]>
Commit | Line | Data |
---|---|---|
56e93d26 JQ |
1 | /* |
2 | * QEMU System Emulator | |
3 | * | |
4 | * Copyright (c) 2003-2008 Fabrice Bellard | |
76cc7b58 JQ |
5 | * Copyright (c) 2011-2015 Red Hat Inc |
6 | * | |
7 | * Authors: | |
8 | * Juan Quintela <[email protected]> | |
56e93d26 JQ |
9 | * |
10 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
11 | * of this software and associated documentation files (the "Software"), to deal | |
12 | * in the Software without restriction, including without limitation the rights | |
13 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
14 | * copies of the Software, and to permit persons to whom the Software is | |
15 | * furnished to do so, subject to the following conditions: | |
16 | * | |
17 | * The above copyright notice and this permission notice shall be included in | |
18 | * all copies or substantial portions of the Software. | |
19 | * | |
20 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
21 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
23 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
24 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
25 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
26 | * THE SOFTWARE. | |
27 | */ | |
e688df6b | 28 | |
1393a485 | 29 | #include "qemu/osdep.h" |
33c11879 | 30 | #include "cpu.h" |
56e93d26 | 31 | #include <zlib.h> |
f348b6d1 | 32 | #include "qemu/cutils.h" |
56e93d26 JQ |
33 | #include "qemu/bitops.h" |
34 | #include "qemu/bitmap.h" | |
7205c9ec | 35 | #include "qemu/main-loop.h" |
709e3fe8 | 36 | #include "xbzrle.h" |
7b1e1a22 | 37 | #include "ram.h" |
6666c96a | 38 | #include "migration.h" |
f2a8f0a6 | 39 | #include "migration/register.h" |
7b1e1a22 | 40 | #include "migration/misc.h" |
08a0aee1 | 41 | #include "qemu-file.h" |
be07b0ac | 42 | #include "postcopy-ram.h" |
56e93d26 | 43 | #include "migration/page_cache.h" |
56e93d26 | 44 | #include "qemu/error-report.h" |
e688df6b | 45 | #include "qapi/error.h" |
9af23989 | 46 | #include "qapi/qapi-events-migration.h" |
8acabf69 | 47 | #include "qapi/qmp/qerror.h" |
56e93d26 | 48 | #include "trace.h" |
56e93d26 | 49 | #include "exec/ram_addr.h" |
f9494614 | 50 | #include "exec/target_page.h" |
56e93d26 | 51 | #include "qemu/rcu_queue.h" |
a91246c9 | 52 | #include "migration/colo.h" |
9ac78b61 | 53 | #include "migration/block.h" |
56e93d26 | 54 | |
56e93d26 JQ |
55 | /***********************************************************/ |
56 | /* ram save/restore */ | |
57 | ||
bb890ed5 JQ |
58 | /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it |
59 | * worked for pages that where filled with the same char. We switched | |
60 | * it to only search for the zero value. And to avoid confusion with | |
61 | * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. | |
62 | */ | |
63 | ||
56e93d26 | 64 | #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ |
bb890ed5 | 65 | #define RAM_SAVE_FLAG_ZERO 0x02 |
56e93d26 JQ |
66 | #define RAM_SAVE_FLAG_MEM_SIZE 0x04 |
67 | #define RAM_SAVE_FLAG_PAGE 0x08 | |
68 | #define RAM_SAVE_FLAG_EOS 0x10 | |
69 | #define RAM_SAVE_FLAG_CONTINUE 0x20 | |
70 | #define RAM_SAVE_FLAG_XBZRLE 0x40 | |
71 | /* 0x80 is reserved in migration.h start with 0x100 next */ | |
72 | #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 | |
73 | ||
56e93d26 JQ |
74 | static inline bool is_zero_range(uint8_t *p, uint64_t size) |
75 | { | |
a1febc49 | 76 | return buffer_is_zero(p, size); |
56e93d26 JQ |
77 | } |
78 | ||
9360447d JQ |
79 | XBZRLECacheStats xbzrle_counters; |
80 | ||
56e93d26 JQ |
81 | /* struct contains XBZRLE cache and a static page |
82 | used by the compression */ | |
83 | static struct { | |
84 | /* buffer used for XBZRLE encoding */ | |
85 | uint8_t *encoded_buf; | |
86 | /* buffer for storing page content */ | |
87 | uint8_t *current_buf; | |
88 | /* Cache for XBZRLE, Protected by lock. */ | |
89 | PageCache *cache; | |
90 | QemuMutex lock; | |
c00e0928 JQ |
91 | /* it will store a page full of zeros */ |
92 | uint8_t *zero_target_page; | |
f265e0e4 JQ |
93 | /* buffer used for XBZRLE decoding */ |
94 | uint8_t *decoded_buf; | |
56e93d26 JQ |
95 | } XBZRLE; |
96 | ||
56e93d26 JQ |
97 | static void XBZRLE_cache_lock(void) |
98 | { | |
99 | if (migrate_use_xbzrle()) | |
100 | qemu_mutex_lock(&XBZRLE.lock); | |
101 | } | |
102 | ||
103 | static void XBZRLE_cache_unlock(void) | |
104 | { | |
105 | if (migrate_use_xbzrle()) | |
106 | qemu_mutex_unlock(&XBZRLE.lock); | |
107 | } | |
108 | ||
3d0684b2 JQ |
109 | /** |
110 | * xbzrle_cache_resize: resize the xbzrle cache | |
111 | * | |
112 | * This function is called from qmp_migrate_set_cache_size in main | |
113 | * thread, possibly while a migration is in progress. A running | |
114 | * migration may be using the cache and might finish during this call, | |
115 | * hence changes to the cache are protected by XBZRLE.lock(). | |
116 | * | |
c9dede2d | 117 | * Returns 0 for success or -1 for error |
3d0684b2 JQ |
118 | * |
119 | * @new_size: new cache size | |
8acabf69 | 120 | * @errp: set *errp if the check failed, with reason |
56e93d26 | 121 | */ |
c9dede2d | 122 | int xbzrle_cache_resize(int64_t new_size, Error **errp) |
56e93d26 JQ |
123 | { |
124 | PageCache *new_cache; | |
c9dede2d | 125 | int64_t ret = 0; |
56e93d26 | 126 | |
8acabf69 JQ |
127 | /* Check for truncation */ |
128 | if (new_size != (size_t)new_size) { | |
129 | error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", | |
130 | "exceeding address space"); | |
131 | return -1; | |
132 | } | |
133 | ||
2a313e5c JQ |
134 | if (new_size == migrate_xbzrle_cache_size()) { |
135 | /* nothing to do */ | |
c9dede2d | 136 | return 0; |
2a313e5c JQ |
137 | } |
138 | ||
56e93d26 JQ |
139 | XBZRLE_cache_lock(); |
140 | ||
141 | if (XBZRLE.cache != NULL) { | |
80f8dfde | 142 | new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); |
56e93d26 | 143 | if (!new_cache) { |
56e93d26 JQ |
144 | ret = -1; |
145 | goto out; | |
146 | } | |
147 | ||
148 | cache_fini(XBZRLE.cache); | |
149 | XBZRLE.cache = new_cache; | |
150 | } | |
56e93d26 JQ |
151 | out: |
152 | XBZRLE_cache_unlock(); | |
153 | return ret; | |
154 | } | |
155 | ||
f9494614 AP |
156 | static void ramblock_recv_map_init(void) |
157 | { | |
158 | RAMBlock *rb; | |
159 | ||
160 | RAMBLOCK_FOREACH(rb) { | |
161 | assert(!rb->receivedmap); | |
162 | rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); | |
163 | } | |
164 | } | |
165 | ||
166 | int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) | |
167 | { | |
168 | return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), | |
169 | rb->receivedmap); | |
170 | } | |
171 | ||
1cba9f6e DDAG |
172 | bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) |
173 | { | |
174 | return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); | |
175 | } | |
176 | ||
f9494614 AP |
177 | void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) |
178 | { | |
179 | set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); | |
180 | } | |
181 | ||
182 | void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, | |
183 | size_t nr) | |
184 | { | |
185 | bitmap_set_atomic(rb->receivedmap, | |
186 | ramblock_recv_bitmap_offset(host_addr, rb), | |
187 | nr); | |
188 | } | |
189 | ||
ec481c6c JQ |
190 | /* |
191 | * An outstanding page request, on the source, having been received | |
192 | * and queued | |
193 | */ | |
194 | struct RAMSrcPageRequest { | |
195 | RAMBlock *rb; | |
196 | hwaddr offset; | |
197 | hwaddr len; | |
198 | ||
199 | QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; | |
200 | }; | |
201 | ||
6f37bb8b JQ |
202 | /* State of RAM for migration */ |
203 | struct RAMState { | |
204b88b8 JQ |
204 | /* QEMUFile used for this migration */ |
205 | QEMUFile *f; | |
6f37bb8b JQ |
206 | /* Last block that we have visited searching for dirty pages */ |
207 | RAMBlock *last_seen_block; | |
208 | /* Last block from where we have sent data */ | |
209 | RAMBlock *last_sent_block; | |
269ace29 JQ |
210 | /* Last dirty target page we have sent */ |
211 | ram_addr_t last_page; | |
6f37bb8b JQ |
212 | /* last ram version we have seen */ |
213 | uint32_t last_version; | |
214 | /* We are in the first round */ | |
215 | bool ram_bulk_stage; | |
8d820d6f JQ |
216 | /* How many times we have dirty too many pages */ |
217 | int dirty_rate_high_cnt; | |
f664da80 JQ |
218 | /* these variables are used for bitmap sync */ |
219 | /* last time we did a full bitmap_sync */ | |
220 | int64_t time_last_bitmap_sync; | |
eac74159 | 221 | /* bytes transferred at start_time */ |
c4bdf0cf | 222 | uint64_t bytes_xfer_prev; |
a66cd90c | 223 | /* number of dirty pages since start_time */ |
68908ed6 | 224 | uint64_t num_dirty_pages_period; |
b5833fde JQ |
225 | /* xbzrle misses since the beginning of the period */ |
226 | uint64_t xbzrle_cache_miss_prev; | |
36040d9c JQ |
227 | /* number of iterations at the beginning of period */ |
228 | uint64_t iterations_prev; | |
23b28c3c JQ |
229 | /* Iterations since start */ |
230 | uint64_t iterations; | |
9360447d | 231 | /* number of dirty bits in the bitmap */ |
2dfaf12e PX |
232 | uint64_t migration_dirty_pages; |
233 | /* protects modification of the bitmap */ | |
108cfae0 | 234 | QemuMutex bitmap_mutex; |
68a098f3 JQ |
235 | /* The RAMBlock used in the last src_page_requests */ |
236 | RAMBlock *last_req_rb; | |
ec481c6c JQ |
237 | /* Queue of outstanding page requests from the destination */ |
238 | QemuMutex src_page_req_mutex; | |
239 | QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests; | |
6f37bb8b JQ |
240 | }; |
241 | typedef struct RAMState RAMState; | |
242 | ||
53518d94 | 243 | static RAMState *ram_state; |
6f37bb8b | 244 | |
9edabd4d | 245 | uint64_t ram_bytes_remaining(void) |
2f4fde93 | 246 | { |
bae416e5 DDAG |
247 | return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : |
248 | 0; | |
2f4fde93 JQ |
249 | } |
250 | ||
9360447d | 251 | MigrationStats ram_counters; |
96506894 | 252 | |
b8fb8cb7 DDAG |
253 | /* used by the search for pages to send */ |
254 | struct PageSearchStatus { | |
255 | /* Current block being searched */ | |
256 | RAMBlock *block; | |
a935e30f JQ |
257 | /* Current page to search from */ |
258 | unsigned long page; | |
b8fb8cb7 DDAG |
259 | /* Set once we wrap around */ |
260 | bool complete_round; | |
261 | }; | |
262 | typedef struct PageSearchStatus PageSearchStatus; | |
263 | ||
56e93d26 | 264 | struct CompressParam { |
56e93d26 | 265 | bool done; |
90e56fb4 | 266 | bool quit; |
56e93d26 JQ |
267 | QEMUFile *file; |
268 | QemuMutex mutex; | |
269 | QemuCond cond; | |
270 | RAMBlock *block; | |
271 | ram_addr_t offset; | |
272 | }; | |
273 | typedef struct CompressParam CompressParam; | |
274 | ||
275 | struct DecompressParam { | |
73a8912b | 276 | bool done; |
90e56fb4 | 277 | bool quit; |
56e93d26 JQ |
278 | QemuMutex mutex; |
279 | QemuCond cond; | |
280 | void *des; | |
d341d9f3 | 281 | uint8_t *compbuf; |
56e93d26 JQ |
282 | int len; |
283 | }; | |
284 | typedef struct DecompressParam DecompressParam; | |
285 | ||
286 | static CompressParam *comp_param; | |
287 | static QemuThread *compress_threads; | |
288 | /* comp_done_cond is used to wake up the migration thread when | |
289 | * one of the compression threads has finished the compression. | |
290 | * comp_done_lock is used to co-work with comp_done_cond. | |
291 | */ | |
0d9f9a5c LL |
292 | static QemuMutex comp_done_lock; |
293 | static QemuCond comp_done_cond; | |
56e93d26 JQ |
294 | /* The empty QEMUFileOps will be used by file in CompressParam */ |
295 | static const QEMUFileOps empty_ops = { }; | |
296 | ||
56e93d26 JQ |
297 | static DecompressParam *decomp_param; |
298 | static QemuThread *decompress_threads; | |
73a8912b LL |
299 | static QemuMutex decomp_done_lock; |
300 | static QemuCond decomp_done_cond; | |
56e93d26 | 301 | |
a7a9a88f LL |
302 | static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, |
303 | ram_addr_t offset); | |
56e93d26 JQ |
304 | |
305 | static void *do_data_compress(void *opaque) | |
306 | { | |
307 | CompressParam *param = opaque; | |
a7a9a88f LL |
308 | RAMBlock *block; |
309 | ram_addr_t offset; | |
56e93d26 | 310 | |
a7a9a88f | 311 | qemu_mutex_lock(¶m->mutex); |
90e56fb4 | 312 | while (!param->quit) { |
a7a9a88f LL |
313 | if (param->block) { |
314 | block = param->block; | |
315 | offset = param->offset; | |
316 | param->block = NULL; | |
317 | qemu_mutex_unlock(¶m->mutex); | |
318 | ||
319 | do_compress_ram_page(param->file, block, offset); | |
320 | ||
0d9f9a5c | 321 | qemu_mutex_lock(&comp_done_lock); |
a7a9a88f | 322 | param->done = true; |
0d9f9a5c LL |
323 | qemu_cond_signal(&comp_done_cond); |
324 | qemu_mutex_unlock(&comp_done_lock); | |
a7a9a88f LL |
325 | |
326 | qemu_mutex_lock(¶m->mutex); | |
327 | } else { | |
56e93d26 JQ |
328 | qemu_cond_wait(¶m->cond, ¶m->mutex); |
329 | } | |
56e93d26 | 330 | } |
a7a9a88f | 331 | qemu_mutex_unlock(¶m->mutex); |
56e93d26 JQ |
332 | |
333 | return NULL; | |
334 | } | |
335 | ||
336 | static inline void terminate_compression_threads(void) | |
337 | { | |
338 | int idx, thread_count; | |
339 | ||
340 | thread_count = migrate_compress_threads(); | |
3d0684b2 | 341 | |
56e93d26 JQ |
342 | for (idx = 0; idx < thread_count; idx++) { |
343 | qemu_mutex_lock(&comp_param[idx].mutex); | |
90e56fb4 | 344 | comp_param[idx].quit = true; |
56e93d26 JQ |
345 | qemu_cond_signal(&comp_param[idx].cond); |
346 | qemu_mutex_unlock(&comp_param[idx].mutex); | |
347 | } | |
348 | } | |
349 | ||
f0afa331 | 350 | static void compress_threads_save_cleanup(void) |
56e93d26 JQ |
351 | { |
352 | int i, thread_count; | |
353 | ||
354 | if (!migrate_use_compression()) { | |
355 | return; | |
356 | } | |
357 | terminate_compression_threads(); | |
358 | thread_count = migrate_compress_threads(); | |
359 | for (i = 0; i < thread_count; i++) { | |
360 | qemu_thread_join(compress_threads + i); | |
361 | qemu_fclose(comp_param[i].file); | |
362 | qemu_mutex_destroy(&comp_param[i].mutex); | |
363 | qemu_cond_destroy(&comp_param[i].cond); | |
364 | } | |
0d9f9a5c LL |
365 | qemu_mutex_destroy(&comp_done_lock); |
366 | qemu_cond_destroy(&comp_done_cond); | |
56e93d26 JQ |
367 | g_free(compress_threads); |
368 | g_free(comp_param); | |
56e93d26 JQ |
369 | compress_threads = NULL; |
370 | comp_param = NULL; | |
56e93d26 JQ |
371 | } |
372 | ||
f0afa331 | 373 | static void compress_threads_save_setup(void) |
56e93d26 JQ |
374 | { |
375 | int i, thread_count; | |
376 | ||
377 | if (!migrate_use_compression()) { | |
378 | return; | |
379 | } | |
56e93d26 JQ |
380 | thread_count = migrate_compress_threads(); |
381 | compress_threads = g_new0(QemuThread, thread_count); | |
382 | comp_param = g_new0(CompressParam, thread_count); | |
0d9f9a5c LL |
383 | qemu_cond_init(&comp_done_cond); |
384 | qemu_mutex_init(&comp_done_lock); | |
56e93d26 | 385 | for (i = 0; i < thread_count; i++) { |
e110aa91 C |
386 | /* comp_param[i].file is just used as a dummy buffer to save data, |
387 | * set its ops to empty. | |
56e93d26 JQ |
388 | */ |
389 | comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); | |
390 | comp_param[i].done = true; | |
90e56fb4 | 391 | comp_param[i].quit = false; |
56e93d26 JQ |
392 | qemu_mutex_init(&comp_param[i].mutex); |
393 | qemu_cond_init(&comp_param[i].cond); | |
394 | qemu_thread_create(compress_threads + i, "compress", | |
395 | do_data_compress, comp_param + i, | |
396 | QEMU_THREAD_JOINABLE); | |
397 | } | |
398 | } | |
399 | ||
f986c3d2 JQ |
400 | /* Multiple fd's */ |
401 | ||
402 | struct MultiFDSendParams { | |
403 | uint8_t id; | |
404 | char *name; | |
405 | QemuThread thread; | |
406 | QemuSemaphore sem; | |
407 | QemuMutex mutex; | |
408 | bool quit; | |
409 | }; | |
410 | typedef struct MultiFDSendParams MultiFDSendParams; | |
411 | ||
412 | struct { | |
413 | MultiFDSendParams *params; | |
414 | /* number of created threads */ | |
415 | int count; | |
416 | } *multifd_send_state; | |
417 | ||
418 | static void terminate_multifd_send_threads(Error *errp) | |
419 | { | |
420 | int i; | |
421 | ||
422 | for (i = 0; i < multifd_send_state->count; i++) { | |
423 | MultiFDSendParams *p = &multifd_send_state->params[i]; | |
424 | ||
425 | qemu_mutex_lock(&p->mutex); | |
426 | p->quit = true; | |
427 | qemu_sem_post(&p->sem); | |
428 | qemu_mutex_unlock(&p->mutex); | |
429 | } | |
430 | } | |
431 | ||
432 | int multifd_save_cleanup(Error **errp) | |
433 | { | |
434 | int i; | |
435 | int ret = 0; | |
436 | ||
437 | if (!migrate_use_multifd()) { | |
438 | return 0; | |
439 | } | |
440 | terminate_multifd_send_threads(NULL); | |
441 | for (i = 0; i < multifd_send_state->count; i++) { | |
442 | MultiFDSendParams *p = &multifd_send_state->params[i]; | |
443 | ||
444 | qemu_thread_join(&p->thread); | |
445 | qemu_mutex_destroy(&p->mutex); | |
446 | qemu_sem_destroy(&p->sem); | |
447 | g_free(p->name); | |
448 | p->name = NULL; | |
449 | } | |
450 | g_free(multifd_send_state->params); | |
451 | multifd_send_state->params = NULL; | |
452 | g_free(multifd_send_state); | |
453 | multifd_send_state = NULL; | |
454 | return ret; | |
455 | } | |
456 | ||
457 | static void *multifd_send_thread(void *opaque) | |
458 | { | |
459 | MultiFDSendParams *p = opaque; | |
460 | ||
461 | while (true) { | |
462 | qemu_mutex_lock(&p->mutex); | |
463 | if (p->quit) { | |
464 | qemu_mutex_unlock(&p->mutex); | |
465 | break; | |
466 | } | |
467 | qemu_mutex_unlock(&p->mutex); | |
468 | qemu_sem_wait(&p->sem); | |
469 | } | |
470 | ||
471 | return NULL; | |
472 | } | |
473 | ||
474 | int multifd_save_setup(void) | |
475 | { | |
476 | int thread_count; | |
477 | uint8_t i; | |
478 | ||
479 | if (!migrate_use_multifd()) { | |
480 | return 0; | |
481 | } | |
482 | thread_count = migrate_multifd_channels(); | |
483 | multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); | |
484 | multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); | |
485 | multifd_send_state->count = 0; | |
486 | for (i = 0; i < thread_count; i++) { | |
487 | MultiFDSendParams *p = &multifd_send_state->params[i]; | |
488 | ||
489 | qemu_mutex_init(&p->mutex); | |
490 | qemu_sem_init(&p->sem, 0); | |
491 | p->quit = false; | |
492 | p->id = i; | |
493 | p->name = g_strdup_printf("multifdsend_%d", i); | |
494 | qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, | |
495 | QEMU_THREAD_JOINABLE); | |
496 | ||
497 | multifd_send_state->count++; | |
498 | } | |
499 | return 0; | |
500 | } | |
501 | ||
502 | struct MultiFDRecvParams { | |
503 | uint8_t id; | |
504 | char *name; | |
505 | QemuThread thread; | |
506 | QemuSemaphore sem; | |
507 | QemuMutex mutex; | |
508 | bool quit; | |
509 | }; | |
510 | typedef struct MultiFDRecvParams MultiFDRecvParams; | |
511 | ||
512 | struct { | |
513 | MultiFDRecvParams *params; | |
514 | /* number of created threads */ | |
515 | int count; | |
516 | } *multifd_recv_state; | |
517 | ||
518 | static void terminate_multifd_recv_threads(Error *errp) | |
519 | { | |
520 | int i; | |
521 | ||
522 | for (i = 0; i < multifd_recv_state->count; i++) { | |
523 | MultiFDRecvParams *p = &multifd_recv_state->params[i]; | |
524 | ||
525 | qemu_mutex_lock(&p->mutex); | |
526 | p->quit = true; | |
527 | qemu_sem_post(&p->sem); | |
528 | qemu_mutex_unlock(&p->mutex); | |
529 | } | |
530 | } | |
531 | ||
532 | int multifd_load_cleanup(Error **errp) | |
533 | { | |
534 | int i; | |
535 | int ret = 0; | |
536 | ||
537 | if (!migrate_use_multifd()) { | |
538 | return 0; | |
539 | } | |
540 | terminate_multifd_recv_threads(NULL); | |
541 | for (i = 0; i < multifd_recv_state->count; i++) { | |
542 | MultiFDRecvParams *p = &multifd_recv_state->params[i]; | |
543 | ||
544 | qemu_thread_join(&p->thread); | |
545 | qemu_mutex_destroy(&p->mutex); | |
546 | qemu_sem_destroy(&p->sem); | |
547 | g_free(p->name); | |
548 | p->name = NULL; | |
549 | } | |
550 | g_free(multifd_recv_state->params); | |
551 | multifd_recv_state->params = NULL; | |
552 | g_free(multifd_recv_state); | |
553 | multifd_recv_state = NULL; | |
554 | ||
555 | return ret; | |
556 | } | |
557 | ||
558 | static void *multifd_recv_thread(void *opaque) | |
559 | { | |
560 | MultiFDRecvParams *p = opaque; | |
561 | ||
562 | while (true) { | |
563 | qemu_mutex_lock(&p->mutex); | |
564 | if (p->quit) { | |
565 | qemu_mutex_unlock(&p->mutex); | |
566 | break; | |
567 | } | |
568 | qemu_mutex_unlock(&p->mutex); | |
569 | qemu_sem_wait(&p->sem); | |
570 | } | |
571 | ||
572 | return NULL; | |
573 | } | |
574 | ||
575 | int multifd_load_setup(void) | |
576 | { | |
577 | int thread_count; | |
578 | uint8_t i; | |
579 | ||
580 | if (!migrate_use_multifd()) { | |
581 | return 0; | |
582 | } | |
583 | thread_count = migrate_multifd_channels(); | |
584 | multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); | |
585 | multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); | |
586 | multifd_recv_state->count = 0; | |
587 | for (i = 0; i < thread_count; i++) { | |
588 | MultiFDRecvParams *p = &multifd_recv_state->params[i]; | |
589 | ||
590 | qemu_mutex_init(&p->mutex); | |
591 | qemu_sem_init(&p->sem, 0); | |
592 | p->quit = false; | |
593 | p->id = i; | |
594 | p->name = g_strdup_printf("multifdrecv_%d", i); | |
595 | qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, | |
596 | QEMU_THREAD_JOINABLE); | |
597 | multifd_recv_state->count++; | |
598 | } | |
599 | return 0; | |
600 | } | |
601 | ||
56e93d26 | 602 | /** |
3d0684b2 | 603 | * save_page_header: write page header to wire |
56e93d26 JQ |
604 | * |
605 | * If this is the 1st block, it also writes the block identification | |
606 | * | |
3d0684b2 | 607 | * Returns the number of bytes written |
56e93d26 JQ |
608 | * |
609 | * @f: QEMUFile where to send the data | |
610 | * @block: block that contains the page we want to send | |
611 | * @offset: offset inside the block for the page | |
612 | * in the lower bits, it contains flags | |
613 | */ | |
2bf3aa85 JQ |
614 | static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, |
615 | ram_addr_t offset) | |
56e93d26 | 616 | { |
9f5f380b | 617 | size_t size, len; |
56e93d26 | 618 | |
24795694 JQ |
619 | if (block == rs->last_sent_block) { |
620 | offset |= RAM_SAVE_FLAG_CONTINUE; | |
621 | } | |
2bf3aa85 | 622 | qemu_put_be64(f, offset); |
56e93d26 JQ |
623 | size = 8; |
624 | ||
625 | if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { | |
9f5f380b | 626 | len = strlen(block->idstr); |
2bf3aa85 JQ |
627 | qemu_put_byte(f, len); |
628 | qemu_put_buffer(f, (uint8_t *)block->idstr, len); | |
9f5f380b | 629 | size += 1 + len; |
24795694 | 630 | rs->last_sent_block = block; |
56e93d26 JQ |
631 | } |
632 | return size; | |
633 | } | |
634 | ||
3d0684b2 JQ |
635 | /** |
636 | * mig_throttle_guest_down: throotle down the guest | |
637 | * | |
638 | * Reduce amount of guest cpu execution to hopefully slow down memory | |
639 | * writes. If guest dirty memory rate is reduced below the rate at | |
640 | * which we can transfer pages to the destination then we should be | |
641 | * able to complete migration. Some workloads dirty memory way too | |
642 | * fast and will not effectively converge, even with auto-converge. | |
070afca2 JH |
643 | */ |
644 | static void mig_throttle_guest_down(void) | |
645 | { | |
646 | MigrationState *s = migrate_get_current(); | |
2594f56d DB |
647 | uint64_t pct_initial = s->parameters.cpu_throttle_initial; |
648 | uint64_t pct_icrement = s->parameters.cpu_throttle_increment; | |
070afca2 JH |
649 | |
650 | /* We have not started throttling yet. Let's start it. */ | |
651 | if (!cpu_throttle_active()) { | |
652 | cpu_throttle_set(pct_initial); | |
653 | } else { | |
654 | /* Throttling already on, just increase the rate */ | |
655 | cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement); | |
656 | } | |
657 | } | |
658 | ||
3d0684b2 JQ |
659 | /** |
660 | * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache | |
661 | * | |
6f37bb8b | 662 | * @rs: current RAM state |
3d0684b2 JQ |
663 | * @current_addr: address for the zero page |
664 | * | |
665 | * Update the xbzrle cache to reflect a page that's been sent as all 0. | |
56e93d26 JQ |
666 | * The important thing is that a stale (not-yet-0'd) page be replaced |
667 | * by the new data. | |
668 | * As a bonus, if the page wasn't in the cache it gets added so that | |
3d0684b2 | 669 | * when a small write is made into the 0'd page it gets XBZRLE sent. |
56e93d26 | 670 | */ |
6f37bb8b | 671 | static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) |
56e93d26 | 672 | { |
6f37bb8b | 673 | if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { |
56e93d26 JQ |
674 | return; |
675 | } | |
676 | ||
677 | /* We don't care if this fails to allocate a new cache page | |
678 | * as long as it updated an old one */ | |
c00e0928 | 679 | cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, |
9360447d | 680 | ram_counters.dirty_sync_count); |
56e93d26 JQ |
681 | } |
682 | ||
683 | #define ENCODING_FLAG_XBZRLE 0x1 | |
684 | ||
685 | /** | |
686 | * save_xbzrle_page: compress and send current page | |
687 | * | |
688 | * Returns: 1 means that we wrote the page | |
689 | * 0 means that page is identical to the one already sent | |
690 | * -1 means that xbzrle would be longer than normal | |
691 | * | |
5a987738 | 692 | * @rs: current RAM state |
3d0684b2 JQ |
693 | * @current_data: pointer to the address of the page contents |
694 | * @current_addr: addr of the page | |
56e93d26 JQ |
695 | * @block: block that contains the page we want to send |
696 | * @offset: offset inside the block for the page | |
697 | * @last_stage: if we are at the completion stage | |
56e93d26 | 698 | */ |
204b88b8 | 699 | static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, |
56e93d26 | 700 | ram_addr_t current_addr, RAMBlock *block, |
072c2511 | 701 | ram_addr_t offset, bool last_stage) |
56e93d26 JQ |
702 | { |
703 | int encoded_len = 0, bytes_xbzrle; | |
704 | uint8_t *prev_cached_page; | |
705 | ||
9360447d JQ |
706 | if (!cache_is_cached(XBZRLE.cache, current_addr, |
707 | ram_counters.dirty_sync_count)) { | |
708 | xbzrle_counters.cache_miss++; | |
56e93d26 JQ |
709 | if (!last_stage) { |
710 | if (cache_insert(XBZRLE.cache, current_addr, *current_data, | |
9360447d | 711 | ram_counters.dirty_sync_count) == -1) { |
56e93d26 JQ |
712 | return -1; |
713 | } else { | |
714 | /* update *current_data when the page has been | |
715 | inserted into cache */ | |
716 | *current_data = get_cached_data(XBZRLE.cache, current_addr); | |
717 | } | |
718 | } | |
719 | return -1; | |
720 | } | |
721 | ||
722 | prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); | |
723 | ||
724 | /* save current buffer into memory */ | |
725 | memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); | |
726 | ||
727 | /* XBZRLE encoding (if there is no overflow) */ | |
728 | encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, | |
729 | TARGET_PAGE_SIZE, XBZRLE.encoded_buf, | |
730 | TARGET_PAGE_SIZE); | |
731 | if (encoded_len == 0) { | |
55c4446b | 732 | trace_save_xbzrle_page_skipping(); |
56e93d26 JQ |
733 | return 0; |
734 | } else if (encoded_len == -1) { | |
55c4446b | 735 | trace_save_xbzrle_page_overflow(); |
9360447d | 736 | xbzrle_counters.overflow++; |
56e93d26 JQ |
737 | /* update data in the cache */ |
738 | if (!last_stage) { | |
739 | memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); | |
740 | *current_data = prev_cached_page; | |
741 | } | |
742 | return -1; | |
743 | } | |
744 | ||
745 | /* we need to update the data in the cache, in order to get the same data */ | |
746 | if (!last_stage) { | |
747 | memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); | |
748 | } | |
749 | ||
750 | /* Send XBZRLE based compressed page */ | |
2bf3aa85 | 751 | bytes_xbzrle = save_page_header(rs, rs->f, block, |
204b88b8 JQ |
752 | offset | RAM_SAVE_FLAG_XBZRLE); |
753 | qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); | |
754 | qemu_put_be16(rs->f, encoded_len); | |
755 | qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); | |
56e93d26 | 756 | bytes_xbzrle += encoded_len + 1 + 2; |
9360447d JQ |
757 | xbzrle_counters.pages++; |
758 | xbzrle_counters.bytes += bytes_xbzrle; | |
759 | ram_counters.transferred += bytes_xbzrle; | |
56e93d26 JQ |
760 | |
761 | return 1; | |
762 | } | |
763 | ||
3d0684b2 JQ |
764 | /** |
765 | * migration_bitmap_find_dirty: find the next dirty page from start | |
f3f491fc | 766 | * |
3d0684b2 JQ |
767 | * Called with rcu_read_lock() to protect migration_bitmap |
768 | * | |
769 | * Returns the byte offset within memory region of the start of a dirty page | |
770 | * | |
6f37bb8b | 771 | * @rs: current RAM state |
3d0684b2 | 772 | * @rb: RAMBlock where to search for dirty pages |
a935e30f | 773 | * @start: page where we start the search |
f3f491fc | 774 | */ |
56e93d26 | 775 | static inline |
a935e30f | 776 | unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, |
f20e2865 | 777 | unsigned long start) |
56e93d26 | 778 | { |
6b6712ef JQ |
779 | unsigned long size = rb->used_length >> TARGET_PAGE_BITS; |
780 | unsigned long *bitmap = rb->bmap; | |
56e93d26 JQ |
781 | unsigned long next; |
782 | ||
6b6712ef JQ |
783 | if (rs->ram_bulk_stage && start > 0) { |
784 | next = start + 1; | |
56e93d26 | 785 | } else { |
6b6712ef | 786 | next = find_next_bit(bitmap, size, start); |
56e93d26 JQ |
787 | } |
788 | ||
6b6712ef | 789 | return next; |
56e93d26 JQ |
790 | } |
791 | ||
06b10688 | 792 | static inline bool migration_bitmap_clear_dirty(RAMState *rs, |
f20e2865 JQ |
793 | RAMBlock *rb, |
794 | unsigned long page) | |
a82d593b DDAG |
795 | { |
796 | bool ret; | |
a82d593b | 797 | |
6b6712ef | 798 | ret = test_and_clear_bit(page, rb->bmap); |
a82d593b DDAG |
799 | |
800 | if (ret) { | |
0d8ec885 | 801 | rs->migration_dirty_pages--; |
a82d593b DDAG |
802 | } |
803 | return ret; | |
804 | } | |
805 | ||
15440dd5 JQ |
806 | static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb, |
807 | ram_addr_t start, ram_addr_t length) | |
56e93d26 | 808 | { |
0d8ec885 | 809 | rs->migration_dirty_pages += |
6b6712ef | 810 | cpu_physical_memory_sync_dirty_bitmap(rb, start, length, |
0d8ec885 | 811 | &rs->num_dirty_pages_period); |
56e93d26 JQ |
812 | } |
813 | ||
3d0684b2 JQ |
814 | /** |
815 | * ram_pagesize_summary: calculate all the pagesizes of a VM | |
816 | * | |
817 | * Returns a summary bitmap of the page sizes of all RAMBlocks | |
818 | * | |
819 | * For VMs with just normal pages this is equivalent to the host page | |
820 | * size. If it's got some huge pages then it's the OR of all the | |
821 | * different page sizes. | |
e8ca1db2 DDAG |
822 | */ |
823 | uint64_t ram_pagesize_summary(void) | |
824 | { | |
825 | RAMBlock *block; | |
826 | uint64_t summary = 0; | |
827 | ||
99e15582 | 828 | RAMBLOCK_FOREACH(block) { |
e8ca1db2 DDAG |
829 | summary |= block->page_size; |
830 | } | |
831 | ||
832 | return summary; | |
833 | } | |
834 | ||
8d820d6f | 835 | static void migration_bitmap_sync(RAMState *rs) |
56e93d26 JQ |
836 | { |
837 | RAMBlock *block; | |
56e93d26 | 838 | int64_t end_time; |
c4bdf0cf | 839 | uint64_t bytes_xfer_now; |
56e93d26 | 840 | |
9360447d | 841 | ram_counters.dirty_sync_count++; |
56e93d26 | 842 | |
f664da80 JQ |
843 | if (!rs->time_last_bitmap_sync) { |
844 | rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); | |
56e93d26 JQ |
845 | } |
846 | ||
847 | trace_migration_bitmap_sync_start(); | |
9c1f8f44 | 848 | memory_global_dirty_log_sync(); |
56e93d26 | 849 | |
108cfae0 | 850 | qemu_mutex_lock(&rs->bitmap_mutex); |
56e93d26 | 851 | rcu_read_lock(); |
99e15582 | 852 | RAMBLOCK_FOREACH(block) { |
15440dd5 | 853 | migration_bitmap_sync_range(rs, block, 0, block->used_length); |
56e93d26 JQ |
854 | } |
855 | rcu_read_unlock(); | |
108cfae0 | 856 | qemu_mutex_unlock(&rs->bitmap_mutex); |
56e93d26 | 857 | |
a66cd90c | 858 | trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); |
1ffb5dfd | 859 | |
56e93d26 JQ |
860 | end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); |
861 | ||
862 | /* more than 1 second = 1000 millisecons */ | |
f664da80 | 863 | if (end_time > rs->time_last_bitmap_sync + 1000) { |
d693c6f1 | 864 | /* calculate period counters */ |
9360447d | 865 | ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 |
d693c6f1 | 866 | / (end_time - rs->time_last_bitmap_sync); |
9360447d | 867 | bytes_xfer_now = ram_counters.transferred; |
d693c6f1 | 868 | |
9ac78b61 PL |
869 | /* During block migration the auto-converge logic incorrectly detects |
870 | * that ram migration makes no progress. Avoid this by disabling the | |
871 | * throttling logic during the bulk phase of block migration. */ | |
872 | if (migrate_auto_converge() && !blk_mig_bulk_active()) { | |
56e93d26 JQ |
873 | /* The following detection logic can be refined later. For now: |
874 | Check to see if the dirtied bytes is 50% more than the approx. | |
875 | amount of bytes that just got transferred since the last time we | |
070afca2 JH |
876 | were in this routine. If that happens twice, start or increase |
877 | throttling */ | |
070afca2 | 878 | |
d693c6f1 | 879 | if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > |
eac74159 | 880 | (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && |
b4a3c64b | 881 | (++rs->dirty_rate_high_cnt >= 2)) { |
56e93d26 | 882 | trace_migration_throttle(); |
8d820d6f | 883 | rs->dirty_rate_high_cnt = 0; |
070afca2 | 884 | mig_throttle_guest_down(); |
d693c6f1 | 885 | } |
56e93d26 | 886 | } |
070afca2 | 887 | |
56e93d26 | 888 | if (migrate_use_xbzrle()) { |
23b28c3c | 889 | if (rs->iterations_prev != rs->iterations) { |
9360447d JQ |
890 | xbzrle_counters.cache_miss_rate = |
891 | (double)(xbzrle_counters.cache_miss - | |
b5833fde | 892 | rs->xbzrle_cache_miss_prev) / |
23b28c3c | 893 | (rs->iterations - rs->iterations_prev); |
56e93d26 | 894 | } |
23b28c3c | 895 | rs->iterations_prev = rs->iterations; |
9360447d | 896 | rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; |
56e93d26 | 897 | } |
d693c6f1 FF |
898 | |
899 | /* reset period counters */ | |
f664da80 | 900 | rs->time_last_bitmap_sync = end_time; |
a66cd90c | 901 | rs->num_dirty_pages_period = 0; |
d2a4d85a | 902 | rs->bytes_xfer_prev = bytes_xfer_now; |
56e93d26 | 903 | } |
4addcd4f | 904 | if (migrate_use_events()) { |
9360447d | 905 | qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL); |
4addcd4f | 906 | } |
56e93d26 JQ |
907 | } |
908 | ||
909 | /** | |
3d0684b2 | 910 | * save_zero_page: send the zero page to the stream |
56e93d26 | 911 | * |
3d0684b2 | 912 | * Returns the number of pages written. |
56e93d26 | 913 | * |
f7ccd61b | 914 | * @rs: current RAM state |
56e93d26 JQ |
915 | * @block: block that contains the page we want to send |
916 | * @offset: offset inside the block for the page | |
56e93d26 | 917 | */ |
7faccdc3 | 918 | static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) |
56e93d26 | 919 | { |
7faccdc3 | 920 | uint8_t *p = block->host + offset; |
56e93d26 JQ |
921 | int pages = -1; |
922 | ||
923 | if (is_zero_range(p, TARGET_PAGE_SIZE)) { | |
9360447d JQ |
924 | ram_counters.duplicate++; |
925 | ram_counters.transferred += | |
bb890ed5 | 926 | save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO); |
ce25d337 | 927 | qemu_put_byte(rs->f, 0); |
9360447d | 928 | ram_counters.transferred += 1; |
56e93d26 JQ |
929 | pages = 1; |
930 | } | |
931 | ||
932 | return pages; | |
933 | } | |
934 | ||
5727309d | 935 | static void ram_release_pages(const char *rbname, uint64_t offset, int pages) |
53f09a10 | 936 | { |
5727309d | 937 | if (!migrate_release_ram() || !migration_in_postcopy()) { |
53f09a10 PB |
938 | return; |
939 | } | |
940 | ||
aaa2064c | 941 | ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); |
53f09a10 PB |
942 | } |
943 | ||
56e93d26 | 944 | /** |
3d0684b2 | 945 | * ram_save_page: send the given page to the stream |
56e93d26 | 946 | * |
3d0684b2 | 947 | * Returns the number of pages written. |
3fd3c4b3 DDAG |
948 | * < 0 - error |
949 | * >=0 - Number of pages written - this might legally be 0 | |
950 | * if xbzrle noticed the page was the same. | |
56e93d26 | 951 | * |
6f37bb8b | 952 | * @rs: current RAM state |
56e93d26 JQ |
953 | * @block: block that contains the page we want to send |
954 | * @offset: offset inside the block for the page | |
955 | * @last_stage: if we are at the completion stage | |
56e93d26 | 956 | */ |
a0a8aa14 | 957 | static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) |
56e93d26 JQ |
958 | { |
959 | int pages = -1; | |
960 | uint64_t bytes_xmit; | |
961 | ram_addr_t current_addr; | |
56e93d26 JQ |
962 | uint8_t *p; |
963 | int ret; | |
964 | bool send_async = true; | |
a08f6890 | 965 | RAMBlock *block = pss->block; |
a935e30f | 966 | ram_addr_t offset = pss->page << TARGET_PAGE_BITS; |
56e93d26 | 967 | |
2f68e399 | 968 | p = block->host + offset; |
1db9d8e5 | 969 | trace_ram_save_page(block->idstr, (uint64_t)offset, p); |
56e93d26 JQ |
970 | |
971 | /* In doubt sent page as normal */ | |
972 | bytes_xmit = 0; | |
ce25d337 | 973 | ret = ram_control_save_page(rs->f, block->offset, |
56e93d26 JQ |
974 | offset, TARGET_PAGE_SIZE, &bytes_xmit); |
975 | if (bytes_xmit) { | |
9360447d | 976 | ram_counters.transferred += bytes_xmit; |
56e93d26 JQ |
977 | pages = 1; |
978 | } | |
979 | ||
980 | XBZRLE_cache_lock(); | |
981 | ||
982 | current_addr = block->offset + offset; | |
983 | ||
56e93d26 JQ |
984 | if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { |
985 | if (ret != RAM_SAVE_CONTROL_DELAYED) { | |
986 | if (bytes_xmit > 0) { | |
9360447d | 987 | ram_counters.normal++; |
56e93d26 | 988 | } else if (bytes_xmit == 0) { |
9360447d | 989 | ram_counters.duplicate++; |
56e93d26 JQ |
990 | } |
991 | } | |
992 | } else { | |
7faccdc3 | 993 | pages = save_zero_page(rs, block, offset); |
56e93d26 JQ |
994 | if (pages > 0) { |
995 | /* Must let xbzrle know, otherwise a previous (now 0'd) cached | |
996 | * page would be stale | |
997 | */ | |
6f37bb8b | 998 | xbzrle_cache_zero_page(rs, current_addr); |
a935e30f | 999 | ram_release_pages(block->idstr, offset, pages); |
6f37bb8b | 1000 | } else if (!rs->ram_bulk_stage && |
5727309d | 1001 | !migration_in_postcopy() && migrate_use_xbzrle()) { |
204b88b8 | 1002 | pages = save_xbzrle_page(rs, &p, current_addr, block, |
072c2511 | 1003 | offset, last_stage); |
56e93d26 JQ |
1004 | if (!last_stage) { |
1005 | /* Can't send this cached data async, since the cache page | |
1006 | * might get updated before it gets to the wire | |
1007 | */ | |
1008 | send_async = false; | |
1009 | } | |
1010 | } | |
1011 | } | |
1012 | ||
1013 | /* XBZRLE overflow or normal page */ | |
1014 | if (pages == -1) { | |
9360447d JQ |
1015 | ram_counters.transferred += |
1016 | save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_PAGE); | |
56e93d26 | 1017 | if (send_async) { |
ce25d337 | 1018 | qemu_put_buffer_async(rs->f, p, TARGET_PAGE_SIZE, |
53f09a10 | 1019 | migrate_release_ram() & |
5727309d | 1020 | migration_in_postcopy()); |
56e93d26 | 1021 | } else { |
ce25d337 | 1022 | qemu_put_buffer(rs->f, p, TARGET_PAGE_SIZE); |
56e93d26 | 1023 | } |
9360447d | 1024 | ram_counters.transferred += TARGET_PAGE_SIZE; |
56e93d26 | 1025 | pages = 1; |
9360447d | 1026 | ram_counters.normal++; |
56e93d26 JQ |
1027 | } |
1028 | ||
1029 | XBZRLE_cache_unlock(); | |
1030 | ||
1031 | return pages; | |
1032 | } | |
1033 | ||
a7a9a88f LL |
1034 | static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, |
1035 | ram_addr_t offset) | |
56e93d26 | 1036 | { |
53518d94 | 1037 | RAMState *rs = ram_state; |
56e93d26 | 1038 | int bytes_sent, blen; |
a7a9a88f | 1039 | uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); |
56e93d26 | 1040 | |
2bf3aa85 | 1041 | bytes_sent = save_page_header(rs, f, block, offset | |
56e93d26 | 1042 | RAM_SAVE_FLAG_COMPRESS_PAGE); |
a7a9a88f | 1043 | blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE, |
56e93d26 | 1044 | migrate_compress_level()); |
b3be2896 LL |
1045 | if (blen < 0) { |
1046 | bytes_sent = 0; | |
1047 | qemu_file_set_error(migrate_get_current()->to_dst_file, blen); | |
1048 | error_report("compressed data failed!"); | |
1049 | } else { | |
1050 | bytes_sent += blen; | |
5727309d | 1051 | ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); |
b3be2896 | 1052 | } |
56e93d26 JQ |
1053 | |
1054 | return bytes_sent; | |
1055 | } | |
1056 | ||
ce25d337 | 1057 | static void flush_compressed_data(RAMState *rs) |
56e93d26 JQ |
1058 | { |
1059 | int idx, len, thread_count; | |
1060 | ||
1061 | if (!migrate_use_compression()) { | |
1062 | return; | |
1063 | } | |
1064 | thread_count = migrate_compress_threads(); | |
a7a9a88f | 1065 | |
0d9f9a5c | 1066 | qemu_mutex_lock(&comp_done_lock); |
56e93d26 | 1067 | for (idx = 0; idx < thread_count; idx++) { |
a7a9a88f | 1068 | while (!comp_param[idx].done) { |
0d9f9a5c | 1069 | qemu_cond_wait(&comp_done_cond, &comp_done_lock); |
56e93d26 | 1070 | } |
a7a9a88f | 1071 | } |
0d9f9a5c | 1072 | qemu_mutex_unlock(&comp_done_lock); |
a7a9a88f LL |
1073 | |
1074 | for (idx = 0; idx < thread_count; idx++) { | |
1075 | qemu_mutex_lock(&comp_param[idx].mutex); | |
90e56fb4 | 1076 | if (!comp_param[idx].quit) { |
ce25d337 | 1077 | len = qemu_put_qemu_file(rs->f, comp_param[idx].file); |
9360447d | 1078 | ram_counters.transferred += len; |
56e93d26 | 1079 | } |
a7a9a88f | 1080 | qemu_mutex_unlock(&comp_param[idx].mutex); |
56e93d26 JQ |
1081 | } |
1082 | } | |
1083 | ||
1084 | static inline void set_compress_params(CompressParam *param, RAMBlock *block, | |
1085 | ram_addr_t offset) | |
1086 | { | |
1087 | param->block = block; | |
1088 | param->offset = offset; | |
1089 | } | |
1090 | ||
ce25d337 JQ |
1091 | static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, |
1092 | ram_addr_t offset) | |
56e93d26 JQ |
1093 | { |
1094 | int idx, thread_count, bytes_xmit = -1, pages = -1; | |
1095 | ||
1096 | thread_count = migrate_compress_threads(); | |
0d9f9a5c | 1097 | qemu_mutex_lock(&comp_done_lock); |
56e93d26 JQ |
1098 | while (true) { |
1099 | for (idx = 0; idx < thread_count; idx++) { | |
1100 | if (comp_param[idx].done) { | |
a7a9a88f | 1101 | comp_param[idx].done = false; |
ce25d337 | 1102 | bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); |
a7a9a88f | 1103 | qemu_mutex_lock(&comp_param[idx].mutex); |
56e93d26 | 1104 | set_compress_params(&comp_param[idx], block, offset); |
a7a9a88f LL |
1105 | qemu_cond_signal(&comp_param[idx].cond); |
1106 | qemu_mutex_unlock(&comp_param[idx].mutex); | |
56e93d26 | 1107 | pages = 1; |
9360447d JQ |
1108 | ram_counters.normal++; |
1109 | ram_counters.transferred += bytes_xmit; | |
56e93d26 JQ |
1110 | break; |
1111 | } | |
1112 | } | |
1113 | if (pages > 0) { | |
1114 | break; | |
1115 | } else { | |
0d9f9a5c | 1116 | qemu_cond_wait(&comp_done_cond, &comp_done_lock); |
56e93d26 JQ |
1117 | } |
1118 | } | |
0d9f9a5c | 1119 | qemu_mutex_unlock(&comp_done_lock); |
56e93d26 JQ |
1120 | |
1121 | return pages; | |
1122 | } | |
1123 | ||
1124 | /** | |
1125 | * ram_save_compressed_page: compress the given page and send it to the stream | |
1126 | * | |
3d0684b2 | 1127 | * Returns the number of pages written. |
56e93d26 | 1128 | * |
6f37bb8b | 1129 | * @rs: current RAM state |
56e93d26 JQ |
1130 | * @block: block that contains the page we want to send |
1131 | * @offset: offset inside the block for the page | |
1132 | * @last_stage: if we are at the completion stage | |
56e93d26 | 1133 | */ |
a0a8aa14 JQ |
1134 | static int ram_save_compressed_page(RAMState *rs, PageSearchStatus *pss, |
1135 | bool last_stage) | |
56e93d26 JQ |
1136 | { |
1137 | int pages = -1; | |
fc50438e | 1138 | uint64_t bytes_xmit = 0; |
56e93d26 | 1139 | uint8_t *p; |
fc50438e | 1140 | int ret, blen; |
a08f6890 | 1141 | RAMBlock *block = pss->block; |
a935e30f | 1142 | ram_addr_t offset = pss->page << TARGET_PAGE_BITS; |
56e93d26 | 1143 | |
2f68e399 | 1144 | p = block->host + offset; |
56e93d26 | 1145 | |
ce25d337 | 1146 | ret = ram_control_save_page(rs->f, block->offset, |
56e93d26 JQ |
1147 | offset, TARGET_PAGE_SIZE, &bytes_xmit); |
1148 | if (bytes_xmit) { | |
9360447d | 1149 | ram_counters.transferred += bytes_xmit; |
56e93d26 JQ |
1150 | pages = 1; |
1151 | } | |
56e93d26 JQ |
1152 | if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { |
1153 | if (ret != RAM_SAVE_CONTROL_DELAYED) { | |
1154 | if (bytes_xmit > 0) { | |
9360447d | 1155 | ram_counters.normal++; |
56e93d26 | 1156 | } else if (bytes_xmit == 0) { |
9360447d | 1157 | ram_counters.duplicate++; |
56e93d26 JQ |
1158 | } |
1159 | } | |
1160 | } else { | |
1161 | /* When starting the process of a new block, the first page of | |
1162 | * the block should be sent out before other pages in the same | |
1163 | * block, and all the pages in last block should have been sent | |
1164 | * out, keeping this order is important, because the 'cont' flag | |
1165 | * is used to avoid resending the block name. | |
1166 | */ | |
6f37bb8b | 1167 | if (block != rs->last_sent_block) { |
ce25d337 | 1168 | flush_compressed_data(rs); |
7faccdc3 | 1169 | pages = save_zero_page(rs, block, offset); |
56e93d26 | 1170 | if (pages == -1) { |
fc50438e | 1171 | /* Make sure the first page is sent out before other pages */ |
2bf3aa85 | 1172 | bytes_xmit = save_page_header(rs, rs->f, block, offset | |
fc50438e | 1173 | RAM_SAVE_FLAG_COMPRESS_PAGE); |
ce25d337 | 1174 | blen = qemu_put_compression_data(rs->f, p, TARGET_PAGE_SIZE, |
fc50438e LL |
1175 | migrate_compress_level()); |
1176 | if (blen > 0) { | |
9360447d JQ |
1177 | ram_counters.transferred += bytes_xmit + blen; |
1178 | ram_counters.normal++; | |
b3be2896 | 1179 | pages = 1; |
fc50438e | 1180 | } else { |
ce25d337 | 1181 | qemu_file_set_error(rs->f, blen); |
fc50438e | 1182 | error_report("compressed data failed!"); |
b3be2896 | 1183 | } |
56e93d26 | 1184 | } |
53f09a10 | 1185 | if (pages > 0) { |
a935e30f | 1186 | ram_release_pages(block->idstr, offset, pages); |
53f09a10 | 1187 | } |
56e93d26 | 1188 | } else { |
7faccdc3 | 1189 | pages = save_zero_page(rs, block, offset); |
56e93d26 | 1190 | if (pages == -1) { |
ce25d337 | 1191 | pages = compress_page_with_multi_thread(rs, block, offset); |
53f09a10 | 1192 | } else { |
a935e30f | 1193 | ram_release_pages(block->idstr, offset, pages); |
56e93d26 JQ |
1194 | } |
1195 | } | |
1196 | } | |
1197 | ||
1198 | return pages; | |
1199 | } | |
1200 | ||
3d0684b2 JQ |
1201 | /** |
1202 | * find_dirty_block: find the next dirty page and update any state | |
1203 | * associated with the search process. | |
b9e60928 | 1204 | * |
3d0684b2 | 1205 | * Returns if a page is found |
b9e60928 | 1206 | * |
6f37bb8b | 1207 | * @rs: current RAM state |
3d0684b2 JQ |
1208 | * @pss: data about the state of the current dirty page scan |
1209 | * @again: set to false if the search has scanned the whole of RAM | |
b9e60928 | 1210 | */ |
f20e2865 | 1211 | static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) |
b9e60928 | 1212 | { |
f20e2865 | 1213 | pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); |
6f37bb8b | 1214 | if (pss->complete_round && pss->block == rs->last_seen_block && |
a935e30f | 1215 | pss->page >= rs->last_page) { |
b9e60928 DDAG |
1216 | /* |
1217 | * We've been once around the RAM and haven't found anything. | |
1218 | * Give up. | |
1219 | */ | |
1220 | *again = false; | |
1221 | return false; | |
1222 | } | |
a935e30f | 1223 | if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { |
b9e60928 | 1224 | /* Didn't find anything in this RAM Block */ |
a935e30f | 1225 | pss->page = 0; |
b9e60928 DDAG |
1226 | pss->block = QLIST_NEXT_RCU(pss->block, next); |
1227 | if (!pss->block) { | |
1228 | /* Hit the end of the list */ | |
1229 | pss->block = QLIST_FIRST_RCU(&ram_list.blocks); | |
1230 | /* Flag that we've looped */ | |
1231 | pss->complete_round = true; | |
6f37bb8b | 1232 | rs->ram_bulk_stage = false; |
b9e60928 DDAG |
1233 | if (migrate_use_xbzrle()) { |
1234 | /* If xbzrle is on, stop using the data compression at this | |
1235 | * point. In theory, xbzrle can do better than compression. | |
1236 | */ | |
ce25d337 | 1237 | flush_compressed_data(rs); |
b9e60928 DDAG |
1238 | } |
1239 | } | |
1240 | /* Didn't find anything this time, but try again on the new block */ | |
1241 | *again = true; | |
1242 | return false; | |
1243 | } else { | |
1244 | /* Can go around again, but... */ | |
1245 | *again = true; | |
1246 | /* We've found something so probably don't need to */ | |
1247 | return true; | |
1248 | } | |
1249 | } | |
1250 | ||
3d0684b2 JQ |
1251 | /** |
1252 | * unqueue_page: gets a page of the queue | |
1253 | * | |
a82d593b | 1254 | * Helper for 'get_queued_page' - gets a page off the queue |
a82d593b | 1255 | * |
3d0684b2 JQ |
1256 | * Returns the block of the page (or NULL if none available) |
1257 | * | |
ec481c6c | 1258 | * @rs: current RAM state |
3d0684b2 | 1259 | * @offset: used to return the offset within the RAMBlock |
a82d593b | 1260 | */ |
f20e2865 | 1261 | static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) |
a82d593b DDAG |
1262 | { |
1263 | RAMBlock *block = NULL; | |
1264 | ||
ec481c6c JQ |
1265 | qemu_mutex_lock(&rs->src_page_req_mutex); |
1266 | if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { | |
1267 | struct RAMSrcPageRequest *entry = | |
1268 | QSIMPLEQ_FIRST(&rs->src_page_requests); | |
a82d593b DDAG |
1269 | block = entry->rb; |
1270 | *offset = entry->offset; | |
a82d593b DDAG |
1271 | |
1272 | if (entry->len > TARGET_PAGE_SIZE) { | |
1273 | entry->len -= TARGET_PAGE_SIZE; | |
1274 | entry->offset += TARGET_PAGE_SIZE; | |
1275 | } else { | |
1276 | memory_region_unref(block->mr); | |
ec481c6c | 1277 | QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); |
a82d593b DDAG |
1278 | g_free(entry); |
1279 | } | |
1280 | } | |
ec481c6c | 1281 | qemu_mutex_unlock(&rs->src_page_req_mutex); |
a82d593b DDAG |
1282 | |
1283 | return block; | |
1284 | } | |
1285 | ||
3d0684b2 JQ |
1286 | /** |
1287 | * get_queued_page: unqueue a page from the postocpy requests | |
1288 | * | |
1289 | * Skips pages that are already sent (!dirty) | |
a82d593b | 1290 | * |
3d0684b2 | 1291 | * Returns if a queued page is found |
a82d593b | 1292 | * |
6f37bb8b | 1293 | * @rs: current RAM state |
3d0684b2 | 1294 | * @pss: data about the state of the current dirty page scan |
a82d593b | 1295 | */ |
f20e2865 | 1296 | static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) |
a82d593b DDAG |
1297 | { |
1298 | RAMBlock *block; | |
1299 | ram_addr_t offset; | |
1300 | bool dirty; | |
1301 | ||
1302 | do { | |
f20e2865 | 1303 | block = unqueue_page(rs, &offset); |
a82d593b DDAG |
1304 | /* |
1305 | * We're sending this page, and since it's postcopy nothing else | |
1306 | * will dirty it, and we must make sure it doesn't get sent again | |
1307 | * even if this queue request was received after the background | |
1308 | * search already sent it. | |
1309 | */ | |
1310 | if (block) { | |
f20e2865 JQ |
1311 | unsigned long page; |
1312 | ||
6b6712ef JQ |
1313 | page = offset >> TARGET_PAGE_BITS; |
1314 | dirty = test_bit(page, block->bmap); | |
a82d593b | 1315 | if (!dirty) { |
06b10688 | 1316 | trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, |
6b6712ef | 1317 | page, test_bit(page, block->unsentmap)); |
a82d593b | 1318 | } else { |
f20e2865 | 1319 | trace_get_queued_page(block->idstr, (uint64_t)offset, page); |
a82d593b DDAG |
1320 | } |
1321 | } | |
1322 | ||
1323 | } while (block && !dirty); | |
1324 | ||
1325 | if (block) { | |
1326 | /* | |
1327 | * As soon as we start servicing pages out of order, then we have | |
1328 | * to kill the bulk stage, since the bulk stage assumes | |
1329 | * in (migration_bitmap_find_and_reset_dirty) that every page is | |
1330 | * dirty, that's no longer true. | |
1331 | */ | |
6f37bb8b | 1332 | rs->ram_bulk_stage = false; |
a82d593b DDAG |
1333 | |
1334 | /* | |
1335 | * We want the background search to continue from the queued page | |
1336 | * since the guest is likely to want other pages near to the page | |
1337 | * it just requested. | |
1338 | */ | |
1339 | pss->block = block; | |
a935e30f | 1340 | pss->page = offset >> TARGET_PAGE_BITS; |
a82d593b DDAG |
1341 | } |
1342 | ||
1343 | return !!block; | |
1344 | } | |
1345 | ||
6c595cde | 1346 | /** |
5e58f968 JQ |
1347 | * migration_page_queue_free: drop any remaining pages in the ram |
1348 | * request queue | |
6c595cde | 1349 | * |
3d0684b2 JQ |
1350 | * It should be empty at the end anyway, but in error cases there may |
1351 | * be some left. in case that there is any page left, we drop it. | |
1352 | * | |
6c595cde | 1353 | */ |
83c13382 | 1354 | static void migration_page_queue_free(RAMState *rs) |
6c595cde | 1355 | { |
ec481c6c | 1356 | struct RAMSrcPageRequest *mspr, *next_mspr; |
6c595cde DDAG |
1357 | /* This queue generally should be empty - but in the case of a failed |
1358 | * migration might have some droppings in. | |
1359 | */ | |
1360 | rcu_read_lock(); | |
ec481c6c | 1361 | QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { |
6c595cde | 1362 | memory_region_unref(mspr->rb->mr); |
ec481c6c | 1363 | QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); |
6c595cde DDAG |
1364 | g_free(mspr); |
1365 | } | |
1366 | rcu_read_unlock(); | |
1367 | } | |
1368 | ||
1369 | /** | |
3d0684b2 JQ |
1370 | * ram_save_queue_pages: queue the page for transmission |
1371 | * | |
1372 | * A request from postcopy destination for example. | |
1373 | * | |
1374 | * Returns zero on success or negative on error | |
1375 | * | |
3d0684b2 JQ |
1376 | * @rbname: Name of the RAMBLock of the request. NULL means the |
1377 | * same that last one. | |
1378 | * @start: starting address from the start of the RAMBlock | |
1379 | * @len: length (in bytes) to send | |
6c595cde | 1380 | */ |
96506894 | 1381 | int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) |
6c595cde DDAG |
1382 | { |
1383 | RAMBlock *ramblock; | |
53518d94 | 1384 | RAMState *rs = ram_state; |
6c595cde | 1385 | |
9360447d | 1386 | ram_counters.postcopy_requests++; |
6c595cde DDAG |
1387 | rcu_read_lock(); |
1388 | if (!rbname) { | |
1389 | /* Reuse last RAMBlock */ | |
68a098f3 | 1390 | ramblock = rs->last_req_rb; |
6c595cde DDAG |
1391 | |
1392 | if (!ramblock) { | |
1393 | /* | |
1394 | * Shouldn't happen, we can't reuse the last RAMBlock if | |
1395 | * it's the 1st request. | |
1396 | */ | |
1397 | error_report("ram_save_queue_pages no previous block"); | |
1398 | goto err; | |
1399 | } | |
1400 | } else { | |
1401 | ramblock = qemu_ram_block_by_name(rbname); | |
1402 | ||
1403 | if (!ramblock) { | |
1404 | /* We shouldn't be asked for a non-existent RAMBlock */ | |
1405 | error_report("ram_save_queue_pages no block '%s'", rbname); | |
1406 | goto err; | |
1407 | } | |
68a098f3 | 1408 | rs->last_req_rb = ramblock; |
6c595cde DDAG |
1409 | } |
1410 | trace_ram_save_queue_pages(ramblock->idstr, start, len); | |
1411 | if (start+len > ramblock->used_length) { | |
9458ad6b JQ |
1412 | error_report("%s request overrun start=" RAM_ADDR_FMT " len=" |
1413 | RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, | |
6c595cde DDAG |
1414 | __func__, start, len, ramblock->used_length); |
1415 | goto err; | |
1416 | } | |
1417 | ||
ec481c6c JQ |
1418 | struct RAMSrcPageRequest *new_entry = |
1419 | g_malloc0(sizeof(struct RAMSrcPageRequest)); | |
6c595cde DDAG |
1420 | new_entry->rb = ramblock; |
1421 | new_entry->offset = start; | |
1422 | new_entry->len = len; | |
1423 | ||
1424 | memory_region_ref(ramblock->mr); | |
ec481c6c JQ |
1425 | qemu_mutex_lock(&rs->src_page_req_mutex); |
1426 | QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); | |
1427 | qemu_mutex_unlock(&rs->src_page_req_mutex); | |
6c595cde DDAG |
1428 | rcu_read_unlock(); |
1429 | ||
1430 | return 0; | |
1431 | ||
1432 | err: | |
1433 | rcu_read_unlock(); | |
1434 | return -1; | |
1435 | } | |
1436 | ||
a82d593b | 1437 | /** |
3d0684b2 | 1438 | * ram_save_target_page: save one target page |
a82d593b | 1439 | * |
3d0684b2 | 1440 | * Returns the number of pages written |
a82d593b | 1441 | * |
6f37bb8b | 1442 | * @rs: current RAM state |
3d0684b2 | 1443 | * @ms: current migration state |
3d0684b2 | 1444 | * @pss: data about the page we want to send |
a82d593b | 1445 | * @last_stage: if we are at the completion stage |
a82d593b | 1446 | */ |
a0a8aa14 | 1447 | static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, |
f20e2865 | 1448 | bool last_stage) |
a82d593b DDAG |
1449 | { |
1450 | int res = 0; | |
1451 | ||
1452 | /* Check the pages is dirty and if it is send it */ | |
f20e2865 | 1453 | if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { |
6d358d94 JQ |
1454 | /* |
1455 | * If xbzrle is on, stop using the data compression after first | |
1456 | * round of migration even if compression is enabled. In theory, | |
1457 | * xbzrle can do better than compression. | |
1458 | */ | |
6b6712ef JQ |
1459 | if (migrate_use_compression() && |
1460 | (rs->ram_bulk_stage || !migrate_use_xbzrle())) { | |
a0a8aa14 | 1461 | res = ram_save_compressed_page(rs, pss, last_stage); |
a82d593b | 1462 | } else { |
a0a8aa14 | 1463 | res = ram_save_page(rs, pss, last_stage); |
a82d593b DDAG |
1464 | } |
1465 | ||
1466 | if (res < 0) { | |
1467 | return res; | |
1468 | } | |
6b6712ef JQ |
1469 | if (pss->block->unsentmap) { |
1470 | clear_bit(pss->page, pss->block->unsentmap); | |
a82d593b DDAG |
1471 | } |
1472 | } | |
1473 | ||
1474 | return res; | |
1475 | } | |
1476 | ||
1477 | /** | |
3d0684b2 | 1478 | * ram_save_host_page: save a whole host page |
a82d593b | 1479 | * |
3d0684b2 JQ |
1480 | * Starting at *offset send pages up to the end of the current host |
1481 | * page. It's valid for the initial offset to point into the middle of | |
1482 | * a host page in which case the remainder of the hostpage is sent. | |
1483 | * Only dirty target pages are sent. Note that the host page size may | |
1484 | * be a huge page for this block. | |
1eb3fc0a DDAG |
1485 | * The saving stops at the boundary of the used_length of the block |
1486 | * if the RAMBlock isn't a multiple of the host page size. | |
a82d593b | 1487 | * |
3d0684b2 JQ |
1488 | * Returns the number of pages written or negative on error |
1489 | * | |
6f37bb8b | 1490 | * @rs: current RAM state |
3d0684b2 | 1491 | * @ms: current migration state |
3d0684b2 | 1492 | * @pss: data about the page we want to send |
a82d593b | 1493 | * @last_stage: if we are at the completion stage |
a82d593b | 1494 | */ |
a0a8aa14 | 1495 | static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, |
f20e2865 | 1496 | bool last_stage) |
a82d593b DDAG |
1497 | { |
1498 | int tmppages, pages = 0; | |
a935e30f JQ |
1499 | size_t pagesize_bits = |
1500 | qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; | |
4c011c37 | 1501 | |
a82d593b | 1502 | do { |
f20e2865 | 1503 | tmppages = ram_save_target_page(rs, pss, last_stage); |
a82d593b DDAG |
1504 | if (tmppages < 0) { |
1505 | return tmppages; | |
1506 | } | |
1507 | ||
1508 | pages += tmppages; | |
a935e30f | 1509 | pss->page++; |
1eb3fc0a DDAG |
1510 | } while ((pss->page & (pagesize_bits - 1)) && |
1511 | offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); | |
a82d593b DDAG |
1512 | |
1513 | /* The offset we leave with is the last one we looked at */ | |
a935e30f | 1514 | pss->page--; |
a82d593b DDAG |
1515 | return pages; |
1516 | } | |
6c595cde | 1517 | |
56e93d26 | 1518 | /** |
3d0684b2 | 1519 | * ram_find_and_save_block: finds a dirty page and sends it to f |
56e93d26 JQ |
1520 | * |
1521 | * Called within an RCU critical section. | |
1522 | * | |
3d0684b2 | 1523 | * Returns the number of pages written where zero means no dirty pages |
56e93d26 | 1524 | * |
6f37bb8b | 1525 | * @rs: current RAM state |
56e93d26 | 1526 | * @last_stage: if we are at the completion stage |
a82d593b DDAG |
1527 | * |
1528 | * On systems where host-page-size > target-page-size it will send all the | |
1529 | * pages in a host page that are dirty. | |
56e93d26 JQ |
1530 | */ |
1531 | ||
ce25d337 | 1532 | static int ram_find_and_save_block(RAMState *rs, bool last_stage) |
56e93d26 | 1533 | { |
b8fb8cb7 | 1534 | PageSearchStatus pss; |
56e93d26 | 1535 | int pages = 0; |
b9e60928 | 1536 | bool again, found; |
56e93d26 | 1537 | |
0827b9e9 AA |
1538 | /* No dirty page as there is zero RAM */ |
1539 | if (!ram_bytes_total()) { | |
1540 | return pages; | |
1541 | } | |
1542 | ||
6f37bb8b | 1543 | pss.block = rs->last_seen_block; |
a935e30f | 1544 | pss.page = rs->last_page; |
b8fb8cb7 DDAG |
1545 | pss.complete_round = false; |
1546 | ||
1547 | if (!pss.block) { | |
1548 | pss.block = QLIST_FIRST_RCU(&ram_list.blocks); | |
1549 | } | |
56e93d26 | 1550 | |
b9e60928 | 1551 | do { |
a82d593b | 1552 | again = true; |
f20e2865 | 1553 | found = get_queued_page(rs, &pss); |
b9e60928 | 1554 | |
a82d593b DDAG |
1555 | if (!found) { |
1556 | /* priority queue empty, so just search for something dirty */ | |
f20e2865 | 1557 | found = find_dirty_block(rs, &pss, &again); |
a82d593b | 1558 | } |
f3f491fc | 1559 | |
a82d593b | 1560 | if (found) { |
f20e2865 | 1561 | pages = ram_save_host_page(rs, &pss, last_stage); |
56e93d26 | 1562 | } |
b9e60928 | 1563 | } while (!pages && again); |
56e93d26 | 1564 | |
6f37bb8b | 1565 | rs->last_seen_block = pss.block; |
a935e30f | 1566 | rs->last_page = pss.page; |
56e93d26 JQ |
1567 | |
1568 | return pages; | |
1569 | } | |
1570 | ||
1571 | void acct_update_position(QEMUFile *f, size_t size, bool zero) | |
1572 | { | |
1573 | uint64_t pages = size / TARGET_PAGE_SIZE; | |
f7ccd61b | 1574 | |
56e93d26 | 1575 | if (zero) { |
9360447d | 1576 | ram_counters.duplicate += pages; |
56e93d26 | 1577 | } else { |
9360447d JQ |
1578 | ram_counters.normal += pages; |
1579 | ram_counters.transferred += size; | |
56e93d26 JQ |
1580 | qemu_update_position(f, size); |
1581 | } | |
1582 | } | |
1583 | ||
56e93d26 JQ |
1584 | uint64_t ram_bytes_total(void) |
1585 | { | |
1586 | RAMBlock *block; | |
1587 | uint64_t total = 0; | |
1588 | ||
1589 | rcu_read_lock(); | |
99e15582 | 1590 | RAMBLOCK_FOREACH(block) { |
56e93d26 | 1591 | total += block->used_length; |
99e15582 | 1592 | } |
56e93d26 JQ |
1593 | rcu_read_unlock(); |
1594 | return total; | |
1595 | } | |
1596 | ||
f265e0e4 | 1597 | static void xbzrle_load_setup(void) |
56e93d26 | 1598 | { |
f265e0e4 | 1599 | XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); |
56e93d26 JQ |
1600 | } |
1601 | ||
f265e0e4 JQ |
1602 | static void xbzrle_load_cleanup(void) |
1603 | { | |
1604 | g_free(XBZRLE.decoded_buf); | |
1605 | XBZRLE.decoded_buf = NULL; | |
1606 | } | |
1607 | ||
7d7c96be PX |
1608 | static void ram_state_cleanup(RAMState **rsp) |
1609 | { | |
b9ccaf6d DDAG |
1610 | if (*rsp) { |
1611 | migration_page_queue_free(*rsp); | |
1612 | qemu_mutex_destroy(&(*rsp)->bitmap_mutex); | |
1613 | qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); | |
1614 | g_free(*rsp); | |
1615 | *rsp = NULL; | |
1616 | } | |
7d7c96be PX |
1617 | } |
1618 | ||
84593a08 PX |
1619 | static void xbzrle_cleanup(void) |
1620 | { | |
1621 | XBZRLE_cache_lock(); | |
1622 | if (XBZRLE.cache) { | |
1623 | cache_fini(XBZRLE.cache); | |
1624 | g_free(XBZRLE.encoded_buf); | |
1625 | g_free(XBZRLE.current_buf); | |
1626 | g_free(XBZRLE.zero_target_page); | |
1627 | XBZRLE.cache = NULL; | |
1628 | XBZRLE.encoded_buf = NULL; | |
1629 | XBZRLE.current_buf = NULL; | |
1630 | XBZRLE.zero_target_page = NULL; | |
1631 | } | |
1632 | XBZRLE_cache_unlock(); | |
1633 | } | |
1634 | ||
f265e0e4 | 1635 | static void ram_save_cleanup(void *opaque) |
56e93d26 | 1636 | { |
53518d94 | 1637 | RAMState **rsp = opaque; |
6b6712ef | 1638 | RAMBlock *block; |
eb859c53 | 1639 | |
2ff64038 LZ |
1640 | /* caller have hold iothread lock or is in a bh, so there is |
1641 | * no writing race against this migration_bitmap | |
1642 | */ | |
6b6712ef JQ |
1643 | memory_global_dirty_log_stop(); |
1644 | ||
1645 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1646 | g_free(block->bmap); | |
1647 | block->bmap = NULL; | |
1648 | g_free(block->unsentmap); | |
1649 | block->unsentmap = NULL; | |
56e93d26 JQ |
1650 | } |
1651 | ||
84593a08 | 1652 | xbzrle_cleanup(); |
f0afa331 | 1653 | compress_threads_save_cleanup(); |
7d7c96be | 1654 | ram_state_cleanup(rsp); |
56e93d26 JQ |
1655 | } |
1656 | ||
6f37bb8b | 1657 | static void ram_state_reset(RAMState *rs) |
56e93d26 | 1658 | { |
6f37bb8b JQ |
1659 | rs->last_seen_block = NULL; |
1660 | rs->last_sent_block = NULL; | |
269ace29 | 1661 | rs->last_page = 0; |
6f37bb8b JQ |
1662 | rs->last_version = ram_list.version; |
1663 | rs->ram_bulk_stage = true; | |
56e93d26 JQ |
1664 | } |
1665 | ||
1666 | #define MAX_WAIT 50 /* ms, half buffered_file limit */ | |
1667 | ||
4f2e4252 DDAG |
1668 | /* |
1669 | * 'expected' is the value you expect the bitmap mostly to be full | |
1670 | * of; it won't bother printing lines that are all this value. | |
1671 | * If 'todump' is null the migration bitmap is dumped. | |
1672 | */ | |
6b6712ef JQ |
1673 | void ram_debug_dump_bitmap(unsigned long *todump, bool expected, |
1674 | unsigned long pages) | |
4f2e4252 | 1675 | { |
4f2e4252 DDAG |
1676 | int64_t cur; |
1677 | int64_t linelen = 128; | |
1678 | char linebuf[129]; | |
1679 | ||
6b6712ef | 1680 | for (cur = 0; cur < pages; cur += linelen) { |
4f2e4252 DDAG |
1681 | int64_t curb; |
1682 | bool found = false; | |
1683 | /* | |
1684 | * Last line; catch the case where the line length | |
1685 | * is longer than remaining ram | |
1686 | */ | |
6b6712ef JQ |
1687 | if (cur + linelen > pages) { |
1688 | linelen = pages - cur; | |
4f2e4252 DDAG |
1689 | } |
1690 | for (curb = 0; curb < linelen; curb++) { | |
1691 | bool thisbit = test_bit(cur + curb, todump); | |
1692 | linebuf[curb] = thisbit ? '1' : '.'; | |
1693 | found = found || (thisbit != expected); | |
1694 | } | |
1695 | if (found) { | |
1696 | linebuf[curb] = '\0'; | |
1697 | fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); | |
1698 | } | |
1699 | } | |
1700 | } | |
1701 | ||
e0b266f0 DDAG |
1702 | /* **** functions for postcopy ***** */ |
1703 | ||
ced1c616 PB |
1704 | void ram_postcopy_migrated_memory_release(MigrationState *ms) |
1705 | { | |
1706 | struct RAMBlock *block; | |
ced1c616 | 1707 | |
99e15582 | 1708 | RAMBLOCK_FOREACH(block) { |
6b6712ef JQ |
1709 | unsigned long *bitmap = block->bmap; |
1710 | unsigned long range = block->used_length >> TARGET_PAGE_BITS; | |
1711 | unsigned long run_start = find_next_zero_bit(bitmap, range, 0); | |
ced1c616 PB |
1712 | |
1713 | while (run_start < range) { | |
1714 | unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); | |
aaa2064c | 1715 | ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, |
ced1c616 PB |
1716 | (run_end - run_start) << TARGET_PAGE_BITS); |
1717 | run_start = find_next_zero_bit(bitmap, range, run_end + 1); | |
1718 | } | |
1719 | } | |
1720 | } | |
1721 | ||
3d0684b2 JQ |
1722 | /** |
1723 | * postcopy_send_discard_bm_ram: discard a RAMBlock | |
1724 | * | |
1725 | * Returns zero on success | |
1726 | * | |
e0b266f0 DDAG |
1727 | * Callback from postcopy_each_ram_send_discard for each RAMBlock |
1728 | * Note: At this point the 'unsentmap' is the processed bitmap combined | |
1729 | * with the dirtymap; so a '1' means it's either dirty or unsent. | |
3d0684b2 JQ |
1730 | * |
1731 | * @ms: current migration state | |
1732 | * @pds: state for postcopy | |
1733 | * @start: RAMBlock starting page | |
1734 | * @length: RAMBlock size | |
e0b266f0 DDAG |
1735 | */ |
1736 | static int postcopy_send_discard_bm_ram(MigrationState *ms, | |
1737 | PostcopyDiscardState *pds, | |
6b6712ef | 1738 | RAMBlock *block) |
e0b266f0 | 1739 | { |
6b6712ef | 1740 | unsigned long end = block->used_length >> TARGET_PAGE_BITS; |
e0b266f0 | 1741 | unsigned long current; |
6b6712ef | 1742 | unsigned long *unsentmap = block->unsentmap; |
e0b266f0 | 1743 | |
6b6712ef | 1744 | for (current = 0; current < end; ) { |
e0b266f0 DDAG |
1745 | unsigned long one = find_next_bit(unsentmap, end, current); |
1746 | ||
1747 | if (one <= end) { | |
1748 | unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); | |
1749 | unsigned long discard_length; | |
1750 | ||
1751 | if (zero >= end) { | |
1752 | discard_length = end - one; | |
1753 | } else { | |
1754 | discard_length = zero - one; | |
1755 | } | |
d688c62d DDAG |
1756 | if (discard_length) { |
1757 | postcopy_discard_send_range(ms, pds, one, discard_length); | |
1758 | } | |
e0b266f0 DDAG |
1759 | current = one + discard_length; |
1760 | } else { | |
1761 | current = one; | |
1762 | } | |
1763 | } | |
1764 | ||
1765 | return 0; | |
1766 | } | |
1767 | ||
3d0684b2 JQ |
1768 | /** |
1769 | * postcopy_each_ram_send_discard: discard all RAMBlocks | |
1770 | * | |
1771 | * Returns 0 for success or negative for error | |
1772 | * | |
e0b266f0 DDAG |
1773 | * Utility for the outgoing postcopy code. |
1774 | * Calls postcopy_send_discard_bm_ram for each RAMBlock | |
1775 | * passing it bitmap indexes and name. | |
e0b266f0 DDAG |
1776 | * (qemu_ram_foreach_block ends up passing unscaled lengths |
1777 | * which would mean postcopy code would have to deal with target page) | |
3d0684b2 JQ |
1778 | * |
1779 | * @ms: current migration state | |
e0b266f0 DDAG |
1780 | */ |
1781 | static int postcopy_each_ram_send_discard(MigrationState *ms) | |
1782 | { | |
1783 | struct RAMBlock *block; | |
1784 | int ret; | |
1785 | ||
99e15582 | 1786 | RAMBLOCK_FOREACH(block) { |
6b6712ef JQ |
1787 | PostcopyDiscardState *pds = |
1788 | postcopy_discard_send_init(ms, block->idstr); | |
e0b266f0 DDAG |
1789 | |
1790 | /* | |
1791 | * Postcopy sends chunks of bitmap over the wire, but it | |
1792 | * just needs indexes at this point, avoids it having | |
1793 | * target page specific code. | |
1794 | */ | |
6b6712ef | 1795 | ret = postcopy_send_discard_bm_ram(ms, pds, block); |
e0b266f0 DDAG |
1796 | postcopy_discard_send_finish(ms, pds); |
1797 | if (ret) { | |
1798 | return ret; | |
1799 | } | |
1800 | } | |
1801 | ||
1802 | return 0; | |
1803 | } | |
1804 | ||
3d0684b2 JQ |
1805 | /** |
1806 | * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages | |
1807 | * | |
1808 | * Helper for postcopy_chunk_hostpages; it's called twice to | |
1809 | * canonicalize the two bitmaps, that are similar, but one is | |
1810 | * inverted. | |
99e314eb | 1811 | * |
3d0684b2 JQ |
1812 | * Postcopy requires that all target pages in a hostpage are dirty or |
1813 | * clean, not a mix. This function canonicalizes the bitmaps. | |
99e314eb | 1814 | * |
3d0684b2 JQ |
1815 | * @ms: current migration state |
1816 | * @unsent_pass: if true we need to canonicalize partially unsent host pages | |
1817 | * otherwise we need to canonicalize partially dirty host pages | |
1818 | * @block: block that contains the page we want to canonicalize | |
1819 | * @pds: state for postcopy | |
99e314eb DDAG |
1820 | */ |
1821 | static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, | |
1822 | RAMBlock *block, | |
1823 | PostcopyDiscardState *pds) | |
1824 | { | |
53518d94 | 1825 | RAMState *rs = ram_state; |
6b6712ef JQ |
1826 | unsigned long *bitmap = block->bmap; |
1827 | unsigned long *unsentmap = block->unsentmap; | |
29c59172 | 1828 | unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; |
6b6712ef | 1829 | unsigned long pages = block->used_length >> TARGET_PAGE_BITS; |
99e314eb DDAG |
1830 | unsigned long run_start; |
1831 | ||
29c59172 DDAG |
1832 | if (block->page_size == TARGET_PAGE_SIZE) { |
1833 | /* Easy case - TPS==HPS for a non-huge page RAMBlock */ | |
1834 | return; | |
1835 | } | |
1836 | ||
99e314eb DDAG |
1837 | if (unsent_pass) { |
1838 | /* Find a sent page */ | |
6b6712ef | 1839 | run_start = find_next_zero_bit(unsentmap, pages, 0); |
99e314eb DDAG |
1840 | } else { |
1841 | /* Find a dirty page */ | |
6b6712ef | 1842 | run_start = find_next_bit(bitmap, pages, 0); |
99e314eb DDAG |
1843 | } |
1844 | ||
6b6712ef | 1845 | while (run_start < pages) { |
99e314eb DDAG |
1846 | bool do_fixup = false; |
1847 | unsigned long fixup_start_addr; | |
1848 | unsigned long host_offset; | |
1849 | ||
1850 | /* | |
1851 | * If the start of this run of pages is in the middle of a host | |
1852 | * page, then we need to fixup this host page. | |
1853 | */ | |
1854 | host_offset = run_start % host_ratio; | |
1855 | if (host_offset) { | |
1856 | do_fixup = true; | |
1857 | run_start -= host_offset; | |
1858 | fixup_start_addr = run_start; | |
1859 | /* For the next pass */ | |
1860 | run_start = run_start + host_ratio; | |
1861 | } else { | |
1862 | /* Find the end of this run */ | |
1863 | unsigned long run_end; | |
1864 | if (unsent_pass) { | |
6b6712ef | 1865 | run_end = find_next_bit(unsentmap, pages, run_start + 1); |
99e314eb | 1866 | } else { |
6b6712ef | 1867 | run_end = find_next_zero_bit(bitmap, pages, run_start + 1); |
99e314eb DDAG |
1868 | } |
1869 | /* | |
1870 | * If the end isn't at the start of a host page, then the | |
1871 | * run doesn't finish at the end of a host page | |
1872 | * and we need to discard. | |
1873 | */ | |
1874 | host_offset = run_end % host_ratio; | |
1875 | if (host_offset) { | |
1876 | do_fixup = true; | |
1877 | fixup_start_addr = run_end - host_offset; | |
1878 | /* | |
1879 | * This host page has gone, the next loop iteration starts | |
1880 | * from after the fixup | |
1881 | */ | |
1882 | run_start = fixup_start_addr + host_ratio; | |
1883 | } else { | |
1884 | /* | |
1885 | * No discards on this iteration, next loop starts from | |
1886 | * next sent/dirty page | |
1887 | */ | |
1888 | run_start = run_end + 1; | |
1889 | } | |
1890 | } | |
1891 | ||
1892 | if (do_fixup) { | |
1893 | unsigned long page; | |
1894 | ||
1895 | /* Tell the destination to discard this page */ | |
1896 | if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { | |
1897 | /* For the unsent_pass we: | |
1898 | * discard partially sent pages | |
1899 | * For the !unsent_pass (dirty) we: | |
1900 | * discard partially dirty pages that were sent | |
1901 | * (any partially sent pages were already discarded | |
1902 | * by the previous unsent_pass) | |
1903 | */ | |
1904 | postcopy_discard_send_range(ms, pds, fixup_start_addr, | |
1905 | host_ratio); | |
1906 | } | |
1907 | ||
1908 | /* Clean up the bitmap */ | |
1909 | for (page = fixup_start_addr; | |
1910 | page < fixup_start_addr + host_ratio; page++) { | |
1911 | /* All pages in this host page are now not sent */ | |
1912 | set_bit(page, unsentmap); | |
1913 | ||
1914 | /* | |
1915 | * Remark them as dirty, updating the count for any pages | |
1916 | * that weren't previously dirty. | |
1917 | */ | |
0d8ec885 | 1918 | rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); |
99e314eb DDAG |
1919 | } |
1920 | } | |
1921 | ||
1922 | if (unsent_pass) { | |
1923 | /* Find the next sent page for the next iteration */ | |
6b6712ef | 1924 | run_start = find_next_zero_bit(unsentmap, pages, run_start); |
99e314eb DDAG |
1925 | } else { |
1926 | /* Find the next dirty page for the next iteration */ | |
6b6712ef | 1927 | run_start = find_next_bit(bitmap, pages, run_start); |
99e314eb DDAG |
1928 | } |
1929 | } | |
1930 | } | |
1931 | ||
3d0684b2 JQ |
1932 | /** |
1933 | * postcopy_chuck_hostpages: discrad any partially sent host page | |
1934 | * | |
99e314eb DDAG |
1935 | * Utility for the outgoing postcopy code. |
1936 | * | |
1937 | * Discard any partially sent host-page size chunks, mark any partially | |
29c59172 DDAG |
1938 | * dirty host-page size chunks as all dirty. In this case the host-page |
1939 | * is the host-page for the particular RAMBlock, i.e. it might be a huge page | |
99e314eb | 1940 | * |
3d0684b2 JQ |
1941 | * Returns zero on success |
1942 | * | |
1943 | * @ms: current migration state | |
6b6712ef | 1944 | * @block: block we want to work with |
99e314eb | 1945 | */ |
6b6712ef | 1946 | static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) |
99e314eb | 1947 | { |
6b6712ef JQ |
1948 | PostcopyDiscardState *pds = |
1949 | postcopy_discard_send_init(ms, block->idstr); | |
99e314eb | 1950 | |
6b6712ef JQ |
1951 | /* First pass: Discard all partially sent host pages */ |
1952 | postcopy_chunk_hostpages_pass(ms, true, block, pds); | |
1953 | /* | |
1954 | * Second pass: Ensure that all partially dirty host pages are made | |
1955 | * fully dirty. | |
1956 | */ | |
1957 | postcopy_chunk_hostpages_pass(ms, false, block, pds); | |
99e314eb | 1958 | |
6b6712ef | 1959 | postcopy_discard_send_finish(ms, pds); |
99e314eb DDAG |
1960 | return 0; |
1961 | } | |
1962 | ||
3d0684b2 JQ |
1963 | /** |
1964 | * ram_postcopy_send_discard_bitmap: transmit the discard bitmap | |
1965 | * | |
1966 | * Returns zero on success | |
1967 | * | |
e0b266f0 DDAG |
1968 | * Transmit the set of pages to be discarded after precopy to the target |
1969 | * these are pages that: | |
1970 | * a) Have been previously transmitted but are now dirty again | |
1971 | * b) Pages that have never been transmitted, this ensures that | |
1972 | * any pages on the destination that have been mapped by background | |
1973 | * tasks get discarded (transparent huge pages is the specific concern) | |
1974 | * Hopefully this is pretty sparse | |
3d0684b2 JQ |
1975 | * |
1976 | * @ms: current migration state | |
e0b266f0 DDAG |
1977 | */ |
1978 | int ram_postcopy_send_discard_bitmap(MigrationState *ms) | |
1979 | { | |
53518d94 | 1980 | RAMState *rs = ram_state; |
6b6712ef | 1981 | RAMBlock *block; |
e0b266f0 | 1982 | int ret; |
e0b266f0 DDAG |
1983 | |
1984 | rcu_read_lock(); | |
1985 | ||
1986 | /* This should be our last sync, the src is now paused */ | |
eb859c53 | 1987 | migration_bitmap_sync(rs); |
e0b266f0 | 1988 | |
6b6712ef JQ |
1989 | /* Easiest way to make sure we don't resume in the middle of a host-page */ |
1990 | rs->last_seen_block = NULL; | |
1991 | rs->last_sent_block = NULL; | |
1992 | rs->last_page = 0; | |
e0b266f0 | 1993 | |
6b6712ef JQ |
1994 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
1995 | unsigned long pages = block->used_length >> TARGET_PAGE_BITS; | |
1996 | unsigned long *bitmap = block->bmap; | |
1997 | unsigned long *unsentmap = block->unsentmap; | |
1998 | ||
1999 | if (!unsentmap) { | |
2000 | /* We don't have a safe way to resize the sentmap, so | |
2001 | * if the bitmap was resized it will be NULL at this | |
2002 | * point. | |
2003 | */ | |
2004 | error_report("migration ram resized during precopy phase"); | |
2005 | rcu_read_unlock(); | |
2006 | return -EINVAL; | |
2007 | } | |
2008 | /* Deal with TPS != HPS and huge pages */ | |
2009 | ret = postcopy_chunk_hostpages(ms, block); | |
2010 | if (ret) { | |
2011 | rcu_read_unlock(); | |
2012 | return ret; | |
2013 | } | |
e0b266f0 | 2014 | |
6b6712ef JQ |
2015 | /* |
2016 | * Update the unsentmap to be unsentmap = unsentmap | dirty | |
2017 | */ | |
2018 | bitmap_or(unsentmap, unsentmap, bitmap, pages); | |
e0b266f0 | 2019 | #ifdef DEBUG_POSTCOPY |
6b6712ef | 2020 | ram_debug_dump_bitmap(unsentmap, true, pages); |
e0b266f0 | 2021 | #endif |
6b6712ef JQ |
2022 | } |
2023 | trace_ram_postcopy_send_discard_bitmap(); | |
e0b266f0 DDAG |
2024 | |
2025 | ret = postcopy_each_ram_send_discard(ms); | |
2026 | rcu_read_unlock(); | |
2027 | ||
2028 | return ret; | |
2029 | } | |
2030 | ||
3d0684b2 JQ |
2031 | /** |
2032 | * ram_discard_range: discard dirtied pages at the beginning of postcopy | |
e0b266f0 | 2033 | * |
3d0684b2 | 2034 | * Returns zero on success |
e0b266f0 | 2035 | * |
36449157 JQ |
2036 | * @rbname: name of the RAMBlock of the request. NULL means the |
2037 | * same that last one. | |
3d0684b2 JQ |
2038 | * @start: RAMBlock starting page |
2039 | * @length: RAMBlock size | |
e0b266f0 | 2040 | */ |
aaa2064c | 2041 | int ram_discard_range(const char *rbname, uint64_t start, size_t length) |
e0b266f0 DDAG |
2042 | { |
2043 | int ret = -1; | |
2044 | ||
36449157 | 2045 | trace_ram_discard_range(rbname, start, length); |
d3a5038c | 2046 | |
e0b266f0 | 2047 | rcu_read_lock(); |
36449157 | 2048 | RAMBlock *rb = qemu_ram_block_by_name(rbname); |
e0b266f0 DDAG |
2049 | |
2050 | if (!rb) { | |
36449157 | 2051 | error_report("ram_discard_range: Failed to find block '%s'", rbname); |
e0b266f0 DDAG |
2052 | goto err; |
2053 | } | |
2054 | ||
f9494614 AP |
2055 | bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), |
2056 | length >> qemu_target_page_bits()); | |
d3a5038c | 2057 | ret = ram_block_discard_range(rb, start, length); |
e0b266f0 DDAG |
2058 | |
2059 | err: | |
2060 | rcu_read_unlock(); | |
2061 | ||
2062 | return ret; | |
2063 | } | |
2064 | ||
84593a08 PX |
2065 | /* |
2066 | * For every allocation, we will try not to crash the VM if the | |
2067 | * allocation failed. | |
2068 | */ | |
2069 | static int xbzrle_init(void) | |
2070 | { | |
2071 | Error *local_err = NULL; | |
2072 | ||
2073 | if (!migrate_use_xbzrle()) { | |
2074 | return 0; | |
2075 | } | |
2076 | ||
2077 | XBZRLE_cache_lock(); | |
2078 | ||
2079 | XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); | |
2080 | if (!XBZRLE.zero_target_page) { | |
2081 | error_report("%s: Error allocating zero page", __func__); | |
2082 | goto err_out; | |
2083 | } | |
2084 | ||
2085 | XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), | |
2086 | TARGET_PAGE_SIZE, &local_err); | |
2087 | if (!XBZRLE.cache) { | |
2088 | error_report_err(local_err); | |
2089 | goto free_zero_page; | |
2090 | } | |
2091 | ||
2092 | XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); | |
2093 | if (!XBZRLE.encoded_buf) { | |
2094 | error_report("%s: Error allocating encoded_buf", __func__); | |
2095 | goto free_cache; | |
2096 | } | |
2097 | ||
2098 | XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); | |
2099 | if (!XBZRLE.current_buf) { | |
2100 | error_report("%s: Error allocating current_buf", __func__); | |
2101 | goto free_encoded_buf; | |
2102 | } | |
2103 | ||
2104 | /* We are all good */ | |
2105 | XBZRLE_cache_unlock(); | |
2106 | return 0; | |
2107 | ||
2108 | free_encoded_buf: | |
2109 | g_free(XBZRLE.encoded_buf); | |
2110 | XBZRLE.encoded_buf = NULL; | |
2111 | free_cache: | |
2112 | cache_fini(XBZRLE.cache); | |
2113 | XBZRLE.cache = NULL; | |
2114 | free_zero_page: | |
2115 | g_free(XBZRLE.zero_target_page); | |
2116 | XBZRLE.zero_target_page = NULL; | |
2117 | err_out: | |
2118 | XBZRLE_cache_unlock(); | |
2119 | return -ENOMEM; | |
2120 | } | |
2121 | ||
53518d94 | 2122 | static int ram_state_init(RAMState **rsp) |
56e93d26 | 2123 | { |
7d00ee6a PX |
2124 | *rsp = g_try_new0(RAMState, 1); |
2125 | ||
2126 | if (!*rsp) { | |
2127 | error_report("%s: Init ramstate fail", __func__); | |
2128 | return -1; | |
2129 | } | |
53518d94 JQ |
2130 | |
2131 | qemu_mutex_init(&(*rsp)->bitmap_mutex); | |
2132 | qemu_mutex_init(&(*rsp)->src_page_req_mutex); | |
2133 | QSIMPLEQ_INIT(&(*rsp)->src_page_requests); | |
56e93d26 | 2134 | |
7d00ee6a PX |
2135 | /* |
2136 | * Count the total number of pages used by ram blocks not including any | |
2137 | * gaps due to alignment or unplugs. | |
2138 | */ | |
2139 | (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; | |
2140 | ||
2141 | ram_state_reset(*rsp); | |
2142 | ||
2143 | return 0; | |
2144 | } | |
2145 | ||
d6eff5d7 | 2146 | static void ram_list_init_bitmaps(void) |
7d00ee6a | 2147 | { |
d6eff5d7 PX |
2148 | RAMBlock *block; |
2149 | unsigned long pages; | |
56e93d26 | 2150 | |
0827b9e9 AA |
2151 | /* Skip setting bitmap if there is no RAM */ |
2152 | if (ram_bytes_total()) { | |
6b6712ef | 2153 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
d6eff5d7 | 2154 | pages = block->max_length >> TARGET_PAGE_BITS; |
6b6712ef JQ |
2155 | block->bmap = bitmap_new(pages); |
2156 | bitmap_set(block->bmap, 0, pages); | |
2157 | if (migrate_postcopy_ram()) { | |
2158 | block->unsentmap = bitmap_new(pages); | |
2159 | bitmap_set(block->unsentmap, 0, pages); | |
2160 | } | |
0827b9e9 | 2161 | } |
f3f491fc | 2162 | } |
d6eff5d7 PX |
2163 | } |
2164 | ||
2165 | static void ram_init_bitmaps(RAMState *rs) | |
2166 | { | |
2167 | /* For memory_global_dirty_log_start below. */ | |
2168 | qemu_mutex_lock_iothread(); | |
2169 | qemu_mutex_lock_ramlist(); | |
2170 | rcu_read_lock(); | |
f3f491fc | 2171 | |
d6eff5d7 | 2172 | ram_list_init_bitmaps(); |
56e93d26 | 2173 | memory_global_dirty_log_start(); |
d6eff5d7 PX |
2174 | migration_bitmap_sync(rs); |
2175 | ||
2176 | rcu_read_unlock(); | |
56e93d26 | 2177 | qemu_mutex_unlock_ramlist(); |
49877834 | 2178 | qemu_mutex_unlock_iothread(); |
d6eff5d7 PX |
2179 | } |
2180 | ||
2181 | static int ram_init_all(RAMState **rsp) | |
2182 | { | |
2183 | if (ram_state_init(rsp)) { | |
2184 | return -1; | |
2185 | } | |
2186 | ||
2187 | if (xbzrle_init()) { | |
2188 | ram_state_cleanup(rsp); | |
2189 | return -1; | |
2190 | } | |
2191 | ||
2192 | ram_init_bitmaps(*rsp); | |
a91246c9 HZ |
2193 | |
2194 | return 0; | |
2195 | } | |
2196 | ||
3d0684b2 JQ |
2197 | /* |
2198 | * Each of ram_save_setup, ram_save_iterate and ram_save_complete has | |
a91246c9 HZ |
2199 | * long-running RCU critical section. When rcu-reclaims in the code |
2200 | * start to become numerous it will be necessary to reduce the | |
2201 | * granularity of these critical sections. | |
2202 | */ | |
2203 | ||
3d0684b2 JQ |
2204 | /** |
2205 | * ram_save_setup: Setup RAM for migration | |
2206 | * | |
2207 | * Returns zero to indicate success and negative for error | |
2208 | * | |
2209 | * @f: QEMUFile where to send the data | |
2210 | * @opaque: RAMState pointer | |
2211 | */ | |
a91246c9 HZ |
2212 | static int ram_save_setup(QEMUFile *f, void *opaque) |
2213 | { | |
53518d94 | 2214 | RAMState **rsp = opaque; |
a91246c9 HZ |
2215 | RAMBlock *block; |
2216 | ||
2217 | /* migration has already setup the bitmap, reuse it. */ | |
2218 | if (!migration_in_colo_state()) { | |
7d00ee6a | 2219 | if (ram_init_all(rsp) != 0) { |
a91246c9 | 2220 | return -1; |
53518d94 | 2221 | } |
a91246c9 | 2222 | } |
53518d94 | 2223 | (*rsp)->f = f; |
a91246c9 HZ |
2224 | |
2225 | rcu_read_lock(); | |
56e93d26 JQ |
2226 | |
2227 | qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); | |
2228 | ||
99e15582 | 2229 | RAMBLOCK_FOREACH(block) { |
56e93d26 JQ |
2230 | qemu_put_byte(f, strlen(block->idstr)); |
2231 | qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); | |
2232 | qemu_put_be64(f, block->used_length); | |
ef08fb38 DDAG |
2233 | if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { |
2234 | qemu_put_be64(f, block->page_size); | |
2235 | } | |
56e93d26 JQ |
2236 | } |
2237 | ||
2238 | rcu_read_unlock(); | |
f0afa331 | 2239 | compress_threads_save_setup(); |
56e93d26 JQ |
2240 | |
2241 | ram_control_before_iterate(f, RAM_CONTROL_SETUP); | |
2242 | ram_control_after_iterate(f, RAM_CONTROL_SETUP); | |
2243 | ||
2244 | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); | |
2245 | ||
2246 | return 0; | |
2247 | } | |
2248 | ||
3d0684b2 JQ |
2249 | /** |
2250 | * ram_save_iterate: iterative stage for migration | |
2251 | * | |
2252 | * Returns zero to indicate success and negative for error | |
2253 | * | |
2254 | * @f: QEMUFile where to send the data | |
2255 | * @opaque: RAMState pointer | |
2256 | */ | |
56e93d26 JQ |
2257 | static int ram_save_iterate(QEMUFile *f, void *opaque) |
2258 | { | |
53518d94 JQ |
2259 | RAMState **temp = opaque; |
2260 | RAMState *rs = *temp; | |
56e93d26 JQ |
2261 | int ret; |
2262 | int i; | |
2263 | int64_t t0; | |
5c90308f | 2264 | int done = 0; |
56e93d26 | 2265 | |
b2557345 PL |
2266 | if (blk_mig_bulk_active()) { |
2267 | /* Avoid transferring ram during bulk phase of block migration as | |
2268 | * the bulk phase will usually take a long time and transferring | |
2269 | * ram updates during that time is pointless. */ | |
2270 | goto out; | |
2271 | } | |
2272 | ||
56e93d26 | 2273 | rcu_read_lock(); |
6f37bb8b JQ |
2274 | if (ram_list.version != rs->last_version) { |
2275 | ram_state_reset(rs); | |
56e93d26 JQ |
2276 | } |
2277 | ||
2278 | /* Read version before ram_list.blocks */ | |
2279 | smp_rmb(); | |
2280 | ||
2281 | ram_control_before_iterate(f, RAM_CONTROL_ROUND); | |
2282 | ||
2283 | t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | |
2284 | i = 0; | |
2285 | while ((ret = qemu_file_rate_limit(f)) == 0) { | |
2286 | int pages; | |
2287 | ||
ce25d337 | 2288 | pages = ram_find_and_save_block(rs, false); |
56e93d26 JQ |
2289 | /* no more pages to sent */ |
2290 | if (pages == 0) { | |
5c90308f | 2291 | done = 1; |
56e93d26 JQ |
2292 | break; |
2293 | } | |
23b28c3c | 2294 | rs->iterations++; |
070afca2 | 2295 | |
56e93d26 JQ |
2296 | /* we want to check in the 1st loop, just in case it was the 1st time |
2297 | and we had to sync the dirty bitmap. | |
2298 | qemu_get_clock_ns() is a bit expensive, so we only check each some | |
2299 | iterations | |
2300 | */ | |
2301 | if ((i & 63) == 0) { | |
2302 | uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; | |
2303 | if (t1 > MAX_WAIT) { | |
55c4446b | 2304 | trace_ram_save_iterate_big_wait(t1, i); |
56e93d26 JQ |
2305 | break; |
2306 | } | |
2307 | } | |
2308 | i++; | |
2309 | } | |
ce25d337 | 2310 | flush_compressed_data(rs); |
56e93d26 JQ |
2311 | rcu_read_unlock(); |
2312 | ||
2313 | /* | |
2314 | * Must occur before EOS (or any QEMUFile operation) | |
2315 | * because of RDMA protocol. | |
2316 | */ | |
2317 | ram_control_after_iterate(f, RAM_CONTROL_ROUND); | |
2318 | ||
b2557345 | 2319 | out: |
56e93d26 | 2320 | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
9360447d | 2321 | ram_counters.transferred += 8; |
56e93d26 JQ |
2322 | |
2323 | ret = qemu_file_get_error(f); | |
2324 | if (ret < 0) { | |
2325 | return ret; | |
2326 | } | |
2327 | ||
5c90308f | 2328 | return done; |
56e93d26 JQ |
2329 | } |
2330 | ||
3d0684b2 JQ |
2331 | /** |
2332 | * ram_save_complete: function called to send the remaining amount of ram | |
2333 | * | |
2334 | * Returns zero to indicate success | |
2335 | * | |
2336 | * Called with iothread lock | |
2337 | * | |
2338 | * @f: QEMUFile where to send the data | |
2339 | * @opaque: RAMState pointer | |
2340 | */ | |
56e93d26 JQ |
2341 | static int ram_save_complete(QEMUFile *f, void *opaque) |
2342 | { | |
53518d94 JQ |
2343 | RAMState **temp = opaque; |
2344 | RAMState *rs = *temp; | |
6f37bb8b | 2345 | |
56e93d26 JQ |
2346 | rcu_read_lock(); |
2347 | ||
5727309d | 2348 | if (!migration_in_postcopy()) { |
8d820d6f | 2349 | migration_bitmap_sync(rs); |
663e6c1d | 2350 | } |
56e93d26 JQ |
2351 | |
2352 | ram_control_before_iterate(f, RAM_CONTROL_FINISH); | |
2353 | ||
2354 | /* try transferring iterative blocks of memory */ | |
2355 | ||
2356 | /* flush all remaining blocks regardless of rate limiting */ | |
2357 | while (true) { | |
2358 | int pages; | |
2359 | ||
ce25d337 | 2360 | pages = ram_find_and_save_block(rs, !migration_in_colo_state()); |
56e93d26 JQ |
2361 | /* no more blocks to sent */ |
2362 | if (pages == 0) { | |
2363 | break; | |
2364 | } | |
2365 | } | |
2366 | ||
ce25d337 | 2367 | flush_compressed_data(rs); |
56e93d26 | 2368 | ram_control_after_iterate(f, RAM_CONTROL_FINISH); |
56e93d26 JQ |
2369 | |
2370 | rcu_read_unlock(); | |
d09a6fde | 2371 | |
56e93d26 JQ |
2372 | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
2373 | ||
2374 | return 0; | |
2375 | } | |
2376 | ||
c31b098f | 2377 | static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, |
47995026 VSO |
2378 | uint64_t *res_precopy_only, |
2379 | uint64_t *res_compatible, | |
2380 | uint64_t *res_postcopy_only) | |
56e93d26 | 2381 | { |
53518d94 JQ |
2382 | RAMState **temp = opaque; |
2383 | RAMState *rs = *temp; | |
56e93d26 JQ |
2384 | uint64_t remaining_size; |
2385 | ||
9edabd4d | 2386 | remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; |
56e93d26 | 2387 | |
5727309d | 2388 | if (!migration_in_postcopy() && |
663e6c1d | 2389 | remaining_size < max_size) { |
56e93d26 JQ |
2390 | qemu_mutex_lock_iothread(); |
2391 | rcu_read_lock(); | |
8d820d6f | 2392 | migration_bitmap_sync(rs); |
56e93d26 JQ |
2393 | rcu_read_unlock(); |
2394 | qemu_mutex_unlock_iothread(); | |
9edabd4d | 2395 | remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; |
56e93d26 | 2396 | } |
c31b098f | 2397 | |
86e1167e VSO |
2398 | if (migrate_postcopy_ram()) { |
2399 | /* We can do postcopy, and all the data is postcopiable */ | |
47995026 | 2400 | *res_compatible += remaining_size; |
86e1167e | 2401 | } else { |
47995026 | 2402 | *res_precopy_only += remaining_size; |
86e1167e | 2403 | } |
56e93d26 JQ |
2404 | } |
2405 | ||
2406 | static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) | |
2407 | { | |
2408 | unsigned int xh_len; | |
2409 | int xh_flags; | |
063e760a | 2410 | uint8_t *loaded_data; |
56e93d26 | 2411 | |
56e93d26 JQ |
2412 | /* extract RLE header */ |
2413 | xh_flags = qemu_get_byte(f); | |
2414 | xh_len = qemu_get_be16(f); | |
2415 | ||
2416 | if (xh_flags != ENCODING_FLAG_XBZRLE) { | |
2417 | error_report("Failed to load XBZRLE page - wrong compression!"); | |
2418 | return -1; | |
2419 | } | |
2420 | ||
2421 | if (xh_len > TARGET_PAGE_SIZE) { | |
2422 | error_report("Failed to load XBZRLE page - len overflow!"); | |
2423 | return -1; | |
2424 | } | |
f265e0e4 | 2425 | loaded_data = XBZRLE.decoded_buf; |
56e93d26 | 2426 | /* load data and decode */ |
f265e0e4 | 2427 | /* it can change loaded_data to point to an internal buffer */ |
063e760a | 2428 | qemu_get_buffer_in_place(f, &loaded_data, xh_len); |
56e93d26 JQ |
2429 | |
2430 | /* decode RLE */ | |
063e760a | 2431 | if (xbzrle_decode_buffer(loaded_data, xh_len, host, |
56e93d26 JQ |
2432 | TARGET_PAGE_SIZE) == -1) { |
2433 | error_report("Failed to load XBZRLE page - decode error!"); | |
2434 | return -1; | |
2435 | } | |
2436 | ||
2437 | return 0; | |
2438 | } | |
2439 | ||
3d0684b2 JQ |
2440 | /** |
2441 | * ram_block_from_stream: read a RAMBlock id from the migration stream | |
2442 | * | |
2443 | * Must be called from within a rcu critical section. | |
2444 | * | |
56e93d26 | 2445 | * Returns a pointer from within the RCU-protected ram_list. |
a7180877 | 2446 | * |
3d0684b2 JQ |
2447 | * @f: QEMUFile where to read the data from |
2448 | * @flags: Page flags (mostly to see if it's a continuation of previous block) | |
a7180877 | 2449 | */ |
3d0684b2 | 2450 | static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) |
56e93d26 JQ |
2451 | { |
2452 | static RAMBlock *block = NULL; | |
2453 | char id[256]; | |
2454 | uint8_t len; | |
2455 | ||
2456 | if (flags & RAM_SAVE_FLAG_CONTINUE) { | |
4c4bad48 | 2457 | if (!block) { |
56e93d26 JQ |
2458 | error_report("Ack, bad migration stream!"); |
2459 | return NULL; | |
2460 | } | |
4c4bad48 | 2461 | return block; |
56e93d26 JQ |
2462 | } |
2463 | ||
2464 | len = qemu_get_byte(f); | |
2465 | qemu_get_buffer(f, (uint8_t *)id, len); | |
2466 | id[len] = 0; | |
2467 | ||
e3dd7493 | 2468 | block = qemu_ram_block_by_name(id); |
4c4bad48 HZ |
2469 | if (!block) { |
2470 | error_report("Can't find block %s", id); | |
2471 | return NULL; | |
56e93d26 JQ |
2472 | } |
2473 | ||
4c4bad48 HZ |
2474 | return block; |
2475 | } | |
2476 | ||
2477 | static inline void *host_from_ram_block_offset(RAMBlock *block, | |
2478 | ram_addr_t offset) | |
2479 | { | |
2480 | if (!offset_in_ramblock(block, offset)) { | |
2481 | return NULL; | |
2482 | } | |
2483 | ||
2484 | return block->host + offset; | |
56e93d26 JQ |
2485 | } |
2486 | ||
3d0684b2 JQ |
2487 | /** |
2488 | * ram_handle_compressed: handle the zero page case | |
2489 | * | |
56e93d26 JQ |
2490 | * If a page (or a whole RDMA chunk) has been |
2491 | * determined to be zero, then zap it. | |
3d0684b2 JQ |
2492 | * |
2493 | * @host: host address for the zero page | |
2494 | * @ch: what the page is filled from. We only support zero | |
2495 | * @size: size of the zero page | |
56e93d26 JQ |
2496 | */ |
2497 | void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) | |
2498 | { | |
2499 | if (ch != 0 || !is_zero_range(host, size)) { | |
2500 | memset(host, ch, size); | |
2501 | } | |
2502 | } | |
2503 | ||
2504 | static void *do_data_decompress(void *opaque) | |
2505 | { | |
2506 | DecompressParam *param = opaque; | |
2507 | unsigned long pagesize; | |
33d151f4 LL |
2508 | uint8_t *des; |
2509 | int len; | |
56e93d26 | 2510 | |
33d151f4 | 2511 | qemu_mutex_lock(¶m->mutex); |
90e56fb4 | 2512 | while (!param->quit) { |
33d151f4 LL |
2513 | if (param->des) { |
2514 | des = param->des; | |
2515 | len = param->len; | |
2516 | param->des = 0; | |
2517 | qemu_mutex_unlock(¶m->mutex); | |
2518 | ||
56e93d26 | 2519 | pagesize = TARGET_PAGE_SIZE; |
73a8912b LL |
2520 | /* uncompress() will return failed in some case, especially |
2521 | * when the page is dirted when doing the compression, it's | |
2522 | * not a problem because the dirty page will be retransferred | |
2523 | * and uncompress() won't break the data in other pages. | |
2524 | */ | |
33d151f4 LL |
2525 | uncompress((Bytef *)des, &pagesize, |
2526 | (const Bytef *)param->compbuf, len); | |
73a8912b | 2527 | |
33d151f4 LL |
2528 | qemu_mutex_lock(&decomp_done_lock); |
2529 | param->done = true; | |
2530 | qemu_cond_signal(&decomp_done_cond); | |
2531 | qemu_mutex_unlock(&decomp_done_lock); | |
2532 | ||
2533 | qemu_mutex_lock(¶m->mutex); | |
2534 | } else { | |
2535 | qemu_cond_wait(¶m->cond, ¶m->mutex); | |
2536 | } | |
56e93d26 | 2537 | } |
33d151f4 | 2538 | qemu_mutex_unlock(¶m->mutex); |
56e93d26 JQ |
2539 | |
2540 | return NULL; | |
2541 | } | |
2542 | ||
5533b2e9 LL |
2543 | static void wait_for_decompress_done(void) |
2544 | { | |
2545 | int idx, thread_count; | |
2546 | ||
2547 | if (!migrate_use_compression()) { | |
2548 | return; | |
2549 | } | |
2550 | ||
2551 | thread_count = migrate_decompress_threads(); | |
2552 | qemu_mutex_lock(&decomp_done_lock); | |
2553 | for (idx = 0; idx < thread_count; idx++) { | |
2554 | while (!decomp_param[idx].done) { | |
2555 | qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); | |
2556 | } | |
2557 | } | |
2558 | qemu_mutex_unlock(&decomp_done_lock); | |
2559 | } | |
2560 | ||
f0afa331 | 2561 | static void compress_threads_load_setup(void) |
56e93d26 JQ |
2562 | { |
2563 | int i, thread_count; | |
2564 | ||
3416ab5b JQ |
2565 | if (!migrate_use_compression()) { |
2566 | return; | |
2567 | } | |
56e93d26 JQ |
2568 | thread_count = migrate_decompress_threads(); |
2569 | decompress_threads = g_new0(QemuThread, thread_count); | |
2570 | decomp_param = g_new0(DecompressParam, thread_count); | |
73a8912b LL |
2571 | qemu_mutex_init(&decomp_done_lock); |
2572 | qemu_cond_init(&decomp_done_cond); | |
56e93d26 JQ |
2573 | for (i = 0; i < thread_count; i++) { |
2574 | qemu_mutex_init(&decomp_param[i].mutex); | |
2575 | qemu_cond_init(&decomp_param[i].cond); | |
2576 | decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); | |
73a8912b | 2577 | decomp_param[i].done = true; |
90e56fb4 | 2578 | decomp_param[i].quit = false; |
56e93d26 JQ |
2579 | qemu_thread_create(decompress_threads + i, "decompress", |
2580 | do_data_decompress, decomp_param + i, | |
2581 | QEMU_THREAD_JOINABLE); | |
2582 | } | |
2583 | } | |
2584 | ||
f0afa331 | 2585 | static void compress_threads_load_cleanup(void) |
56e93d26 JQ |
2586 | { |
2587 | int i, thread_count; | |
2588 | ||
3416ab5b JQ |
2589 | if (!migrate_use_compression()) { |
2590 | return; | |
2591 | } | |
56e93d26 JQ |
2592 | thread_count = migrate_decompress_threads(); |
2593 | for (i = 0; i < thread_count; i++) { | |
2594 | qemu_mutex_lock(&decomp_param[i].mutex); | |
90e56fb4 | 2595 | decomp_param[i].quit = true; |
56e93d26 JQ |
2596 | qemu_cond_signal(&decomp_param[i].cond); |
2597 | qemu_mutex_unlock(&decomp_param[i].mutex); | |
2598 | } | |
2599 | for (i = 0; i < thread_count; i++) { | |
2600 | qemu_thread_join(decompress_threads + i); | |
2601 | qemu_mutex_destroy(&decomp_param[i].mutex); | |
2602 | qemu_cond_destroy(&decomp_param[i].cond); | |
2603 | g_free(decomp_param[i].compbuf); | |
2604 | } | |
2605 | g_free(decompress_threads); | |
2606 | g_free(decomp_param); | |
56e93d26 JQ |
2607 | decompress_threads = NULL; |
2608 | decomp_param = NULL; | |
56e93d26 JQ |
2609 | } |
2610 | ||
c1bc6626 | 2611 | static void decompress_data_with_multi_threads(QEMUFile *f, |
56e93d26 JQ |
2612 | void *host, int len) |
2613 | { | |
2614 | int idx, thread_count; | |
2615 | ||
2616 | thread_count = migrate_decompress_threads(); | |
73a8912b | 2617 | qemu_mutex_lock(&decomp_done_lock); |
56e93d26 JQ |
2618 | while (true) { |
2619 | for (idx = 0; idx < thread_count; idx++) { | |
73a8912b | 2620 | if (decomp_param[idx].done) { |
33d151f4 LL |
2621 | decomp_param[idx].done = false; |
2622 | qemu_mutex_lock(&decomp_param[idx].mutex); | |
c1bc6626 | 2623 | qemu_get_buffer(f, decomp_param[idx].compbuf, len); |
56e93d26 JQ |
2624 | decomp_param[idx].des = host; |
2625 | decomp_param[idx].len = len; | |
33d151f4 LL |
2626 | qemu_cond_signal(&decomp_param[idx].cond); |
2627 | qemu_mutex_unlock(&decomp_param[idx].mutex); | |
56e93d26 JQ |
2628 | break; |
2629 | } | |
2630 | } | |
2631 | if (idx < thread_count) { | |
2632 | break; | |
73a8912b LL |
2633 | } else { |
2634 | qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); | |
56e93d26 JQ |
2635 | } |
2636 | } | |
73a8912b | 2637 | qemu_mutex_unlock(&decomp_done_lock); |
56e93d26 JQ |
2638 | } |
2639 | ||
f265e0e4 JQ |
2640 | /** |
2641 | * ram_load_setup: Setup RAM for migration incoming side | |
2642 | * | |
2643 | * Returns zero to indicate success and negative for error | |
2644 | * | |
2645 | * @f: QEMUFile where to receive the data | |
2646 | * @opaque: RAMState pointer | |
2647 | */ | |
2648 | static int ram_load_setup(QEMUFile *f, void *opaque) | |
2649 | { | |
2650 | xbzrle_load_setup(); | |
f0afa331 | 2651 | compress_threads_load_setup(); |
f9494614 | 2652 | ramblock_recv_map_init(); |
f265e0e4 JQ |
2653 | return 0; |
2654 | } | |
2655 | ||
2656 | static int ram_load_cleanup(void *opaque) | |
2657 | { | |
f9494614 | 2658 | RAMBlock *rb; |
f265e0e4 | 2659 | xbzrle_load_cleanup(); |
f0afa331 | 2660 | compress_threads_load_cleanup(); |
f9494614 AP |
2661 | |
2662 | RAMBLOCK_FOREACH(rb) { | |
2663 | g_free(rb->receivedmap); | |
2664 | rb->receivedmap = NULL; | |
2665 | } | |
f265e0e4 JQ |
2666 | return 0; |
2667 | } | |
2668 | ||
3d0684b2 JQ |
2669 | /** |
2670 | * ram_postcopy_incoming_init: allocate postcopy data structures | |
2671 | * | |
2672 | * Returns 0 for success and negative if there was one error | |
2673 | * | |
2674 | * @mis: current migration incoming state | |
2675 | * | |
2676 | * Allocate data structures etc needed by incoming migration with | |
2677 | * postcopy-ram. postcopy-ram's similarly names | |
2678 | * postcopy_ram_incoming_init does the work. | |
1caddf8a DDAG |
2679 | */ |
2680 | int ram_postcopy_incoming_init(MigrationIncomingState *mis) | |
2681 | { | |
b8c48993 | 2682 | unsigned long ram_pages = last_ram_page(); |
1caddf8a DDAG |
2683 | |
2684 | return postcopy_ram_incoming_init(mis, ram_pages); | |
2685 | } | |
2686 | ||
3d0684b2 JQ |
2687 | /** |
2688 | * ram_load_postcopy: load a page in postcopy case | |
2689 | * | |
2690 | * Returns 0 for success or -errno in case of error | |
2691 | * | |
a7180877 DDAG |
2692 | * Called in postcopy mode by ram_load(). |
2693 | * rcu_read_lock is taken prior to this being called. | |
3d0684b2 JQ |
2694 | * |
2695 | * @f: QEMUFile where to send the data | |
a7180877 DDAG |
2696 | */ |
2697 | static int ram_load_postcopy(QEMUFile *f) | |
2698 | { | |
2699 | int flags = 0, ret = 0; | |
2700 | bool place_needed = false; | |
28abd200 | 2701 | bool matching_page_sizes = false; |
a7180877 DDAG |
2702 | MigrationIncomingState *mis = migration_incoming_get_current(); |
2703 | /* Temporary page that is later 'placed' */ | |
2704 | void *postcopy_host_page = postcopy_get_tmp_page(mis); | |
c53b7ddc | 2705 | void *last_host = NULL; |
a3b6ff6d | 2706 | bool all_zero = false; |
a7180877 DDAG |
2707 | |
2708 | while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { | |
2709 | ram_addr_t addr; | |
2710 | void *host = NULL; | |
2711 | void *page_buffer = NULL; | |
2712 | void *place_source = NULL; | |
df9ff5e1 | 2713 | RAMBlock *block = NULL; |
a7180877 | 2714 | uint8_t ch; |
a7180877 DDAG |
2715 | |
2716 | addr = qemu_get_be64(f); | |
7a9ddfbf PX |
2717 | |
2718 | /* | |
2719 | * If qemu file error, we should stop here, and then "addr" | |
2720 | * may be invalid | |
2721 | */ | |
2722 | ret = qemu_file_get_error(f); | |
2723 | if (ret) { | |
2724 | break; | |
2725 | } | |
2726 | ||
a7180877 DDAG |
2727 | flags = addr & ~TARGET_PAGE_MASK; |
2728 | addr &= TARGET_PAGE_MASK; | |
2729 | ||
2730 | trace_ram_load_postcopy_loop((uint64_t)addr, flags); | |
2731 | place_needed = false; | |
bb890ed5 | 2732 | if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { |
df9ff5e1 | 2733 | block = ram_block_from_stream(f, flags); |
4c4bad48 HZ |
2734 | |
2735 | host = host_from_ram_block_offset(block, addr); | |
a7180877 DDAG |
2736 | if (!host) { |
2737 | error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); | |
2738 | ret = -EINVAL; | |
2739 | break; | |
2740 | } | |
28abd200 | 2741 | matching_page_sizes = block->page_size == TARGET_PAGE_SIZE; |
a7180877 | 2742 | /* |
28abd200 DDAG |
2743 | * Postcopy requires that we place whole host pages atomically; |
2744 | * these may be huge pages for RAMBlocks that are backed by | |
2745 | * hugetlbfs. | |
a7180877 DDAG |
2746 | * To make it atomic, the data is read into a temporary page |
2747 | * that's moved into place later. | |
2748 | * The migration protocol uses, possibly smaller, target-pages | |
2749 | * however the source ensures it always sends all the components | |
2750 | * of a host page in order. | |
2751 | */ | |
2752 | page_buffer = postcopy_host_page + | |
28abd200 | 2753 | ((uintptr_t)host & (block->page_size - 1)); |
a7180877 | 2754 | /* If all TP are zero then we can optimise the place */ |
28abd200 | 2755 | if (!((uintptr_t)host & (block->page_size - 1))) { |
a7180877 | 2756 | all_zero = true; |
c53b7ddc DDAG |
2757 | } else { |
2758 | /* not the 1st TP within the HP */ | |
2759 | if (host != (last_host + TARGET_PAGE_SIZE)) { | |
9af9e0fe | 2760 | error_report("Non-sequential target page %p/%p", |
c53b7ddc DDAG |
2761 | host, last_host); |
2762 | ret = -EINVAL; | |
2763 | break; | |
2764 | } | |
a7180877 DDAG |
2765 | } |
2766 | ||
c53b7ddc | 2767 | |
a7180877 DDAG |
2768 | /* |
2769 | * If it's the last part of a host page then we place the host | |
2770 | * page | |
2771 | */ | |
2772 | place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & | |
28abd200 | 2773 | (block->page_size - 1)) == 0; |
a7180877 DDAG |
2774 | place_source = postcopy_host_page; |
2775 | } | |
c53b7ddc | 2776 | last_host = host; |
a7180877 DDAG |
2777 | |
2778 | switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { | |
bb890ed5 | 2779 | case RAM_SAVE_FLAG_ZERO: |
a7180877 DDAG |
2780 | ch = qemu_get_byte(f); |
2781 | memset(page_buffer, ch, TARGET_PAGE_SIZE); | |
2782 | if (ch) { | |
2783 | all_zero = false; | |
2784 | } | |
2785 | break; | |
2786 | ||
2787 | case RAM_SAVE_FLAG_PAGE: | |
2788 | all_zero = false; | |
2789 | if (!place_needed || !matching_page_sizes) { | |
2790 | qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); | |
2791 | } else { | |
2792 | /* Avoids the qemu_file copy during postcopy, which is | |
2793 | * going to do a copy later; can only do it when we | |
2794 | * do this read in one go (matching page sizes) | |
2795 | */ | |
2796 | qemu_get_buffer_in_place(f, (uint8_t **)&place_source, | |
2797 | TARGET_PAGE_SIZE); | |
2798 | } | |
2799 | break; | |
2800 | case RAM_SAVE_FLAG_EOS: | |
2801 | /* normal exit */ | |
2802 | break; | |
2803 | default: | |
2804 | error_report("Unknown combination of migration flags: %#x" | |
2805 | " (postcopy mode)", flags); | |
2806 | ret = -EINVAL; | |
7a9ddfbf PX |
2807 | break; |
2808 | } | |
2809 | ||
2810 | /* Detect for any possible file errors */ | |
2811 | if (!ret && qemu_file_get_error(f)) { | |
2812 | ret = qemu_file_get_error(f); | |
a7180877 DDAG |
2813 | } |
2814 | ||
7a9ddfbf | 2815 | if (!ret && place_needed) { |
a7180877 | 2816 | /* This gets called at the last target page in the host page */ |
df9ff5e1 DDAG |
2817 | void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; |
2818 | ||
a7180877 | 2819 | if (all_zero) { |
df9ff5e1 | 2820 | ret = postcopy_place_page_zero(mis, place_dest, |
8be4620b | 2821 | block); |
a7180877 | 2822 | } else { |
df9ff5e1 | 2823 | ret = postcopy_place_page(mis, place_dest, |
8be4620b | 2824 | place_source, block); |
a7180877 DDAG |
2825 | } |
2826 | } | |
a7180877 DDAG |
2827 | } |
2828 | ||
2829 | return ret; | |
2830 | } | |
2831 | ||
acab30b8 DHB |
2832 | static bool postcopy_is_advised(void) |
2833 | { | |
2834 | PostcopyState ps = postcopy_state_get(); | |
2835 | return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; | |
2836 | } | |
2837 | ||
2838 | static bool postcopy_is_running(void) | |
2839 | { | |
2840 | PostcopyState ps = postcopy_state_get(); | |
2841 | return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; | |
2842 | } | |
2843 | ||
56e93d26 JQ |
2844 | static int ram_load(QEMUFile *f, void *opaque, int version_id) |
2845 | { | |
edc60127 | 2846 | int flags = 0, ret = 0, invalid_flags = 0; |
56e93d26 JQ |
2847 | static uint64_t seq_iter; |
2848 | int len = 0; | |
a7180877 DDAG |
2849 | /* |
2850 | * If system is running in postcopy mode, page inserts to host memory must | |
2851 | * be atomic | |
2852 | */ | |
acab30b8 | 2853 | bool postcopy_running = postcopy_is_running(); |
ef08fb38 | 2854 | /* ADVISE is earlier, it shows the source has the postcopy capability on */ |
acab30b8 | 2855 | bool postcopy_advised = postcopy_is_advised(); |
56e93d26 JQ |
2856 | |
2857 | seq_iter++; | |
2858 | ||
2859 | if (version_id != 4) { | |
2860 | ret = -EINVAL; | |
2861 | } | |
2862 | ||
edc60127 JQ |
2863 | if (!migrate_use_compression()) { |
2864 | invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; | |
2865 | } | |
56e93d26 JQ |
2866 | /* This RCU critical section can be very long running. |
2867 | * When RCU reclaims in the code start to become numerous, | |
2868 | * it will be necessary to reduce the granularity of this | |
2869 | * critical section. | |
2870 | */ | |
2871 | rcu_read_lock(); | |
a7180877 DDAG |
2872 | |
2873 | if (postcopy_running) { | |
2874 | ret = ram_load_postcopy(f); | |
2875 | } | |
2876 | ||
2877 | while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { | |
56e93d26 | 2878 | ram_addr_t addr, total_ram_bytes; |
a776aa15 | 2879 | void *host = NULL; |
56e93d26 JQ |
2880 | uint8_t ch; |
2881 | ||
2882 | addr = qemu_get_be64(f); | |
2883 | flags = addr & ~TARGET_PAGE_MASK; | |
2884 | addr &= TARGET_PAGE_MASK; | |
2885 | ||
edc60127 JQ |
2886 | if (flags & invalid_flags) { |
2887 | if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { | |
2888 | error_report("Received an unexpected compressed page"); | |
2889 | } | |
2890 | ||
2891 | ret = -EINVAL; | |
2892 | break; | |
2893 | } | |
2894 | ||
bb890ed5 | 2895 | if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | |
a776aa15 | 2896 | RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { |
4c4bad48 HZ |
2897 | RAMBlock *block = ram_block_from_stream(f, flags); |
2898 | ||
2899 | host = host_from_ram_block_offset(block, addr); | |
a776aa15 DDAG |
2900 | if (!host) { |
2901 | error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); | |
2902 | ret = -EINVAL; | |
2903 | break; | |
2904 | } | |
f9494614 | 2905 | ramblock_recv_bitmap_set(block, host); |
1db9d8e5 | 2906 | trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); |
a776aa15 DDAG |
2907 | } |
2908 | ||
56e93d26 JQ |
2909 | switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { |
2910 | case RAM_SAVE_FLAG_MEM_SIZE: | |
2911 | /* Synchronize RAM block list */ | |
2912 | total_ram_bytes = addr; | |
2913 | while (!ret && total_ram_bytes) { | |
2914 | RAMBlock *block; | |
56e93d26 JQ |
2915 | char id[256]; |
2916 | ram_addr_t length; | |
2917 | ||
2918 | len = qemu_get_byte(f); | |
2919 | qemu_get_buffer(f, (uint8_t *)id, len); | |
2920 | id[len] = 0; | |
2921 | length = qemu_get_be64(f); | |
2922 | ||
e3dd7493 DDAG |
2923 | block = qemu_ram_block_by_name(id); |
2924 | if (block) { | |
2925 | if (length != block->used_length) { | |
2926 | Error *local_err = NULL; | |
56e93d26 | 2927 | |
fa53a0e5 | 2928 | ret = qemu_ram_resize(block, length, |
e3dd7493 DDAG |
2929 | &local_err); |
2930 | if (local_err) { | |
2931 | error_report_err(local_err); | |
56e93d26 | 2932 | } |
56e93d26 | 2933 | } |
ef08fb38 DDAG |
2934 | /* For postcopy we need to check hugepage sizes match */ |
2935 | if (postcopy_advised && | |
2936 | block->page_size != qemu_host_page_size) { | |
2937 | uint64_t remote_page_size = qemu_get_be64(f); | |
2938 | if (remote_page_size != block->page_size) { | |
2939 | error_report("Mismatched RAM page size %s " | |
2940 | "(local) %zd != %" PRId64, | |
2941 | id, block->page_size, | |
2942 | remote_page_size); | |
2943 | ret = -EINVAL; | |
2944 | } | |
2945 | } | |
e3dd7493 DDAG |
2946 | ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, |
2947 | block->idstr); | |
2948 | } else { | |
56e93d26 JQ |
2949 | error_report("Unknown ramblock \"%s\", cannot " |
2950 | "accept migration", id); | |
2951 | ret = -EINVAL; | |
2952 | } | |
2953 | ||
2954 | total_ram_bytes -= length; | |
2955 | } | |
2956 | break; | |
a776aa15 | 2957 | |
bb890ed5 | 2958 | case RAM_SAVE_FLAG_ZERO: |
56e93d26 JQ |
2959 | ch = qemu_get_byte(f); |
2960 | ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); | |
2961 | break; | |
a776aa15 | 2962 | |
56e93d26 | 2963 | case RAM_SAVE_FLAG_PAGE: |
56e93d26 JQ |
2964 | qemu_get_buffer(f, host, TARGET_PAGE_SIZE); |
2965 | break; | |
56e93d26 | 2966 | |
a776aa15 | 2967 | case RAM_SAVE_FLAG_COMPRESS_PAGE: |
56e93d26 JQ |
2968 | len = qemu_get_be32(f); |
2969 | if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { | |
2970 | error_report("Invalid compressed data length: %d", len); | |
2971 | ret = -EINVAL; | |
2972 | break; | |
2973 | } | |
c1bc6626 | 2974 | decompress_data_with_multi_threads(f, host, len); |
56e93d26 | 2975 | break; |
a776aa15 | 2976 | |
56e93d26 | 2977 | case RAM_SAVE_FLAG_XBZRLE: |
56e93d26 JQ |
2978 | if (load_xbzrle(f, addr, host) < 0) { |
2979 | error_report("Failed to decompress XBZRLE page at " | |
2980 | RAM_ADDR_FMT, addr); | |
2981 | ret = -EINVAL; | |
2982 | break; | |
2983 | } | |
2984 | break; | |
2985 | case RAM_SAVE_FLAG_EOS: | |
2986 | /* normal exit */ | |
2987 | break; | |
2988 | default: | |
2989 | if (flags & RAM_SAVE_FLAG_HOOK) { | |
632e3a5c | 2990 | ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); |
56e93d26 JQ |
2991 | } else { |
2992 | error_report("Unknown combination of migration flags: %#x", | |
2993 | flags); | |
2994 | ret = -EINVAL; | |
2995 | } | |
2996 | } | |
2997 | if (!ret) { | |
2998 | ret = qemu_file_get_error(f); | |
2999 | } | |
3000 | } | |
3001 | ||
5533b2e9 | 3002 | wait_for_decompress_done(); |
56e93d26 | 3003 | rcu_read_unlock(); |
55c4446b | 3004 | trace_ram_load_complete(ret, seq_iter); |
56e93d26 JQ |
3005 | return ret; |
3006 | } | |
3007 | ||
c6467627 VSO |
3008 | static bool ram_has_postcopy(void *opaque) |
3009 | { | |
3010 | return migrate_postcopy_ram(); | |
3011 | } | |
3012 | ||
56e93d26 | 3013 | static SaveVMHandlers savevm_ram_handlers = { |
9907e842 | 3014 | .save_setup = ram_save_setup, |
56e93d26 | 3015 | .save_live_iterate = ram_save_iterate, |
763c906b | 3016 | .save_live_complete_postcopy = ram_save_complete, |
a3e06c3d | 3017 | .save_live_complete_precopy = ram_save_complete, |
c6467627 | 3018 | .has_postcopy = ram_has_postcopy, |
56e93d26 JQ |
3019 | .save_live_pending = ram_save_pending, |
3020 | .load_state = ram_load, | |
f265e0e4 JQ |
3021 | .save_cleanup = ram_save_cleanup, |
3022 | .load_setup = ram_load_setup, | |
3023 | .load_cleanup = ram_load_cleanup, | |
56e93d26 JQ |
3024 | }; |
3025 | ||
3026 | void ram_mig_init(void) | |
3027 | { | |
3028 | qemu_mutex_init(&XBZRLE.lock); | |
6f37bb8b | 3029 | register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state); |
56e93d26 | 3030 | } |