]>
Commit | Line | Data |
---|---|---|
494b00c7 CD |
1 | /* |
2 | * ARM implementation of KVM hooks | |
3 | * | |
4 | * Copyright Christoffer Dall 2009-2010 | |
5 | * | |
6 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
7 | * See the COPYING file in the top-level directory. | |
8 | * | |
9 | */ | |
10 | ||
11 | #include <stdio.h> | |
12 | #include <sys/types.h> | |
13 | #include <sys/ioctl.h> | |
14 | #include <sys/mman.h> | |
15 | ||
16 | #include <linux/kvm.h> | |
17 | ||
18 | #include "qemu-common.h" | |
19 | #include "qemu/timer.h" | |
20 | #include "sysemu/sysemu.h" | |
21 | #include "sysemu/kvm.h" | |
eb035b48 | 22 | #include "kvm_arm.h" |
494b00c7 | 23 | #include "cpu.h" |
bd2be150 | 24 | #include "hw/arm/arm.h" |
494b00c7 | 25 | |
721fae12 PM |
26 | /* Check that cpu.h's idea of coprocessor fields matches KVM's */ |
27 | #if (CP_REG_SIZE_SHIFT != KVM_REG_SIZE_SHIFT) || \ | |
28 | (CP_REG_SIZE_MASK != KVM_REG_SIZE_MASK) || \ | |
29 | (CP_REG_SIZE_U32 != KVM_REG_SIZE_U32) || \ | |
30 | (CP_REG_SIZE_U64 != KVM_REG_SIZE_U64) || \ | |
31 | (CP_REG_ARM != KVM_REG_ARM) | |
32 | #error mismatch between cpu.h and KVM header definitions | |
33 | #endif | |
34 | ||
494b00c7 CD |
35 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
36 | KVM_CAP_LAST_INFO | |
37 | }; | |
38 | ||
39 | int kvm_arch_init(KVMState *s) | |
40 | { | |
41 | /* For ARM interrupt delivery is always asynchronous, | |
42 | * whether we are using an in-kernel VGIC or not. | |
43 | */ | |
44 | kvm_async_interrupts_allowed = true; | |
45 | return 0; | |
46 | } | |
47 | ||
48 | unsigned long kvm_arch_vcpu_id(CPUState *cpu) | |
49 | { | |
50 | return cpu->cpu_index; | |
51 | } | |
52 | ||
ff047453 PM |
53 | static bool reg_syncs_via_tuple_list(uint64_t regidx) |
54 | { | |
55 | /* Return true if the regidx is a register we should synchronize | |
56 | * via the cpreg_tuples array (ie is not a core reg we sync by | |
57 | * hand in kvm_arch_get/put_registers()) | |
58 | */ | |
59 | switch (regidx & KVM_REG_ARM_COPROC_MASK) { | |
60 | case KVM_REG_ARM_CORE: | |
61 | case KVM_REG_ARM_VFP: | |
62 | return false; | |
63 | default: | |
64 | return true; | |
65 | } | |
66 | } | |
67 | ||
68 | static int compare_u64(const void *a, const void *b) | |
69 | { | |
70 | return *(uint64_t *)a - *(uint64_t *)b; | |
71 | } | |
72 | ||
494b00c7 CD |
73 | int kvm_arch_init_vcpu(CPUState *cs) |
74 | { | |
75 | struct kvm_vcpu_init init; | |
ff047453 | 76 | int i, ret, arraylen; |
81635574 PM |
77 | uint64_t v; |
78 | struct kvm_one_reg r; | |
ff047453 PM |
79 | struct kvm_reg_list rl; |
80 | struct kvm_reg_list *rlp; | |
81 | ARMCPU *cpu = ARM_CPU(cs); | |
494b00c7 CD |
82 | |
83 | init.target = KVM_ARM_TARGET_CORTEX_A15; | |
84 | memset(init.features, 0, sizeof(init.features)); | |
81635574 PM |
85 | ret = kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); |
86 | if (ret) { | |
87 | return ret; | |
88 | } | |
89 | /* Query the kernel to make sure it supports 32 VFP | |
90 | * registers: QEMU's "cortex-a15" CPU is always a | |
91 | * VFP-D32 core. The simplest way to do this is just | |
92 | * to attempt to read register d31. | |
93 | */ | |
94 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31; | |
95 | r.addr = (uintptr_t)(&v); | |
96 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
536f25e4 PM |
97 | if (ret == -ENOENT) { |
98 | return -EINVAL; | |
81635574 | 99 | } |
ff047453 PM |
100 | |
101 | /* Populate the cpreg list based on the kernel's idea | |
102 | * of what registers exist (and throw away the TCG-created list). | |
103 | */ | |
104 | rl.n = 0; | |
105 | ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); | |
106 | if (ret != -E2BIG) { | |
107 | return ret; | |
108 | } | |
109 | rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); | |
110 | rlp->n = rl.n; | |
111 | ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); | |
112 | if (ret) { | |
113 | goto out; | |
114 | } | |
115 | /* Sort the list we get back from the kernel, since cpreg_tuples | |
116 | * must be in strictly ascending order. | |
117 | */ | |
118 | qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); | |
119 | ||
120 | for (i = 0, arraylen = 0; i < rlp->n; i++) { | |
121 | if (!reg_syncs_via_tuple_list(rlp->reg[i])) { | |
122 | continue; | |
123 | } | |
124 | switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { | |
125 | case KVM_REG_SIZE_U32: | |
126 | case KVM_REG_SIZE_U64: | |
127 | break; | |
128 | default: | |
129 | fprintf(stderr, "Can't handle size of register in kernel list\n"); | |
130 | ret = -EINVAL; | |
131 | goto out; | |
132 | } | |
133 | ||
134 | arraylen++; | |
135 | } | |
136 | ||
137 | cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); | |
138 | cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); | |
139 | cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, | |
140 | arraylen); | |
141 | cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, | |
142 | arraylen); | |
143 | cpu->cpreg_array_len = arraylen; | |
144 | cpu->cpreg_vmstate_array_len = arraylen; | |
145 | ||
146 | for (i = 0, arraylen = 0; i < rlp->n; i++) { | |
147 | uint64_t regidx = rlp->reg[i]; | |
148 | if (!reg_syncs_via_tuple_list(regidx)) { | |
149 | continue; | |
150 | } | |
151 | cpu->cpreg_indexes[arraylen] = regidx; | |
152 | arraylen++; | |
153 | } | |
154 | assert(cpu->cpreg_array_len == arraylen); | |
155 | ||
156 | if (!write_kvmstate_to_list(cpu)) { | |
157 | /* Shouldn't happen unless kernel is inconsistent about | |
158 | * what registers exist. | |
159 | */ | |
160 | fprintf(stderr, "Initial read of kernel register state failed\n"); | |
161 | ret = -EINVAL; | |
162 | goto out; | |
163 | } | |
164 | ||
2d8e5a0e PM |
165 | /* Save a copy of the initial register values so that we can |
166 | * feed it back to the kernel on VCPU reset. | |
167 | */ | |
168 | cpu->cpreg_reset_values = g_memdup(cpu->cpreg_values, | |
169 | cpu->cpreg_array_len * | |
170 | sizeof(cpu->cpreg_values[0])); | |
171 | ||
ff047453 PM |
172 | out: |
173 | g_free(rlp); | |
81635574 | 174 | return ret; |
494b00c7 CD |
175 | } |
176 | ||
eb035b48 PM |
177 | /* We track all the KVM devices which need their memory addresses |
178 | * passing to the kernel in a list of these structures. | |
179 | * When board init is complete we run through the list and | |
180 | * tell the kernel the base addresses of the memory regions. | |
181 | * We use a MemoryListener to track mapping and unmapping of | |
182 | * the regions during board creation, so the board models don't | |
183 | * need to do anything special for the KVM case. | |
184 | */ | |
185 | typedef struct KVMDevice { | |
186 | struct kvm_arm_device_addr kda; | |
187 | MemoryRegion *mr; | |
188 | QSLIST_ENTRY(KVMDevice) entries; | |
189 | } KVMDevice; | |
190 | ||
191 | static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head; | |
192 | ||
193 | static void kvm_arm_devlistener_add(MemoryListener *listener, | |
194 | MemoryRegionSection *section) | |
195 | { | |
196 | KVMDevice *kd; | |
197 | ||
198 | QSLIST_FOREACH(kd, &kvm_devices_head, entries) { | |
199 | if (section->mr == kd->mr) { | |
200 | kd->kda.addr = section->offset_within_address_space; | |
201 | } | |
202 | } | |
203 | } | |
204 | ||
205 | static void kvm_arm_devlistener_del(MemoryListener *listener, | |
206 | MemoryRegionSection *section) | |
207 | { | |
208 | KVMDevice *kd; | |
209 | ||
210 | QSLIST_FOREACH(kd, &kvm_devices_head, entries) { | |
211 | if (section->mr == kd->mr) { | |
212 | kd->kda.addr = -1; | |
213 | } | |
214 | } | |
215 | } | |
216 | ||
217 | static MemoryListener devlistener = { | |
218 | .region_add = kvm_arm_devlistener_add, | |
219 | .region_del = kvm_arm_devlistener_del, | |
220 | }; | |
221 | ||
222 | static void kvm_arm_machine_init_done(Notifier *notifier, void *data) | |
223 | { | |
224 | KVMDevice *kd, *tkd; | |
225 | ||
226 | memory_listener_unregister(&devlistener); | |
227 | QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { | |
228 | if (kd->kda.addr != -1) { | |
229 | if (kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, | |
230 | &kd->kda) < 0) { | |
231 | fprintf(stderr, "KVM_ARM_SET_DEVICE_ADDRESS failed: %s\n", | |
232 | strerror(errno)); | |
233 | abort(); | |
234 | } | |
235 | } | |
dfde4e6e | 236 | memory_region_unref(kd->mr); |
eb035b48 PM |
237 | g_free(kd); |
238 | } | |
239 | } | |
240 | ||
241 | static Notifier notify = { | |
242 | .notify = kvm_arm_machine_init_done, | |
243 | }; | |
244 | ||
245 | void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid) | |
246 | { | |
247 | KVMDevice *kd; | |
248 | ||
249 | if (!kvm_irqchip_in_kernel()) { | |
250 | return; | |
251 | } | |
252 | ||
253 | if (QSLIST_EMPTY(&kvm_devices_head)) { | |
254 | memory_listener_register(&devlistener, NULL); | |
255 | qemu_add_machine_init_done_notifier(¬ify); | |
256 | } | |
257 | kd = g_new0(KVMDevice, 1); | |
258 | kd->mr = mr; | |
259 | kd->kda.id = devid; | |
260 | kd->kda.addr = -1; | |
261 | QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); | |
dfde4e6e | 262 | memory_region_ref(kd->mr); |
eb035b48 PM |
263 | } |
264 | ||
ff047453 PM |
265 | bool write_kvmstate_to_list(ARMCPU *cpu) |
266 | { | |
267 | CPUState *cs = CPU(cpu); | |
268 | int i; | |
269 | bool ok = true; | |
270 | ||
271 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
272 | struct kvm_one_reg r; | |
273 | uint64_t regidx = cpu->cpreg_indexes[i]; | |
274 | uint32_t v32; | |
275 | int ret; | |
276 | ||
277 | r.id = regidx; | |
278 | ||
279 | switch (regidx & KVM_REG_SIZE_MASK) { | |
280 | case KVM_REG_SIZE_U32: | |
281 | r.addr = (uintptr_t)&v32; | |
282 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
283 | if (!ret) { | |
284 | cpu->cpreg_values[i] = v32; | |
285 | } | |
286 | break; | |
287 | case KVM_REG_SIZE_U64: | |
288 | r.addr = (uintptr_t)(cpu->cpreg_values + i); | |
289 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
290 | break; | |
291 | default: | |
292 | abort(); | |
293 | } | |
294 | if (ret) { | |
295 | ok = false; | |
296 | } | |
297 | } | |
298 | return ok; | |
299 | } | |
300 | ||
301 | bool write_list_to_kvmstate(ARMCPU *cpu) | |
302 | { | |
303 | CPUState *cs = CPU(cpu); | |
304 | int i; | |
305 | bool ok = true; | |
306 | ||
307 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
308 | struct kvm_one_reg r; | |
309 | uint64_t regidx = cpu->cpreg_indexes[i]; | |
310 | uint32_t v32; | |
311 | int ret; | |
312 | ||
313 | r.id = regidx; | |
314 | switch (regidx & KVM_REG_SIZE_MASK) { | |
315 | case KVM_REG_SIZE_U32: | |
316 | v32 = cpu->cpreg_values[i]; | |
317 | r.addr = (uintptr_t)&v32; | |
318 | break; | |
319 | case KVM_REG_SIZE_U64: | |
320 | r.addr = (uintptr_t)(cpu->cpreg_values + i); | |
321 | break; | |
322 | default: | |
323 | abort(); | |
324 | } | |
325 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
326 | if (ret) { | |
327 | /* We might fail for "unknown register" and also for | |
328 | * "you tried to set a register which is constant with | |
329 | * a different value from what it actually contains". | |
330 | */ | |
331 | ok = false; | |
332 | } | |
333 | } | |
334 | return ok; | |
335 | } | |
336 | ||
494b00c7 CD |
337 | typedef struct Reg { |
338 | uint64_t id; | |
339 | int offset; | |
340 | } Reg; | |
341 | ||
342 | #define COREREG(KERNELNAME, QEMUFIELD) \ | |
343 | { \ | |
344 | KVM_REG_ARM | KVM_REG_SIZE_U32 | \ | |
345 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \ | |
346 | offsetof(CPUARMState, QEMUFIELD) \ | |
347 | } | |
348 | ||
81635574 PM |
349 | #define VFPSYSREG(R) \ |
350 | { \ | |
351 | KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \ | |
352 | KVM_REG_ARM_VFP_##R, \ | |
353 | offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \ | |
354 | } | |
355 | ||
494b00c7 CD |
356 | static const Reg regs[] = { |
357 | /* R0_usr .. R14_usr */ | |
358 | COREREG(usr_regs.uregs[0], regs[0]), | |
359 | COREREG(usr_regs.uregs[1], regs[1]), | |
360 | COREREG(usr_regs.uregs[2], regs[2]), | |
361 | COREREG(usr_regs.uregs[3], regs[3]), | |
362 | COREREG(usr_regs.uregs[4], regs[4]), | |
363 | COREREG(usr_regs.uregs[5], regs[5]), | |
364 | COREREG(usr_regs.uregs[6], regs[6]), | |
365 | COREREG(usr_regs.uregs[7], regs[7]), | |
366 | COREREG(usr_regs.uregs[8], usr_regs[0]), | |
367 | COREREG(usr_regs.uregs[9], usr_regs[1]), | |
368 | COREREG(usr_regs.uregs[10], usr_regs[2]), | |
369 | COREREG(usr_regs.uregs[11], usr_regs[3]), | |
370 | COREREG(usr_regs.uregs[12], usr_regs[4]), | |
371 | COREREG(usr_regs.uregs[13], banked_r13[0]), | |
372 | COREREG(usr_regs.uregs[14], banked_r14[0]), | |
373 | /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */ | |
374 | COREREG(svc_regs[0], banked_r13[1]), | |
375 | COREREG(svc_regs[1], banked_r14[1]), | |
376 | COREREG(svc_regs[2], banked_spsr[1]), | |
377 | COREREG(abt_regs[0], banked_r13[2]), | |
378 | COREREG(abt_regs[1], banked_r14[2]), | |
379 | COREREG(abt_regs[2], banked_spsr[2]), | |
380 | COREREG(und_regs[0], banked_r13[3]), | |
381 | COREREG(und_regs[1], banked_r14[3]), | |
382 | COREREG(und_regs[2], banked_spsr[3]), | |
383 | COREREG(irq_regs[0], banked_r13[4]), | |
384 | COREREG(irq_regs[1], banked_r14[4]), | |
385 | COREREG(irq_regs[2], banked_spsr[4]), | |
386 | /* R8_fiq .. R14_fiq and SPSR_fiq */ | |
387 | COREREG(fiq_regs[0], fiq_regs[0]), | |
388 | COREREG(fiq_regs[1], fiq_regs[1]), | |
389 | COREREG(fiq_regs[2], fiq_regs[2]), | |
390 | COREREG(fiq_regs[3], fiq_regs[3]), | |
391 | COREREG(fiq_regs[4], fiq_regs[4]), | |
392 | COREREG(fiq_regs[5], banked_r13[5]), | |
393 | COREREG(fiq_regs[6], banked_r14[5]), | |
394 | COREREG(fiq_regs[7], banked_spsr[5]), | |
395 | /* R15 */ | |
396 | COREREG(usr_regs.uregs[15], regs[15]), | |
81635574 PM |
397 | /* VFP system registers */ |
398 | VFPSYSREG(FPSID), | |
399 | VFPSYSREG(MVFR1), | |
400 | VFPSYSREG(MVFR0), | |
401 | VFPSYSREG(FPEXC), | |
402 | VFPSYSREG(FPINST), | |
403 | VFPSYSREG(FPINST2), | |
494b00c7 CD |
404 | }; |
405 | ||
406 | int kvm_arch_put_registers(CPUState *cs, int level) | |
407 | { | |
408 | ARMCPU *cpu = ARM_CPU(cs); | |
409 | CPUARMState *env = &cpu->env; | |
410 | struct kvm_one_reg r; | |
411 | int mode, bn; | |
412 | int ret, i; | |
81635574 | 413 | uint32_t cpsr, fpscr; |
494b00c7 CD |
414 | |
415 | /* Make sure the banked regs are properly set */ | |
416 | mode = env->uncached_cpsr & CPSR_M; | |
417 | bn = bank_number(mode); | |
418 | if (mode == ARM_CPU_MODE_FIQ) { | |
419 | memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
420 | } else { | |
421 | memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
422 | } | |
423 | env->banked_r13[bn] = env->regs[13]; | |
424 | env->banked_r14[bn] = env->regs[14]; | |
425 | env->banked_spsr[bn] = env->spsr; | |
426 | ||
427 | /* Now we can safely copy stuff down to the kernel */ | |
428 | for (i = 0; i < ARRAY_SIZE(regs); i++) { | |
429 | r.id = regs[i].id; | |
430 | r.addr = (uintptr_t)(env) + regs[i].offset; | |
431 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
432 | if (ret) { | |
433 | return ret; | |
434 | } | |
435 | } | |
436 | ||
437 | /* Special cases which aren't a single CPUARMState field */ | |
438 | cpsr = cpsr_read(env); | |
439 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | | |
440 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr); | |
441 | r.addr = (uintptr_t)(&cpsr); | |
442 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
443 | if (ret) { | |
444 | return ret; | |
445 | } | |
446 | ||
81635574 PM |
447 | /* VFP registers */ |
448 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; | |
449 | for (i = 0; i < 32; i++) { | |
450 | r.addr = (uintptr_t)(&env->vfp.regs[i]); | |
451 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
452 | if (ret) { | |
453 | return ret; | |
454 | } | |
455 | r.id++; | |
456 | } | |
457 | ||
458 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | | |
459 | KVM_REG_ARM_VFP_FPSCR; | |
460 | fpscr = vfp_get_fpscr(env); | |
461 | r.addr = (uintptr_t)&fpscr; | |
462 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
f7134d96 PM |
463 | if (ret) { |
464 | return ret; | |
465 | } | |
466 | ||
467 | /* Note that we do not call write_cpustate_to_list() | |
468 | * here, so we are only writing the tuple list back to | |
469 | * KVM. This is safe because nothing can change the | |
470 | * CPUARMState cp15 fields (in particular gdb accesses cannot) | |
471 | * and so there are no changes to sync. In fact syncing would | |
472 | * be wrong at this point: for a constant register where TCG and | |
473 | * KVM disagree about its value, the preceding write_list_to_cpustate() | |
474 | * would not have had any effect on the CPUARMState value (since the | |
475 | * register is read-only), and a write_cpustate_to_list() here would | |
476 | * then try to write the TCG value back into KVM -- this would either | |
477 | * fail or incorrectly change the value the guest sees. | |
478 | * | |
479 | * If we ever want to allow the user to modify cp15 registers via | |
480 | * the gdb stub, we would need to be more clever here (for instance | |
481 | * tracking the set of registers kvm_arch_get_registers() successfully | |
482 | * managed to update the CPUARMState with, and only allowing those | |
483 | * to be written back up into the kernel). | |
484 | */ | |
485 | if (!write_list_to_kvmstate(cpu)) { | |
486 | return EINVAL; | |
487 | } | |
494b00c7 CD |
488 | |
489 | return ret; | |
490 | } | |
491 | ||
492 | int kvm_arch_get_registers(CPUState *cs) | |
493 | { | |
494 | ARMCPU *cpu = ARM_CPU(cs); | |
495 | CPUARMState *env = &cpu->env; | |
496 | struct kvm_one_reg r; | |
497 | int mode, bn; | |
498 | int ret, i; | |
81635574 | 499 | uint32_t cpsr, fpscr; |
494b00c7 CD |
500 | |
501 | for (i = 0; i < ARRAY_SIZE(regs); i++) { | |
502 | r.id = regs[i].id; | |
503 | r.addr = (uintptr_t)(env) + regs[i].offset; | |
504 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
505 | if (ret) { | |
506 | return ret; | |
507 | } | |
508 | } | |
509 | ||
510 | /* Special cases which aren't a single CPUARMState field */ | |
511 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | | |
512 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr); | |
513 | r.addr = (uintptr_t)(&cpsr); | |
514 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
515 | if (ret) { | |
516 | return ret; | |
517 | } | |
518 | cpsr_write(env, cpsr, 0xffffffff); | |
519 | ||
494b00c7 CD |
520 | /* Make sure the current mode regs are properly set */ |
521 | mode = env->uncached_cpsr & CPSR_M; | |
522 | bn = bank_number(mode); | |
523 | if (mode == ARM_CPU_MODE_FIQ) { | |
524 | memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); | |
525 | } else { | |
526 | memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); | |
527 | } | |
528 | env->regs[13] = env->banked_r13[bn]; | |
529 | env->regs[14] = env->banked_r14[bn]; | |
530 | env->spsr = env->banked_spsr[bn]; | |
531 | ||
81635574 PM |
532 | /* VFP registers */ |
533 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; | |
534 | for (i = 0; i < 32; i++) { | |
535 | r.addr = (uintptr_t)(&env->vfp.regs[i]); | |
536 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
537 | if (ret) { | |
538 | return ret; | |
539 | } | |
540 | r.id++; | |
541 | } | |
542 | ||
543 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | | |
544 | KVM_REG_ARM_VFP_FPSCR; | |
545 | r.addr = (uintptr_t)&fpscr; | |
546 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
547 | if (ret) { | |
548 | return ret; | |
549 | } | |
550 | vfp_set_fpscr(env, fpscr); | |
551 | ||
f7134d96 PM |
552 | if (!write_kvmstate_to_list(cpu)) { |
553 | return EINVAL; | |
554 | } | |
555 | /* Note that it's OK to have registers which aren't in CPUState, | |
556 | * so we can ignore a failure return here. | |
557 | */ | |
558 | write_list_to_cpustate(cpu); | |
559 | ||
494b00c7 CD |
560 | return 0; |
561 | } | |
562 | ||
563 | void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) | |
564 | { | |
565 | } | |
566 | ||
567 | void kvm_arch_post_run(CPUState *cs, struct kvm_run *run) | |
568 | { | |
569 | } | |
570 | ||
571 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) | |
572 | { | |
573 | return 0; | |
574 | } | |
575 | ||
576 | void kvm_arch_reset_vcpu(CPUState *cs) | |
577 | { | |
2d8e5a0e PM |
578 | /* Feed the kernel back its initial register state */ |
579 | ARMCPU *cpu = ARM_CPU(cs); | |
580 | ||
581 | memmove(cpu->cpreg_values, cpu->cpreg_reset_values, | |
582 | cpu->cpreg_array_len * sizeof(cpu->cpreg_values[0])); | |
583 | ||
584 | if (!write_list_to_kvmstate(cpu)) { | |
585 | abort(); | |
586 | } | |
494b00c7 CD |
587 | } |
588 | ||
589 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) | |
590 | { | |
591 | return true; | |
592 | } | |
593 | ||
594 | int kvm_arch_process_async_events(CPUState *cs) | |
595 | { | |
596 | return 0; | |
597 | } | |
598 | ||
599 | int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr) | |
600 | { | |
601 | return 1; | |
602 | } | |
603 | ||
604 | int kvm_arch_on_sigbus(int code, void *addr) | |
605 | { | |
606 | return 1; | |
607 | } | |
608 | ||
609 | void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) | |
610 | { | |
611 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
612 | } | |
613 | ||
614 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, | |
615 | struct kvm_sw_breakpoint *bp) | |
616 | { | |
617 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
618 | return -EINVAL; | |
619 | } | |
620 | ||
621 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
622 | target_ulong len, int type) | |
623 | { | |
624 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
625 | return -EINVAL; | |
626 | } | |
627 | ||
628 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
629 | target_ulong len, int type) | |
630 | { | |
631 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
632 | return -EINVAL; | |
633 | } | |
634 | ||
635 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, | |
636 | struct kvm_sw_breakpoint *bp) | |
637 | { | |
638 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
639 | return -EINVAL; | |
640 | } | |
641 | ||
642 | void kvm_arch_remove_all_hw_breakpoints(void) | |
643 | { | |
644 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
645 | } | |
b3a1c626 AK |
646 | |
647 | void kvm_arch_init_irq_routing(KVMState *s) | |
648 | { | |
649 | } |