_t); | |
2349 | } while (val != AT_NULL); | |
2350 | len = i * sizeof (elf_addr_t); | |
2351 | ||
2352 | /* read in whole auxv vector and copy it to memelfnote */ | |
2353 | ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); | |
2354 | if (ptr != NULL) { | |
2355 | fill_note(note, "CORE", NT_AUXV, len, ptr); | |
2356 | unlock_user(ptr, auxv, len); | |
2357 | } | |
2358 | } | |
2359 | ||
2360 | /* | |
2361 | * Constructs name of coredump file. We have following convention | |
2362 | * for the name: | |
2363 | * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core | |
2364 | * | |
2365 | * Returns 0 in case of success, -1 otherwise (errno is set). | |
2366 | */ | |
2367 | static int core_dump_filename(const TaskState *ts, char *buf, | |
d97ef72e | 2368 | size_t bufsize) |
edf8e2af MW |
2369 | { |
2370 | char timestamp[64]; | |
2371 | char *filename = NULL; | |
2372 | char *base_filename = NULL; | |
2373 | struct timeval tv; | |
2374 | struct tm tm; | |
2375 | ||
2376 | assert(bufsize >= PATH_MAX); | |
2377 | ||
2378 | if (gettimeofday(&tv, NULL) < 0) { | |
2379 | (void) fprintf(stderr, "unable to get current timestamp: %s", | |
d97ef72e | 2380 | strerror(errno)); |
edf8e2af MW |
2381 | return (-1); |
2382 | } | |
2383 | ||
2384 | filename = strdup(ts->bprm->filename); | |
2385 | base_filename = strdup(basename(filename)); | |
2386 | (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", | |
d97ef72e | 2387 | localtime_r(&tv.tv_sec, &tm)); |
edf8e2af | 2388 | (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", |
d97ef72e | 2389 | base_filename, timestamp, (int)getpid()); |
edf8e2af MW |
2390 | free(base_filename); |
2391 | free(filename); | |
2392 | ||
2393 | return (0); | |
2394 | } | |
2395 | ||
2396 | static int dump_write(int fd, const void *ptr, size_t size) | |
2397 | { | |
2398 | const char *bufp = (const char *)ptr; | |
2399 | ssize_t bytes_written, bytes_left; | |
2400 | struct rlimit dumpsize; | |
2401 | off_t pos; | |
2402 | ||
2403 | bytes_written = 0; | |
2404 | getrlimit(RLIMIT_CORE, &dumpsize); | |
2405 | if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { | |
2406 | if (errno == ESPIPE) { /* not a seekable stream */ | |
2407 | bytes_left = size; | |
2408 | } else { | |
2409 | return pos; | |
2410 | } | |
2411 | } else { | |
2412 | if (dumpsize.rlim_cur <= pos) { | |
2413 | return -1; | |
2414 | } else if (dumpsize.rlim_cur == RLIM_INFINITY) { | |
2415 | bytes_left = size; | |
2416 | } else { | |
2417 | size_t limit_left=dumpsize.rlim_cur - pos; | |
2418 | bytes_left = limit_left >= size ? size : limit_left ; | |
2419 | } | |
2420 | } | |
2421 | ||
2422 | /* | |
2423 | * In normal conditions, single write(2) should do but | |
2424 | * in case of socket etc. this mechanism is more portable. | |
2425 | */ | |
2426 | do { | |
2427 | bytes_written = write(fd, bufp, bytes_left); | |
2428 | if (bytes_written < 0) { | |
2429 | if (errno == EINTR) | |
2430 | continue; | |
2431 | return (-1); | |
2432 | } else if (bytes_written == 0) { /* eof */ | |
2433 | return (-1); | |
2434 | } | |
2435 | bufp += bytes_written; | |
2436 | bytes_left -= bytes_written; | |
2437 | } while (bytes_left > 0); | |
2438 | ||
2439 | return (0); | |
2440 | } | |
2441 | ||
2442 | static int write_note(struct memelfnote *men, int fd) | |
2443 | { | |
2444 | struct elf_note en; | |
2445 | ||
2446 | en.n_namesz = men->namesz; | |
2447 | en.n_type = men->type; | |
2448 | en.n_descsz = men->datasz; | |
2449 | ||
edf8e2af | 2450 | bswap_note(&en); |
edf8e2af MW |
2451 | |
2452 | if (dump_write(fd, &en, sizeof(en)) != 0) | |
2453 | return (-1); | |
2454 | if (dump_write(fd, men->name, men->namesz_rounded) != 0) | |
2455 | return (-1); | |
80f5ce75 | 2456 | if (dump_write(fd, men->data, men->datasz_rounded) != 0) |
edf8e2af MW |
2457 | return (-1); |
2458 | ||
2459 | return (0); | |
2460 | } | |
2461 | ||
2462 | static void fill_thread_info(struct elf_note_info *info, const CPUState *env) | |
2463 | { | |
2464 | TaskState *ts = (TaskState *)env->opaque; | |
2465 | struct elf_thread_status *ets; | |
2466 | ||
7267c094 | 2467 | ets = g_malloc0(sizeof (*ets)); |
edf8e2af MW |
2468 | ets->num_notes = 1; /* only prstatus is dumped */ |
2469 | fill_prstatus(&ets->prstatus, ts, 0); | |
2470 | elf_core_copy_regs(&ets->prstatus.pr_reg, env); | |
2471 | fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), | |
d97ef72e | 2472 | &ets->prstatus); |
edf8e2af | 2473 | |
72cf2d4f | 2474 | QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); |
edf8e2af MW |
2475 | |
2476 | info->notes_size += note_size(&ets->notes[0]); | |
2477 | } | |
2478 | ||
2479 | static int fill_note_info(struct elf_note_info *info, | |
d97ef72e | 2480 | long signr, const CPUState *env) |
edf8e2af MW |
2481 | { |
2482 | #define NUMNOTES 3 | |
2483 | CPUState *cpu = NULL; | |
2484 | TaskState *ts = (TaskState *)env->opaque; | |
2485 | int i; | |
2486 | ||
2487 | (void) memset(info, 0, sizeof (*info)); | |
2488 | ||
72cf2d4f | 2489 | QTAILQ_INIT(&info->thread_list); |
edf8e2af | 2490 | |
7267c094 | 2491 | info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote)); |
edf8e2af MW |
2492 | if (info->notes == NULL) |
2493 | return (-ENOMEM); | |
7267c094 | 2494 | info->prstatus = g_malloc0(sizeof (*info->prstatus)); |
edf8e2af MW |
2495 | if (info->prstatus == NULL) |
2496 | return (-ENOMEM); | |
7267c094 | 2497 | info->psinfo = g_malloc0(sizeof (*info->psinfo)); |
edf8e2af MW |
2498 | if (info->prstatus == NULL) |
2499 | return (-ENOMEM); | |
2500 | ||
2501 | /* | |
2502 | * First fill in status (and registers) of current thread | |
2503 | * including process info & aux vector. | |
2504 | */ | |
2505 | fill_prstatus(info->prstatus, ts, signr); | |
2506 | elf_core_copy_regs(&info->prstatus->pr_reg, env); | |
2507 | fill_note(&info->notes[0], "CORE", NT_PRSTATUS, | |
d97ef72e | 2508 | sizeof (*info->prstatus), info->prstatus); |
edf8e2af MW |
2509 | fill_psinfo(info->psinfo, ts); |
2510 | fill_note(&info->notes[1], "CORE", NT_PRPSINFO, | |
d97ef72e | 2511 | sizeof (*info->psinfo), info->psinfo); |
edf8e2af MW |
2512 | fill_auxv_note(&info->notes[2], ts); |
2513 | info->numnote = 3; | |
2514 | ||
2515 | info->notes_size = 0; | |
2516 | for (i = 0; i < info->numnote; i++) | |
2517 | info->notes_size += note_size(&info->notes[i]); | |
2518 | ||
2519 | /* read and fill status of all threads */ | |
2520 | cpu_list_lock(); | |
2521 | for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) { | |
2522 | if (cpu == thread_env) | |
2523 | continue; | |
2524 | fill_thread_info(info, cpu); | |
2525 | } | |
2526 | cpu_list_unlock(); | |
2527 | ||
2528 | return (0); | |
2529 | } | |
2530 | ||
2531 | static void free_note_info(struct elf_note_info *info) | |
2532 | { | |
2533 | struct elf_thread_status *ets; | |
2534 | ||
72cf2d4f BS |
2535 | while (!QTAILQ_EMPTY(&info->thread_list)) { |
2536 | ets = QTAILQ_FIRST(&info->thread_list); | |
2537 | QTAILQ_REMOVE(&info->thread_list, ets, ets_link); | |
7267c094 | 2538 | g_free(ets); |
edf8e2af MW |
2539 | } |
2540 | ||
7267c094 AL |
2541 | g_free(info->prstatus); |
2542 | g_free(info->psinfo); | |
2543 | g_free(info->notes); | |
edf8e2af MW |
2544 | } |
2545 | ||
2546 | static int write_note_info(struct elf_note_info *info, int fd) | |
2547 | { | |
2548 | struct elf_thread_status *ets; | |
2549 | int i, error = 0; | |
2550 | ||
2551 | /* write prstatus, psinfo and auxv for current thread */ | |
2552 | for (i = 0; i < info->numnote; i++) | |
2553 | if ((error = write_note(&info->notes[i], fd)) != 0) | |
2554 | return (error); | |
2555 | ||
2556 | /* write prstatus for each thread */ | |
2557 | for (ets = info->thread_list.tqh_first; ets != NULL; | |
d97ef72e | 2558 | ets = ets->ets_link.tqe_next) { |
edf8e2af MW |
2559 | if ((error = write_note(&ets->notes[0], fd)) != 0) |
2560 | return (error); | |
2561 | } | |
2562 | ||
2563 | return (0); | |
2564 | } | |
2565 | ||
2566 | /* | |
2567 | * Write out ELF coredump. | |
2568 | * | |
2569 | * See documentation of ELF object file format in: | |
2570 | * http://www.caldera.com/developers/devspecs/gabi41.pdf | |
2571 | * | |
2572 | * Coredump format in linux is following: | |
2573 | * | |
2574 | * 0 +----------------------+ \ | |
2575 | * | ELF header | ET_CORE | | |
2576 | * +----------------------+ | | |
2577 | * | ELF program headers | |--- headers | |
2578 | * | - NOTE section | | | |
2579 | * | - PT_LOAD sections | | | |
2580 | * +----------------------+ / | |
2581 | * | NOTEs: | | |
2582 | * | - NT_PRSTATUS | | |
2583 | * | - NT_PRSINFO | | |
2584 | * | - NT_AUXV | | |
2585 | * +----------------------+ <-- aligned to target page | |
2586 | * | Process memory dump | | |
2587 | * : : | |
2588 | * . . | |
2589 | * : : | |
2590 | * | | | |
2591 | * +----------------------+ | |
2592 | * | |
2593 | * NT_PRSTATUS -> struct elf_prstatus (per thread) | |
2594 | * NT_PRSINFO -> struct elf_prpsinfo | |
2595 | * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). | |
2596 | * | |
2597 | * Format follows System V format as close as possible. Current | |
2598 | * version limitations are as follows: | |
2599 | * - no floating point registers are dumped | |
2600 | * | |
2601 | * Function returns 0 in case of success, negative errno otherwise. | |
2602 | * | |
2603 | * TODO: make this work also during runtime: it should be | |
2604 | * possible to force coredump from running process and then | |
2605 | * continue processing. For example qemu could set up SIGUSR2 | |
2606 | * handler (provided that target process haven't registered | |
2607 | * handler for that) that does the dump when signal is received. | |
2608 | */ | |
2609 | static int elf_core_dump(int signr, const CPUState *env) | |
2610 | { | |
2611 | const TaskState *ts = (const TaskState *)env->opaque; | |
2612 | struct vm_area_struct *vma = NULL; | |
2613 | char corefile[PATH_MAX]; | |
2614 | struct elf_note_info info; | |
2615 | struct elfhdr elf; | |
2616 | struct elf_phdr phdr; | |
2617 | struct rlimit dumpsize; | |
2618 | struct mm_struct *mm = NULL; | |
2619 | off_t offset = 0, data_offset = 0; | |
2620 | int segs = 0; | |
2621 | int fd = -1; | |
2622 | ||
2623 | errno = 0; | |
2624 | getrlimit(RLIMIT_CORE, &dumpsize); | |
2625 | if (dumpsize.rlim_cur == 0) | |
d97ef72e | 2626 | return 0; |
edf8e2af MW |
2627 | |
2628 | if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) | |
2629 | return (-errno); | |
2630 | ||
2631 | if ((fd = open(corefile, O_WRONLY | O_CREAT, | |
d97ef72e | 2632 | S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) |
edf8e2af MW |
2633 | return (-errno); |
2634 | ||
2635 | /* | |
2636 | * Walk through target process memory mappings and | |
2637 | * set up structure containing this information. After | |
2638 | * this point vma_xxx functions can be used. | |
2639 | */ | |
2640 | if ((mm = vma_init()) == NULL) | |
2641 | goto out; | |
2642 | ||
2643 | walk_memory_regions(mm, vma_walker); | |
2644 | segs = vma_get_mapping_count(mm); | |
2645 | ||
2646 | /* | |
2647 | * Construct valid coredump ELF header. We also | |
2648 | * add one more segment for notes. | |
2649 | */ | |
2650 | fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); | |
2651 | if (dump_write(fd, &elf, sizeof (elf)) != 0) | |
2652 | goto out; | |
2653 | ||
2654 | /* fill in in-memory version of notes */ | |
2655 | if (fill_note_info(&info, signr, env) < 0) | |
2656 | goto out; | |
2657 | ||
2658 | offset += sizeof (elf); /* elf header */ | |
2659 | offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ | |
2660 | ||
2661 | /* write out notes program header */ | |
2662 | fill_elf_note_phdr(&phdr, info.notes_size, offset); | |
2663 | ||
2664 | offset += info.notes_size; | |
2665 | if (dump_write(fd, &phdr, sizeof (phdr)) != 0) | |
2666 | goto out; | |
2667 | ||
2668 | /* | |
2669 | * ELF specification wants data to start at page boundary so | |
2670 | * we align it here. | |
2671 | */ | |
80f5ce75 | 2672 | data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); |
edf8e2af MW |
2673 | |
2674 | /* | |
2675 | * Write program headers for memory regions mapped in | |
2676 | * the target process. | |
2677 | */ | |
2678 | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { | |
2679 | (void) memset(&phdr, 0, sizeof (phdr)); | |
2680 | ||
2681 | phdr.p_type = PT_LOAD; | |
2682 | phdr.p_offset = offset; | |
2683 | phdr.p_vaddr = vma->vma_start; | |
2684 | phdr.p_paddr = 0; | |
2685 | phdr.p_filesz = vma_dump_size(vma); | |
2686 | offset += phdr.p_filesz; | |
2687 | phdr.p_memsz = vma->vma_end - vma->vma_start; | |
2688 | phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; | |
2689 | if (vma->vma_flags & PROT_WRITE) | |
2690 | phdr.p_flags |= PF_W; | |
2691 | if (vma->vma_flags & PROT_EXEC) | |
2692 | phdr.p_flags |= PF_X; | |
2693 | phdr.p_align = ELF_EXEC_PAGESIZE; | |
2694 | ||
80f5ce75 | 2695 | bswap_phdr(&phdr, 1); |
edf8e2af MW |
2696 | dump_write(fd, &phdr, sizeof (phdr)); |
2697 | } | |
2698 | ||
2699 | /* | |
2700 | * Next we write notes just after program headers. No | |
2701 | * alignment needed here. | |
2702 | */ | |
2703 | if (write_note_info(&info, fd) < 0) | |
2704 | goto out; | |
2705 | ||
2706 | /* align data to page boundary */ | |
edf8e2af MW |
2707 | if (lseek(fd, data_offset, SEEK_SET) != data_offset) |
2708 | goto out; | |
2709 | ||
2710 | /* | |
2711 | * Finally we can dump process memory into corefile as well. | |
2712 | */ | |
2713 | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { | |
2714 | abi_ulong addr; | |
2715 | abi_ulong end; | |
2716 | ||
2717 | end = vma->vma_start + vma_dump_size(vma); | |
2718 | ||
2719 | for (addr = vma->vma_start; addr < end; | |
d97ef72e | 2720 | addr += TARGET_PAGE_SIZE) { |
edf8e2af MW |
2721 | char page[TARGET_PAGE_SIZE]; |
2722 | int error; | |
2723 | ||
2724 | /* | |
2725 | * Read in page from target process memory and | |
2726 | * write it to coredump file. | |
2727 | */ | |
2728 | error = copy_from_user(page, addr, sizeof (page)); | |
2729 | if (error != 0) { | |
49995e17 | 2730 | (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", |
d97ef72e | 2731 | addr); |
edf8e2af MW |
2732 | errno = -error; |
2733 | goto out; | |
2734 | } | |
2735 | if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) | |
2736 | goto out; | |
2737 | } | |
2738 | } | |
2739 | ||
d97ef72e | 2740 | out: |
edf8e2af MW |
2741 | free_note_info(&info); |
2742 | if (mm != NULL) | |
2743 | vma_delete(mm); | |
2744 | (void) close(fd); | |
2745 | ||
2746 | if (errno != 0) | |
2747 | return (-errno); | |
2748 | return (0); | |
2749 | } | |
edf8e2af MW |
2750 | #endif /* USE_ELF_CORE_DUMP */ |
2751 | ||
e5fe0c52 PB |
2752 | void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) |
2753 | { | |
2754 | init_thread(regs, infop); | |
2755 | } |