]> Git Repo - qemu.git/blame - target-arm/kvm.c
target-arm: Initialize cpreg list from KVM when using KVM
[qemu.git] / target-arm / kvm.c
CommitLineData
494b00c7
CD
1/*
2 * ARM implementation of KVM hooks
3 *
4 * Copyright Christoffer Dall 2009-2010
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
8 *
9 */
10
11#include <stdio.h>
12#include <sys/types.h>
13#include <sys/ioctl.h>
14#include <sys/mman.h>
15
16#include <linux/kvm.h>
17
18#include "qemu-common.h"
19#include "qemu/timer.h"
20#include "sysemu/sysemu.h"
21#include "sysemu/kvm.h"
eb035b48 22#include "kvm_arm.h"
494b00c7 23#include "cpu.h"
bd2be150 24#include "hw/arm/arm.h"
494b00c7 25
721fae12
PM
26/* Check that cpu.h's idea of coprocessor fields matches KVM's */
27#if (CP_REG_SIZE_SHIFT != KVM_REG_SIZE_SHIFT) || \
28 (CP_REG_SIZE_MASK != KVM_REG_SIZE_MASK) || \
29 (CP_REG_SIZE_U32 != KVM_REG_SIZE_U32) || \
30 (CP_REG_SIZE_U64 != KVM_REG_SIZE_U64) || \
31 (CP_REG_ARM != KVM_REG_ARM)
32#error mismatch between cpu.h and KVM header definitions
33#endif
34
494b00c7
CD
35const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
36 KVM_CAP_LAST_INFO
37};
38
39int kvm_arch_init(KVMState *s)
40{
41 /* For ARM interrupt delivery is always asynchronous,
42 * whether we are using an in-kernel VGIC or not.
43 */
44 kvm_async_interrupts_allowed = true;
45 return 0;
46}
47
48unsigned long kvm_arch_vcpu_id(CPUState *cpu)
49{
50 return cpu->cpu_index;
51}
52
ff047453
PM
53static bool reg_syncs_via_tuple_list(uint64_t regidx)
54{
55 /* Return true if the regidx is a register we should synchronize
56 * via the cpreg_tuples array (ie is not a core reg we sync by
57 * hand in kvm_arch_get/put_registers())
58 */
59 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
60 case KVM_REG_ARM_CORE:
61 case KVM_REG_ARM_VFP:
62 return false;
63 default:
64 return true;
65 }
66}
67
68static int compare_u64(const void *a, const void *b)
69{
70 return *(uint64_t *)a - *(uint64_t *)b;
71}
72
494b00c7
CD
73int kvm_arch_init_vcpu(CPUState *cs)
74{
75 struct kvm_vcpu_init init;
ff047453 76 int i, ret, arraylen;
81635574
PM
77 uint64_t v;
78 struct kvm_one_reg r;
ff047453
PM
79 struct kvm_reg_list rl;
80 struct kvm_reg_list *rlp;
81 ARMCPU *cpu = ARM_CPU(cs);
494b00c7
CD
82
83 init.target = KVM_ARM_TARGET_CORTEX_A15;
84 memset(init.features, 0, sizeof(init.features));
81635574
PM
85 ret = kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
86 if (ret) {
87 return ret;
88 }
89 /* Query the kernel to make sure it supports 32 VFP
90 * registers: QEMU's "cortex-a15" CPU is always a
91 * VFP-D32 core. The simplest way to do this is just
92 * to attempt to read register d31.
93 */
94 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
95 r.addr = (uintptr_t)(&v);
96 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
536f25e4
PM
97 if (ret == -ENOENT) {
98 return -EINVAL;
81635574 99 }
ff047453
PM
100
101 /* Populate the cpreg list based on the kernel's idea
102 * of what registers exist (and throw away the TCG-created list).
103 */
104 rl.n = 0;
105 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
106 if (ret != -E2BIG) {
107 return ret;
108 }
109 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
110 rlp->n = rl.n;
111 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
112 if (ret) {
113 goto out;
114 }
115 /* Sort the list we get back from the kernel, since cpreg_tuples
116 * must be in strictly ascending order.
117 */
118 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
119
120 for (i = 0, arraylen = 0; i < rlp->n; i++) {
121 if (!reg_syncs_via_tuple_list(rlp->reg[i])) {
122 continue;
123 }
124 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
125 case KVM_REG_SIZE_U32:
126 case KVM_REG_SIZE_U64:
127 break;
128 default:
129 fprintf(stderr, "Can't handle size of register in kernel list\n");
130 ret = -EINVAL;
131 goto out;
132 }
133
134 arraylen++;
135 }
136
137 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
138 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
139 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
140 arraylen);
141 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
142 arraylen);
143 cpu->cpreg_array_len = arraylen;
144 cpu->cpreg_vmstate_array_len = arraylen;
145
146 for (i = 0, arraylen = 0; i < rlp->n; i++) {
147 uint64_t regidx = rlp->reg[i];
148 if (!reg_syncs_via_tuple_list(regidx)) {
149 continue;
150 }
151 cpu->cpreg_indexes[arraylen] = regidx;
152 arraylen++;
153 }
154 assert(cpu->cpreg_array_len == arraylen);
155
156 if (!write_kvmstate_to_list(cpu)) {
157 /* Shouldn't happen unless kernel is inconsistent about
158 * what registers exist.
159 */
160 fprintf(stderr, "Initial read of kernel register state failed\n");
161 ret = -EINVAL;
162 goto out;
163 }
164
165out:
166 g_free(rlp);
81635574 167 return ret;
494b00c7
CD
168}
169
eb035b48
PM
170/* We track all the KVM devices which need their memory addresses
171 * passing to the kernel in a list of these structures.
172 * When board init is complete we run through the list and
173 * tell the kernel the base addresses of the memory regions.
174 * We use a MemoryListener to track mapping and unmapping of
175 * the regions during board creation, so the board models don't
176 * need to do anything special for the KVM case.
177 */
178typedef struct KVMDevice {
179 struct kvm_arm_device_addr kda;
180 MemoryRegion *mr;
181 QSLIST_ENTRY(KVMDevice) entries;
182} KVMDevice;
183
184static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
185
186static void kvm_arm_devlistener_add(MemoryListener *listener,
187 MemoryRegionSection *section)
188{
189 KVMDevice *kd;
190
191 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
192 if (section->mr == kd->mr) {
193 kd->kda.addr = section->offset_within_address_space;
194 }
195 }
196}
197
198static void kvm_arm_devlistener_del(MemoryListener *listener,
199 MemoryRegionSection *section)
200{
201 KVMDevice *kd;
202
203 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
204 if (section->mr == kd->mr) {
205 kd->kda.addr = -1;
206 }
207 }
208}
209
210static MemoryListener devlistener = {
211 .region_add = kvm_arm_devlistener_add,
212 .region_del = kvm_arm_devlistener_del,
213};
214
215static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
216{
217 KVMDevice *kd, *tkd;
218
219 memory_listener_unregister(&devlistener);
220 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
221 if (kd->kda.addr != -1) {
222 if (kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR,
223 &kd->kda) < 0) {
224 fprintf(stderr, "KVM_ARM_SET_DEVICE_ADDRESS failed: %s\n",
225 strerror(errno));
226 abort();
227 }
228 }
229 g_free(kd);
230 }
231}
232
233static Notifier notify = {
234 .notify = kvm_arm_machine_init_done,
235};
236
237void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid)
238{
239 KVMDevice *kd;
240
241 if (!kvm_irqchip_in_kernel()) {
242 return;
243 }
244
245 if (QSLIST_EMPTY(&kvm_devices_head)) {
246 memory_listener_register(&devlistener, NULL);
247 qemu_add_machine_init_done_notifier(&notify);
248 }
249 kd = g_new0(KVMDevice, 1);
250 kd->mr = mr;
251 kd->kda.id = devid;
252 kd->kda.addr = -1;
253 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
254}
255
ff047453
PM
256bool write_kvmstate_to_list(ARMCPU *cpu)
257{
258 CPUState *cs = CPU(cpu);
259 int i;
260 bool ok = true;
261
262 for (i = 0; i < cpu->cpreg_array_len; i++) {
263 struct kvm_one_reg r;
264 uint64_t regidx = cpu->cpreg_indexes[i];
265 uint32_t v32;
266 int ret;
267
268 r.id = regidx;
269
270 switch (regidx & KVM_REG_SIZE_MASK) {
271 case KVM_REG_SIZE_U32:
272 r.addr = (uintptr_t)&v32;
273 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
274 if (!ret) {
275 cpu->cpreg_values[i] = v32;
276 }
277 break;
278 case KVM_REG_SIZE_U64:
279 r.addr = (uintptr_t)(cpu->cpreg_values + i);
280 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
281 break;
282 default:
283 abort();
284 }
285 if (ret) {
286 ok = false;
287 }
288 }
289 return ok;
290}
291
292bool write_list_to_kvmstate(ARMCPU *cpu)
293{
294 CPUState *cs = CPU(cpu);
295 int i;
296 bool ok = true;
297
298 for (i = 0; i < cpu->cpreg_array_len; i++) {
299 struct kvm_one_reg r;
300 uint64_t regidx = cpu->cpreg_indexes[i];
301 uint32_t v32;
302 int ret;
303
304 r.id = regidx;
305 switch (regidx & KVM_REG_SIZE_MASK) {
306 case KVM_REG_SIZE_U32:
307 v32 = cpu->cpreg_values[i];
308 r.addr = (uintptr_t)&v32;
309 break;
310 case KVM_REG_SIZE_U64:
311 r.addr = (uintptr_t)(cpu->cpreg_values + i);
312 break;
313 default:
314 abort();
315 }
316 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
317 if (ret) {
318 /* We might fail for "unknown register" and also for
319 * "you tried to set a register which is constant with
320 * a different value from what it actually contains".
321 */
322 ok = false;
323 }
324 }
325 return ok;
326}
327
494b00c7
CD
328typedef struct Reg {
329 uint64_t id;
330 int offset;
331} Reg;
332
333#define COREREG(KERNELNAME, QEMUFIELD) \
334 { \
335 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
336 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
337 offsetof(CPUARMState, QEMUFIELD) \
338 }
339
340#define CP15REG(CRN, CRM, OPC1, OPC2, QEMUFIELD) \
341 { \
342 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
343 (15 << KVM_REG_ARM_COPROC_SHIFT) | \
344 ((CRN) << KVM_REG_ARM_32_CRN_SHIFT) | \
345 ((CRM) << KVM_REG_ARM_CRM_SHIFT) | \
346 ((OPC1) << KVM_REG_ARM_OPC1_SHIFT) | \
347 ((OPC2) << KVM_REG_ARM_32_OPC2_SHIFT), \
348 offsetof(CPUARMState, QEMUFIELD) \
349 }
350
81635574
PM
351#define VFPSYSREG(R) \
352 { \
353 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
354 KVM_REG_ARM_VFP_##R, \
355 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
356 }
357
494b00c7
CD
358static const Reg regs[] = {
359 /* R0_usr .. R14_usr */
360 COREREG(usr_regs.uregs[0], regs[0]),
361 COREREG(usr_regs.uregs[1], regs[1]),
362 COREREG(usr_regs.uregs[2], regs[2]),
363 COREREG(usr_regs.uregs[3], regs[3]),
364 COREREG(usr_regs.uregs[4], regs[4]),
365 COREREG(usr_regs.uregs[5], regs[5]),
366 COREREG(usr_regs.uregs[6], regs[6]),
367 COREREG(usr_regs.uregs[7], regs[7]),
368 COREREG(usr_regs.uregs[8], usr_regs[0]),
369 COREREG(usr_regs.uregs[9], usr_regs[1]),
370 COREREG(usr_regs.uregs[10], usr_regs[2]),
371 COREREG(usr_regs.uregs[11], usr_regs[3]),
372 COREREG(usr_regs.uregs[12], usr_regs[4]),
373 COREREG(usr_regs.uregs[13], banked_r13[0]),
374 COREREG(usr_regs.uregs[14], banked_r14[0]),
375 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
376 COREREG(svc_regs[0], banked_r13[1]),
377 COREREG(svc_regs[1], banked_r14[1]),
378 COREREG(svc_regs[2], banked_spsr[1]),
379 COREREG(abt_regs[0], banked_r13[2]),
380 COREREG(abt_regs[1], banked_r14[2]),
381 COREREG(abt_regs[2], banked_spsr[2]),
382 COREREG(und_regs[0], banked_r13[3]),
383 COREREG(und_regs[1], banked_r14[3]),
384 COREREG(und_regs[2], banked_spsr[3]),
385 COREREG(irq_regs[0], banked_r13[4]),
386 COREREG(irq_regs[1], banked_r14[4]),
387 COREREG(irq_regs[2], banked_spsr[4]),
388 /* R8_fiq .. R14_fiq and SPSR_fiq */
389 COREREG(fiq_regs[0], fiq_regs[0]),
390 COREREG(fiq_regs[1], fiq_regs[1]),
391 COREREG(fiq_regs[2], fiq_regs[2]),
392 COREREG(fiq_regs[3], fiq_regs[3]),
393 COREREG(fiq_regs[4], fiq_regs[4]),
394 COREREG(fiq_regs[5], banked_r13[5]),
395 COREREG(fiq_regs[6], banked_r14[5]),
396 COREREG(fiq_regs[7], banked_spsr[5]),
397 /* R15 */
398 COREREG(usr_regs.uregs[15], regs[15]),
399 /* A non-comprehensive set of cp15 registers.
400 * TODO: drive this from the cp_regs hashtable instead.
401 */
402 CP15REG(1, 0, 0, 0, cp15.c1_sys), /* SCTLR */
403 CP15REG(2, 0, 0, 2, cp15.c2_control), /* TTBCR */
404 CP15REG(3, 0, 0, 0, cp15.c3), /* DACR */
81635574
PM
405 /* VFP system registers */
406 VFPSYSREG(FPSID),
407 VFPSYSREG(MVFR1),
408 VFPSYSREG(MVFR0),
409 VFPSYSREG(FPEXC),
410 VFPSYSREG(FPINST),
411 VFPSYSREG(FPINST2),
494b00c7
CD
412};
413
414int kvm_arch_put_registers(CPUState *cs, int level)
415{
416 ARMCPU *cpu = ARM_CPU(cs);
417 CPUARMState *env = &cpu->env;
418 struct kvm_one_reg r;
419 int mode, bn;
420 int ret, i;
81635574 421 uint32_t cpsr, fpscr;
494b00c7
CD
422 uint64_t ttbr;
423
424 /* Make sure the banked regs are properly set */
425 mode = env->uncached_cpsr & CPSR_M;
426 bn = bank_number(mode);
427 if (mode == ARM_CPU_MODE_FIQ) {
428 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
429 } else {
430 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
431 }
432 env->banked_r13[bn] = env->regs[13];
433 env->banked_r14[bn] = env->regs[14];
434 env->banked_spsr[bn] = env->spsr;
435
436 /* Now we can safely copy stuff down to the kernel */
437 for (i = 0; i < ARRAY_SIZE(regs); i++) {
438 r.id = regs[i].id;
439 r.addr = (uintptr_t)(env) + regs[i].offset;
440 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
441 if (ret) {
442 return ret;
443 }
444 }
445
446 /* Special cases which aren't a single CPUARMState field */
447 cpsr = cpsr_read(env);
448 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
449 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
450 r.addr = (uintptr_t)(&cpsr);
451 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
452 if (ret) {
453 return ret;
454 }
455
456 /* TTBR0: cp15 crm=2 opc1=0 */
457 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
458 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
459 (2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT);
460 r.addr = (uintptr_t)(&ttbr);
461 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
462 if (ret) {
463 return ret;
464 }
465
466 /* TTBR1: cp15 crm=2 opc1=1 */
467 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
468 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
469 (2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT);
470 r.addr = (uintptr_t)(&ttbr);
471 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
81635574
PM
472 if (ret) {
473 return ret;
474 }
475
476 /* VFP registers */
477 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
478 for (i = 0; i < 32; i++) {
479 r.addr = (uintptr_t)(&env->vfp.regs[i]);
480 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
481 if (ret) {
482 return ret;
483 }
484 r.id++;
485 }
486
487 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
488 KVM_REG_ARM_VFP_FPSCR;
489 fpscr = vfp_get_fpscr(env);
490 r.addr = (uintptr_t)&fpscr;
491 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
494b00c7
CD
492
493 return ret;
494}
495
496int kvm_arch_get_registers(CPUState *cs)
497{
498 ARMCPU *cpu = ARM_CPU(cs);
499 CPUARMState *env = &cpu->env;
500 struct kvm_one_reg r;
501 int mode, bn;
502 int ret, i;
81635574 503 uint32_t cpsr, fpscr;
494b00c7
CD
504 uint64_t ttbr;
505
506 for (i = 0; i < ARRAY_SIZE(regs); i++) {
507 r.id = regs[i].id;
508 r.addr = (uintptr_t)(env) + regs[i].offset;
509 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
510 if (ret) {
511 return ret;
512 }
513 }
514
515 /* Special cases which aren't a single CPUARMState field */
516 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
517 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
518 r.addr = (uintptr_t)(&cpsr);
519 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
520 if (ret) {
521 return ret;
522 }
523 cpsr_write(env, cpsr, 0xffffffff);
524
525 /* TTBR0: cp15 crm=2 opc1=0 */
526 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
527 (2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT);
528 r.addr = (uintptr_t)(&ttbr);
529 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
530 if (ret) {
531 return ret;
532 }
533 env->cp15.c2_base0_hi = ttbr >> 32;
534 env->cp15.c2_base0 = ttbr;
535
536 /* TTBR1: cp15 crm=2 opc1=1 */
537 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
538 (2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT);
539 r.addr = (uintptr_t)(&ttbr);
540 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
541 if (ret) {
542 return ret;
543 }
544 env->cp15.c2_base1_hi = ttbr >> 32;
545 env->cp15.c2_base1 = ttbr;
546
547 /* Make sure the current mode regs are properly set */
548 mode = env->uncached_cpsr & CPSR_M;
549 bn = bank_number(mode);
550 if (mode == ARM_CPU_MODE_FIQ) {
551 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
552 } else {
553 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
554 }
555 env->regs[13] = env->banked_r13[bn];
556 env->regs[14] = env->banked_r14[bn];
557 env->spsr = env->banked_spsr[bn];
558
559 /* The main GET_ONE_REG loop above set c2_control, but we need to
560 * update some extra cached precomputed values too.
561 * When this is driven from the cp_regs hashtable then this ugliness
562 * can disappear because we'll use the access function which sets
563 * these values automatically.
564 */
565 env->cp15.c2_mask = ~(0xffffffffu >> env->cp15.c2_control);
566 env->cp15.c2_base_mask = ~(0x3fffu >> env->cp15.c2_control);
567
81635574
PM
568 /* VFP registers */
569 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
570 for (i = 0; i < 32; i++) {
571 r.addr = (uintptr_t)(&env->vfp.regs[i]);
572 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
573 if (ret) {
574 return ret;
575 }
576 r.id++;
577 }
578
579 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
580 KVM_REG_ARM_VFP_FPSCR;
581 r.addr = (uintptr_t)&fpscr;
582 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
583 if (ret) {
584 return ret;
585 }
586 vfp_set_fpscr(env, fpscr);
587
494b00c7
CD
588 return 0;
589}
590
591void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
592{
593}
594
595void kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
596{
597}
598
599int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
600{
601 return 0;
602}
603
604void kvm_arch_reset_vcpu(CPUState *cs)
605{
606}
607
608bool kvm_arch_stop_on_emulation_error(CPUState *cs)
609{
610 return true;
611}
612
613int kvm_arch_process_async_events(CPUState *cs)
614{
615 return 0;
616}
617
618int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr)
619{
620 return 1;
621}
622
623int kvm_arch_on_sigbus(int code, void *addr)
624{
625 return 1;
626}
627
628void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
629{
630 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
631}
632
633int kvm_arch_insert_sw_breakpoint(CPUState *cs,
634 struct kvm_sw_breakpoint *bp)
635{
636 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
637 return -EINVAL;
638}
639
640int kvm_arch_insert_hw_breakpoint(target_ulong addr,
641 target_ulong len, int type)
642{
643 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
644 return -EINVAL;
645}
646
647int kvm_arch_remove_hw_breakpoint(target_ulong addr,
648 target_ulong len, int type)
649{
650 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
651 return -EINVAL;
652}
653
654int kvm_arch_remove_sw_breakpoint(CPUState *cs,
655 struct kvm_sw_breakpoint *bp)
656{
657 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
658 return -EINVAL;
659}
660
661void kvm_arch_remove_all_hw_breakpoints(void)
662{
663 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
664}
b3a1c626
AK
665
666void kvm_arch_init_irq_routing(KVMState *s)
667{
668}
This page took 0.146128 seconds and 4 git commands to generate.