]> Git Repo - qemu.git/blame - hw/ppc/ppc.c
target/ppc: Enable "decrement and test CTR" version of bcctr
[qemu.git] / hw / ppc / ppc.c
CommitLineData
a541f297 1/*
e9df014c 2 * QEMU generic PowerPC hardware System Emulator
5fafdf24 3 *
76a66253 4 * Copyright (c) 2003-2007 Jocelyn Mayer
5fafdf24 5 *
a541f297
FB
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
0d75590d 24#include "qemu/osdep.h"
4771d756
PB
25#include "qemu-common.h"
26#include "cpu.h"
83c9f4ca 27#include "hw/hw.h"
0d09e41a 28#include "hw/ppc/ppc.h"
2b927571 29#include "hw/ppc/ppc_e500.h"
1de7afc9 30#include "qemu/timer.h"
9c17d615 31#include "sysemu/sysemu.h"
0ce470cd 32#include "sysemu/cpus.h"
1de7afc9 33#include "qemu/log.h"
98a8b524 34#include "qemu/error-report.h"
9c17d615 35#include "sysemu/kvm.h"
fc87e185 36#include "kvm_ppc.h"
98a8b524 37#include "trace.h"
a541f297 38
e9df014c 39//#define PPC_DEBUG_IRQ
4b6d0a4c 40//#define PPC_DEBUG_TB
e9df014c 41
d12d51d5 42#ifdef PPC_DEBUG_IRQ
93fcfe39 43# define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
d12d51d5
AL
44#else
45# define LOG_IRQ(...) do { } while (0)
46#endif
47
48
49#ifdef PPC_DEBUG_TB
93fcfe39 50# define LOG_TB(...) qemu_log(__VA_ARGS__)
d12d51d5
AL
51#else
52# define LOG_TB(...) do { } while (0)
53#endif
54
e2684c0b
AF
55static void cpu_ppc_tb_stop (CPUPPCState *env);
56static void cpu_ppc_tb_start (CPUPPCState *env);
dbdd2506 57
7058581a 58void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
47103572 59{
d8ed887b 60 CPUState *cs = CPU(cpu);
7058581a 61 CPUPPCState *env = &cpu->env;
8d04fb55
JK
62 unsigned int old_pending;
63 bool locked = false;
64
65 /* We may already have the BQL if coming from the reset path */
66 if (!qemu_mutex_iothread_locked()) {
67 locked = true;
68 qemu_mutex_lock_iothread();
69 }
70
71 old_pending = env->pending_interrupts;
fc87e185 72
47103572
JM
73 if (level) {
74 env->pending_interrupts |= 1 << n_IRQ;
c3affe56 75 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
47103572
JM
76 } else {
77 env->pending_interrupts &= ~(1 << n_IRQ);
d8ed887b
AF
78 if (env->pending_interrupts == 0) {
79 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
80 }
47103572 81 }
fc87e185
AG
82
83 if (old_pending != env->pending_interrupts) {
84#ifdef CONFIG_KVM
7058581a 85 kvmppc_set_interrupt(cpu, n_IRQ, level);
fc87e185
AG
86#endif
87 }
88
8d04fb55 89
d12d51d5 90 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
aae9366a 91 "req %08x\n", __func__, env, n_IRQ, level,
259186a7 92 env->pending_interrupts, CPU(cpu)->interrupt_request);
8d04fb55
JK
93
94 if (locked) {
95 qemu_mutex_unlock_iothread();
96 }
47103572
JM
97}
98
e9df014c 99/* PowerPC 6xx / 7xx internal IRQ controller */
a0961245 100static void ppc6xx_set_irq(void *opaque, int pin, int level)
d537cf6c 101{
a0961245
AF
102 PowerPCCPU *cpu = opaque;
103 CPUPPCState *env = &cpu->env;
e9df014c 104 int cur_level;
d537cf6c 105
d12d51d5 106 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
a496775f 107 env, pin, level);
e9df014c
JM
108 cur_level = (env->irq_input_state >> pin) & 1;
109 /* Don't generate spurious events */
24be5ae3 110 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
259186a7
AF
111 CPUState *cs = CPU(cpu);
112
e9df014c 113 switch (pin) {
dbdd2506
JM
114 case PPC6xx_INPUT_TBEN:
115 /* Level sensitive - active high */
d12d51d5 116 LOG_IRQ("%s: %s the time base\n",
dbdd2506 117 __func__, level ? "start" : "stop");
dbdd2506
JM
118 if (level) {
119 cpu_ppc_tb_start(env);
120 } else {
121 cpu_ppc_tb_stop(env);
122 }
24be5ae3
JM
123 case PPC6xx_INPUT_INT:
124 /* Level sensitive - active high */
d12d51d5 125 LOG_IRQ("%s: set the external IRQ state to %d\n",
a496775f 126 __func__, level);
7058581a 127 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
e9df014c 128 break;
24be5ae3 129 case PPC6xx_INPUT_SMI:
e9df014c 130 /* Level sensitive - active high */
d12d51d5 131 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
a496775f 132 __func__, level);
7058581a 133 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
e9df014c 134 break;
24be5ae3 135 case PPC6xx_INPUT_MCP:
e9df014c
JM
136 /* Negative edge sensitive */
137 /* XXX: TODO: actual reaction may depends on HID0 status
138 * 603/604/740/750: check HID0[EMCP]
139 */
140 if (cur_level == 1 && level == 0) {
d12d51d5 141 LOG_IRQ("%s: raise machine check state\n",
a496775f 142 __func__);
7058581a 143 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
e9df014c
JM
144 }
145 break;
24be5ae3 146 case PPC6xx_INPUT_CKSTP_IN:
e9df014c
JM
147 /* Level sensitive - active low */
148 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
e63ecc6f 149 /* XXX: Note that the only way to restart the CPU is to reset it */
e9df014c 150 if (level) {
d12d51d5 151 LOG_IRQ("%s: stop the CPU\n", __func__);
259186a7 152 cs->halted = 1;
e9df014c
JM
153 }
154 break;
24be5ae3 155 case PPC6xx_INPUT_HRESET:
e9df014c
JM
156 /* Level sensitive - active low */
157 if (level) {
d12d51d5 158 LOG_IRQ("%s: reset the CPU\n", __func__);
c3affe56 159 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
e9df014c
JM
160 }
161 break;
24be5ae3 162 case PPC6xx_INPUT_SRESET:
d12d51d5 163 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
a496775f 164 __func__, level);
7058581a 165 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
e9df014c
JM
166 break;
167 default:
168 /* Unknown pin - do nothing */
d12d51d5 169 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
e9df014c
JM
170 return;
171 }
172 if (level)
173 env->irq_input_state |= 1 << pin;
174 else
175 env->irq_input_state &= ~(1 << pin);
d537cf6c
PB
176 }
177}
178
aa5a9e24 179void ppc6xx_irq_init(PowerPCCPU *cpu)
47103572 180{
aa5a9e24 181 CPUPPCState *env = &cpu->env;
a0961245
AF
182
183 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
7b62a955 184 PPC6xx_INPUT_NB);
47103572
JM
185}
186
00af685f 187#if defined(TARGET_PPC64)
d0dfae6e 188/* PowerPC 970 internal IRQ controller */
a0961245 189static void ppc970_set_irq(void *opaque, int pin, int level)
d0dfae6e 190{
a0961245
AF
191 PowerPCCPU *cpu = opaque;
192 CPUPPCState *env = &cpu->env;
d0dfae6e
JM
193 int cur_level;
194
d12d51d5 195 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
d0dfae6e 196 env, pin, level);
d0dfae6e
JM
197 cur_level = (env->irq_input_state >> pin) & 1;
198 /* Don't generate spurious events */
199 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
259186a7
AF
200 CPUState *cs = CPU(cpu);
201
d0dfae6e
JM
202 switch (pin) {
203 case PPC970_INPUT_INT:
204 /* Level sensitive - active high */
d12d51d5 205 LOG_IRQ("%s: set the external IRQ state to %d\n",
d0dfae6e 206 __func__, level);
7058581a 207 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
d0dfae6e
JM
208 break;
209 case PPC970_INPUT_THINT:
210 /* Level sensitive - active high */
d12d51d5 211 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
d0dfae6e 212 level);
7058581a 213 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
d0dfae6e
JM
214 break;
215 case PPC970_INPUT_MCP:
216 /* Negative edge sensitive */
217 /* XXX: TODO: actual reaction may depends on HID0 status
218 * 603/604/740/750: check HID0[EMCP]
219 */
220 if (cur_level == 1 && level == 0) {
d12d51d5 221 LOG_IRQ("%s: raise machine check state\n",
d0dfae6e 222 __func__);
7058581a 223 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
d0dfae6e
JM
224 }
225 break;
226 case PPC970_INPUT_CKSTP:
227 /* Level sensitive - active low */
228 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
229 if (level) {
d12d51d5 230 LOG_IRQ("%s: stop the CPU\n", __func__);
259186a7 231 cs->halted = 1;
d0dfae6e 232 } else {
d12d51d5 233 LOG_IRQ("%s: restart the CPU\n", __func__);
259186a7
AF
234 cs->halted = 0;
235 qemu_cpu_kick(cs);
d0dfae6e
JM
236 }
237 break;
238 case PPC970_INPUT_HRESET:
239 /* Level sensitive - active low */
240 if (level) {
c3affe56 241 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
d0dfae6e
JM
242 }
243 break;
244 case PPC970_INPUT_SRESET:
d12d51d5 245 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
d0dfae6e 246 __func__, level);
7058581a 247 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
d0dfae6e
JM
248 break;
249 case PPC970_INPUT_TBEN:
d12d51d5 250 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
d0dfae6e 251 level);
d0dfae6e
JM
252 /* XXX: TODO */
253 break;
254 default:
255 /* Unknown pin - do nothing */
d12d51d5 256 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
d0dfae6e
JM
257 return;
258 }
259 if (level)
260 env->irq_input_state |= 1 << pin;
261 else
262 env->irq_input_state &= ~(1 << pin);
263 }
264}
265
aa5a9e24 266void ppc970_irq_init(PowerPCCPU *cpu)
d0dfae6e 267{
aa5a9e24 268 CPUPPCState *env = &cpu->env;
a0961245
AF
269
270 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
7b62a955 271 PPC970_INPUT_NB);
d0dfae6e 272}
9d52e907
DG
273
274/* POWER7 internal IRQ controller */
a0961245 275static void power7_set_irq(void *opaque, int pin, int level)
9d52e907 276{
a0961245
AF
277 PowerPCCPU *cpu = opaque;
278 CPUPPCState *env = &cpu->env;
9d52e907
DG
279
280 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
281 env, pin, level);
9d52e907
DG
282
283 switch (pin) {
284 case POWER7_INPUT_INT:
285 /* Level sensitive - active high */
286 LOG_IRQ("%s: set the external IRQ state to %d\n",
287 __func__, level);
7058581a 288 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
9d52e907
DG
289 break;
290 default:
291 /* Unknown pin - do nothing */
292 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
293 return;
294 }
295 if (level) {
296 env->irq_input_state |= 1 << pin;
297 } else {
298 env->irq_input_state &= ~(1 << pin);
299 }
300}
301
aa5a9e24 302void ppcPOWER7_irq_init(PowerPCCPU *cpu)
9d52e907 303{
aa5a9e24 304 CPUPPCState *env = &cpu->env;
a0961245
AF
305
306 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
9d52e907
DG
307 POWER7_INPUT_NB);
308}
67afe775
BH
309
310/* POWER9 internal IRQ controller */
311static void power9_set_irq(void *opaque, int pin, int level)
312{
313 PowerPCCPU *cpu = opaque;
314 CPUPPCState *env = &cpu->env;
315
316 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
317 env, pin, level);
318
319 switch (pin) {
320 case POWER9_INPUT_INT:
321 /* Level sensitive - active high */
322 LOG_IRQ("%s: set the external IRQ state to %d\n",
323 __func__, level);
324 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
325 break;
326 case POWER9_INPUT_HINT:
327 /* Level sensitive - active high */
328 LOG_IRQ("%s: set the external IRQ state to %d\n",
329 __func__, level);
330 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
331 break;
332 default:
333 /* Unknown pin - do nothing */
334 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
335 return;
336 }
337 if (level) {
338 env->irq_input_state |= 1 << pin;
339 } else {
340 env->irq_input_state &= ~(1 << pin);
341 }
342}
343
344void ppcPOWER9_irq_init(PowerPCCPU *cpu)
345{
346 CPUPPCState *env = &cpu->env;
347
348 env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
349 POWER9_INPUT_NB);
350}
00af685f 351#endif /* defined(TARGET_PPC64) */
d0dfae6e 352
52144b69
TH
353void ppc40x_core_reset(PowerPCCPU *cpu)
354{
355 CPUPPCState *env = &cpu->env;
356 target_ulong dbsr;
357
358 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
359 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
360 dbsr = env->spr[SPR_40x_DBSR];
361 dbsr &= ~0x00000300;
362 dbsr |= 0x00000100;
363 env->spr[SPR_40x_DBSR] = dbsr;
364}
365
366void ppc40x_chip_reset(PowerPCCPU *cpu)
367{
368 CPUPPCState *env = &cpu->env;
369 target_ulong dbsr;
370
371 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
372 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
373 /* XXX: TODO reset all internal peripherals */
374 dbsr = env->spr[SPR_40x_DBSR];
375 dbsr &= ~0x00000300;
376 dbsr |= 0x00000200;
377 env->spr[SPR_40x_DBSR] = dbsr;
378}
379
380void ppc40x_system_reset(PowerPCCPU *cpu)
381{
382 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
383 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
384}
385
386void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
387{
388 PowerPCCPU *cpu = ppc_env_get_cpu(env);
389
390 switch ((val >> 28) & 0x3) {
391 case 0x0:
392 /* No action */
393 break;
394 case 0x1:
395 /* Core reset */
396 ppc40x_core_reset(cpu);
397 break;
398 case 0x2:
399 /* Chip reset */
400 ppc40x_chip_reset(cpu);
401 break;
402 case 0x3:
403 /* System reset */
404 ppc40x_system_reset(cpu);
405 break;
406 }
407}
408
4e290a0b 409/* PowerPC 40x internal IRQ controller */
a0961245 410static void ppc40x_set_irq(void *opaque, int pin, int level)
24be5ae3 411{
a0961245
AF
412 PowerPCCPU *cpu = opaque;
413 CPUPPCState *env = &cpu->env;
24be5ae3
JM
414 int cur_level;
415
d12d51d5 416 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
8ecc7913 417 env, pin, level);
24be5ae3
JM
418 cur_level = (env->irq_input_state >> pin) & 1;
419 /* Don't generate spurious events */
420 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
259186a7
AF
421 CPUState *cs = CPU(cpu);
422
24be5ae3 423 switch (pin) {
4e290a0b 424 case PPC40x_INPUT_RESET_SYS:
8ecc7913 425 if (level) {
d12d51d5 426 LOG_IRQ("%s: reset the PowerPC system\n",
8ecc7913 427 __func__);
f3273ba6 428 ppc40x_system_reset(cpu);
8ecc7913
JM
429 }
430 break;
4e290a0b 431 case PPC40x_INPUT_RESET_CHIP:
8ecc7913 432 if (level) {
d12d51d5 433 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
f3273ba6 434 ppc40x_chip_reset(cpu);
8ecc7913
JM
435 }
436 break;
4e290a0b 437 case PPC40x_INPUT_RESET_CORE:
24be5ae3
JM
438 /* XXX: TODO: update DBSR[MRR] */
439 if (level) {
d12d51d5 440 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
f3273ba6 441 ppc40x_core_reset(cpu);
24be5ae3
JM
442 }
443 break;
4e290a0b 444 case PPC40x_INPUT_CINT:
24be5ae3 445 /* Level sensitive - active high */
d12d51d5 446 LOG_IRQ("%s: set the critical IRQ state to %d\n",
8ecc7913 447 __func__, level);
7058581a 448 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
24be5ae3 449 break;
4e290a0b 450 case PPC40x_INPUT_INT:
24be5ae3 451 /* Level sensitive - active high */
d12d51d5 452 LOG_IRQ("%s: set the external IRQ state to %d\n",
a496775f 453 __func__, level);
7058581a 454 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
24be5ae3 455 break;
4e290a0b 456 case PPC40x_INPUT_HALT:
24be5ae3
JM
457 /* Level sensitive - active low */
458 if (level) {
d12d51d5 459 LOG_IRQ("%s: stop the CPU\n", __func__);
259186a7 460 cs->halted = 1;
24be5ae3 461 } else {
d12d51d5 462 LOG_IRQ("%s: restart the CPU\n", __func__);
259186a7
AF
463 cs->halted = 0;
464 qemu_cpu_kick(cs);
24be5ae3
JM
465 }
466 break;
4e290a0b 467 case PPC40x_INPUT_DEBUG:
24be5ae3 468 /* Level sensitive - active high */
d12d51d5 469 LOG_IRQ("%s: set the debug pin state to %d\n",
a496775f 470 __func__, level);
7058581a 471 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
24be5ae3
JM
472 break;
473 default:
474 /* Unknown pin - do nothing */
d12d51d5 475 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
24be5ae3
JM
476 return;
477 }
478 if (level)
479 env->irq_input_state |= 1 << pin;
480 else
481 env->irq_input_state &= ~(1 << pin);
482 }
483}
484
aa5a9e24 485void ppc40x_irq_init(PowerPCCPU *cpu)
24be5ae3 486{
aa5a9e24 487 CPUPPCState *env = &cpu->env;
a0961245 488
4e290a0b 489 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
a0961245 490 cpu, PPC40x_INPUT_NB);
24be5ae3
JM
491}
492
9fdc60bf 493/* PowerPC E500 internal IRQ controller */
a0961245 494static void ppce500_set_irq(void *opaque, int pin, int level)
9fdc60bf 495{
a0961245
AF
496 PowerPCCPU *cpu = opaque;
497 CPUPPCState *env = &cpu->env;
9fdc60bf
AJ
498 int cur_level;
499
500 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
501 env, pin, level);
502 cur_level = (env->irq_input_state >> pin) & 1;
503 /* Don't generate spurious events */
504 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
505 switch (pin) {
506 case PPCE500_INPUT_MCK:
507 if (level) {
508 LOG_IRQ("%s: reset the PowerPC system\n",
509 __func__);
cf83f140 510 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
9fdc60bf
AJ
511 }
512 break;
513 case PPCE500_INPUT_RESET_CORE:
514 if (level) {
515 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
7058581a 516 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
9fdc60bf
AJ
517 }
518 break;
519 case PPCE500_INPUT_CINT:
520 /* Level sensitive - active high */
521 LOG_IRQ("%s: set the critical IRQ state to %d\n",
522 __func__, level);
7058581a 523 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
9fdc60bf
AJ
524 break;
525 case PPCE500_INPUT_INT:
526 /* Level sensitive - active high */
527 LOG_IRQ("%s: set the core IRQ state to %d\n",
528 __func__, level);
7058581a 529 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
9fdc60bf
AJ
530 break;
531 case PPCE500_INPUT_DEBUG:
532 /* Level sensitive - active high */
533 LOG_IRQ("%s: set the debug pin state to %d\n",
534 __func__, level);
7058581a 535 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
9fdc60bf
AJ
536 break;
537 default:
538 /* Unknown pin - do nothing */
539 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
540 return;
541 }
542 if (level)
543 env->irq_input_state |= 1 << pin;
544 else
545 env->irq_input_state &= ~(1 << pin);
546 }
547}
548
aa5a9e24 549void ppce500_irq_init(PowerPCCPU *cpu)
9fdc60bf 550{
aa5a9e24 551 CPUPPCState *env = &cpu->env;
a0961245 552
9fdc60bf 553 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
a0961245 554 cpu, PPCE500_INPUT_NB);
9fdc60bf 555}
e49798b1
AG
556
557/* Enable or Disable the E500 EPR capability */
558void ppce500_set_mpic_proxy(bool enabled)
559{
182735ef 560 CPUState *cs;
e49798b1 561
bdc44640 562 CPU_FOREACH(cs) {
182735ef 563 PowerPCCPU *cpu = POWERPC_CPU(cs);
5b95b8b9 564
182735ef 565 cpu->env.mpic_proxy = enabled;
5b95b8b9 566 if (kvm_enabled()) {
182735ef 567 kvmppc_set_mpic_proxy(cpu, enabled);
5b95b8b9 568 }
e49798b1
AG
569 }
570}
571
9fddaa0c 572/*****************************************************************************/
e9df014c 573/* PowerPC time base and decrementer emulation */
9fddaa0c 574
ddd1055b 575uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
9fddaa0c
FB
576{
577 /* TB time in tb periods */
73bcb24d 578 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
9fddaa0c
FB
579}
580
e2684c0b 581uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
9fddaa0c 582{
c227f099 583 ppc_tb_t *tb_env = env->tb_env;
9fddaa0c
FB
584 uint64_t tb;
585
90dc8812
SW
586 if (kvm_enabled()) {
587 return env->spr[SPR_TBL];
588 }
589
bc72ad67 590 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
d12d51d5 591 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
9fddaa0c 592
e3ea6529 593 return tb;
9fddaa0c
FB
594}
595
e2684c0b 596static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
9fddaa0c 597{
c227f099 598 ppc_tb_t *tb_env = env->tb_env;
9fddaa0c
FB
599 uint64_t tb;
600
bc72ad67 601 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
d12d51d5 602 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
76a66253 603
9fddaa0c
FB
604 return tb >> 32;
605}
606
e2684c0b 607uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
8a84de23 608{
90dc8812
SW
609 if (kvm_enabled()) {
610 return env->spr[SPR_TBU];
611 }
612
8a84de23
JM
613 return _cpu_ppc_load_tbu(env);
614}
615
c227f099 616static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
636aa200 617 int64_t *tb_offsetp, uint64_t value)
9fddaa0c 618{
73bcb24d
RS
619 *tb_offsetp = value -
620 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
621
d12d51d5 622 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
aae9366a 623 __func__, value, *tb_offsetp);
9fddaa0c
FB
624}
625
e2684c0b 626void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
a062e36c 627{
c227f099 628 ppc_tb_t *tb_env = env->tb_env;
a062e36c
JM
629 uint64_t tb;
630
bc72ad67 631 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
a062e36c 632 tb &= 0xFFFFFFFF00000000ULL;
bc72ad67 633 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
dbdd2506 634 &tb_env->tb_offset, tb | (uint64_t)value);
a062e36c
JM
635}
636
e2684c0b 637static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
9fddaa0c 638{
c227f099 639 ppc_tb_t *tb_env = env->tb_env;
a062e36c 640 uint64_t tb;
9fddaa0c 641
bc72ad67 642 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
a062e36c 643 tb &= 0x00000000FFFFFFFFULL;
bc72ad67 644 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
dbdd2506 645 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
9fddaa0c
FB
646}
647
e2684c0b 648void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
8a84de23
JM
649{
650 _cpu_ppc_store_tbu(env, value);
651}
652
e2684c0b 653uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
a062e36c 654{
c227f099 655 ppc_tb_t *tb_env = env->tb_env;
a062e36c
JM
656 uint64_t tb;
657
bc72ad67 658 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
d12d51d5 659 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
a062e36c 660
b711de95 661 return tb;
a062e36c
JM
662}
663
e2684c0b 664uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
a062e36c 665{
c227f099 666 ppc_tb_t *tb_env = env->tb_env;
a062e36c
JM
667 uint64_t tb;
668
bc72ad67 669 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
d12d51d5 670 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
a062e36c
JM
671
672 return tb >> 32;
673}
674
e2684c0b 675void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
a062e36c 676{
c227f099 677 ppc_tb_t *tb_env = env->tb_env;
a062e36c
JM
678 uint64_t tb;
679
bc72ad67 680 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
a062e36c 681 tb &= 0xFFFFFFFF00000000ULL;
bc72ad67 682 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
dbdd2506 683 &tb_env->atb_offset, tb | (uint64_t)value);
a062e36c
JM
684}
685
e2684c0b 686void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
9fddaa0c 687{
c227f099 688 ppc_tb_t *tb_env = env->tb_env;
a062e36c 689 uint64_t tb;
9fddaa0c 690
bc72ad67 691 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
a062e36c 692 tb &= 0x00000000FFFFFFFFULL;
bc72ad67 693 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
dbdd2506
JM
694 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
695}
696
e2684c0b 697static void cpu_ppc_tb_stop (CPUPPCState *env)
dbdd2506 698{
c227f099 699 ppc_tb_t *tb_env = env->tb_env;
dbdd2506
JM
700 uint64_t tb, atb, vmclk;
701
702 /* If the time base is already frozen, do nothing */
703 if (tb_env->tb_freq != 0) {
bc72ad67 704 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
dbdd2506
JM
705 /* Get the time base */
706 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
707 /* Get the alternate time base */
708 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
709 /* Store the time base value (ie compute the current offset) */
710 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
711 /* Store the alternate time base value (compute the current offset) */
712 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
713 /* Set the time base frequency to zero */
714 tb_env->tb_freq = 0;
715 /* Now, the time bases are frozen to tb_offset / atb_offset value */
716 }
717}
718
e2684c0b 719static void cpu_ppc_tb_start (CPUPPCState *env)
dbdd2506 720{
c227f099 721 ppc_tb_t *tb_env = env->tb_env;
dbdd2506 722 uint64_t tb, atb, vmclk;
aae9366a 723
dbdd2506
JM
724 /* If the time base is not frozen, do nothing */
725 if (tb_env->tb_freq == 0) {
bc72ad67 726 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
dbdd2506
JM
727 /* Get the time base from tb_offset */
728 tb = tb_env->tb_offset;
729 /* Get the alternate time base from atb_offset */
730 atb = tb_env->atb_offset;
731 /* Restore the tb frequency from the decrementer frequency */
732 tb_env->tb_freq = tb_env->decr_freq;
733 /* Store the time base value */
734 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
735 /* Store the alternate time base value */
736 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
737 }
9fddaa0c
FB
738}
739
e81a982a
AG
740bool ppc_decr_clear_on_delivery(CPUPPCState *env)
741{
742 ppc_tb_t *tb_env = env->tb_env;
743 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
744 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
745}
746
a8dafa52 747static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
9fddaa0c 748{
c227f099 749 ppc_tb_t *tb_env = env->tb_env;
a8dafa52 750 int64_t decr, diff;
9fddaa0c 751
bc72ad67 752 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
ddd1055b 753 if (diff >= 0) {
73bcb24d 754 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
ddd1055b
FC
755 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
756 decr = 0;
757 } else {
73bcb24d 758 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
ddd1055b 759 }
a8dafa52 760 LOG_TB("%s: %016" PRIx64 "\n", __func__, decr);
76a66253 761
9fddaa0c
FB
762 return decr;
763}
764
a8dafa52 765target_ulong cpu_ppc_load_decr(CPUPPCState *env)
58a7d328 766{
c227f099 767 ppc_tb_t *tb_env = env->tb_env;
a8dafa52 768 uint64_t decr;
58a7d328 769
90dc8812
SW
770 if (kvm_enabled()) {
771 return env->spr[SPR_DECR];
772 }
773
a8dafa52
SJS
774 decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
775
776 /*
777 * If large decrementer is enabled then the decrementer is signed extened
778 * to 64 bits, otherwise it is a 32 bit value.
779 */
780 if (env->spr[SPR_LPCR] & LPCR_LD) {
781 return decr;
782 }
783 return (uint32_t) decr;
58a7d328
JM
784}
785
a8dafa52 786target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
58a7d328 787{
a8dafa52
SJS
788 PowerPCCPU *cpu = ppc_env_get_cpu(env);
789 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
c227f099 790 ppc_tb_t *tb_env = env->tb_env;
a8dafa52
SJS
791 uint64_t hdecr;
792
793 hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next);
58a7d328 794
a8dafa52
SJS
795 /*
796 * If we have a large decrementer (POWER9 or later) then hdecr is sign
797 * extended to 64 bits, otherwise it is 32 bits.
798 */
799 if (pcc->lrg_decr_bits > 32) {
800 return hdecr;
801 }
802 return (uint32_t) hdecr;
58a7d328
JM
803}
804
e2684c0b 805uint64_t cpu_ppc_load_purr (CPUPPCState *env)
58a7d328 806{
c227f099 807 ppc_tb_t *tb_env = env->tb_env;
58a7d328
JM
808 uint64_t diff;
809
bc72ad67 810 diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
b33c17e1 811
73bcb24d
RS
812 return tb_env->purr_load +
813 muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
58a7d328 814}
58a7d328 815
9fddaa0c
FB
816/* When decrementer expires,
817 * all we need to do is generate or queue a CPU exception
818 */
7e0a9247 819static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
9fddaa0c
FB
820{
821 /* Raise it */
d12d51d5 822 LOG_TB("raise decrementer exception\n");
7058581a 823 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
9fddaa0c
FB
824}
825
e81a982a
AG
826static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
827{
828 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
829}
830
7e0a9247 831static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
58a7d328 832{
4b236b62
BH
833 CPUPPCState *env = &cpu->env;
834
58a7d328 835 /* Raise it */
4b236b62
BH
836 LOG_TB("raise hv decrementer exception\n");
837
838 /* The architecture specifies that we don't deliver HDEC
839 * interrupts in a PM state. Not only they don't cause a
840 * wakeup but they also get effectively discarded.
841 */
1e7fd61d 842 if (!env->resume_as_sreset) {
4b236b62
BH
843 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
844 }
58a7d328
JM
845}
846
e81a982a
AG
847static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
848{
849 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
850}
851
7e0a9247 852static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
1246b259 853 QEMUTimer *timer,
e81a982a
AG
854 void (*raise_excp)(void *),
855 void (*lower_excp)(PowerPCCPU *),
a8dafa52
SJS
856 target_ulong decr, target_ulong value,
857 int nr_bits)
9fddaa0c 858{
7e0a9247 859 CPUPPCState *env = &cpu->env;
c227f099 860 ppc_tb_t *tb_env = env->tb_env;
9fddaa0c 861 uint64_t now, next;
a8dafa52
SJS
862 bool negative;
863
864 /* Truncate value to decr_width and sign extend for simplicity */
865 value &= ((1ULL << nr_bits) - 1);
866 negative = !!(value & (1ULL << (nr_bits - 1)));
867 if (negative) {
868 value |= (0xFFFFFFFFULL << nr_bits);
869 }
9fddaa0c 870
a8dafa52 871 LOG_TB("%s: " TARGET_FMT_lx " => " TARGET_FMT_lx "\n", __func__,
aae9366a 872 decr, value);
55f7d4b0
DG
873
874 if (kvm_enabled()) {
875 /* KVM handles decrementer exceptions, we don't need our own timer */
876 return;
877 }
878
e81a982a
AG
879 /*
880 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
881 * interrupt.
882 *
883 * If we get a really small DEC value, we can assume that by the time we
884 * handled it we should inject an interrupt already.
885 *
886 * On MSB level based DEC implementations the MSB always means the interrupt
887 * is pending, so raise it on those.
888 *
889 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
890 * an edge interrupt, so raise it here too.
891 */
892 if ((value < 3) ||
a8dafa52
SJS
893 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && negative) ||
894 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && negative
895 && !(decr & (1ULL << (nr_bits - 1))))) {
e81a982a
AG
896 (*raise_excp)(cpu);
897 return;
ddd1055b 898 }
e81a982a
AG
899
900 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
a8dafa52 901 if (!negative && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
e81a982a 902 (*lower_excp)(cpu);
ddd1055b 903 }
e81a982a
AG
904
905 /* Calculate the next timer event */
906 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
73bcb24d 907 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
58a7d328 908 *nextp = next;
e81a982a 909
9fddaa0c 910 /* Adjust timer */
bc72ad67 911 timer_mod(timer, next);
58a7d328
JM
912}
913
a8dafa52
SJS
914static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
915 target_ulong value, int nr_bits)
58a7d328 916{
7e0a9247 917 ppc_tb_t *tb_env = cpu->env.tb_env;
58a7d328 918
7e0a9247 919 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
e81a982a 920 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
a8dafa52 921 value, nr_bits);
9fddaa0c
FB
922}
923
a8dafa52 924void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
9fddaa0c 925{
7e0a9247 926 PowerPCCPU *cpu = ppc_env_get_cpu(env);
a8dafa52
SJS
927 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
928 int nr_bits = 32;
929
930 if (env->spr[SPR_LPCR] & LPCR_LD) {
931 nr_bits = pcc->lrg_decr_bits;
932 }
7e0a9247 933
a8dafa52 934 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
9fddaa0c
FB
935}
936
50c680f0 937static void cpu_ppc_decr_cb(void *opaque)
9fddaa0c 938{
50c680f0 939 PowerPCCPU *cpu = opaque;
7e0a9247 940
e81a982a 941 cpu_ppc_decr_excp(cpu);
9fddaa0c
FB
942}
943
a8dafa52
SJS
944static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
945 target_ulong value, int nr_bits)
58a7d328 946{
7e0a9247 947 ppc_tb_t *tb_env = cpu->env.tb_env;
58a7d328 948
b172c56a 949 if (tb_env->hdecr_timer != NULL) {
7e0a9247 950 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
e81a982a 951 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
a8dafa52 952 hdecr, value, nr_bits);
b172c56a 953 }
58a7d328
JM
954}
955
a8dafa52 956void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
58a7d328 957{
7e0a9247 958 PowerPCCPU *cpu = ppc_env_get_cpu(env);
a8dafa52 959 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
7e0a9247 960
a8dafa52
SJS
961 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
962 pcc->lrg_decr_bits);
58a7d328
JM
963}
964
50c680f0 965static void cpu_ppc_hdecr_cb(void *opaque)
58a7d328 966{
50c680f0 967 PowerPCCPU *cpu = opaque;
7e0a9247 968
e81a982a 969 cpu_ppc_hdecr_excp(cpu);
58a7d328
JM
970}
971
7e0a9247 972static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
58a7d328 973{
7e0a9247 974 ppc_tb_t *tb_env = cpu->env.tb_env;
58a7d328
JM
975
976 tb_env->purr_load = value;
bc72ad67 977 tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
58a7d328 978}
58a7d328 979
8ecc7913
JM
980static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
981{
e2684c0b 982 CPUPPCState *env = opaque;
7e0a9247 983 PowerPCCPU *cpu = ppc_env_get_cpu(env);
c227f099 984 ppc_tb_t *tb_env = env->tb_env;
8ecc7913
JM
985
986 tb_env->tb_freq = freq;
dbdd2506 987 tb_env->decr_freq = freq;
8ecc7913
JM
988 /* There is a bug in Linux 2.4 kernels:
989 * if a decrementer exception is pending when it enables msr_ee at startup,
990 * it's not ready to handle it...
991 */
a8dafa52
SJS
992 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
993 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
7e0a9247 994 cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
8ecc7913
JM
995}
996
42043e4f 997static void timebase_save(PPCTimebase *tb)
98a8b524 998{
4a7428c5 999 uint64_t ticks = cpu_get_host_ticks();
98a8b524
AK
1000 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1001
1002 if (!first_ppc_cpu->env.tb_env) {
1003 error_report("No timebase object");
1004 return;
1005 }
1006
42043e4f 1007 /* not used anymore, we keep it for compatibility */
77bad151 1008 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
98a8b524 1009 /*
42043e4f 1010 * tb_offset is only expected to be changed by QEMU so
98a8b524
AK
1011 * there is no need to update it from KVM here
1012 */
1013 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1014}
1015
42043e4f 1016static void timebase_load(PPCTimebase *tb)
98a8b524 1017{
98a8b524
AK
1018 CPUState *cpu;
1019 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
42043e4f 1020 int64_t tb_off_adj, tb_off;
98a8b524
AK
1021 unsigned long freq;
1022
1023 if (!first_ppc_cpu->env.tb_env) {
1024 error_report("No timebase object");
42043e4f 1025 return;
98a8b524
AK
1026 }
1027
1028 freq = first_ppc_cpu->env.tb_env->tb_freq;
98a8b524 1029
42043e4f 1030 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
98a8b524
AK
1031
1032 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1033 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1034 (tb_off_adj - tb_off) / freq);
1035
1036 /* Set new offset to all CPUs */
1037 CPU_FOREACH(cpu) {
1038 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1039 pcpu->env.tb_env->tb_offset = tb_off_adj;
42043e4f
LV
1040#if defined(CONFIG_KVM)
1041 kvm_set_one_reg(cpu, KVM_REG_PPC_TB_OFFSET,
1042 &pcpu->env.tb_env->tb_offset);
1043#endif
1044 }
1045}
1046
1047void cpu_ppc_clock_vm_state_change(void *opaque, int running,
1048 RunState state)
1049{
1050 PPCTimebase *tb = opaque;
1051
1052 if (running) {
1053 timebase_load(tb);
1054 } else {
1055 timebase_save(tb);
98a8b524 1056 }
42043e4f
LV
1057}
1058
1059/*
1060 * When migrating, read the clock just before migration,
1061 * so that the guest clock counts during the events
1062 * between:
1063 *
1064 * * vm_stop()
1065 * *
1066 * * pre_save()
1067 *
1068 * This reduces clock difference on migration from 5s
1069 * to 0.1s (when max_downtime == 5s), because sending the
1070 * final pages of memory (which happens between vm_stop()
1071 * and pre_save()) takes max_downtime.
1072 */
44b1ff31 1073static int timebase_pre_save(void *opaque)
42043e4f
LV
1074{
1075 PPCTimebase *tb = opaque;
98a8b524 1076
42043e4f 1077 timebase_save(tb);
44b1ff31
DDAG
1078
1079 return 0;
98a8b524
AK
1080}
1081
1082const VMStateDescription vmstate_ppc_timebase = {
1083 .name = "timebase",
1084 .version_id = 1,
1085 .minimum_version_id = 1,
1086 .minimum_version_id_old = 1,
1087 .pre_save = timebase_pre_save,
98a8b524
AK
1088 .fields = (VMStateField []) {
1089 VMSTATE_UINT64(guest_timebase, PPCTimebase),
1090 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1091 VMSTATE_END_OF_LIST()
1092 },
1093};
1094
9fddaa0c 1095/* Set up (once) timebase frequency (in Hz) */
e2684c0b 1096clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
9fddaa0c 1097{
50c680f0 1098 PowerPCCPU *cpu = ppc_env_get_cpu(env);
c227f099 1099 ppc_tb_t *tb_env;
9fddaa0c 1100
7267c094 1101 tb_env = g_malloc0(sizeof(ppc_tb_t));
9fddaa0c 1102 env->tb_env = tb_env;
ddd1055b 1103 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
e81a982a
AG
1104 if (env->insns_flags & PPC_SEGMENT_64B) {
1105 /* All Book3S 64bit CPUs implement level based DEC logic */
1106 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1107 }
8ecc7913 1108 /* Create new timer */
bc72ad67 1109 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
4b236b62 1110 if (env->has_hv_mode) {
bc72ad67 1111 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
50c680f0 1112 cpu);
b172c56a
JM
1113 } else {
1114 tb_env->hdecr_timer = NULL;
1115 }
8ecc7913 1116 cpu_ppc_set_tb_clk(env, freq);
9fddaa0c 1117
8ecc7913 1118 return &cpu_ppc_set_tb_clk;
9fddaa0c
FB
1119}
1120
76a66253 1121/* Specific helpers for POWER & PowerPC 601 RTC */
e2684c0b 1122void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
8a84de23
JM
1123{
1124 _cpu_ppc_store_tbu(env, value);
1125}
76a66253 1126
e2684c0b 1127uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
8a84de23
JM
1128{
1129 return _cpu_ppc_load_tbu(env);
1130}
76a66253 1131
e2684c0b 1132void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
76a66253
JM
1133{
1134 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1135}
1136
e2684c0b 1137uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
76a66253
JM
1138{
1139 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1140}
1141
636aaad7 1142/*****************************************************************************/
ddd1055b 1143/* PowerPC 40x timers */
636aaad7
JM
1144
1145/* PIT, FIT & WDT */
ddd1055b
FC
1146typedef struct ppc40x_timer_t ppc40x_timer_t;
1147struct ppc40x_timer_t {
636aaad7
JM
1148 uint64_t pit_reload; /* PIT auto-reload value */
1149 uint64_t fit_next; /* Tick for next FIT interrupt */
1246b259 1150 QEMUTimer *fit_timer;
636aaad7 1151 uint64_t wdt_next; /* Tick for next WDT interrupt */
1246b259 1152 QEMUTimer *wdt_timer;
d63cb48d
EI
1153
1154 /* 405 have the PIT, 440 have a DECR. */
1155 unsigned int decr_excp;
636aaad7 1156};
3b46e624 1157
636aaad7
JM
1158/* Fixed interval timer */
1159static void cpu_4xx_fit_cb (void *opaque)
1160{
7058581a 1161 PowerPCCPU *cpu;
e2684c0b 1162 CPUPPCState *env;
c227f099 1163 ppc_tb_t *tb_env;
ddd1055b 1164 ppc40x_timer_t *ppc40x_timer;
636aaad7
JM
1165 uint64_t now, next;
1166
1167 env = opaque;
7058581a 1168 cpu = ppc_env_get_cpu(env);
636aaad7 1169 tb_env = env->tb_env;
ddd1055b 1170 ppc40x_timer = tb_env->opaque;
bc72ad67 1171 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
636aaad7
JM
1172 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1173 case 0:
1174 next = 1 << 9;
1175 break;
1176 case 1:
1177 next = 1 << 13;
1178 break;
1179 case 2:
1180 next = 1 << 17;
1181 break;
1182 case 3:
1183 next = 1 << 21;
1184 break;
1185 default:
1186 /* Cannot occur, but makes gcc happy */
1187 return;
1188 }
73bcb24d 1189 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
636aaad7
JM
1190 if (next == now)
1191 next++;
bc72ad67 1192 timer_mod(ppc40x_timer->fit_timer, next);
636aaad7 1193 env->spr[SPR_40x_TSR] |= 1 << 26;
7058581a
AF
1194 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1195 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1196 }
90e189ec
BS
1197 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1198 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1199 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
636aaad7
JM
1200}
1201
1202/* Programmable interval timer */
e2684c0b 1203static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
76a66253 1204{
ddd1055b 1205 ppc40x_timer_t *ppc40x_timer;
636aaad7
JM
1206 uint64_t now, next;
1207
ddd1055b
FC
1208 ppc40x_timer = tb_env->opaque;
1209 if (ppc40x_timer->pit_reload <= 1 ||
4b6d0a4c
JM
1210 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1211 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1212 /* Stop PIT */
d12d51d5 1213 LOG_TB("%s: stop PIT\n", __func__);
bc72ad67 1214 timer_del(tb_env->decr_timer);
4b6d0a4c 1215 } else {
d12d51d5 1216 LOG_TB("%s: start PIT %016" PRIx64 "\n",
ddd1055b 1217 __func__, ppc40x_timer->pit_reload);
bc72ad67 1218 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
ddd1055b 1219 next = now + muldiv64(ppc40x_timer->pit_reload,
73bcb24d 1220 NANOSECONDS_PER_SECOND, tb_env->decr_freq);
4b6d0a4c
JM
1221 if (is_excp)
1222 next += tb_env->decr_next - now;
636aaad7
JM
1223 if (next == now)
1224 next++;
bc72ad67 1225 timer_mod(tb_env->decr_timer, next);
636aaad7
JM
1226 tb_env->decr_next = next;
1227 }
4b6d0a4c
JM
1228}
1229
1230static void cpu_4xx_pit_cb (void *opaque)
1231{
7058581a 1232 PowerPCCPU *cpu;
e2684c0b 1233 CPUPPCState *env;
c227f099 1234 ppc_tb_t *tb_env;
ddd1055b 1235 ppc40x_timer_t *ppc40x_timer;
4b6d0a4c
JM
1236
1237 env = opaque;
7058581a 1238 cpu = ppc_env_get_cpu(env);
4b6d0a4c 1239 tb_env = env->tb_env;
ddd1055b 1240 ppc40x_timer = tb_env->opaque;
636aaad7 1241 env->spr[SPR_40x_TSR] |= 1 << 27;
7058581a
AF
1242 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1243 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1244 }
4b6d0a4c 1245 start_stop_pit(env, tb_env, 1);
90e189ec
BS
1246 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1247 "%016" PRIx64 "\n", __func__,
1248 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1249 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1250 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
ddd1055b 1251 ppc40x_timer->pit_reload);
636aaad7
JM
1252}
1253
1254/* Watchdog timer */
1255static void cpu_4xx_wdt_cb (void *opaque)
1256{
7058581a 1257 PowerPCCPU *cpu;
e2684c0b 1258 CPUPPCState *env;
c227f099 1259 ppc_tb_t *tb_env;
ddd1055b 1260 ppc40x_timer_t *ppc40x_timer;
636aaad7
JM
1261 uint64_t now, next;
1262
1263 env = opaque;
7058581a 1264 cpu = ppc_env_get_cpu(env);
636aaad7 1265 tb_env = env->tb_env;
ddd1055b 1266 ppc40x_timer = tb_env->opaque;
bc72ad67 1267 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
636aaad7
JM
1268 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1269 case 0:
1270 next = 1 << 17;
1271 break;
1272 case 1:
1273 next = 1 << 21;
1274 break;
1275 case 2:
1276 next = 1 << 25;
1277 break;
1278 case 3:
1279 next = 1 << 29;
1280 break;
1281 default:
1282 /* Cannot occur, but makes gcc happy */
1283 return;
1284 }
73bcb24d 1285 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
636aaad7
JM
1286 if (next == now)
1287 next++;
90e189ec
BS
1288 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1289 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
636aaad7
JM
1290 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1291 case 0x0:
1292 case 0x1:
bc72ad67 1293 timer_mod(ppc40x_timer->wdt_timer, next);
ddd1055b 1294 ppc40x_timer->wdt_next = next;
a1f7f97b 1295 env->spr[SPR_40x_TSR] |= 1U << 31;
636aaad7
JM
1296 break;
1297 case 0x2:
bc72ad67 1298 timer_mod(ppc40x_timer->wdt_timer, next);
ddd1055b 1299 ppc40x_timer->wdt_next = next;
636aaad7 1300 env->spr[SPR_40x_TSR] |= 1 << 30;
7058581a
AF
1301 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1302 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1303 }
636aaad7
JM
1304 break;
1305 case 0x3:
1306 env->spr[SPR_40x_TSR] &= ~0x30000000;
1307 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1308 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1309 case 0x0:
1310 /* No reset */
1311 break;
1312 case 0x1: /* Core reset */
f3273ba6 1313 ppc40x_core_reset(cpu);
8ecc7913 1314 break;
636aaad7 1315 case 0x2: /* Chip reset */
f3273ba6 1316 ppc40x_chip_reset(cpu);
8ecc7913 1317 break;
636aaad7 1318 case 0x3: /* System reset */
f3273ba6 1319 ppc40x_system_reset(cpu);
8ecc7913 1320 break;
636aaad7
JM
1321 }
1322 }
76a66253
JM
1323}
1324
e2684c0b 1325void store_40x_pit (CPUPPCState *env, target_ulong val)
76a66253 1326{
c227f099 1327 ppc_tb_t *tb_env;
ddd1055b 1328 ppc40x_timer_t *ppc40x_timer;
636aaad7
JM
1329
1330 tb_env = env->tb_env;
ddd1055b 1331 ppc40x_timer = tb_env->opaque;
90e189ec 1332 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
ddd1055b 1333 ppc40x_timer->pit_reload = val;
4b6d0a4c 1334 start_stop_pit(env, tb_env, 0);
76a66253
JM
1335}
1336
e2684c0b 1337target_ulong load_40x_pit (CPUPPCState *env)
76a66253 1338{
636aaad7 1339 return cpu_ppc_load_decr(env);
76a66253
JM
1340}
1341
ddd1055b 1342static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
4b6d0a4c 1343{
e2684c0b 1344 CPUPPCState *env = opaque;
c227f099 1345 ppc_tb_t *tb_env = env->tb_env;
4b6d0a4c 1346
d12d51d5 1347 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
aae9366a 1348 freq);
4b6d0a4c 1349 tb_env->tb_freq = freq;
dbdd2506 1350 tb_env->decr_freq = freq;
4b6d0a4c
JM
1351 /* XXX: we should also update all timers */
1352}
1353
e2684c0b 1354clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
d63cb48d 1355 unsigned int decr_excp)
636aaad7 1356{
c227f099 1357 ppc_tb_t *tb_env;
ddd1055b 1358 ppc40x_timer_t *ppc40x_timer;
636aaad7 1359
7267c094 1360 tb_env = g_malloc0(sizeof(ppc_tb_t));
8ecc7913 1361 env->tb_env = tb_env;
ddd1055b
FC
1362 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1363 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
8ecc7913 1364 tb_env->tb_freq = freq;
dbdd2506 1365 tb_env->decr_freq = freq;
ddd1055b 1366 tb_env->opaque = ppc40x_timer;
d12d51d5 1367 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
ddd1055b 1368 if (ppc40x_timer != NULL) {
636aaad7 1369 /* We use decr timer for PIT */
bc72ad67 1370 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
ddd1055b 1371 ppc40x_timer->fit_timer =
bc72ad67 1372 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
ddd1055b 1373 ppc40x_timer->wdt_timer =
bc72ad67 1374 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
ddd1055b 1375 ppc40x_timer->decr_excp = decr_excp;
636aaad7 1376 }
8ecc7913 1377
ddd1055b 1378 return &ppc_40x_set_tb_clk;
76a66253
JM
1379}
1380
2e719ba3
JM
1381/*****************************************************************************/
1382/* Embedded PowerPC Device Control Registers */
c227f099
AL
1383typedef struct ppc_dcrn_t ppc_dcrn_t;
1384struct ppc_dcrn_t {
2e719ba3
JM
1385 dcr_read_cb dcr_read;
1386 dcr_write_cb dcr_write;
1387 void *opaque;
1388};
1389
a750fc0b
JM
1390/* XXX: on 460, DCR addresses are 32 bits wide,
1391 * using DCRIPR to get the 22 upper bits of the DCR address
1392 */
2e719ba3 1393#define DCRN_NB 1024
c227f099
AL
1394struct ppc_dcr_t {
1395 ppc_dcrn_t dcrn[DCRN_NB];
2e719ba3
JM
1396 int (*read_error)(int dcrn);
1397 int (*write_error)(int dcrn);
1398};
1399
73b01960 1400int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
2e719ba3 1401{
c227f099 1402 ppc_dcrn_t *dcr;
2e719ba3
JM
1403
1404 if (dcrn < 0 || dcrn >= DCRN_NB)
1405 goto error;
1406 dcr = &dcr_env->dcrn[dcrn];
1407 if (dcr->dcr_read == NULL)
1408 goto error;
1409 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1410
1411 return 0;
1412
1413 error:
1414 if (dcr_env->read_error != NULL)
1415 return (*dcr_env->read_error)(dcrn);
1416
1417 return -1;
1418}
1419
73b01960 1420int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
2e719ba3 1421{
c227f099 1422 ppc_dcrn_t *dcr;
2e719ba3
JM
1423
1424 if (dcrn < 0 || dcrn >= DCRN_NB)
1425 goto error;
1426 dcr = &dcr_env->dcrn[dcrn];
1427 if (dcr->dcr_write == NULL)
1428 goto error;
1429 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1430
1431 return 0;
1432
1433 error:
1434 if (dcr_env->write_error != NULL)
1435 return (*dcr_env->write_error)(dcrn);
1436
1437 return -1;
1438}
1439
e2684c0b 1440int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
2e719ba3
JM
1441 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1442{
c227f099
AL
1443 ppc_dcr_t *dcr_env;
1444 ppc_dcrn_t *dcr;
2e719ba3
JM
1445
1446 dcr_env = env->dcr_env;
1447 if (dcr_env == NULL)
1448 return -1;
1449 if (dcrn < 0 || dcrn >= DCRN_NB)
1450 return -1;
1451 dcr = &dcr_env->dcrn[dcrn];
1452 if (dcr->opaque != NULL ||
1453 dcr->dcr_read != NULL ||
1454 dcr->dcr_write != NULL)
1455 return -1;
1456 dcr->opaque = opaque;
1457 dcr->dcr_read = dcr_read;
1458 dcr->dcr_write = dcr_write;
1459
1460 return 0;
1461}
1462
e2684c0b 1463int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
2e719ba3
JM
1464 int (*write_error)(int dcrn))
1465{
c227f099 1466 ppc_dcr_t *dcr_env;
2e719ba3 1467
7267c094 1468 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
2e719ba3
JM
1469 dcr_env->read_error = read_error;
1470 dcr_env->write_error = write_error;
1471 env->dcr_env = dcr_env;
1472
1473 return 0;
1474}
1475
64201201
FB
1476/*****************************************************************************/
1477/* Debug port */
fd0bbb12 1478void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
64201201
FB
1479{
1480 addr &= 0xF;
1481 switch (addr) {
1482 case 0:
1483 printf("%c", val);
1484 break;
1485 case 1:
1486 printf("\n");
1487 fflush(stdout);
1488 break;
1489 case 2:
aae9366a 1490 printf("Set loglevel to %04" PRIx32 "\n", val);
24537a01 1491 qemu_set_log(val | 0x100);
64201201
FB
1492 break;
1493 }
1494}
051e2973
CLG
1495
1496PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1497{
1498 CPUState *cs;
1499
1500 CPU_FOREACH(cs) {
1501 PowerPCCPU *cpu = POWERPC_CPU(cs);
1502 CPUPPCState *env = &cpu->env;
1503
1504 if (env->spr_cb[SPR_PIR].default_value == pir) {
1505 return cpu;
1506 }
1507 }
1508
1509 return NULL;
1510}
This page took 1.235887 seconds and 4 git commands to generate.