]>
Commit | Line | Data |
---|---|---|
5fafdf24 | 1 | /* |
16406950 PB |
2 | * ARM kernel loader. |
3 | * | |
9ee6e8bb | 4 | * Copyright (c) 2006-2007 CodeSourcery. |
16406950 PB |
5 | * Written by Paul Brook |
6 | * | |
8e31bf38 | 7 | * This code is licensed under the GPL. |
16406950 PB |
8 | */ |
9 | ||
12b16722 | 10 | #include "qemu/osdep.h" |
da34e65c | 11 | #include "qapi/error.h" |
b77257d7 | 12 | #include <libfdt.h> |
83c9f4ca | 13 | #include "hw/hw.h" |
bd2be150 | 14 | #include "hw/arm/arm.h" |
d8b1ae42 | 15 | #include "hw/arm/linux-boot-if.h" |
baf6b681 | 16 | #include "sysemu/kvm.h" |
9c17d615 | 17 | #include "sysemu/sysemu.h" |
9695200a | 18 | #include "sysemu/numa.h" |
83c9f4ca PB |
19 | #include "hw/boards.h" |
20 | #include "hw/loader.h" | |
ca20cf32 | 21 | #include "elf.h" |
9c17d615 | 22 | #include "sysemu/device_tree.h" |
1de7afc9 | 23 | #include "qemu/config-file.h" |
2198a121 | 24 | #include "exec/address-spaces.h" |
16406950 | 25 | |
4d9ebf75 MH |
26 | /* Kernel boot protocol is specified in the kernel docs |
27 | * Documentation/arm/Booting and Documentation/arm64/booting.txt | |
28 | * They have different preferred image load offsets from system RAM base. | |
29 | */ | |
16406950 PB |
30 | #define KERNEL_ARGS_ADDR 0x100 |
31 | #define KERNEL_LOAD_ADDR 0x00010000 | |
4d9ebf75 | 32 | #define KERNEL64_LOAD_ADDR 0x00080000 |
16406950 | 33 | |
47b1da81 | 34 | typedef enum { |
84e59397 PC |
35 | FIXUP_NONE = 0, /* do nothing */ |
36 | FIXUP_TERMINATOR, /* end of insns */ | |
37 | FIXUP_BOARDID, /* overwrite with board ID number */ | |
10b8ec73 | 38 | FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */ |
84e59397 PC |
39 | FIXUP_ARGPTR, /* overwrite with pointer to kernel args */ |
40 | FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */ | |
41 | FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */ | |
42 | FIXUP_BOOTREG, /* overwrite with boot register address */ | |
43 | FIXUP_DSB, /* overwrite with correct DSB insn for cpu */ | |
47b1da81 PM |
44 | FIXUP_MAX, |
45 | } FixupType; | |
46 | ||
47 | typedef struct ARMInsnFixup { | |
48 | uint32_t insn; | |
49 | FixupType fixup; | |
50 | } ARMInsnFixup; | |
51 | ||
4d9ebf75 MH |
52 | static const ARMInsnFixup bootloader_aarch64[] = { |
53 | { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */ | |
54 | { 0xaa1f03e1 }, /* mov x1, xzr */ | |
55 | { 0xaa1f03e2 }, /* mov x2, xzr */ | |
56 | { 0xaa1f03e3 }, /* mov x3, xzr */ | |
57 | { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */ | |
58 | { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */ | |
59 | { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */ | |
60 | { 0 }, /* .word @DTB Higher 32-bits */ | |
61 | { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */ | |
62 | { 0 }, /* .word @Kernel Entry Higher 32-bits */ | |
63 | { 0, FIXUP_TERMINATOR } | |
64 | }; | |
65 | ||
10b8ec73 PC |
66 | /* A very small bootloader: call the board-setup code (if needed), |
67 | * set r0-r2, then jump to the kernel. | |
68 | * If we're not calling boot setup code then we don't copy across | |
69 | * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array. | |
70 | */ | |
71 | ||
47b1da81 | 72 | static const ARMInsnFixup bootloader[] = { |
b4850e5a | 73 | { 0xe28fe004 }, /* add lr, pc, #4 */ |
10b8ec73 PC |
74 | { 0xe51ff004 }, /* ldr pc, [pc, #-4] */ |
75 | { 0, FIXUP_BOARD_SETUP }, | |
76 | #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3 | |
47b1da81 PM |
77 | { 0xe3a00000 }, /* mov r0, #0 */ |
78 | { 0xe59f1004 }, /* ldr r1, [pc, #4] */ | |
79 | { 0xe59f2004 }, /* ldr r2, [pc, #4] */ | |
80 | { 0xe59ff004 }, /* ldr pc, [pc, #4] */ | |
81 | { 0, FIXUP_BOARDID }, | |
82 | { 0, FIXUP_ARGPTR }, | |
83 | { 0, FIXUP_ENTRYPOINT }, | |
84 | { 0, FIXUP_TERMINATOR } | |
16406950 PB |
85 | }; |
86 | ||
9d5ba9bf ML |
87 | /* Handling for secondary CPU boot in a multicore system. |
88 | * Unlike the uniprocessor/primary CPU boot, this is platform | |
89 | * dependent. The default code here is based on the secondary | |
90 | * CPU boot protocol used on realview/vexpress boards, with | |
91 | * some parameterisation to increase its flexibility. | |
92 | * QEMU platform models for which this code is not appropriate | |
93 | * should override write_secondary_boot and secondary_cpu_reset_hook | |
94 | * instead. | |
95 | * | |
96 | * This code enables the interrupt controllers for the secondary | |
97 | * CPUs and then puts all the secondary CPUs into a loop waiting | |
98 | * for an interprocessor interrupt and polling a configurable | |
99 | * location for the kernel secondary CPU entry point. | |
100 | */ | |
bf471f79 PM |
101 | #define DSB_INSN 0xf57ff04f |
102 | #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */ | |
103 | ||
47b1da81 PM |
104 | static const ARMInsnFixup smpboot[] = { |
105 | { 0xe59f2028 }, /* ldr r2, gic_cpu_if */ | |
106 | { 0xe59f0028 }, /* ldr r0, bootreg_addr */ | |
107 | { 0xe3a01001 }, /* mov r1, #1 */ | |
108 | { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */ | |
109 | { 0xe3a010ff }, /* mov r1, #0xff */ | |
110 | { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */ | |
111 | { 0, FIXUP_DSB }, /* dsb */ | |
112 | { 0xe320f003 }, /* wfi */ | |
113 | { 0xe5901000 }, /* ldr r1, [r0] */ | |
114 | { 0xe1110001 }, /* tst r1, r1 */ | |
115 | { 0x0afffffb }, /* beq <wfi> */ | |
116 | { 0xe12fff11 }, /* bx r1 */ | |
117 | { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */ | |
118 | { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */ | |
119 | { 0, FIXUP_TERMINATOR } | |
9ee6e8bb PB |
120 | }; |
121 | ||
47b1da81 PM |
122 | static void write_bootloader(const char *name, hwaddr addr, |
123 | const ARMInsnFixup *insns, uint32_t *fixupcontext) | |
124 | { | |
125 | /* Fix up the specified bootloader fragment and write it into | |
126 | * guest memory using rom_add_blob_fixed(). fixupcontext is | |
127 | * an array giving the values to write in for the fixup types | |
128 | * which write a value into the code array. | |
129 | */ | |
130 | int i, len; | |
131 | uint32_t *code; | |
132 | ||
133 | len = 0; | |
134 | while (insns[len].fixup != FIXUP_TERMINATOR) { | |
135 | len++; | |
136 | } | |
137 | ||
138 | code = g_new0(uint32_t, len); | |
139 | ||
140 | for (i = 0; i < len; i++) { | |
141 | uint32_t insn = insns[i].insn; | |
142 | FixupType fixup = insns[i].fixup; | |
143 | ||
144 | switch (fixup) { | |
145 | case FIXUP_NONE: | |
146 | break; | |
147 | case FIXUP_BOARDID: | |
10b8ec73 | 148 | case FIXUP_BOARD_SETUP: |
47b1da81 PM |
149 | case FIXUP_ARGPTR: |
150 | case FIXUP_ENTRYPOINT: | |
151 | case FIXUP_GIC_CPU_IF: | |
152 | case FIXUP_BOOTREG: | |
153 | case FIXUP_DSB: | |
154 | insn = fixupcontext[fixup]; | |
155 | break; | |
156 | default: | |
157 | abort(); | |
158 | } | |
159 | code[i] = tswap32(insn); | |
160 | } | |
161 | ||
162 | rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr); | |
163 | ||
164 | g_free(code); | |
165 | } | |
166 | ||
9543b0cd | 167 | static void default_write_secondary(ARMCPU *cpu, |
9d5ba9bf ML |
168 | const struct arm_boot_info *info) |
169 | { | |
47b1da81 PM |
170 | uint32_t fixupcontext[FIXUP_MAX]; |
171 | ||
172 | fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr; | |
173 | fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr; | |
174 | if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { | |
175 | fixupcontext[FIXUP_DSB] = DSB_INSN; | |
176 | } else { | |
177 | fixupcontext[FIXUP_DSB] = CP15_DSB_INSN; | |
9d5ba9bf | 178 | } |
47b1da81 PM |
179 | |
180 | write_bootloader("smpboot", info->smp_loader_start, | |
181 | smpboot, fixupcontext); | |
9d5ba9bf ML |
182 | } |
183 | ||
716536a9 AB |
184 | void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu, |
185 | const struct arm_boot_info *info, | |
186 | hwaddr mvbar_addr) | |
187 | { | |
188 | int n; | |
189 | uint32_t mvbar_blob[] = { | |
190 | /* mvbar_addr: secure monitor vectors | |
191 | * Default unimplemented and unused vectors to spin. Makes it | |
192 | * easier to debug (as opposed to the CPU running away). | |
193 | */ | |
194 | 0xeafffffe, /* (spin) */ | |
195 | 0xeafffffe, /* (spin) */ | |
196 | 0xe1b0f00e, /* movs pc, lr ;SMC exception return */ | |
197 | 0xeafffffe, /* (spin) */ | |
198 | 0xeafffffe, /* (spin) */ | |
199 | 0xeafffffe, /* (spin) */ | |
200 | 0xeafffffe, /* (spin) */ | |
201 | 0xeafffffe, /* (spin) */ | |
202 | }; | |
203 | uint32_t board_setup_blob[] = { | |
204 | /* board setup addr */ | |
205 | 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */ | |
206 | 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */ | |
207 | 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */ | |
208 | 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */ | |
209 | 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */ | |
210 | 0xe1a0100e, /* mov r1, lr ;save LR across SMC */ | |
211 | 0xe1600070, /* smc #0 ;call monitor to flush SCR */ | |
212 | 0xe1a0f001, /* mov pc, r1 ;return */ | |
213 | }; | |
214 | ||
215 | /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */ | |
216 | assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100); | |
217 | ||
218 | /* check that these blobs don't overlap */ | |
219 | assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr) | |
220 | || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr)); | |
221 | ||
222 | for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) { | |
223 | mvbar_blob[n] = tswap32(mvbar_blob[n]); | |
224 | } | |
225 | rom_add_blob_fixed("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob), | |
226 | mvbar_addr); | |
227 | ||
228 | for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) { | |
229 | board_setup_blob[n] = tswap32(board_setup_blob[n]); | |
230 | } | |
231 | rom_add_blob_fixed("board-setup", board_setup_blob, | |
232 | sizeof(board_setup_blob), info->board_setup_addr); | |
233 | } | |
234 | ||
5d309320 | 235 | static void default_reset_secondary(ARMCPU *cpu, |
9d5ba9bf ML |
236 | const struct arm_boot_info *info) |
237 | { | |
4df81c6e | 238 | CPUState *cs = CPU(cpu); |
5d309320 | 239 | |
42874d3a PM |
240 | address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr, |
241 | 0, MEMTXATTRS_UNSPECIFIED, NULL); | |
4df81c6e | 242 | cpu_set_pc(cs, info->smp_loader_start); |
9d5ba9bf ML |
243 | } |
244 | ||
83bfffec PM |
245 | static inline bool have_dtb(const struct arm_boot_info *info) |
246 | { | |
247 | return info->dtb_filename || info->get_dtb; | |
248 | } | |
249 | ||
52b43737 | 250 | #define WRITE_WORD(p, value) do { \ |
42874d3a PM |
251 | address_space_stl_notdirty(&address_space_memory, p, value, \ |
252 | MEMTXATTRS_UNSPECIFIED, NULL); \ | |
52b43737 PB |
253 | p += 4; \ |
254 | } while (0) | |
255 | ||
761c9eb0 | 256 | static void set_kernel_args(const struct arm_boot_info *info) |
16406950 | 257 | { |
761c9eb0 | 258 | int initrd_size = info->initrd_size; |
a8170e5e AK |
259 | hwaddr base = info->loader_start; |
260 | hwaddr p; | |
16406950 | 261 | |
52b43737 | 262 | p = base + KERNEL_ARGS_ADDR; |
16406950 | 263 | /* ATAG_CORE */ |
52b43737 PB |
264 | WRITE_WORD(p, 5); |
265 | WRITE_WORD(p, 0x54410001); | |
266 | WRITE_WORD(p, 1); | |
267 | WRITE_WORD(p, 0x1000); | |
268 | WRITE_WORD(p, 0); | |
16406950 | 269 | /* ATAG_MEM */ |
f93eb9ff | 270 | /* TODO: handle multiple chips on one ATAG list */ |
52b43737 PB |
271 | WRITE_WORD(p, 4); |
272 | WRITE_WORD(p, 0x54410002); | |
273 | WRITE_WORD(p, info->ram_size); | |
274 | WRITE_WORD(p, info->loader_start); | |
16406950 PB |
275 | if (initrd_size) { |
276 | /* ATAG_INITRD2 */ | |
52b43737 PB |
277 | WRITE_WORD(p, 4); |
278 | WRITE_WORD(p, 0x54420005); | |
fc53b7d4 | 279 | WRITE_WORD(p, info->initrd_start); |
52b43737 | 280 | WRITE_WORD(p, initrd_size); |
16406950 | 281 | } |
f93eb9ff | 282 | if (info->kernel_cmdline && *info->kernel_cmdline) { |
16406950 PB |
283 | /* ATAG_CMDLINE */ |
284 | int cmdline_size; | |
285 | ||
f93eb9ff | 286 | cmdline_size = strlen(info->kernel_cmdline); |
e1fe50dc | 287 | cpu_physical_memory_write(p + 8, info->kernel_cmdline, |
52b43737 | 288 | cmdline_size + 1); |
16406950 | 289 | cmdline_size = (cmdline_size >> 2) + 1; |
52b43737 PB |
290 | WRITE_WORD(p, cmdline_size + 2); |
291 | WRITE_WORD(p, 0x54410009); | |
292 | p += cmdline_size * 4; | |
16406950 | 293 | } |
f93eb9ff AZ |
294 | if (info->atag_board) { |
295 | /* ATAG_BOARD */ | |
296 | int atag_board_len; | |
52b43737 | 297 | uint8_t atag_board_buf[0x1000]; |
f93eb9ff | 298 | |
52b43737 PB |
299 | atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3; |
300 | WRITE_WORD(p, (atag_board_len + 8) >> 2); | |
301 | WRITE_WORD(p, 0x414f4d50); | |
302 | cpu_physical_memory_write(p, atag_board_buf, atag_board_len); | |
f93eb9ff AZ |
303 | p += atag_board_len; |
304 | } | |
16406950 | 305 | /* ATAG_END */ |
52b43737 PB |
306 | WRITE_WORD(p, 0); |
307 | WRITE_WORD(p, 0); | |
16406950 PB |
308 | } |
309 | ||
761c9eb0 | 310 | static void set_kernel_args_old(const struct arm_boot_info *info) |
2b8f2d41 | 311 | { |
a8170e5e | 312 | hwaddr p; |
52b43737 | 313 | const char *s; |
761c9eb0 | 314 | int initrd_size = info->initrd_size; |
a8170e5e | 315 | hwaddr base = info->loader_start; |
2b8f2d41 AZ |
316 | |
317 | /* see linux/include/asm-arm/setup.h */ | |
52b43737 | 318 | p = base + KERNEL_ARGS_ADDR; |
2b8f2d41 | 319 | /* page_size */ |
52b43737 | 320 | WRITE_WORD(p, 4096); |
2b8f2d41 | 321 | /* nr_pages */ |
52b43737 | 322 | WRITE_WORD(p, info->ram_size / 4096); |
2b8f2d41 | 323 | /* ramdisk_size */ |
52b43737 | 324 | WRITE_WORD(p, 0); |
2b8f2d41 AZ |
325 | #define FLAG_READONLY 1 |
326 | #define FLAG_RDLOAD 4 | |
327 | #define FLAG_RDPROMPT 8 | |
328 | /* flags */ | |
52b43737 | 329 | WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); |
2b8f2d41 | 330 | /* rootdev */ |
52b43737 | 331 | WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */ |
2b8f2d41 | 332 | /* video_num_cols */ |
52b43737 | 333 | WRITE_WORD(p, 0); |
2b8f2d41 | 334 | /* video_num_rows */ |
52b43737 | 335 | WRITE_WORD(p, 0); |
2b8f2d41 | 336 | /* video_x */ |
52b43737 | 337 | WRITE_WORD(p, 0); |
2b8f2d41 | 338 | /* video_y */ |
52b43737 | 339 | WRITE_WORD(p, 0); |
2b8f2d41 | 340 | /* memc_control_reg */ |
52b43737 | 341 | WRITE_WORD(p, 0); |
2b8f2d41 AZ |
342 | /* unsigned char sounddefault */ |
343 | /* unsigned char adfsdrives */ | |
344 | /* unsigned char bytes_per_char_h */ | |
345 | /* unsigned char bytes_per_char_v */ | |
52b43737 | 346 | WRITE_WORD(p, 0); |
2b8f2d41 | 347 | /* pages_in_bank[4] */ |
52b43737 PB |
348 | WRITE_WORD(p, 0); |
349 | WRITE_WORD(p, 0); | |
350 | WRITE_WORD(p, 0); | |
351 | WRITE_WORD(p, 0); | |
2b8f2d41 | 352 | /* pages_in_vram */ |
52b43737 | 353 | WRITE_WORD(p, 0); |
2b8f2d41 | 354 | /* initrd_start */ |
fc53b7d4 PM |
355 | if (initrd_size) { |
356 | WRITE_WORD(p, info->initrd_start); | |
357 | } else { | |
52b43737 | 358 | WRITE_WORD(p, 0); |
fc53b7d4 | 359 | } |
2b8f2d41 | 360 | /* initrd_size */ |
52b43737 | 361 | WRITE_WORD(p, initrd_size); |
2b8f2d41 | 362 | /* rd_start */ |
52b43737 | 363 | WRITE_WORD(p, 0); |
2b8f2d41 | 364 | /* system_rev */ |
52b43737 | 365 | WRITE_WORD(p, 0); |
2b8f2d41 | 366 | /* system_serial_low */ |
52b43737 | 367 | WRITE_WORD(p, 0); |
2b8f2d41 | 368 | /* system_serial_high */ |
52b43737 | 369 | WRITE_WORD(p, 0); |
2b8f2d41 | 370 | /* mem_fclk_21285 */ |
52b43737 | 371 | WRITE_WORD(p, 0); |
2b8f2d41 | 372 | /* zero unused fields */ |
52b43737 PB |
373 | while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) { |
374 | WRITE_WORD(p, 0); | |
375 | } | |
376 | s = info->kernel_cmdline; | |
377 | if (s) { | |
e1fe50dc | 378 | cpu_physical_memory_write(p, s, strlen(s) + 1); |
52b43737 PB |
379 | } else { |
380 | WRITE_WORD(p, 0); | |
381 | } | |
2b8f2d41 AZ |
382 | } |
383 | ||
fee8ea12 AB |
384 | /** |
385 | * load_dtb() - load a device tree binary image into memory | |
386 | * @addr: the address to load the image at | |
387 | * @binfo: struct describing the boot environment | |
388 | * @addr_limit: upper limit of the available memory area at @addr | |
389 | * | |
390 | * Load a device tree supplied by the machine or by the user with the | |
391 | * '-dtb' command line option, and put it at offset @addr in target | |
392 | * memory. | |
393 | * | |
394 | * If @addr_limit contains a meaningful value (i.e., it is strictly greater | |
395 | * than @addr), the device tree is only loaded if its size does not exceed | |
396 | * the limit. | |
397 | * | |
398 | * Returns: the size of the device tree image on success, | |
399 | * 0 if the image size exceeds the limit, | |
400 | * -1 on errors. | |
a554ecb4 HZ |
401 | * |
402 | * Note: Must not be called unless have_dtb(binfo) is true. | |
fee8ea12 AB |
403 | */ |
404 | static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo, | |
405 | hwaddr addr_limit) | |
412beee6 | 406 | { |
412beee6 | 407 | void *fdt = NULL; |
412beee6 | 408 | int size, rc; |
70976c41 | 409 | uint32_t acells, scells; |
9695200a SZ |
410 | char *nodename; |
411 | unsigned int i; | |
412 | hwaddr mem_base, mem_len; | |
412beee6 | 413 | |
0fb79851 JR |
414 | if (binfo->dtb_filename) { |
415 | char *filename; | |
416 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); | |
417 | if (!filename) { | |
418 | fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); | |
419 | goto fail; | |
420 | } | |
412beee6 | 421 | |
0fb79851 JR |
422 | fdt = load_device_tree(filename, &size); |
423 | if (!fdt) { | |
424 | fprintf(stderr, "Couldn't open dtb file %s\n", filename); | |
425 | g_free(filename); | |
426 | goto fail; | |
427 | } | |
412beee6 | 428 | g_free(filename); |
a554ecb4 | 429 | } else { |
0fb79851 JR |
430 | fdt = binfo->get_dtb(binfo, &size); |
431 | if (!fdt) { | |
432 | fprintf(stderr, "Board was unable to create a dtb blob\n"); | |
433 | goto fail; | |
434 | } | |
412beee6 | 435 | } |
412beee6 | 436 | |
fee8ea12 AB |
437 | if (addr_limit > addr && size > (addr_limit - addr)) { |
438 | /* Installing the device tree blob at addr would exceed addr_limit. | |
439 | * Whether this constitutes failure is up to the caller to decide, | |
440 | * so just return 0 as size, i.e., no error. | |
441 | */ | |
442 | g_free(fdt); | |
443 | return 0; | |
444 | } | |
445 | ||
58e71097 EA |
446 | acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells", |
447 | NULL, &error_fatal); | |
448 | scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells", | |
449 | NULL, &error_fatal); | |
9bfa659e PM |
450 | if (acells == 0 || scells == 0) { |
451 | fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); | |
c23045de | 452 | goto fail; |
9bfa659e PM |
453 | } |
454 | ||
70976c41 PM |
455 | if (scells < 2 && binfo->ram_size >= (1ULL << 32)) { |
456 | /* This is user error so deserves a friendlier error message | |
457 | * than the failure of setprop_sized_cells would provide | |
458 | */ | |
9bfa659e PM |
459 | fprintf(stderr, "qemu: dtb file not compatible with " |
460 | "RAM size > 4GB\n"); | |
c23045de | 461 | goto fail; |
9bfa659e PM |
462 | } |
463 | ||
9695200a SZ |
464 | if (nb_numa_nodes > 0) { |
465 | /* | |
466 | * Turn the /memory node created before into a NOP node, then create | |
467 | * /memory@addr nodes for all numa nodes respectively. | |
468 | */ | |
469 | qemu_fdt_nop_node(fdt, "/memory"); | |
470 | mem_base = binfo->loader_start; | |
471 | for (i = 0; i < nb_numa_nodes; i++) { | |
472 | mem_len = numa_info[i].node_mem; | |
473 | nodename = g_strdup_printf("/memory@%" PRIx64, mem_base); | |
474 | qemu_fdt_add_subnode(fdt, nodename); | |
475 | qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory"); | |
476 | rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", | |
477 | acells, mem_base, | |
478 | scells, mem_len); | |
479 | if (rc < 0) { | |
480 | fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename, | |
481 | i); | |
482 | goto fail; | |
483 | } | |
484 | ||
485 | qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i); | |
486 | mem_base += mem_len; | |
487 | g_free(nodename); | |
488 | } | |
489 | } else { | |
b77257d7 GR |
490 | Error *err = NULL; |
491 | ||
492 | rc = fdt_path_offset(fdt, "/memory"); | |
493 | if (rc < 0) { | |
494 | qemu_fdt_add_subnode(fdt, "/memory"); | |
495 | } | |
496 | ||
497 | if (!qemu_fdt_getprop(fdt, "/memory", "device_type", NULL, &err)) { | |
498 | qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); | |
499 | } | |
500 | ||
9695200a SZ |
501 | rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg", |
502 | acells, binfo->loader_start, | |
503 | scells, binfo->ram_size); | |
504 | if (rc < 0) { | |
505 | fprintf(stderr, "couldn't set /memory/reg\n"); | |
506 | goto fail; | |
507 | } | |
412beee6 GL |
508 | } |
509 | ||
b77257d7 GR |
510 | rc = fdt_path_offset(fdt, "/chosen"); |
511 | if (rc < 0) { | |
512 | qemu_fdt_add_subnode(fdt, "/chosen"); | |
513 | } | |
514 | ||
5e87975c | 515 | if (binfo->kernel_cmdline && *binfo->kernel_cmdline) { |
5a4348d1 PC |
516 | rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", |
517 | binfo->kernel_cmdline); | |
5e87975c PC |
518 | if (rc < 0) { |
519 | fprintf(stderr, "couldn't set /chosen/bootargs\n"); | |
c23045de | 520 | goto fail; |
5e87975c | 521 | } |
412beee6 GL |
522 | } |
523 | ||
524 | if (binfo->initrd_size) { | |
5a4348d1 PC |
525 | rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", |
526 | binfo->initrd_start); | |
412beee6 GL |
527 | if (rc < 0) { |
528 | fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); | |
c23045de | 529 | goto fail; |
412beee6 GL |
530 | } |
531 | ||
5a4348d1 PC |
532 | rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", |
533 | binfo->initrd_start + binfo->initrd_size); | |
412beee6 GL |
534 | if (rc < 0) { |
535 | fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); | |
c23045de | 536 | goto fail; |
412beee6 GL |
537 | } |
538 | } | |
3b1cceb8 PM |
539 | |
540 | if (binfo->modify_dtb) { | |
541 | binfo->modify_dtb(binfo, fdt); | |
542 | } | |
543 | ||
5a4348d1 | 544 | qemu_fdt_dumpdtb(fdt, size); |
412beee6 | 545 | |
4c4bf654 AB |
546 | /* Put the DTB into the memory map as a ROM image: this will ensure |
547 | * the DTB is copied again upon reset, even if addr points into RAM. | |
548 | */ | |
549 | rom_add_blob_fixed("dtb", fdt, size, addr); | |
412beee6 | 550 | |
c23045de PM |
551 | g_free(fdt); |
552 | ||
fee8ea12 | 553 | return size; |
c23045de PM |
554 | |
555 | fail: | |
556 | g_free(fdt); | |
557 | return -1; | |
412beee6 GL |
558 | } |
559 | ||
6ed221b6 | 560 | static void do_cpu_reset(void *opaque) |
f2d74978 | 561 | { |
351d5666 | 562 | ARMCPU *cpu = opaque; |
4df81c6e | 563 | CPUState *cs = CPU(cpu); |
351d5666 | 564 | CPUARMState *env = &cpu->env; |
462a8bc6 | 565 | const struct arm_boot_info *info = env->boot_info; |
f2d74978 | 566 | |
4df81c6e | 567 | cpu_reset(cs); |
f2d74978 PB |
568 | if (info) { |
569 | if (!info->is_linux) { | |
9776f636 | 570 | int i; |
f2d74978 | 571 | /* Jump to the entry point. */ |
4df81c6e PC |
572 | uint64_t entry = info->entry; |
573 | ||
9776f636 PC |
574 | switch (info->endianness) { |
575 | case ARM_ENDIANNESS_LE: | |
576 | env->cp15.sctlr_el[1] &= ~SCTLR_E0E; | |
577 | for (i = 1; i < 4; ++i) { | |
578 | env->cp15.sctlr_el[i] &= ~SCTLR_EE; | |
579 | } | |
580 | env->uncached_cpsr &= ~CPSR_E; | |
581 | break; | |
582 | case ARM_ENDIANNESS_BE8: | |
583 | env->cp15.sctlr_el[1] |= SCTLR_E0E; | |
584 | for (i = 1; i < 4; ++i) { | |
585 | env->cp15.sctlr_el[i] |= SCTLR_EE; | |
586 | } | |
587 | env->uncached_cpsr |= CPSR_E; | |
588 | break; | |
589 | case ARM_ENDIANNESS_BE32: | |
590 | env->cp15.sctlr_el[1] |= SCTLR_B; | |
591 | break; | |
592 | case ARM_ENDIANNESS_UNKNOWN: | |
593 | break; /* Board's decision */ | |
594 | default: | |
595 | g_assert_not_reached(); | |
596 | } | |
597 | ||
4df81c6e | 598 | if (!env->aarch64) { |
a9047ec3 | 599 | env->thumb = info->entry & 1; |
4df81c6e | 600 | entry &= 0xfffffffe; |
a9047ec3 | 601 | } |
4df81c6e | 602 | cpu_set_pc(cs, entry); |
f2d74978 | 603 | } else { |
c8e829b7 GB |
604 | /* If we are booting Linux then we need to check whether we are |
605 | * booting into secure or non-secure state and adjust the state | |
606 | * accordingly. Out of reset, ARM is defined to be in secure state | |
607 | * (SCR.NS = 0), we change that here if non-secure boot has been | |
608 | * requested. | |
609 | */ | |
5097227c GB |
610 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
611 | /* AArch64 is defined to come out of reset into EL3 if enabled. | |
612 | * If we are booting Linux then we need to adjust our EL as | |
613 | * Linux expects us to be in EL2 or EL1. AArch32 resets into | |
614 | * SVC, which Linux expects, so no privilege/exception level to | |
615 | * adjust. | |
616 | */ | |
617 | if (env->aarch64) { | |
48d21a57 | 618 | env->cp15.scr_el3 |= SCR_RW; |
5097227c | 619 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
48d21a57 | 620 | env->cp15.hcr_el2 |= HCR_RW; |
5097227c GB |
621 | env->pstate = PSTATE_MODE_EL2h; |
622 | } else { | |
623 | env->pstate = PSTATE_MODE_EL1h; | |
624 | } | |
625 | } | |
626 | ||
627 | /* Set to non-secure if not a secure boot */ | |
baf6b681 PC |
628 | if (!info->secure_boot && |
629 | (cs != first_cpu || !info->secure_board_setup)) { | |
5097227c GB |
630 | /* Linux expects non-secure state */ |
631 | env->cp15.scr_el3 |= SCR_NS; | |
632 | } | |
c8e829b7 GB |
633 | } |
634 | ||
4df81c6e PC |
635 | if (cs == first_cpu) { |
636 | cpu_set_pc(cs, info->loader_start); | |
4d9ebf75 | 637 | |
83bfffec | 638 | if (!have_dtb(info)) { |
412beee6 GL |
639 | if (old_param) { |
640 | set_kernel_args_old(info); | |
641 | } else { | |
642 | set_kernel_args(info); | |
643 | } | |
6ed221b6 | 644 | } |
f2d74978 | 645 | } else { |
5d309320 | 646 | info->secondary_cpu_reset_hook(cpu, info); |
f2d74978 PB |
647 | } |
648 | } | |
649 | } | |
f2d74978 PB |
650 | } |
651 | ||
07abe45c LE |
652 | /** |
653 | * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified | |
654 | * by key. | |
655 | * @fw_cfg: The firmware config instance to store the data in. | |
656 | * @size_key: The firmware config key to store the size of the loaded | |
657 | * data under, with fw_cfg_add_i32(). | |
658 | * @data_key: The firmware config key to store the loaded data under, | |
659 | * with fw_cfg_add_bytes(). | |
660 | * @image_name: The name of the image file to load. If it is NULL, the | |
661 | * function returns without doing anything. | |
662 | * @try_decompress: Whether the image should be decompressed (gunzipped) before | |
663 | * adding it to fw_cfg. If decompression fails, the image is | |
664 | * loaded as-is. | |
665 | * | |
666 | * In case of failure, the function prints an error message to stderr and the | |
667 | * process exits with status 1. | |
668 | */ | |
669 | static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key, | |
670 | uint16_t data_key, const char *image_name, | |
671 | bool try_decompress) | |
672 | { | |
673 | size_t size = -1; | |
674 | uint8_t *data; | |
675 | ||
676 | if (image_name == NULL) { | |
677 | return; | |
678 | } | |
679 | ||
680 | if (try_decompress) { | |
681 | size = load_image_gzipped_buffer(image_name, | |
682 | LOAD_IMAGE_MAX_GUNZIP_BYTES, &data); | |
683 | } | |
684 | ||
685 | if (size == (size_t)-1) { | |
686 | gchar *contents; | |
687 | gsize length; | |
688 | ||
689 | if (!g_file_get_contents(image_name, &contents, &length, NULL)) { | |
690 | fprintf(stderr, "failed to load \"%s\"\n", image_name); | |
691 | exit(1); | |
692 | } | |
693 | size = length; | |
694 | data = (uint8_t *)contents; | |
695 | } | |
696 | ||
697 | fw_cfg_add_i32(fw_cfg, size_key, size); | |
698 | fw_cfg_add_bytes(fw_cfg, data_key, data, size); | |
699 | } | |
700 | ||
d8b1ae42 PM |
701 | static int do_arm_linux_init(Object *obj, void *opaque) |
702 | { | |
703 | if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) { | |
704 | ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj); | |
705 | ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj); | |
706 | struct arm_boot_info *info = opaque; | |
707 | ||
708 | if (albifc->arm_linux_init) { | |
709 | albifc->arm_linux_init(albif, info->secure_boot); | |
710 | } | |
711 | } | |
712 | return 0; | |
713 | } | |
714 | ||
9776f636 PC |
715 | static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry, |
716 | uint64_t *lowaddr, uint64_t *highaddr, | |
717 | int elf_machine) | |
718 | { | |
719 | bool elf_is64; | |
720 | union { | |
721 | Elf32_Ehdr h32; | |
722 | Elf64_Ehdr h64; | |
723 | } elf_header; | |
724 | int data_swab = 0; | |
725 | bool big_endian; | |
726 | uint64_t ret = -1; | |
727 | Error *err = NULL; | |
728 | ||
729 | ||
730 | load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err); | |
731 | if (err) { | |
732 | return ret; | |
733 | } | |
734 | ||
735 | if (elf_is64) { | |
736 | big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB; | |
737 | info->endianness = big_endian ? ARM_ENDIANNESS_BE8 | |
738 | : ARM_ENDIANNESS_LE; | |
739 | } else { | |
740 | big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB; | |
741 | if (big_endian) { | |
742 | if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) { | |
743 | info->endianness = ARM_ENDIANNESS_BE8; | |
744 | } else { | |
745 | info->endianness = ARM_ENDIANNESS_BE32; | |
746 | /* In BE32, the CPU has a different view of the per-byte | |
747 | * address map than the rest of the system. BE32 ELF files | |
748 | * are organised such that they can be programmed through | |
749 | * the CPU's per-word byte-reversed view of the world. QEMU | |
750 | * however loads ELF files independently of the CPU. So | |
751 | * tell the ELF loader to byte reverse the data for us. | |
752 | */ | |
753 | data_swab = 2; | |
754 | } | |
755 | } else { | |
756 | info->endianness = ARM_ENDIANNESS_LE; | |
757 | } | |
758 | } | |
759 | ||
760 | ret = load_elf(info->kernel_filename, NULL, NULL, | |
761 | pentry, lowaddr, highaddr, big_endian, elf_machine, | |
762 | 1, data_swab); | |
763 | if (ret <= 0) { | |
764 | /* The header loaded but the image didn't */ | |
765 | exit(1); | |
766 | } | |
767 | ||
768 | return ret; | |
769 | } | |
770 | ||
ac9d32e3 | 771 | static void arm_load_kernel_notify(Notifier *notifier, void *data) |
16406950 | 772 | { |
c6faa758 | 773 | CPUState *cs; |
16406950 PB |
774 | int kernel_size; |
775 | int initrd_size; | |
1c7b3754 | 776 | int is_linux = 0; |
92df8450 | 777 | uint64_t elf_entry, elf_low_addr, elf_high_addr; |
da0af40d | 778 | int elf_machine; |
4d9ebf75 | 779 | hwaddr entry, kernel_load_offset; |
4d9ebf75 | 780 | static const ARMInsnFixup *primary_loader; |
ac9d32e3 EA |
781 | ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier, |
782 | notifier, notifier); | |
783 | ARMCPU *cpu = n->cpu; | |
784 | struct arm_boot_info *info = | |
785 | container_of(n, struct arm_boot_info, load_kernel_notifier); | |
16406950 | 786 | |
baf6b681 PC |
787 | /* The board code is not supposed to set secure_board_setup unless |
788 | * running its code in secure mode is actually possible, and KVM | |
789 | * doesn't support secure. | |
790 | */ | |
791 | assert(!(info->secure_board_setup && kvm_enabled())); | |
792 | ||
4c8afda7 MO |
793 | info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb"); |
794 | ||
16406950 | 795 | /* Load the kernel. */ |
07abe45c | 796 | if (!info->kernel_filename || info->firmware_loaded) { |
69e7f76f AB |
797 | |
798 | if (have_dtb(info)) { | |
07abe45c LE |
799 | /* If we have a device tree blob, but no kernel to supply it to (or |
800 | * the kernel is supposed to be loaded by the bootloader), copy the | |
801 | * DTB to the base of RAM for the bootloader to pick up. | |
69e7f76f AB |
802 | */ |
803 | if (load_dtb(info->loader_start, info, 0) < 0) { | |
804 | exit(1); | |
805 | } | |
806 | } | |
807 | ||
07abe45c LE |
808 | if (info->kernel_filename) { |
809 | FWCfgState *fw_cfg; | |
810 | bool try_decompressing_kernel; | |
811 | ||
812 | fw_cfg = fw_cfg_find(); | |
813 | try_decompressing_kernel = arm_feature(&cpu->env, | |
814 | ARM_FEATURE_AARCH64); | |
815 | ||
816 | /* Expose the kernel, the command line, and the initrd in fw_cfg. | |
817 | * We don't process them here at all, it's all left to the | |
818 | * firmware. | |
819 | */ | |
820 | load_image_to_fw_cfg(fw_cfg, | |
821 | FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA, | |
822 | info->kernel_filename, | |
823 | try_decompressing_kernel); | |
824 | load_image_to_fw_cfg(fw_cfg, | |
825 | FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA, | |
826 | info->initrd_filename, false); | |
827 | ||
828 | if (info->kernel_cmdline) { | |
829 | fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, | |
830 | strlen(info->kernel_cmdline) + 1); | |
831 | fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, | |
832 | info->kernel_cmdline); | |
833 | } | |
834 | } | |
835 | ||
836 | /* We will start from address 0 (typically a boot ROM image) in the | |
837 | * same way as hardware. | |
9546dbab PM |
838 | */ |
839 | return; | |
16406950 | 840 | } |
daf90626 | 841 | |
4d9ebf75 MH |
842 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
843 | primary_loader = bootloader_aarch64; | |
844 | kernel_load_offset = KERNEL64_LOAD_ADDR; | |
da0af40d | 845 | elf_machine = EM_AARCH64; |
4d9ebf75 MH |
846 | } else { |
847 | primary_loader = bootloader; | |
10b8ec73 PC |
848 | if (!info->write_board_setup) { |
849 | primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET; | |
850 | } | |
4d9ebf75 | 851 | kernel_load_offset = KERNEL_LOAD_ADDR; |
da0af40d | 852 | elf_machine = EM_ARM; |
4d9ebf75 MH |
853 | } |
854 | ||
9d5ba9bf ML |
855 | if (!info->secondary_cpu_reset_hook) { |
856 | info->secondary_cpu_reset_hook = default_reset_secondary; | |
857 | } | |
858 | if (!info->write_secondary_boot) { | |
859 | info->write_secondary_boot = default_write_secondary; | |
860 | } | |
861 | ||
f2d74978 PB |
862 | if (info->nb_cpus == 0) |
863 | info->nb_cpus = 1; | |
f93eb9ff | 864 | |
fc53b7d4 PM |
865 | /* We want to put the initrd far enough into RAM that when the |
866 | * kernel is uncompressed it will not clobber the initrd. However | |
867 | * on boards without much RAM we must ensure that we still leave | |
868 | * enough room for a decent sized initrd, and on boards with large | |
869 | * amounts of RAM we must avoid the initrd being so far up in RAM | |
870 | * that it is outside lowmem and inaccessible to the kernel. | |
871 | * So for boards with less than 256MB of RAM we put the initrd | |
872 | * halfway into RAM, and for boards with 256MB of RAM or more we put | |
873 | * the initrd at 128MB. | |
874 | */ | |
875 | info->initrd_start = info->loader_start + | |
876 | MIN(info->ram_size / 2, 128 * 1024 * 1024); | |
877 | ||
1c7b3754 | 878 | /* Assume that raw images are linux kernels, and ELF images are not. */ |
9776f636 PC |
879 | kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr, |
880 | &elf_high_addr, elf_machine); | |
92df8450 AB |
881 | if (kernel_size > 0 && have_dtb(info)) { |
882 | /* If there is still some room left at the base of RAM, try and put | |
883 | * the DTB there like we do for images loaded with -bios or -pflash. | |
884 | */ | |
885 | if (elf_low_addr > info->loader_start | |
886 | || elf_high_addr < info->loader_start) { | |
887 | /* Pass elf_low_addr as address limit to load_dtb if it may be | |
888 | * pointing into RAM, otherwise pass '0' (no limit) | |
889 | */ | |
890 | if (elf_low_addr < info->loader_start) { | |
891 | elf_low_addr = 0; | |
892 | } | |
893 | if (load_dtb(info->loader_start, info, elf_low_addr) < 0) { | |
894 | exit(1); | |
895 | } | |
896 | } | |
897 | } | |
1c7b3754 PB |
898 | entry = elf_entry; |
899 | if (kernel_size < 0) { | |
5a9154e0 | 900 | kernel_size = load_uimage(info->kernel_filename, &entry, NULL, |
25bda50a | 901 | &is_linux, NULL, NULL); |
1c7b3754 | 902 | } |
6f5d3cbe RJ |
903 | /* On aarch64, it's the bootloader's job to uncompress the kernel. */ |
904 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) { | |
905 | entry = info->loader_start + kernel_load_offset; | |
906 | kernel_size = load_image_gzipped(info->kernel_filename, entry, | |
907 | info->ram_size - kernel_load_offset); | |
908 | is_linux = 1; | |
909 | } | |
1c7b3754 | 910 | if (kernel_size < 0) { |
4d9ebf75 | 911 | entry = info->loader_start + kernel_load_offset; |
3b760e04 | 912 | kernel_size = load_image_targphys(info->kernel_filename, entry, |
4d9ebf75 | 913 | info->ram_size - kernel_load_offset); |
1c7b3754 PB |
914 | is_linux = 1; |
915 | } | |
916 | if (kernel_size < 0) { | |
f93eb9ff AZ |
917 | fprintf(stderr, "qemu: could not load kernel '%s'\n", |
918 | info->kernel_filename); | |
1c7b3754 PB |
919 | exit(1); |
920 | } | |
f2d74978 PB |
921 | info->entry = entry; |
922 | if (is_linux) { | |
47b1da81 PM |
923 | uint32_t fixupcontext[FIXUP_MAX]; |
924 | ||
f93eb9ff | 925 | if (info->initrd_filename) { |
fd76663e SB |
926 | initrd_size = load_ramdisk(info->initrd_filename, |
927 | info->initrd_start, | |
928 | info->ram_size - | |
929 | info->initrd_start); | |
930 | if (initrd_size < 0) { | |
931 | initrd_size = load_image_targphys(info->initrd_filename, | |
932 | info->initrd_start, | |
933 | info->ram_size - | |
934 | info->initrd_start); | |
935 | } | |
daf90626 PB |
936 | if (initrd_size < 0) { |
937 | fprintf(stderr, "qemu: could not load initrd '%s'\n", | |
f93eb9ff | 938 | info->initrd_filename); |
daf90626 PB |
939 | exit(1); |
940 | } | |
941 | } else { | |
942 | initrd_size = 0; | |
943 | } | |
412beee6 GL |
944 | info->initrd_size = initrd_size; |
945 | ||
47b1da81 | 946 | fixupcontext[FIXUP_BOARDID] = info->board_id; |
10b8ec73 | 947 | fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr; |
412beee6 GL |
948 | |
949 | /* for device tree boot, we pass the DTB directly in r2. Otherwise | |
950 | * we point to the kernel args. | |
951 | */ | |
83bfffec | 952 | if (have_dtb(info)) { |
76e2aef3 AG |
953 | hwaddr align; |
954 | hwaddr dtb_start; | |
955 | ||
956 | if (elf_machine == EM_AARCH64) { | |
957 | /* | |
958 | * Some AArch64 kernels on early bootup map the fdt region as | |
959 | * | |
960 | * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ] | |
961 | * | |
962 | * Let's play safe and prealign it to 2MB to give us some space. | |
963 | */ | |
964 | align = 2 * 1024 * 1024; | |
965 | } else { | |
966 | /* | |
967 | * Some 32bit kernels will trash anything in the 4K page the | |
968 | * initrd ends in, so make sure the DTB isn't caught up in that. | |
969 | */ | |
970 | align = 4096; | |
971 | } | |
972 | ||
973 | /* Place the DTB after the initrd in memory with alignment. */ | |
974 | dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align); | |
fee8ea12 | 975 | if (load_dtb(dtb_start, info, 0) < 0) { |
412beee6 GL |
976 | exit(1); |
977 | } | |
47b1da81 | 978 | fixupcontext[FIXUP_ARGPTR] = dtb_start; |
412beee6 | 979 | } else { |
47b1da81 | 980 | fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR; |
3871481c PM |
981 | if (info->ram_size >= (1ULL << 32)) { |
982 | fprintf(stderr, "qemu: RAM size must be less than 4GB to boot" | |
983 | " Linux kernel using ATAGS (try passing a device tree" | |
984 | " using -dtb)\n"); | |
985 | exit(1); | |
986 | } | |
412beee6 | 987 | } |
47b1da81 PM |
988 | fixupcontext[FIXUP_ENTRYPOINT] = entry; |
989 | ||
990 | write_bootloader("bootloader", info->loader_start, | |
4d9ebf75 | 991 | primary_loader, fixupcontext); |
47b1da81 | 992 | |
52b43737 | 993 | if (info->nb_cpus > 1) { |
9543b0cd | 994 | info->write_secondary_boot(cpu, info); |
52b43737 | 995 | } |
10b8ec73 PC |
996 | if (info->write_board_setup) { |
997 | info->write_board_setup(cpu, info); | |
998 | } | |
d8b1ae42 PM |
999 | |
1000 | /* Notify devices which need to fake up firmware initialization | |
1001 | * that we're doing a direct kernel boot. | |
1002 | */ | |
1003 | object_child_foreach_recursive(object_get_root(), | |
1004 | do_arm_linux_init, info); | |
16406950 | 1005 | } |
f2d74978 | 1006 | info->is_linux = is_linux; |
6ed221b6 | 1007 | |
c6faa758 AB |
1008 | for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { |
1009 | ARM_CPU(cs)->env.boot_info = info; | |
6ed221b6 | 1010 | } |
16406950 | 1011 | } |
ac9d32e3 EA |
1012 | |
1013 | void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info) | |
1014 | { | |
63a183ed EA |
1015 | CPUState *cs; |
1016 | ||
ac9d32e3 EA |
1017 | info->load_kernel_notifier.cpu = cpu; |
1018 | info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify; | |
1019 | qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier); | |
63a183ed EA |
1020 | |
1021 | /* CPU objects (unlike devices) are not automatically reset on system | |
1022 | * reset, so we must always register a handler to do so. If we're | |
1023 | * actually loading a kernel, the handler is also responsible for | |
1024 | * arranging that we start it correctly. | |
1025 | */ | |
1026 | for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { | |
1027 | qemu_register_reset(do_cpu_reset, ARM_CPU(cs)); | |
1028 | } | |
ac9d32e3 | 1029 | } |
d8b1ae42 PM |
1030 | |
1031 | static const TypeInfo arm_linux_boot_if_info = { | |
1032 | .name = TYPE_ARM_LINUX_BOOT_IF, | |
1033 | .parent = TYPE_INTERFACE, | |
1034 | .class_size = sizeof(ARMLinuxBootIfClass), | |
1035 | }; | |
1036 | ||
1037 | static void arm_linux_boot_register_types(void) | |
1038 | { | |
1039 | type_register_static(&arm_linux_boot_if_info); | |
1040 | } | |
1041 | ||
1042 | type_init(arm_linux_boot_register_types) |