]> Git Repo - qemu.git/blame - hw/stellaris.c
Drop an unused variable (Samuel Thibault).
[qemu.git] / hw / stellaris.c
CommitLineData
9ee6e8bb
PB
1/*
2 * Luminary Micro Stellaris preipherals
3 *
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licenced under the GPL.
8 */
9
87ecb68b
PB
10#include "hw.h"
11#include "arm-misc.h"
12#include "primecell.h"
13#include "devices.h"
14#include "qemu-timer.h"
15#include "i2c.h"
eea589cc 16#include "net.h"
87ecb68b
PB
17#include "sysemu.h"
18#include "boards.h"
9ee6e8bb 19
cf0dbb21
PB
20#define GPIO_A 0
21#define GPIO_B 1
22#define GPIO_C 2
23#define GPIO_D 3
24#define GPIO_E 4
25#define GPIO_F 5
26#define GPIO_G 6
27
28#define BP_OLED_I2C 0x01
29#define BP_OLED_SSI 0x02
30#define BP_GAMEPAD 0x04
31
9ee6e8bb
PB
32typedef const struct {
33 const char *name;
34 uint32_t did0;
35 uint32_t did1;
36 uint32_t dc0;
37 uint32_t dc1;
38 uint32_t dc2;
39 uint32_t dc3;
40 uint32_t dc4;
cf0dbb21 41 uint32_t peripherals;
9ee6e8bb
PB
42} stellaris_board_info;
43
44/* General purpose timer module. */
45
9ee6e8bb
PB
46typedef struct gptm_state {
47 uint32_t config;
48 uint32_t mode[2];
49 uint32_t control;
50 uint32_t state;
51 uint32_t mask;
52 uint32_t load[2];
53 uint32_t match[2];
54 uint32_t prescale[2];
55 uint32_t match_prescale[2];
56 uint32_t rtc;
57 int64_t tick[2];
58 struct gptm_state *opaque[2];
59 uint32_t base;
60 QEMUTimer *timer[2];
61 /* The timers have an alternate output used to trigger the ADC. */
62 qemu_irq trigger;
63 qemu_irq irq;
64} gptm_state;
65
66static void gptm_update_irq(gptm_state *s)
67{
68 int level;
69 level = (s->state & s->mask) != 0;
70 qemu_set_irq(s->irq, level);
71}
72
73static void gptm_stop(gptm_state *s, int n)
74{
75 qemu_del_timer(s->timer[n]);
76}
77
78static void gptm_reload(gptm_state *s, int n, int reset)
79{
80 int64_t tick;
81 if (reset)
82 tick = qemu_get_clock(vm_clock);
83 else
84 tick = s->tick[n];
85
86 if (s->config == 0) {
87 /* 32-bit CountDown. */
88 uint32_t count;
89 count = s->load[0] | (s->load[1] << 16);
e57ec016 90 tick += (int64_t)count * system_clock_scale;
9ee6e8bb
PB
91 } else if (s->config == 1) {
92 /* 32-bit RTC. 1Hz tick. */
93 tick += ticks_per_sec;
94 } else if (s->mode[n] == 0xa) {
95 /* PWM mode. Not implemented. */
96 } else {
97 cpu_abort(cpu_single_env, "TODO: 16-bit timer mode 0x%x\n",
98 s->mode[n]);
99 }
100 s->tick[n] = tick;
101 qemu_mod_timer(s->timer[n], tick);
102}
103
104static void gptm_tick(void *opaque)
105{
106 gptm_state **p = (gptm_state **)opaque;
107 gptm_state *s;
108 int n;
109
110 s = *p;
111 n = p - s->opaque;
112 if (s->config == 0) {
113 s->state |= 1;
114 if ((s->control & 0x20)) {
115 /* Output trigger. */
116 qemu_irq_raise(s->trigger);
117 qemu_irq_lower(s->trigger);
118 }
119 if (s->mode[0] & 1) {
120 /* One-shot. */
121 s->control &= ~1;
122 } else {
123 /* Periodic. */
124 gptm_reload(s, 0, 0);
125 }
126 } else if (s->config == 1) {
127 /* RTC. */
128 uint32_t match;
129 s->rtc++;
130 match = s->match[0] | (s->match[1] << 16);
131 if (s->rtc > match)
132 s->rtc = 0;
133 if (s->rtc == 0) {
134 s->state |= 8;
135 }
136 gptm_reload(s, 0, 0);
137 } else if (s->mode[n] == 0xa) {
138 /* PWM mode. Not implemented. */
139 } else {
140 cpu_abort(cpu_single_env, "TODO: 16-bit timer mode 0x%x\n",
141 s->mode[n]);
142 }
143 gptm_update_irq(s);
144}
145
146static uint32_t gptm_read(void *opaque, target_phys_addr_t offset)
147{
148 gptm_state *s = (gptm_state *)opaque;
149
150 offset -= s->base;
151 switch (offset) {
152 case 0x00: /* CFG */
153 return s->config;
154 case 0x04: /* TAMR */
155 return s->mode[0];
156 case 0x08: /* TBMR */
157 return s->mode[1];
158 case 0x0c: /* CTL */
159 return s->control;
160 case 0x18: /* IMR */
161 return s->mask;
162 case 0x1c: /* RIS */
163 return s->state;
164 case 0x20: /* MIS */
165 return s->state & s->mask;
166 case 0x24: /* CR */
167 return 0;
168 case 0x28: /* TAILR */
169 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
170 case 0x2c: /* TBILR */
171 return s->load[1];
172 case 0x30: /* TAMARCHR */
173 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
174 case 0x34: /* TBMATCHR */
175 return s->match[1];
176 case 0x38: /* TAPR */
177 return s->prescale[0];
178 case 0x3c: /* TBPR */
179 return s->prescale[1];
180 case 0x40: /* TAPMR */
181 return s->match_prescale[0];
182 case 0x44: /* TBPMR */
183 return s->match_prescale[1];
184 case 0x48: /* TAR */
185 if (s->control == 1)
186 return s->rtc;
187 case 0x4c: /* TBR */
188 cpu_abort(cpu_single_env, "TODO: Timer value read\n");
189 default:
190 cpu_abort(cpu_single_env, "gptm_read: Bad offset 0x%x\n", (int)offset);
191 return 0;
192 }
193}
194
195static void gptm_write(void *opaque, target_phys_addr_t offset, uint32_t value)
196{
197 gptm_state *s = (gptm_state *)opaque;
198 uint32_t oldval;
199
200 offset -= s->base;
201 /* The timers should be disabled before changing the configuration.
202 We take advantage of this and defer everything until the timer
203 is enabled. */
204 switch (offset) {
205 case 0x00: /* CFG */
206 s->config = value;
207 break;
208 case 0x04: /* TAMR */
209 s->mode[0] = value;
210 break;
211 case 0x08: /* TBMR */
212 s->mode[1] = value;
213 break;
214 case 0x0c: /* CTL */
215 oldval = s->control;
216 s->control = value;
217 /* TODO: Implement pause. */
218 if ((oldval ^ value) & 1) {
219 if (value & 1) {
220 gptm_reload(s, 0, 1);
221 } else {
222 gptm_stop(s, 0);
223 }
224 }
225 if (((oldval ^ value) & 0x100) && s->config >= 4) {
226 if (value & 0x100) {
227 gptm_reload(s, 1, 1);
228 } else {
229 gptm_stop(s, 1);
230 }
231 }
232 break;
233 case 0x18: /* IMR */
234 s->mask = value & 0x77;
235 gptm_update_irq(s);
236 break;
237 case 0x24: /* CR */
238 s->state &= ~value;
239 break;
240 case 0x28: /* TAILR */
241 s->load[0] = value & 0xffff;
242 if (s->config < 4) {
243 s->load[1] = value >> 16;
244 }
245 break;
246 case 0x2c: /* TBILR */
247 s->load[1] = value & 0xffff;
248 break;
249 case 0x30: /* TAMARCHR */
250 s->match[0] = value & 0xffff;
251 if (s->config < 4) {
252 s->match[1] = value >> 16;
253 }
254 break;
255 case 0x34: /* TBMATCHR */
256 s->match[1] = value >> 16;
257 break;
258 case 0x38: /* TAPR */
259 s->prescale[0] = value;
260 break;
261 case 0x3c: /* TBPR */
262 s->prescale[1] = value;
263 break;
264 case 0x40: /* TAPMR */
265 s->match_prescale[0] = value;
266 break;
267 case 0x44: /* TBPMR */
268 s->match_prescale[0] = value;
269 break;
270 default:
271 cpu_abort(cpu_single_env, "gptm_write: Bad offset 0x%x\n", (int)offset);
272 }
273 gptm_update_irq(s);
274}
275
276static CPUReadMemoryFunc *gptm_readfn[] = {
277 gptm_read,
278 gptm_read,
279 gptm_read
280};
281
282static CPUWriteMemoryFunc *gptm_writefn[] = {
283 gptm_write,
284 gptm_write,
285 gptm_write
286};
287
288static void stellaris_gptm_init(uint32_t base, qemu_irq irq, qemu_irq trigger)
289{
290 int iomemtype;
291 gptm_state *s;
292
293 s = (gptm_state *)qemu_mallocz(sizeof(gptm_state));
294 s->base = base;
295 s->irq = irq;
296 s->trigger = trigger;
297 s->opaque[0] = s->opaque[1] = s;
298
299 iomemtype = cpu_register_io_memory(0, gptm_readfn,
300 gptm_writefn, s);
301 cpu_register_physical_memory(base, 0x00001000, iomemtype);
302 s->timer[0] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[0]);
303 s->timer[1] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[1]);
304 /* ??? Save/restore. */
305}
306
307
308/* System controller. */
309
310typedef struct {
311 uint32_t base;
312 uint32_t pborctl;
313 uint32_t ldopctl;
314 uint32_t int_status;
315 uint32_t int_mask;
316 uint32_t resc;
317 uint32_t rcc;
318 uint32_t rcgc[3];
319 uint32_t scgc[3];
320 uint32_t dcgc[3];
321 uint32_t clkvclr;
322 uint32_t ldoarst;
eea589cc
PB
323 uint32_t user0;
324 uint32_t user1;
9ee6e8bb
PB
325 qemu_irq irq;
326 stellaris_board_info *board;
327} ssys_state;
328
329static void ssys_update(ssys_state *s)
330{
331 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
332}
333
334static uint32_t pllcfg_sandstorm[16] = {
335 0x31c0, /* 1 Mhz */
336 0x1ae0, /* 1.8432 Mhz */
337 0x18c0, /* 2 Mhz */
338 0xd573, /* 2.4576 Mhz */
339 0x37a6, /* 3.57954 Mhz */
340 0x1ae2, /* 3.6864 Mhz */
341 0x0c40, /* 4 Mhz */
342 0x98bc, /* 4.906 Mhz */
343 0x935b, /* 4.9152 Mhz */
344 0x09c0, /* 5 Mhz */
345 0x4dee, /* 5.12 Mhz */
346 0x0c41, /* 6 Mhz */
347 0x75db, /* 6.144 Mhz */
348 0x1ae6, /* 7.3728 Mhz */
349 0x0600, /* 8 Mhz */
350 0x585b /* 8.192 Mhz */
351};
352
353static uint32_t pllcfg_fury[16] = {
354 0x3200, /* 1 Mhz */
355 0x1b20, /* 1.8432 Mhz */
356 0x1900, /* 2 Mhz */
357 0xf42b, /* 2.4576 Mhz */
358 0x37e3, /* 3.57954 Mhz */
359 0x1b21, /* 3.6864 Mhz */
360 0x0c80, /* 4 Mhz */
361 0x98ee, /* 4.906 Mhz */
362 0xd5b4, /* 4.9152 Mhz */
363 0x0a00, /* 5 Mhz */
364 0x4e27, /* 5.12 Mhz */
365 0x1902, /* 6 Mhz */
366 0xec1c, /* 6.144 Mhz */
367 0x1b23, /* 7.3728 Mhz */
368 0x0640, /* 8 Mhz */
369 0xb11c /* 8.192 Mhz */
370};
371
372static uint32_t ssys_read(void *opaque, target_phys_addr_t offset)
373{
374 ssys_state *s = (ssys_state *)opaque;
375
376 offset -= s->base;
377 switch (offset) {
378 case 0x000: /* DID0 */
379 return s->board->did0;
380 case 0x004: /* DID1 */
381 return s->board->did1;
382 case 0x008: /* DC0 */
383 return s->board->dc0;
384 case 0x010: /* DC1 */
385 return s->board->dc1;
386 case 0x014: /* DC2 */
387 return s->board->dc2;
388 case 0x018: /* DC3 */
389 return s->board->dc3;
390 case 0x01c: /* DC4 */
391 return s->board->dc4;
392 case 0x030: /* PBORCTL */
393 return s->pborctl;
394 case 0x034: /* LDOPCTL */
395 return s->ldopctl;
396 case 0x040: /* SRCR0 */
397 return 0;
398 case 0x044: /* SRCR1 */
399 return 0;
400 case 0x048: /* SRCR2 */
401 return 0;
402 case 0x050: /* RIS */
403 return s->int_status;
404 case 0x054: /* IMC */
405 return s->int_mask;
406 case 0x058: /* MISC */
407 return s->int_status & s->int_mask;
408 case 0x05c: /* RESC */
409 return s->resc;
410 case 0x060: /* RCC */
411 return s->rcc;
412 case 0x064: /* PLLCFG */
413 {
414 int xtal;
415 xtal = (s->rcc >> 6) & 0xf;
416 if (s->board->did0 & (1 << 16)) {
417 return pllcfg_fury[xtal];
418 } else {
419 return pllcfg_sandstorm[xtal];
420 }
421 }
422 case 0x100: /* RCGC0 */
423 return s->rcgc[0];
424 case 0x104: /* RCGC1 */
425 return s->rcgc[1];
426 case 0x108: /* RCGC2 */
427 return s->rcgc[2];
428 case 0x110: /* SCGC0 */
429 return s->scgc[0];
430 case 0x114: /* SCGC1 */
431 return s->scgc[1];
432 case 0x118: /* SCGC2 */
433 return s->scgc[2];
434 case 0x120: /* DCGC0 */
435 return s->dcgc[0];
436 case 0x124: /* DCGC1 */
437 return s->dcgc[1];
438 case 0x128: /* DCGC2 */
439 return s->dcgc[2];
440 case 0x150: /* CLKVCLR */
441 return s->clkvclr;
442 case 0x160: /* LDOARST */
443 return s->ldoarst;
eea589cc
PB
444 case 0x1e0: /* USER0 */
445 return s->user0;
446 case 0x1e4: /* USER1 */
447 return s->user1;
9ee6e8bb 448 default:
79b02417 449 cpu_abort(cpu_single_env, "ssys_read: Bad offset 0x%x\n", (int)offset);
9ee6e8bb
PB
450 return 0;
451 }
452}
453
454static void ssys_write(void *opaque, target_phys_addr_t offset, uint32_t value)
455{
456 ssys_state *s = (ssys_state *)opaque;
457
458 offset -= s->base;
459 switch (offset) {
460 case 0x030: /* PBORCTL */
461 s->pborctl = value & 0xffff;
462 break;
463 case 0x034: /* LDOPCTL */
464 s->ldopctl = value & 0x1f;
465 break;
466 case 0x040: /* SRCR0 */
467 case 0x044: /* SRCR1 */
468 case 0x048: /* SRCR2 */
469 fprintf(stderr, "Peripheral reset not implemented\n");
470 break;
471 case 0x054: /* IMC */
472 s->int_mask = value & 0x7f;
473 break;
474 case 0x058: /* MISC */
475 s->int_status &= ~value;
476 break;
477 case 0x05c: /* RESC */
478 s->resc = value & 0x3f;
479 break;
480 case 0x060: /* RCC */
481 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
482 /* PLL enable. */
483 s->int_status |= (1 << 6);
484 }
485 s->rcc = value;
e57ec016 486 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
9ee6e8bb
PB
487 break;
488 case 0x100: /* RCGC0 */
489 s->rcgc[0] = value;
490 break;
491 case 0x104: /* RCGC1 */
492 s->rcgc[1] = value;
493 break;
494 case 0x108: /* RCGC2 */
495 s->rcgc[2] = value;
496 break;
497 case 0x110: /* SCGC0 */
498 s->scgc[0] = value;
499 break;
500 case 0x114: /* SCGC1 */
501 s->scgc[1] = value;
502 break;
503 case 0x118: /* SCGC2 */
504 s->scgc[2] = value;
505 break;
506 case 0x120: /* DCGC0 */
507 s->dcgc[0] = value;
508 break;
509 case 0x124: /* DCGC1 */
510 s->dcgc[1] = value;
511 break;
512 case 0x128: /* DCGC2 */
513 s->dcgc[2] = value;
514 break;
515 case 0x150: /* CLKVCLR */
516 s->clkvclr = value;
517 break;
518 case 0x160: /* LDOARST */
519 s->ldoarst = value;
520 break;
521 default:
79b02417 522 cpu_abort(cpu_single_env, "ssys_write: Bad offset 0x%x\n", (int)offset);
9ee6e8bb
PB
523 }
524 ssys_update(s);
525}
526
527static CPUReadMemoryFunc *ssys_readfn[] = {
528 ssys_read,
529 ssys_read,
530 ssys_read
531};
532
533static CPUWriteMemoryFunc *ssys_writefn[] = {
534 ssys_write,
535 ssys_write,
536 ssys_write
537};
538
9596ebb7 539static void ssys_reset(void *opaque)
9ee6e8bb
PB
540{
541 ssys_state *s = (ssys_state *)opaque;
542
543 s->pborctl = 0x7ffd;
544 s->rcc = 0x078e3ac0;
545 s->rcgc[0] = 1;
546 s->scgc[0] = 1;
547 s->dcgc[0] = 1;
548}
549
550static void stellaris_sys_init(uint32_t base, qemu_irq irq,
eea589cc
PB
551 stellaris_board_info * board,
552 uint8_t *macaddr)
9ee6e8bb
PB
553{
554 int iomemtype;
555 ssys_state *s;
556
557 s = (ssys_state *)qemu_mallocz(sizeof(ssys_state));
558 s->base = base;
559 s->irq = irq;
560 s->board = board;
eea589cc
PB
561 /* Most devices come preprogrammed with a MAC address in the user data. */
562 s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
563 s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
9ee6e8bb
PB
564
565 iomemtype = cpu_register_io_memory(0, ssys_readfn,
566 ssys_writefn, s);
567 cpu_register_physical_memory(base, 0x00001000, iomemtype);
568 ssys_reset(s);
569 /* ??? Save/restore. */
570}
571
572
573/* I2C controller. */
574
575typedef struct {
576 i2c_bus *bus;
577 qemu_irq irq;
578 uint32_t base;
579 uint32_t msa;
580 uint32_t mcs;
581 uint32_t mdr;
582 uint32_t mtpr;
583 uint32_t mimr;
584 uint32_t mris;
585 uint32_t mcr;
586} stellaris_i2c_state;
587
588#define STELLARIS_I2C_MCS_BUSY 0x01
589#define STELLARIS_I2C_MCS_ERROR 0x02
590#define STELLARIS_I2C_MCS_ADRACK 0x04
591#define STELLARIS_I2C_MCS_DATACK 0x08
592#define STELLARIS_I2C_MCS_ARBLST 0x10
593#define STELLARIS_I2C_MCS_IDLE 0x20
594#define STELLARIS_I2C_MCS_BUSBSY 0x40
595
596static uint32_t stellaris_i2c_read(void *opaque, target_phys_addr_t offset)
597{
598 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
599
600 offset -= s->base;
601 switch (offset) {
602 case 0x00: /* MSA */
603 return s->msa;
604 case 0x04: /* MCS */
605 /* We don't emulate timing, so the controller is never busy. */
606 return s->mcs | STELLARIS_I2C_MCS_IDLE;
607 case 0x08: /* MDR */
608 return s->mdr;
609 case 0x0c: /* MTPR */
610 return s->mtpr;
611 case 0x10: /* MIMR */
612 return s->mimr;
613 case 0x14: /* MRIS */
614 return s->mris;
615 case 0x18: /* MMIS */
616 return s->mris & s->mimr;
617 case 0x20: /* MCR */
618 return s->mcr;
619 default:
620 cpu_abort(cpu_single_env, "strllaris_i2c_read: Bad offset 0x%x\n",
621 (int)offset);
622 return 0;
623 }
624}
625
626static void stellaris_i2c_update(stellaris_i2c_state *s)
627{
628 int level;
629
630 level = (s->mris & s->mimr) != 0;
631 qemu_set_irq(s->irq, level);
632}
633
634static void stellaris_i2c_write(void *opaque, target_phys_addr_t offset,
635 uint32_t value)
636{
637 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
638
639 offset -= s->base;
640 switch (offset) {
641 case 0x00: /* MSA */
642 s->msa = value & 0xff;
643 break;
644 case 0x04: /* MCS */
645 if ((s->mcr & 0x10) == 0) {
646 /* Disabled. Do nothing. */
647 break;
648 }
649 /* Grab the bus if this is starting a transfer. */
650 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
651 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
652 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
653 } else {
654 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
655 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
656 }
657 }
658 /* If we don't have the bus then indicate an error. */
659 if (!i2c_bus_busy(s->bus)
660 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
661 s->mcs |= STELLARIS_I2C_MCS_ERROR;
662 break;
663 }
664 s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
665 if (value & 1) {
666 /* Transfer a byte. */
667 /* TODO: Handle errors. */
668 if (s->msa & 1) {
669 /* Recv */
670 s->mdr = i2c_recv(s->bus) & 0xff;
671 } else {
672 /* Send */
673 i2c_send(s->bus, s->mdr);
674 }
675 /* Raise an interrupt. */
676 s->mris |= 1;
677 }
678 if (value & 4) {
679 /* Finish transfer. */
680 i2c_end_transfer(s->bus);
681 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
682 }
683 break;
684 case 0x08: /* MDR */
685 s->mdr = value & 0xff;
686 break;
687 case 0x0c: /* MTPR */
688 s->mtpr = value & 0xff;
689 break;
690 case 0x10: /* MIMR */
691 s->mimr = 1;
692 break;
693 case 0x1c: /* MICR */
694 s->mris &= ~value;
695 break;
696 case 0x20: /* MCR */
697 if (value & 1)
698 cpu_abort(cpu_single_env,
699 "stellaris_i2c_write: Loopback not implemented\n");
700 if (value & 0x20)
701 cpu_abort(cpu_single_env,
702 "stellaris_i2c_write: Slave mode not implemented\n");
703 s->mcr = value & 0x31;
704 break;
705 default:
706 cpu_abort(cpu_single_env, "stellaris_i2c_write: Bad offset 0x%x\n",
707 (int)offset);
708 }
709 stellaris_i2c_update(s);
710}
711
712static void stellaris_i2c_reset(stellaris_i2c_state *s)
713{
714 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
715 i2c_end_transfer(s->bus);
716
717 s->msa = 0;
718 s->mcs = 0;
719 s->mdr = 0;
720 s->mtpr = 1;
721 s->mimr = 0;
722 s->mris = 0;
723 s->mcr = 0;
724 stellaris_i2c_update(s);
725}
726
727static CPUReadMemoryFunc *stellaris_i2c_readfn[] = {
728 stellaris_i2c_read,
729 stellaris_i2c_read,
730 stellaris_i2c_read
731};
732
733static CPUWriteMemoryFunc *stellaris_i2c_writefn[] = {
734 stellaris_i2c_write,
735 stellaris_i2c_write,
736 stellaris_i2c_write
737};
738
739static void stellaris_i2c_init(uint32_t base, qemu_irq irq, i2c_bus *bus)
740{
741 stellaris_i2c_state *s;
742 int iomemtype;
743
744 s = (stellaris_i2c_state *)qemu_mallocz(sizeof(stellaris_i2c_state));
745 s->base = base;
746 s->irq = irq;
747 s->bus = bus;
748
749 iomemtype = cpu_register_io_memory(0, stellaris_i2c_readfn,
750 stellaris_i2c_writefn, s);
751 cpu_register_physical_memory(base, 0x00001000, iomemtype);
752 /* ??? For now we only implement the master interface. */
753 stellaris_i2c_reset(s);
754}
755
756/* Analogue to Digital Converter. This is only partially implemented,
757 enough for applications that use a combined ADC and timer tick. */
758
759#define STELLARIS_ADC_EM_CONTROLLER 0
760#define STELLARIS_ADC_EM_COMP 1
761#define STELLARIS_ADC_EM_EXTERNAL 4
762#define STELLARIS_ADC_EM_TIMER 5
763#define STELLARIS_ADC_EM_PWM0 6
764#define STELLARIS_ADC_EM_PWM1 7
765#define STELLARIS_ADC_EM_PWM2 8
766
767#define STELLARIS_ADC_FIFO_EMPTY 0x0100
768#define STELLARIS_ADC_FIFO_FULL 0x1000
769
770typedef struct
771{
772 uint32_t base;
773 uint32_t actss;
774 uint32_t ris;
775 uint32_t im;
776 uint32_t emux;
777 uint32_t ostat;
778 uint32_t ustat;
779 uint32_t sspri;
780 uint32_t sac;
781 struct {
782 uint32_t state;
783 uint32_t data[16];
784 } fifo[4];
785 uint32_t ssmux[4];
786 uint32_t ssctl[4];
787 qemu_irq irq;
788} stellaris_adc_state;
789
790static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
791{
792 int tail;
793
794 tail = s->fifo[n].state & 0xf;
795 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
796 s->ustat |= 1 << n;
797 } else {
798 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
799 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
800 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
801 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
802 }
803 return s->fifo[n].data[tail];
804}
805
806static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
807 uint32_t value)
808{
809 int head;
810
811 head = (s->fifo[n].state >> 4) & 0xf;
812 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
813 s->ostat |= 1 << n;
814 return;
815 }
816 s->fifo[n].data[head] = value;
817 head = (head + 1) & 0xf;
818 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
819 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
820 if ((s->fifo[n].state & 0xf) == head)
821 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
822}
823
824static void stellaris_adc_update(stellaris_adc_state *s)
825{
826 int level;
827
828 level = (s->ris & s->im) != 0;
829 qemu_set_irq(s->irq, level);
830}
831
832static void stellaris_adc_trigger(void *opaque, int irq, int level)
833{
834 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
835 /* Some applications use the ADC as a random number source, so introduce
836 some variation into the signal. */
837 static uint32_t noise = 0;
838
839 if ((s->actss & 1) == 0) {
840 return;
841 }
842
843 noise = noise * 314159 + 1;
844 /* ??? actual inputs not implemented. Return an arbitrary value. */
845 stellaris_adc_fifo_write(s, 0, 0x200 + ((noise >> 16) & 7));
846 s->ris |= 1;
847 stellaris_adc_update(s);
848}
849
850static void stellaris_adc_reset(stellaris_adc_state *s)
851{
852 int n;
853
854 for (n = 0; n < 4; n++) {
855 s->ssmux[n] = 0;
856 s->ssctl[n] = 0;
857 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
858 }
859}
860
861static uint32_t stellaris_adc_read(void *opaque, target_phys_addr_t offset)
862{
863 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
864
865 /* TODO: Implement this. */
866 offset -= s->base;
867 if (offset >= 0x40 && offset < 0xc0) {
868 int n;
869 n = (offset - 0x40) >> 5;
870 switch (offset & 0x1f) {
871 case 0x00: /* SSMUX */
872 return s->ssmux[n];
873 case 0x04: /* SSCTL */
874 return s->ssctl[n];
875 case 0x08: /* SSFIFO */
876 return stellaris_adc_fifo_read(s, n);
877 case 0x0c: /* SSFSTAT */
878 return s->fifo[n].state;
879 default:
880 break;
881 }
882 }
883 switch (offset) {
884 case 0x00: /* ACTSS */
885 return s->actss;
886 case 0x04: /* RIS */
887 return s->ris;
888 case 0x08: /* IM */
889 return s->im;
890 case 0x0c: /* ISC */
891 return s->ris & s->im;
892 case 0x10: /* OSTAT */
893 return s->ostat;
894 case 0x14: /* EMUX */
895 return s->emux;
896 case 0x18: /* USTAT */
897 return s->ustat;
898 case 0x20: /* SSPRI */
899 return s->sspri;
900 case 0x30: /* SAC */
901 return s->sac;
902 default:
903 cpu_abort(cpu_single_env, "strllaris_adc_read: Bad offset 0x%x\n",
904 (int)offset);
905 return 0;
906 }
907}
908
909static void stellaris_adc_write(void *opaque, target_phys_addr_t offset,
910 uint32_t value)
911{
912 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
913
914 /* TODO: Implement this. */
915 offset -= s->base;
916 if (offset >= 0x40 && offset < 0xc0) {
917 int n;
918 n = (offset - 0x40) >> 5;
919 switch (offset & 0x1f) {
920 case 0x00: /* SSMUX */
921 s->ssmux[n] = value & 0x33333333;
922 return;
923 case 0x04: /* SSCTL */
924 if (value != 6) {
925 cpu_abort(cpu_single_env, "ADC: Unimplemented sequence %x\n",
926 value);
927 }
928 s->ssctl[n] = value;
929 return;
930 default:
931 break;
932 }
933 }
934 switch (offset) {
935 case 0x00: /* ACTSS */
936 s->actss = value & 0xf;
937 if (value & 0xe) {
938 cpu_abort(cpu_single_env,
939 "Not implemented: ADC sequencers 1-3\n");
940 }
941 break;
942 case 0x08: /* IM */
943 s->im = value;
944 break;
945 case 0x0c: /* ISC */
946 s->ris &= ~value;
947 break;
948 case 0x10: /* OSTAT */
949 s->ostat &= ~value;
950 break;
951 case 0x14: /* EMUX */
952 s->emux = value;
953 break;
954 case 0x18: /* USTAT */
955 s->ustat &= ~value;
956 break;
957 case 0x20: /* SSPRI */
958 s->sspri = value;
959 break;
960 case 0x28: /* PSSI */
961 cpu_abort(cpu_single_env, "Not implemented: ADC sample initiate\n");
962 break;
963 case 0x30: /* SAC */
964 s->sac = value;
965 break;
966 default:
967 cpu_abort(cpu_single_env, "stellaris_adc_write: Bad offset 0x%x\n",
968 (int)offset);
969 }
970 stellaris_adc_update(s);
971}
972
973static CPUReadMemoryFunc *stellaris_adc_readfn[] = {
974 stellaris_adc_read,
975 stellaris_adc_read,
976 stellaris_adc_read
977};
978
979static CPUWriteMemoryFunc *stellaris_adc_writefn[] = {
980 stellaris_adc_write,
981 stellaris_adc_write,
982 stellaris_adc_write
983};
984
985static qemu_irq stellaris_adc_init(uint32_t base, qemu_irq irq)
986{
987 stellaris_adc_state *s;
988 int iomemtype;
989 qemu_irq *qi;
990
991 s = (stellaris_adc_state *)qemu_mallocz(sizeof(stellaris_adc_state));
992 s->base = base;
993 s->irq = irq;
994
995 iomemtype = cpu_register_io_memory(0, stellaris_adc_readfn,
996 stellaris_adc_writefn, s);
997 cpu_register_physical_memory(base, 0x00001000, iomemtype);
998 stellaris_adc_reset(s);
999 qi = qemu_allocate_irqs(stellaris_adc_trigger, s, 1);
1000 return qi[0];
1001}
1002
1003/* Board init. */
1004static stellaris_board_info stellaris_boards[] = {
1005 { "LM3S811EVB",
1006 0,
1007 0x0032000e,
1008 0x001f001f, /* dc0 */
1009 0x001132bf,
1010 0x01071013,
1011 0x3f0f01ff,
1012 0x0000001f,
cf0dbb21 1013 BP_OLED_I2C
9ee6e8bb
PB
1014 },
1015 { "LM3S6965EVB",
1016 0x10010002,
1017 0x1073402e,
1018 0x00ff007f, /* dc0 */
1019 0x001133ff,
1020 0x030f5317,
1021 0x0f0f87ff,
1022 0x5000007f,
cf0dbb21 1023 BP_OLED_SSI | BP_GAMEPAD
9ee6e8bb
PB
1024 }
1025};
1026
1027static void stellaris_init(const char *kernel_filename, const char *cpu_model,
1028 DisplayState *ds, stellaris_board_info *board)
1029{
1030 static const int uart_irq[] = {5, 6, 33, 34};
1031 static const int timer_irq[] = {19, 21, 23, 35};
1032 static const uint32_t gpio_addr[7] =
1033 { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1034 0x40024000, 0x40025000, 0x40026000};
1035 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1036
1037 qemu_irq *pic;
1038 qemu_irq *gpio_in[5];
1039 qemu_irq *gpio_out[5];
1040 qemu_irq adc;
1041 int sram_size;
1042 int flash_size;
1043 i2c_bus *i2c;
1044 int i;
1045
1046 flash_size = ((board->dc0 & 0xffff) + 1) << 1;
1047 sram_size = (board->dc0 >> 18) + 1;
1048 pic = armv7m_init(flash_size, sram_size, kernel_filename, cpu_model);
1049
1050 if (board->dc1 & (1 << 16)) {
1051 adc = stellaris_adc_init(0x40038000, pic[14]);
1052 } else {
1053 adc = NULL;
1054 }
1055 for (i = 0; i < 4; i++) {
1056 if (board->dc2 & (0x10000 << i)) {
1057 stellaris_gptm_init(0x40030000 + i * 0x1000,
1058 pic[timer_irq[i]], adc);
1059 }
1060 }
1061
eea589cc 1062 stellaris_sys_init(0x400fe000, pic[28], board, nd_table[0].macaddr);
9ee6e8bb
PB
1063
1064 for (i = 0; i < 7; i++) {
1065 if (board->dc4 & (1 << i)) {
1066 gpio_in[i] = pl061_init(gpio_addr[i], pic[gpio_irq[i]],
1067 &gpio_out[i]);
1068 }
1069 }
1070
1071 if (board->dc2 & (1 << 12)) {
1072 i2c = i2c_init_bus();
1073 stellaris_i2c_init(0x40020000, pic[8], i2c);
cf0dbb21 1074 if (board->peripherals & BP_OLED_I2C) {
9ee6e8bb
PB
1075 ssd0303_init(ds, i2c, 0x3d);
1076 }
1077 }
1078
1079 for (i = 0; i < 4; i++) {
1080 if (board->dc2 & (1 << i)) {
1081 pl011_init(0x4000c000 + i * 0x1000, pic[uart_irq[i]],
1082 serial_hds[i], PL011_LUMINARY);
1083 }
1084 }
1085 if (board->dc2 & (1 << 4)) {
cf0dbb21 1086 if (board->peripherals & BP_OLED_SSI) {
9ee6e8bb
PB
1087 void * oled;
1088 /* FIXME: Implement chip select for OLED/MMC. */
cf0dbb21 1089 oled = ssd0323_init(ds, &gpio_out[GPIO_C][7]);
9ee6e8bb
PB
1090 pl022_init(0x40008000, pic[7], ssd0323_xfer_ssi, oled);
1091 } else {
1092 pl022_init(0x40008000, pic[7], NULL, NULL);
1093 }
1094 }
eea589cc
PB
1095 if (board->dc4 & (1 << 28)) {
1096 /* FIXME: Obey network model. */
1097 stellaris_enet_init(&nd_table[0], 0x40048000, pic[42]);
1098 }
cf0dbb21
PB
1099 if (board->peripherals & BP_GAMEPAD) {
1100 qemu_irq gpad_irq[5];
1101 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1102
1103 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1104 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1105 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1106 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1107 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1108
1109 stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1110 }
9ee6e8bb
PB
1111}
1112
1113/* FIXME: Figure out how to generate these from stellaris_boards. */
1114static void lm3s811evb_init(int ram_size, int vga_ram_size,
1115 const char *boot_device, DisplayState *ds,
9ee6e8bb
PB
1116 const char *kernel_filename, const char *kernel_cmdline,
1117 const char *initrd_filename, const char *cpu_model)
1118{
1119 stellaris_init(kernel_filename, cpu_model, ds, &stellaris_boards[0]);
1120}
1121
1122static void lm3s6965evb_init(int ram_size, int vga_ram_size,
1123 const char *boot_device, DisplayState *ds,
9ee6e8bb
PB
1124 const char *kernel_filename, const char *kernel_cmdline,
1125 const char *initrd_filename, const char *cpu_model)
1126{
1127 stellaris_init(kernel_filename, cpu_model, ds, &stellaris_boards[1]);
1128}
1129
1130QEMUMachine lm3s811evb_machine = {
1131 "lm3s811evb",
1132 "Stellaris LM3S811EVB",
1133 lm3s811evb_init,
1134};
1135
1136QEMUMachine lm3s6965evb_machine = {
1137 "lm3s6965evb",
1138 "Stellaris LM3S6965EVB",
1139 lm3s6965evb_init,
1140};
This page took 0.147525 seconds and 4 git commands to generate.