]>
Commit | Line | Data |
---|---|---|
359fbe65 PM |
1 | /* |
2 | * ARM Generic Interrupt Controller v3 | |
3 | * | |
4 | * Copyright (c) 2016 Linaro Limited | |
5 | * Written by Peter Maydell | |
6 | * | |
7 | * This code is licensed under the GPL, version 2 or (at your option) | |
8 | * any later version. | |
9 | */ | |
10 | ||
11 | /* This file contains the code for the system register interface | |
12 | * portions of the GICv3. | |
13 | */ | |
14 | ||
15 | #include "qemu/osdep.h" | |
77620ba6 | 16 | #include "qemu/bitops.h" |
8d04fb55 | 17 | #include "qemu/main-loop.h" |
359fbe65 PM |
18 | #include "trace.h" |
19 | #include "gicv3_internal.h" | |
20 | #include "cpu.h" | |
21 | ||
d3a3e529 VK |
22 | void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s) |
23 | { | |
24 | ARMCPU *arm_cpu = ARM_CPU(cpu); | |
25 | CPUARMState *env = &arm_cpu->env; | |
26 | ||
27 | env->gicv3state = (void *)s; | |
28 | }; | |
29 | ||
359fbe65 PM |
30 | static GICv3CPUState *icc_cs_from_env(CPUARMState *env) |
31 | { | |
d5a5e4c9 | 32 | return env->gicv3state; |
359fbe65 PM |
33 | } |
34 | ||
35 | static bool gicv3_use_ns_bank(CPUARMState *env) | |
36 | { | |
37 | /* Return true if we should use the NonSecure bank for a banked GIC | |
38 | * CPU interface register. Note that this differs from the | |
39 | * access_secure_reg() function because GICv3 banked registers are | |
40 | * banked even for AArch64, unlike the other CPU system registers. | |
41 | */ | |
42 | return !arm_is_secure_below_el3(env); | |
43 | } | |
44 | ||
4eb833b5 PM |
45 | /* The minimum BPR for the virtual interface is a configurable property */ |
46 | static inline int icv_min_vbpr(GICv3CPUState *cs) | |
47 | { | |
48 | return 7 - cs->vprebits; | |
49 | } | |
50 | ||
83f036fe | 51 | /* Simple accessor functions for LR fields */ |
df313f48 PM |
52 | static uint32_t ich_lr_vintid(uint64_t lr) |
53 | { | |
54 | return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); | |
55 | } | |
56 | ||
57 | static uint32_t ich_lr_pintid(uint64_t lr) | |
58 | { | |
59 | return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); | |
60 | } | |
61 | ||
62 | static uint32_t ich_lr_prio(uint64_t lr) | |
63 | { | |
64 | return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); | |
65 | } | |
66 | ||
83f036fe PM |
67 | static int ich_lr_state(uint64_t lr) |
68 | { | |
69 | return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); | |
70 | } | |
71 | ||
77620ba6 PM |
72 | static bool icv_access(CPUARMState *env, int hcr_flags) |
73 | { | |
74 | /* Return true if this ICC_ register access should really be | |
75 | * directed to an ICV_ access. hcr_flags is a mask of | |
76 | * HCR_EL2 bits to check: we treat this as an ICV_ access | |
77 | * if we are in NS EL1 and at least one of the specified | |
78 | * HCR_EL2 bits is set. | |
79 | * | |
80 | * ICV registers fall into four categories: | |
81 | * * access if NS EL1 and HCR_EL2.FMO == 1: | |
82 | * all ICV regs with '0' in their name | |
83 | * * access if NS EL1 and HCR_EL2.IMO == 1: | |
84 | * all ICV regs with '1' in their name | |
85 | * * access if NS EL1 and either IMO or FMO == 1: | |
86 | * CTLR, DIR, PMR, RPR | |
87 | */ | |
88 | return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1 | |
89 | && !arm_is_secure_below_el3(env); | |
90 | } | |
91 | ||
83f036fe PM |
92 | static int read_vbpr(GICv3CPUState *cs, int grp) |
93 | { | |
94 | /* Read VBPR value out of the VMCR field (caller must handle | |
95 | * VCBPR effects if required) | |
96 | */ | |
97 | if (grp == GICV3_G0) { | |
98 | return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, | |
99 | ICH_VMCR_EL2_VBPR0_LENGTH); | |
100 | } else { | |
101 | return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, | |
102 | ICH_VMCR_EL2_VBPR1_LENGTH); | |
103 | } | |
104 | } | |
105 | ||
106 | static void write_vbpr(GICv3CPUState *cs, int grp, int value) | |
107 | { | |
108 | /* Write new VBPR1 value, handling the "writing a value less than | |
109 | * the minimum sets it to the minimum" semantics. | |
110 | */ | |
111 | int min = icv_min_vbpr(cs); | |
112 | ||
113 | if (grp != GICV3_G0) { | |
114 | min++; | |
115 | } | |
116 | ||
117 | value = MAX(value, min); | |
118 | ||
119 | if (grp == GICV3_G0) { | |
120 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, | |
121 | ICH_VMCR_EL2_VBPR0_LENGTH, value); | |
122 | } else { | |
123 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, | |
124 | ICH_VMCR_EL2_VBPR1_LENGTH, value); | |
125 | } | |
126 | } | |
127 | ||
77620ba6 PM |
128 | static uint32_t icv_fullprio_mask(GICv3CPUState *cs) |
129 | { | |
130 | /* Return a mask word which clears the unimplemented priority bits | |
131 | * from a priority value for a virtual interrupt. (Not to be confused | |
132 | * with the group priority, whose mask depends on the value of VBPR | |
133 | * for the interrupt group.) | |
134 | */ | |
135 | return ~0U << (8 - cs->vpribits); | |
136 | } | |
137 | ||
df313f48 PM |
138 | static int ich_highest_active_virt_prio(GICv3CPUState *cs) |
139 | { | |
140 | /* Calculate the current running priority based on the set bits | |
141 | * in the ICH Active Priority Registers. | |
142 | */ | |
143 | int i; | |
144 | int aprmax = 1 << (cs->vprebits - 5); | |
145 | ||
146 | assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); | |
147 | ||
148 | for (i = 0; i < aprmax; i++) { | |
149 | uint32_t apr = cs->ich_apr[GICV3_G0][i] | | |
150 | cs->ich_apr[GICV3_G1NS][i]; | |
151 | ||
152 | if (!apr) { | |
153 | continue; | |
154 | } | |
155 | return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); | |
156 | } | |
157 | /* No current active interrupts: return idle priority */ | |
158 | return 0xff; | |
159 | } | |
160 | ||
161 | static int hppvi_index(GICv3CPUState *cs) | |
162 | { | |
163 | /* Return the list register index of the highest priority pending | |
164 | * virtual interrupt, as per the HighestPriorityVirtualInterrupt | |
165 | * pseudocode. If no pending virtual interrupts, return -1. | |
166 | */ | |
167 | int idx = -1; | |
168 | int i; | |
169 | /* Note that a list register entry with a priority of 0xff will | |
170 | * never be reported by this function; this is the architecturally | |
171 | * correct behaviour. | |
172 | */ | |
173 | int prio = 0xff; | |
174 | ||
175 | if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { | |
176 | /* Both groups disabled, definitely nothing to do */ | |
177 | return idx; | |
178 | } | |
179 | ||
180 | for (i = 0; i < cs->num_list_regs; i++) { | |
181 | uint64_t lr = cs->ich_lr_el2[i]; | |
182 | int thisprio; | |
183 | ||
184 | if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { | |
185 | /* Not Pending */ | |
186 | continue; | |
187 | } | |
188 | ||
189 | /* Ignore interrupts if relevant group enable not set */ | |
190 | if (lr & ICH_LR_EL2_GROUP) { | |
191 | if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | |
192 | continue; | |
193 | } | |
194 | } else { | |
195 | if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { | |
196 | continue; | |
197 | } | |
198 | } | |
199 | ||
200 | thisprio = ich_lr_prio(lr); | |
201 | ||
202 | if (thisprio < prio) { | |
203 | prio = thisprio; | |
204 | idx = i; | |
205 | } | |
206 | } | |
207 | ||
208 | return idx; | |
209 | } | |
210 | ||
b3b48f52 PM |
211 | static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) |
212 | { | |
213 | /* Return a mask word which clears the subpriority bits from | |
214 | * a priority value for a virtual interrupt in the specified group. | |
a89ff39e PM |
215 | * This depends on the VBPR value. |
216 | * If using VBPR0 then: | |
b3b48f52 PM |
217 | * a BPR of 0 means the group priority bits are [7:1]; |
218 | * a BPR of 1 means they are [7:2], and so on down to | |
219 | * a BPR of 7 meaning no group priority bits at all. | |
a89ff39e PM |
220 | * If using VBPR1 then: |
221 | * a BPR of 0 is impossible (the minimum value is 1) | |
222 | * a BPR of 1 means the group priority bits are [7:1]; | |
223 | * a BPR of 2 means they are [7:2], and so on down to | |
224 | * a BPR of 7 meaning the group priority is [7]. | |
225 | * | |
b3b48f52 PM |
226 | * Which BPR to use depends on the group of the interrupt and |
227 | * the current ICH_VMCR_EL2.VCBPR settings. | |
a89ff39e PM |
228 | * |
229 | * This corresponds to the VGroupBits() pseudocode. | |
b3b48f52 | 230 | */ |
a89ff39e PM |
231 | int bpr; |
232 | ||
b3b48f52 PM |
233 | if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { |
234 | group = GICV3_G0; | |
235 | } | |
236 | ||
a89ff39e PM |
237 | bpr = read_vbpr(cs, group); |
238 | if (group == GICV3_G1NS) { | |
239 | assert(bpr > 0); | |
240 | bpr--; | |
241 | } | |
242 | ||
243 | return ~0U << (bpr + 1); | |
b3b48f52 PM |
244 | } |
245 | ||
246 | static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) | |
247 | { | |
248 | /* Return true if we can signal this virtual interrupt defined by | |
249 | * the given list register value; see the pseudocode functions | |
250 | * CanSignalVirtualInterrupt and CanSignalVirtualInt. | |
251 | * Compare also icc_hppi_can_preempt() which is the non-virtual | |
252 | * equivalent of these checks. | |
253 | */ | |
254 | int grp; | |
255 | uint32_t mask, prio, rprio, vpmr; | |
256 | ||
257 | if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { | |
258 | /* Virtual interface disabled */ | |
259 | return false; | |
260 | } | |
261 | ||
262 | /* We don't need to check that this LR is in Pending state because | |
263 | * that has already been done in hppvi_index(). | |
264 | */ | |
265 | ||
266 | prio = ich_lr_prio(lr); | |
267 | vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, | |
268 | ICH_VMCR_EL2_VPMR_LENGTH); | |
269 | ||
270 | if (prio >= vpmr) { | |
271 | /* Priority mask masks this interrupt */ | |
272 | return false; | |
273 | } | |
274 | ||
275 | rprio = ich_highest_active_virt_prio(cs); | |
276 | if (rprio == 0xff) { | |
277 | /* No running interrupt so we can preempt */ | |
278 | return true; | |
279 | } | |
280 | ||
281 | grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | |
282 | ||
283 | mask = icv_gprio_mask(cs, grp); | |
284 | ||
285 | /* We only preempt a running interrupt if the pending interrupt's | |
286 | * group priority is sufficient (the subpriorities are not considered). | |
287 | */ | |
288 | if ((prio & mask) < (rprio & mask)) { | |
289 | return true; | |
290 | } | |
291 | ||
292 | return false; | |
293 | } | |
294 | ||
83f036fe PM |
295 | static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, |
296 | uint32_t *misr) | |
297 | { | |
298 | /* Return a set of bits indicating the EOI maintenance interrupt status | |
299 | * for each list register. The EOI maintenance interrupt status is | |
300 | * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 | |
301 | * (see the GICv3 spec for the ICH_EISR_EL2 register). | |
302 | * If misr is not NULL then we should also collect the information | |
303 | * about the MISR.EOI, MISR.NP and MISR.U bits. | |
304 | */ | |
305 | uint32_t value = 0; | |
306 | int validcount = 0; | |
307 | bool seenpending = false; | |
308 | int i; | |
309 | ||
310 | for (i = 0; i < cs->num_list_regs; i++) { | |
311 | uint64_t lr = cs->ich_lr_el2[i]; | |
312 | ||
313 | if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) | |
314 | == ICH_LR_EL2_EOI) { | |
315 | value |= (1 << i); | |
316 | } | |
317 | if ((lr & ICH_LR_EL2_STATE_MASK)) { | |
318 | validcount++; | |
319 | } | |
320 | if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { | |
321 | seenpending = true; | |
322 | } | |
323 | } | |
324 | ||
325 | if (misr) { | |
326 | if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { | |
327 | *misr |= ICH_MISR_EL2_U; | |
328 | } | |
329 | if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { | |
330 | *misr |= ICH_MISR_EL2_NP; | |
331 | } | |
332 | if (value) { | |
333 | *misr |= ICH_MISR_EL2_EOI; | |
334 | } | |
335 | } | |
336 | return value; | |
337 | } | |
338 | ||
339 | static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) | |
340 | { | |
341 | /* Return a set of bits indicating the maintenance interrupt status | |
342 | * (as seen in the ICH_MISR_EL2 register). | |
343 | */ | |
344 | uint32_t value = 0; | |
345 | ||
346 | /* Scan list registers and fill in the U, NP and EOI bits */ | |
347 | eoi_maintenance_interrupt_state(cs, &value); | |
348 | ||
349 | if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) { | |
350 | value |= ICH_MISR_EL2_LRENP; | |
351 | } | |
352 | ||
353 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && | |
354 | (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { | |
355 | value |= ICH_MISR_EL2_VGRP0E; | |
356 | } | |
357 | ||
358 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && | |
359 | !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | |
360 | value |= ICH_MISR_EL2_VGRP0D; | |
361 | } | |
362 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && | |
363 | (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | |
364 | value |= ICH_MISR_EL2_VGRP1E; | |
365 | } | |
366 | ||
367 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && | |
368 | !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | |
369 | value |= ICH_MISR_EL2_VGRP1D; | |
370 | } | |
371 | ||
372 | return value; | |
373 | } | |
374 | ||
375 | static void gicv3_cpuif_virt_update(GICv3CPUState *cs) | |
376 | { | |
c5fc89b3 PM |
377 | /* Tell the CPU about any pending virtual interrupts or |
378 | * maintenance interrupts, following a change to the state | |
379 | * of the CPU interface relevant to virtual interrupts. | |
380 | * | |
381 | * CAUTION: this function will call qemu_set_irq() on the | |
382 | * CPU maintenance IRQ line, which is typically wired up | |
383 | * to the GIC as a per-CPU interrupt. This means that it | |
384 | * will recursively call back into the GIC code via | |
385 | * gicv3_redist_set_irq() and thus into the CPU interface code's | |
386 | * gicv3_cpuif_update(). It is therefore important that this | |
387 | * function is only called as the final action of a CPU interface | |
388 | * register write implementation, after all the GIC state | |
389 | * fields have been updated. gicv3_cpuif_update() also must | |
390 | * not cause this function to be called, but that happens | |
391 | * naturally as a result of there being no architectural | |
392 | * linkage between the physical and virtual GIC logic. | |
393 | */ | |
394 | int idx; | |
395 | int irqlevel = 0; | |
396 | int fiqlevel = 0; | |
397 | int maintlevel = 0; | |
398 | ||
399 | idx = hppvi_index(cs); | |
400 | trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx); | |
401 | if (idx >= 0) { | |
402 | uint64_t lr = cs->ich_lr_el2[idx]; | |
403 | ||
404 | if (icv_hppi_can_preempt(cs, lr)) { | |
405 | /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ | |
406 | if (lr & ICH_LR_EL2_GROUP) { | |
407 | irqlevel = 1; | |
408 | } else { | |
409 | fiqlevel = 1; | |
410 | } | |
411 | } | |
412 | } | |
413 | ||
414 | if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) { | |
415 | maintlevel = maintenance_interrupt_state(cs); | |
416 | } | |
417 | ||
418 | trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, | |
419 | irqlevel, maintlevel); | |
420 | ||
421 | qemu_set_irq(cs->parent_vfiq, fiqlevel); | |
422 | qemu_set_irq(cs->parent_virq, irqlevel); | |
423 | qemu_set_irq(cs->maintenance_irq, maintlevel); | |
83f036fe PM |
424 | } |
425 | ||
77620ba6 PM |
426 | static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
427 | { | |
428 | GICv3CPUState *cs = icc_cs_from_env(env); | |
429 | int regno = ri->opc2 & 3; | |
887aae10 | 430 | int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; |
77620ba6 PM |
431 | uint64_t value = cs->ich_apr[grp][regno]; |
432 | ||
433 | trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | |
434 | return value; | |
435 | } | |
436 | ||
437 | static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
438 | uint64_t value) | |
439 | { | |
440 | GICv3CPUState *cs = icc_cs_from_env(env); | |
441 | int regno = ri->opc2 & 3; | |
887aae10 | 442 | int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; |
77620ba6 PM |
443 | |
444 | trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | |
445 | ||
446 | cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; | |
447 | ||
448 | gicv3_cpuif_virt_update(cs); | |
449 | return; | |
450 | } | |
451 | ||
452 | static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
453 | { | |
454 | GICv3CPUState *cs = icc_cs_from_env(env); | |
455 | int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; | |
456 | uint64_t bpr; | |
457 | bool satinc = false; | |
458 | ||
459 | if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { | |
460 | /* reads return bpr0 + 1 saturated to 7, writes ignored */ | |
461 | grp = GICV3_G0; | |
462 | satinc = true; | |
463 | } | |
464 | ||
465 | bpr = read_vbpr(cs, grp); | |
466 | ||
467 | if (satinc) { | |
468 | bpr++; | |
469 | bpr = MIN(bpr, 7); | |
470 | } | |
471 | ||
472 | trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); | |
473 | ||
474 | return bpr; | |
475 | } | |
476 | ||
477 | static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
478 | uint64_t value) | |
479 | { | |
480 | GICv3CPUState *cs = icc_cs_from_env(env); | |
481 | int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; | |
482 | ||
483 | trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, | |
484 | gicv3_redist_affid(cs), value); | |
485 | ||
486 | if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { | |
487 | /* reads return bpr0 + 1 saturated to 7, writes ignored */ | |
488 | return; | |
489 | } | |
490 | ||
491 | write_vbpr(cs, grp, value); | |
492 | ||
493 | gicv3_cpuif_virt_update(cs); | |
494 | } | |
495 | ||
496 | static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
497 | { | |
498 | GICv3CPUState *cs = icc_cs_from_env(env); | |
499 | uint64_t value; | |
500 | ||
501 | value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, | |
502 | ICH_VMCR_EL2_VPMR_LENGTH); | |
503 | ||
504 | trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); | |
505 | return value; | |
506 | } | |
507 | ||
508 | static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
509 | uint64_t value) | |
510 | { | |
511 | GICv3CPUState *cs = icc_cs_from_env(env); | |
512 | ||
513 | trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); | |
514 | ||
515 | value &= icv_fullprio_mask(cs); | |
516 | ||
517 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, | |
518 | ICH_VMCR_EL2_VPMR_LENGTH, value); | |
519 | ||
520 | gicv3_cpuif_virt_update(cs); | |
521 | } | |
522 | ||
523 | static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
524 | { | |
525 | GICv3CPUState *cs = icc_cs_from_env(env); | |
526 | int enbit; | |
527 | uint64_t value; | |
528 | ||
529 | enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; | |
530 | value = extract64(cs->ich_vmcr_el2, enbit, 1); | |
531 | ||
532 | trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, | |
533 | gicv3_redist_affid(cs), value); | |
534 | return value; | |
535 | } | |
536 | ||
537 | static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
538 | uint64_t value) | |
539 | { | |
540 | GICv3CPUState *cs = icc_cs_from_env(env); | |
541 | int enbit; | |
542 | ||
543 | trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, | |
544 | gicv3_redist_affid(cs), value); | |
545 | ||
546 | enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; | |
547 | ||
548 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); | |
549 | gicv3_cpuif_virt_update(cs); | |
550 | } | |
551 | ||
552 | static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
553 | { | |
554 | GICv3CPUState *cs = icc_cs_from_env(env); | |
555 | uint64_t value; | |
556 | ||
557 | /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) | |
558 | * should match the ones reported in ich_vtr_read(). | |
559 | */ | |
560 | value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | | |
561 | (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); | |
562 | ||
563 | if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { | |
564 | value |= ICC_CTLR_EL1_EOIMODE; | |
565 | } | |
566 | ||
567 | if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { | |
568 | value |= ICC_CTLR_EL1_CBPR; | |
569 | } | |
570 | ||
571 | trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); | |
572 | return value; | |
573 | } | |
574 | ||
575 | static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
576 | uint64_t value) | |
577 | { | |
578 | GICv3CPUState *cs = icc_cs_from_env(env); | |
579 | ||
580 | trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); | |
581 | ||
582 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, | |
583 | 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); | |
584 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, | |
585 | 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); | |
586 | ||
587 | gicv3_cpuif_virt_update(cs); | |
588 | } | |
589 | ||
df313f48 PM |
590 | static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
591 | { | |
592 | GICv3CPUState *cs = icc_cs_from_env(env); | |
593 | int prio = ich_highest_active_virt_prio(cs); | |
594 | ||
595 | trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); | |
596 | return prio; | |
597 | } | |
598 | ||
599 | static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
600 | { | |
601 | GICv3CPUState *cs = icc_cs_from_env(env); | |
602 | int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; | |
603 | int idx = hppvi_index(cs); | |
604 | uint64_t value = INTID_SPURIOUS; | |
605 | ||
606 | if (idx >= 0) { | |
607 | uint64_t lr = cs->ich_lr_el2[idx]; | |
608 | int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | |
609 | ||
610 | if (grp == thisgrp) { | |
611 | value = ich_lr_vintid(lr); | |
612 | } | |
613 | } | |
614 | ||
615 | trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value); | |
616 | return value; | |
617 | } | |
618 | ||
b3b48f52 PM |
619 | static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) |
620 | { | |
621 | /* Activate the interrupt in the specified list register | |
622 | * by moving it from Pending to Active state, and update the | |
623 | * Active Priority Registers. | |
624 | */ | |
625 | uint32_t mask = icv_gprio_mask(cs, grp); | |
626 | int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; | |
627 | int aprbit = prio >> (8 - cs->vprebits); | |
628 | int regno = aprbit / 32; | |
629 | int regbit = aprbit % 32; | |
630 | ||
631 | cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; | |
632 | cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; | |
633 | cs->ich_apr[grp][regno] |= (1 << regbit); | |
634 | } | |
635 | ||
636 | static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
637 | { | |
638 | GICv3CPUState *cs = icc_cs_from_env(env); | |
639 | int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; | |
640 | int idx = hppvi_index(cs); | |
641 | uint64_t intid = INTID_SPURIOUS; | |
642 | ||
643 | if (idx >= 0) { | |
644 | uint64_t lr = cs->ich_lr_el2[idx]; | |
645 | int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | |
646 | ||
647 | if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { | |
648 | intid = ich_lr_vintid(lr); | |
649 | if (intid < INTID_SECURE) { | |
650 | icv_activate_irq(cs, idx, grp); | |
651 | } else { | |
652 | /* Interrupt goes from Pending to Invalid */ | |
653 | cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; | |
654 | /* We will now return the (bogus) ID from the list register, | |
655 | * as per the pseudocode. | |
656 | */ | |
657 | } | |
658 | } | |
659 | } | |
660 | ||
661 | trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, | |
662 | gicv3_redist_affid(cs), intid); | |
663 | return intid; | |
664 | } | |
665 | ||
f7b9358e PM |
666 | static int icc_highest_active_prio(GICv3CPUState *cs) |
667 | { | |
668 | /* Calculate the current running priority based on the set bits | |
669 | * in the Active Priority Registers. | |
670 | */ | |
671 | int i; | |
672 | ||
673 | for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { | |
674 | uint32_t apr = cs->icc_apr[GICV3_G0][i] | | |
675 | cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; | |
676 | ||
677 | if (!apr) { | |
678 | continue; | |
679 | } | |
680 | return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1); | |
681 | } | |
682 | /* No current active interrupts: return idle priority */ | |
683 | return 0xff; | |
684 | } | |
685 | ||
686 | static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) | |
687 | { | |
688 | /* Return a mask word which clears the subpriority bits from | |
689 | * a priority value for an interrupt in the specified group. | |
a89ff39e | 690 | * This depends on the BPR value. For CBPR0 (S or NS): |
f7b9358e PM |
691 | * a BPR of 0 means the group priority bits are [7:1]; |
692 | * a BPR of 1 means they are [7:2], and so on down to | |
693 | * a BPR of 7 meaning no group priority bits at all. | |
a89ff39e PM |
694 | * For CBPR1 NS: |
695 | * a BPR of 0 is impossible (the minimum value is 1) | |
696 | * a BPR of 1 means the group priority bits are [7:1]; | |
697 | * a BPR of 2 means they are [7:2], and so on down to | |
698 | * a BPR of 7 meaning the group priority is [7]. | |
699 | * | |
f7b9358e PM |
700 | * Which BPR to use depends on the group of the interrupt and |
701 | * the current ICC_CTLR.CBPR settings. | |
a89ff39e PM |
702 | * |
703 | * This corresponds to the GroupBits() pseudocode. | |
f7b9358e | 704 | */ |
a89ff39e PM |
705 | int bpr; |
706 | ||
f7b9358e PM |
707 | if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || |
708 | (group == GICV3_G1NS && | |
709 | cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { | |
710 | group = GICV3_G0; | |
711 | } | |
712 | ||
a89ff39e PM |
713 | bpr = cs->icc_bpr[group] & 7; |
714 | ||
715 | if (group == GICV3_G1NS) { | |
716 | assert(bpr > 0); | |
717 | bpr--; | |
718 | } | |
719 | ||
720 | return ~0U << (bpr + 1); | |
f7b9358e PM |
721 | } |
722 | ||
723 | static bool icc_no_enabled_hppi(GICv3CPUState *cs) | |
724 | { | |
725 | /* Return true if there is no pending interrupt, or the | |
726 | * highest priority pending interrupt is in a group which has been | |
727 | * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. | |
728 | */ | |
729 | return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); | |
730 | } | |
731 | ||
732 | static bool icc_hppi_can_preempt(GICv3CPUState *cs) | |
733 | { | |
734 | /* Return true if we have a pending interrupt of sufficient | |
735 | * priority to preempt. | |
736 | */ | |
737 | int rprio; | |
738 | uint32_t mask; | |
739 | ||
740 | if (icc_no_enabled_hppi(cs)) { | |
741 | return false; | |
742 | } | |
743 | ||
744 | if (cs->hppi.prio >= cs->icc_pmr_el1) { | |
745 | /* Priority mask masks this interrupt */ | |
746 | return false; | |
747 | } | |
748 | ||
749 | rprio = icc_highest_active_prio(cs); | |
750 | if (rprio == 0xff) { | |
751 | /* No currently running interrupt so we can preempt */ | |
752 | return true; | |
753 | } | |
754 | ||
755 | mask = icc_gprio_mask(cs, cs->hppi.grp); | |
756 | ||
757 | /* We only preempt a running interrupt if the pending interrupt's | |
758 | * group priority is sufficient (the subpriorities are not considered). | |
759 | */ | |
760 | if ((cs->hppi.prio & mask) < (rprio & mask)) { | |
761 | return true; | |
762 | } | |
763 | ||
764 | return false; | |
765 | } | |
766 | ||
767 | void gicv3_cpuif_update(GICv3CPUState *cs) | |
768 | { | |
769 | /* Tell the CPU about its highest priority pending interrupt */ | |
770 | int irqlevel = 0; | |
771 | int fiqlevel = 0; | |
772 | ARMCPU *cpu = ARM_CPU(cs->cpu); | |
773 | CPUARMState *env = &cpu->env; | |
774 | ||
8d04fb55 JK |
775 | g_assert(qemu_mutex_iothread_locked()); |
776 | ||
f7b9358e PM |
777 | trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, |
778 | cs->hppi.grp, cs->hppi.prio); | |
779 | ||
780 | if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { | |
781 | /* If a Security-enabled GIC sends a G1S interrupt to a | |
782 | * Security-disabled CPU, we must treat it as if it were G0. | |
783 | */ | |
784 | cs->hppi.grp = GICV3_G0; | |
785 | } | |
786 | ||
787 | if (icc_hppi_can_preempt(cs)) { | |
788 | /* We have an interrupt: should we signal it as IRQ or FIQ? | |
789 | * This is described in the GICv3 spec section 4.6.2. | |
790 | */ | |
791 | bool isfiq; | |
792 | ||
793 | switch (cs->hppi.grp) { | |
794 | case GICV3_G0: | |
795 | isfiq = true; | |
796 | break; | |
797 | case GICV3_G1: | |
798 | isfiq = (!arm_is_secure(env) || | |
799 | (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); | |
800 | break; | |
801 | case GICV3_G1NS: | |
802 | isfiq = arm_is_secure(env); | |
803 | break; | |
804 | default: | |
805 | g_assert_not_reached(); | |
806 | } | |
807 | ||
808 | if (isfiq) { | |
809 | fiqlevel = 1; | |
810 | } else { | |
811 | irqlevel = 1; | |
812 | } | |
813 | } | |
814 | ||
815 | trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); | |
816 | ||
817 | qemu_set_irq(cs->parent_fiq, fiqlevel); | |
818 | qemu_set_irq(cs->parent_irq, irqlevel); | |
819 | } | |
820 | ||
359fbe65 PM |
821 | static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
822 | { | |
823 | GICv3CPUState *cs = icc_cs_from_env(env); | |
824 | uint32_t value = cs->icc_pmr_el1; | |
825 | ||
77620ba6 PM |
826 | if (icv_access(env, HCR_FMO | HCR_IMO)) { |
827 | return icv_pmr_read(env, ri); | |
828 | } | |
829 | ||
359fbe65 PM |
830 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && |
831 | (env->cp15.scr_el3 & SCR_FIQ)) { | |
832 | /* NS access and Group 0 is inaccessible to NS: return the | |
833 | * NS view of the current priority | |
834 | */ | |
a2e2d7fc | 835 | if ((value & 0x80) == 0) { |
359fbe65 PM |
836 | /* Secure priorities not visible to NS */ |
837 | value = 0; | |
838 | } else if (value != 0xff) { | |
839 | value = (value << 1) & 0xff; | |
840 | } | |
841 | } | |
842 | ||
843 | trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); | |
844 | ||
845 | return value; | |
846 | } | |
847 | ||
848 | static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
849 | uint64_t value) | |
850 | { | |
851 | GICv3CPUState *cs = icc_cs_from_env(env); | |
852 | ||
77620ba6 PM |
853 | if (icv_access(env, HCR_FMO | HCR_IMO)) { |
854 | return icv_pmr_write(env, ri, value); | |
855 | } | |
856 | ||
359fbe65 PM |
857 | trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); |
858 | ||
859 | value &= 0xff; | |
860 | ||
861 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && | |
862 | (env->cp15.scr_el3 & SCR_FIQ)) { | |
863 | /* NS access and Group 0 is inaccessible to NS: return the | |
864 | * NS view of the current priority | |
865 | */ | |
866 | if (!(cs->icc_pmr_el1 & 0x80)) { | |
867 | /* Current PMR in the secure range, don't allow NS to change it */ | |
868 | return; | |
869 | } | |
a2e2d7fc | 870 | value = (value >> 1) | 0x80; |
359fbe65 PM |
871 | } |
872 | cs->icc_pmr_el1 = value; | |
873 | gicv3_cpuif_update(cs); | |
874 | } | |
875 | ||
227a8653 PM |
876 | static void icc_activate_irq(GICv3CPUState *cs, int irq) |
877 | { | |
878 | /* Move the interrupt from the Pending state to Active, and update | |
879 | * the Active Priority Registers | |
880 | */ | |
881 | uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); | |
882 | int prio = cs->hppi.prio & mask; | |
883 | int aprbit = prio >> 1; | |
884 | int regno = aprbit / 32; | |
885 | int regbit = aprbit % 32; | |
886 | ||
887 | cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); | |
888 | ||
889 | if (irq < GIC_INTERNAL) { | |
890 | cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); | |
891 | cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); | |
892 | gicv3_redist_update(cs); | |
893 | } else { | |
894 | gicv3_gicd_active_set(cs->gic, irq); | |
895 | gicv3_gicd_pending_clear(cs->gic, irq); | |
896 | gicv3_update(cs->gic, irq, 1); | |
897 | } | |
898 | } | |
899 | ||
900 | static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) | |
901 | { | |
902 | /* Return the highest priority pending interrupt register value | |
903 | * for group 0. | |
904 | */ | |
905 | bool irq_is_secure; | |
906 | ||
907 | if (cs->hppi.prio == 0xff) { | |
908 | return INTID_SPURIOUS; | |
909 | } | |
910 | ||
911 | /* Check whether we can return the interrupt or if we should return | |
912 | * a special identifier, as per the CheckGroup0ForSpecialIdentifiers | |
913 | * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM | |
914 | * is always zero.) | |
915 | */ | |
916 | irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && | |
917 | (cs->hppi.grp != GICV3_G1NS)); | |
918 | ||
919 | if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { | |
920 | return INTID_SPURIOUS; | |
921 | } | |
922 | if (irq_is_secure && !arm_is_secure(env)) { | |
923 | /* Secure interrupts not visible to Nonsecure */ | |
924 | return INTID_SPURIOUS; | |
925 | } | |
926 | ||
927 | if (cs->hppi.grp != GICV3_G0) { | |
928 | /* Indicate to EL3 that there's a Group 1 interrupt for the other | |
929 | * state pending. | |
930 | */ | |
931 | return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; | |
932 | } | |
933 | ||
934 | return cs->hppi.irq; | |
935 | } | |
936 | ||
937 | static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) | |
938 | { | |
939 | /* Return the highest priority pending interrupt register value | |
940 | * for group 1. | |
941 | */ | |
942 | bool irq_is_secure; | |
943 | ||
944 | if (cs->hppi.prio == 0xff) { | |
945 | return INTID_SPURIOUS; | |
946 | } | |
947 | ||
948 | /* Check whether we can return the interrupt or if we should return | |
949 | * a special identifier, as per the CheckGroup1ForSpecialIdentifiers | |
950 | * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM | |
951 | * is always zero.) | |
952 | */ | |
953 | irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && | |
954 | (cs->hppi.grp != GICV3_G1NS)); | |
955 | ||
956 | if (cs->hppi.grp == GICV3_G0) { | |
957 | /* Group 0 interrupts not visible via HPPIR1 */ | |
958 | return INTID_SPURIOUS; | |
959 | } | |
960 | if (irq_is_secure) { | |
961 | if (!arm_is_secure(env)) { | |
962 | /* Secure interrupts not visible in Non-secure */ | |
963 | return INTID_SPURIOUS; | |
964 | } | |
965 | } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { | |
966 | /* Group 1 non-secure interrupts not visible in Secure EL1 */ | |
967 | return INTID_SPURIOUS; | |
968 | } | |
969 | ||
970 | return cs->hppi.irq; | |
971 | } | |
972 | ||
973 | static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
974 | { | |
975 | GICv3CPUState *cs = icc_cs_from_env(env); | |
976 | uint64_t intid; | |
977 | ||
b3b48f52 PM |
978 | if (icv_access(env, HCR_FMO)) { |
979 | return icv_iar_read(env, ri); | |
980 | } | |
981 | ||
227a8653 PM |
982 | if (!icc_hppi_can_preempt(cs)) { |
983 | intid = INTID_SPURIOUS; | |
984 | } else { | |
985 | intid = icc_hppir0_value(cs, env); | |
986 | } | |
987 | ||
988 | if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { | |
989 | icc_activate_irq(cs, intid); | |
990 | } | |
991 | ||
992 | trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); | |
993 | return intid; | |
994 | } | |
995 | ||
996 | static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
997 | { | |
998 | GICv3CPUState *cs = icc_cs_from_env(env); | |
999 | uint64_t intid; | |
1000 | ||
b3b48f52 PM |
1001 | if (icv_access(env, HCR_IMO)) { |
1002 | return icv_iar_read(env, ri); | |
1003 | } | |
1004 | ||
227a8653 PM |
1005 | if (!icc_hppi_can_preempt(cs)) { |
1006 | intid = INTID_SPURIOUS; | |
1007 | } else { | |
1008 | intid = icc_hppir1_value(cs, env); | |
1009 | } | |
1010 | ||
1011 | if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { | |
1012 | icc_activate_irq(cs, intid); | |
1013 | } | |
1014 | ||
1015 | trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); | |
1016 | return intid; | |
1017 | } | |
1018 | ||
1019 | static void icc_drop_prio(GICv3CPUState *cs, int grp) | |
1020 | { | |
1021 | /* Drop the priority of the currently active interrupt in | |
1022 | * the specified group. | |
1023 | * | |
1024 | * Note that we can guarantee (because of the requirement to nest | |
1025 | * ICC_IAR reads [which activate an interrupt and raise priority] | |
1026 | * with ICC_EOIR writes [which drop the priority for the interrupt]) | |
1027 | * that the interrupt we're being called for is the highest priority | |
1028 | * active interrupt, meaning that it has the lowest set bit in the | |
1029 | * APR registers. | |
1030 | * | |
1031 | * If the guest does not honour the ordering constraints then the | |
1032 | * behaviour of the GIC is UNPREDICTABLE, which for us means that | |
1033 | * the values of the APR registers might become incorrect and the | |
1034 | * running priority will be wrong, so interrupts that should preempt | |
1035 | * might not do so, and interrupts that should not preempt might do so. | |
1036 | */ | |
1037 | int i; | |
1038 | ||
1039 | for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) { | |
1040 | uint64_t *papr = &cs->icc_apr[grp][i]; | |
1041 | ||
1042 | if (!*papr) { | |
1043 | continue; | |
1044 | } | |
1045 | /* Clear the lowest set bit */ | |
1046 | *papr &= *papr - 1; | |
1047 | break; | |
1048 | } | |
1049 | ||
1050 | /* running priority change means we need an update for this cpu i/f */ | |
1051 | gicv3_cpuif_update(cs); | |
1052 | } | |
1053 | ||
1054 | static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) | |
1055 | { | |
1056 | /* Return true if we should split priority drop and interrupt | |
1057 | * deactivation, ie whether the relevant EOIMode bit is set. | |
1058 | */ | |
1059 | if (arm_is_el3_or_mon(env)) { | |
1060 | return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; | |
1061 | } | |
1062 | if (arm_is_secure_below_el3(env)) { | |
1063 | return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; | |
1064 | } else { | |
1065 | return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; | |
1066 | } | |
1067 | } | |
1068 | ||
1069 | static int icc_highest_active_group(GICv3CPUState *cs) | |
1070 | { | |
1071 | /* Return the group with the highest priority active interrupt. | |
1072 | * We can do this by just comparing the APRs to see which one | |
1073 | * has the lowest set bit. | |
1074 | * (If more than one group is active at the same priority then | |
1075 | * we're in UNPREDICTABLE territory.) | |
1076 | */ | |
1077 | int i; | |
1078 | ||
1079 | for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { | |
1080 | int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); | |
1081 | int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); | |
1082 | int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); | |
1083 | ||
1084 | if (g1nsctz < g0ctz && g1nsctz < g1ctz) { | |
1085 | return GICV3_G1NS; | |
1086 | } | |
1087 | if (g1ctz < g0ctz) { | |
1088 | return GICV3_G1; | |
1089 | } | |
1090 | if (g0ctz < 32) { | |
1091 | return GICV3_G0; | |
1092 | } | |
1093 | } | |
1094 | /* No set active bits? UNPREDICTABLE; return -1 so the caller | |
1095 | * ignores the spurious EOI attempt. | |
1096 | */ | |
1097 | return -1; | |
1098 | } | |
1099 | ||
1100 | static void icc_deactivate_irq(GICv3CPUState *cs, int irq) | |
1101 | { | |
1102 | if (irq < GIC_INTERNAL) { | |
1103 | cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); | |
1104 | gicv3_redist_update(cs); | |
1105 | } else { | |
1106 | gicv3_gicd_active_clear(cs->gic, irq); | |
1107 | gicv3_update(cs->gic, irq, 1); | |
1108 | } | |
1109 | } | |
1110 | ||
df313f48 PM |
1111 | static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) |
1112 | { | |
1113 | /* Return true if we should split priority drop and interrupt | |
1114 | * deactivation, ie whether the virtual EOIMode bit is set. | |
1115 | */ | |
1116 | return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; | |
1117 | } | |
1118 | ||
1119 | static int icv_find_active(GICv3CPUState *cs, int irq) | |
1120 | { | |
1121 | /* Given an interrupt number for an active interrupt, return the index | |
1122 | * of the corresponding list register, or -1 if there is no match. | |
1123 | * Corresponds to FindActiveVirtualInterrupt pseudocode. | |
1124 | */ | |
1125 | int i; | |
1126 | ||
1127 | for (i = 0; i < cs->num_list_regs; i++) { | |
1128 | uint64_t lr = cs->ich_lr_el2[i]; | |
1129 | ||
1130 | if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { | |
1131 | return i; | |
1132 | } | |
1133 | } | |
1134 | ||
1135 | return -1; | |
1136 | } | |
1137 | ||
1138 | static void icv_deactivate_irq(GICv3CPUState *cs, int idx) | |
1139 | { | |
1140 | /* Deactivate the interrupt in the specified list register index */ | |
1141 | uint64_t lr = cs->ich_lr_el2[idx]; | |
1142 | ||
1143 | if (lr & ICH_LR_EL2_HW) { | |
1144 | /* Deactivate the associated physical interrupt */ | |
1145 | int pirq = ich_lr_pintid(lr); | |
1146 | ||
1147 | if (pirq < INTID_SECURE) { | |
1148 | icc_deactivate_irq(cs, pirq); | |
1149 | } | |
1150 | } | |
1151 | ||
1152 | /* Clear the 'active' part of the state, so ActivePending->Pending | |
1153 | * and Active->Invalid. | |
1154 | */ | |
1155 | lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; | |
1156 | cs->ich_lr_el2[idx] = lr; | |
1157 | } | |
1158 | ||
1159 | static void icv_increment_eoicount(GICv3CPUState *cs) | |
1160 | { | |
1161 | /* Increment the EOICOUNT field in ICH_HCR_EL2 */ | |
1162 | int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, | |
1163 | ICH_HCR_EL2_EOICOUNT_LENGTH); | |
1164 | ||
1165 | cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, | |
1166 | ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); | |
1167 | } | |
1168 | ||
b3b48f52 PM |
1169 | static int icv_drop_prio(GICv3CPUState *cs) |
1170 | { | |
1171 | /* Drop the priority of the currently active virtual interrupt | |
1172 | * (favouring group 0 if there is a set active bit at | |
1173 | * the same priority for both group 0 and group 1). | |
1174 | * Return the priority value for the bit we just cleared, | |
1175 | * or 0xff if no bits were set in the AP registers at all. | |
1176 | * Note that though the ich_apr[] are uint64_t only the low | |
1177 | * 32 bits are actually relevant. | |
1178 | */ | |
1179 | int i; | |
1180 | int aprmax = 1 << (cs->vprebits - 5); | |
1181 | ||
1182 | assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); | |
1183 | ||
1184 | for (i = 0; i < aprmax; i++) { | |
1185 | uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; | |
1186 | uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; | |
1187 | int apr0count, apr1count; | |
1188 | ||
1189 | if (!*papr0 && !*papr1) { | |
1190 | continue; | |
1191 | } | |
1192 | ||
1193 | /* We can't just use the bit-twiddling hack icc_drop_prio() does | |
1194 | * because we need to return the bit number we cleared so | |
1195 | * it can be compared against the list register's priority field. | |
1196 | */ | |
1197 | apr0count = ctz32(*papr0); | |
1198 | apr1count = ctz32(*papr1); | |
1199 | ||
1200 | if (apr0count <= apr1count) { | |
1201 | *papr0 &= *papr0 - 1; | |
1202 | return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); | |
1203 | } else { | |
1204 | *papr1 &= *papr1 - 1; | |
1205 | return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); | |
1206 | } | |
1207 | } | |
1208 | return 0xff; | |
1209 | } | |
1210 | ||
df313f48 PM |
1211 | static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1212 | uint64_t value) | |
1213 | { | |
1214 | /* Deactivate interrupt */ | |
1215 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1216 | int idx; | |
1217 | int irq = value & 0xffffff; | |
1218 | ||
1219 | trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); | |
1220 | ||
1221 | if (irq >= cs->gic->num_irq) { | |
1222 | /* Also catches special interrupt numbers and LPIs */ | |
1223 | return; | |
1224 | } | |
1225 | ||
1226 | if (!icv_eoi_split(env, cs)) { | |
1227 | return; | |
1228 | } | |
1229 | ||
1230 | idx = icv_find_active(cs, irq); | |
1231 | ||
1232 | if (idx < 0) { | |
1233 | /* No list register matching this, so increment the EOI count | |
1234 | * (might trigger a maintenance interrupt) | |
1235 | */ | |
1236 | icv_increment_eoicount(cs); | |
1237 | } else { | |
1238 | icv_deactivate_irq(cs, idx); | |
1239 | } | |
1240 | ||
1241 | gicv3_cpuif_virt_update(cs); | |
1242 | } | |
1243 | ||
b3b48f52 PM |
1244 | static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1245 | uint64_t value) | |
1246 | { | |
1247 | /* End of Interrupt */ | |
1248 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1249 | int irq = value & 0xffffff; | |
1250 | int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; | |
1251 | int idx, dropprio; | |
1252 | ||
1253 | trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, | |
1254 | gicv3_redist_affid(cs), value); | |
1255 | ||
1256 | if (irq >= cs->gic->num_irq) { | |
1257 | /* Also catches special interrupt numbers and LPIs */ | |
1258 | return; | |
1259 | } | |
1260 | ||
1261 | /* We implement the IMPDEF choice of "drop priority before doing | |
1262 | * error checks" (because that lets us avoid scanning the AP | |
1263 | * registers twice). | |
1264 | */ | |
1265 | dropprio = icv_drop_prio(cs); | |
1266 | if (dropprio == 0xff) { | |
1267 | /* No active interrupt. It is CONSTRAINED UNPREDICTABLE | |
1268 | * whether the list registers are checked in this | |
1269 | * situation; we choose not to. | |
1270 | */ | |
1271 | return; | |
1272 | } | |
1273 | ||
1274 | idx = icv_find_active(cs, irq); | |
1275 | ||
1276 | if (idx < 0) { | |
1277 | /* No valid list register corresponding to EOI ID */ | |
1278 | icv_increment_eoicount(cs); | |
1279 | } else { | |
1280 | uint64_t lr = cs->ich_lr_el2[idx]; | |
1281 | int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | |
1282 | int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); | |
1283 | ||
1284 | if (thisgrp == grp && lr_gprio == dropprio) { | |
1285 | if (!icv_eoi_split(env, cs)) { | |
1286 | /* Priority drop and deactivate not split: deactivate irq now */ | |
1287 | icv_deactivate_irq(cs, idx); | |
1288 | } | |
1289 | } | |
1290 | } | |
1291 | ||
1292 | gicv3_cpuif_virt_update(cs); | |
1293 | } | |
1294 | ||
227a8653 PM |
1295 | static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1296 | uint64_t value) | |
1297 | { | |
1298 | /* End of Interrupt */ | |
1299 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1300 | int irq = value & 0xffffff; | |
1301 | int grp; | |
1302 | ||
b3b48f52 PM |
1303 | if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) { |
1304 | icv_eoir_write(env, ri, value); | |
1305 | return; | |
1306 | } | |
1307 | ||
081b1b98 PM |
1308 | trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1, |
1309 | gicv3_redist_affid(cs), value); | |
227a8653 PM |
1310 | |
1311 | if (ri->crm == 8) { | |
1312 | /* EOIR0 */ | |
1313 | grp = GICV3_G0; | |
1314 | } else { | |
1315 | /* EOIR1 */ | |
1316 | if (arm_is_secure(env)) { | |
1317 | grp = GICV3_G1; | |
1318 | } else { | |
1319 | grp = GICV3_G1NS; | |
1320 | } | |
1321 | } | |
1322 | ||
1323 | if (irq >= cs->gic->num_irq) { | |
1324 | /* This handles two cases: | |
1325 | * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] | |
1326 | * to the GICC_EOIR, the GIC ignores that write. | |
1327 | * 2. If software writes the number of a non-existent interrupt | |
1328 | * this must be a subcase of "value written does not match the last | |
1329 | * valid interrupt value read from the Interrupt Acknowledge | |
1330 | * register" and so this is UNPREDICTABLE. We choose to ignore it. | |
1331 | */ | |
1332 | return; | |
1333 | } | |
1334 | ||
1335 | if (icc_highest_active_group(cs) != grp) { | |
1336 | return; | |
1337 | } | |
1338 | ||
1339 | icc_drop_prio(cs, grp); | |
1340 | ||
1341 | if (!icc_eoi_split(env, cs)) { | |
1342 | /* Priority drop and deactivate not split: deactivate irq now */ | |
1343 | icc_deactivate_irq(cs, irq); | |
1344 | } | |
1345 | } | |
1346 | ||
1347 | static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1348 | { | |
1349 | GICv3CPUState *cs = icc_cs_from_env(env); | |
df313f48 PM |
1350 | uint64_t value; |
1351 | ||
1352 | if (icv_access(env, HCR_FMO)) { | |
1353 | return icv_hppir_read(env, ri); | |
1354 | } | |
227a8653 | 1355 | |
df313f48 | 1356 | value = icc_hppir0_value(cs, env); |
227a8653 PM |
1357 | trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); |
1358 | return value; | |
1359 | } | |
1360 | ||
1361 | static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1362 | { | |
1363 | GICv3CPUState *cs = icc_cs_from_env(env); | |
df313f48 PM |
1364 | uint64_t value; |
1365 | ||
1366 | if (icv_access(env, HCR_IMO)) { | |
1367 | return icv_hppir_read(env, ri); | |
1368 | } | |
227a8653 | 1369 | |
df313f48 | 1370 | value = icc_hppir1_value(cs, env); |
227a8653 PM |
1371 | trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); |
1372 | return value; | |
1373 | } | |
1374 | ||
359fbe65 PM |
1375 | static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1376 | { | |
1377 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1378 | int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; | |
1379 | bool satinc = false; | |
1380 | uint64_t bpr; | |
1381 | ||
77620ba6 PM |
1382 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1383 | return icv_bpr_read(env, ri); | |
1384 | } | |
1385 | ||
359fbe65 PM |
1386 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { |
1387 | grp = GICV3_G1NS; | |
1388 | } | |
1389 | ||
1390 | if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && | |
1391 | (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { | |
1392 | /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses | |
1393 | * modify BPR0 | |
1394 | */ | |
1395 | grp = GICV3_G0; | |
1396 | } | |
1397 | ||
1398 | if (grp == GICV3_G1NS && arm_current_el(env) < 3 && | |
1399 | (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { | |
1400 | /* reads return bpr0 + 1 sat to 7, writes ignored */ | |
1401 | grp = GICV3_G0; | |
1402 | satinc = true; | |
1403 | } | |
1404 | ||
1405 | bpr = cs->icc_bpr[grp]; | |
1406 | if (satinc) { | |
1407 | bpr++; | |
1408 | bpr = MIN(bpr, 7); | |
1409 | } | |
1410 | ||
081b1b98 | 1411 | trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); |
359fbe65 PM |
1412 | |
1413 | return bpr; | |
1414 | } | |
1415 | ||
1416 | static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1417 | uint64_t value) | |
1418 | { | |
1419 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1420 | int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; | |
8193d461 | 1421 | uint64_t minval; |
359fbe65 | 1422 | |
77620ba6 PM |
1423 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1424 | icv_bpr_write(env, ri, value); | |
1425 | return; | |
1426 | } | |
1427 | ||
081b1b98 PM |
1428 | trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, |
1429 | gicv3_redist_affid(cs), value); | |
359fbe65 PM |
1430 | |
1431 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | |
1432 | grp = GICV3_G1NS; | |
1433 | } | |
1434 | ||
1435 | if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && | |
1436 | (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { | |
1437 | /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses | |
1438 | * modify BPR0 | |
1439 | */ | |
1440 | grp = GICV3_G0; | |
1441 | } | |
1442 | ||
1443 | if (grp == GICV3_G1NS && arm_current_el(env) < 3 && | |
1444 | (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { | |
1445 | /* reads return bpr0 + 1 sat to 7, writes ignored */ | |
1446 | return; | |
1447 | } | |
1448 | ||
8193d461 PM |
1449 | minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR; |
1450 | if (value < minval) { | |
1451 | value = minval; | |
1452 | } | |
1453 | ||
359fbe65 PM |
1454 | cs->icc_bpr[grp] = value & 7; |
1455 | gicv3_cpuif_update(cs); | |
1456 | } | |
1457 | ||
1458 | static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1459 | { | |
1460 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1461 | uint64_t value; | |
1462 | ||
1463 | int regno = ri->opc2 & 3; | |
887aae10 | 1464 | int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; |
359fbe65 | 1465 | |
77620ba6 PM |
1466 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1467 | return icv_ap_read(env, ri); | |
1468 | } | |
1469 | ||
359fbe65 PM |
1470 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { |
1471 | grp = GICV3_G1NS; | |
1472 | } | |
1473 | ||
1474 | value = cs->icc_apr[grp][regno]; | |
1475 | ||
081b1b98 | 1476 | trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); |
359fbe65 PM |
1477 | return value; |
1478 | } | |
1479 | ||
1480 | static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1481 | uint64_t value) | |
1482 | { | |
1483 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1484 | ||
1485 | int regno = ri->opc2 & 3; | |
887aae10 | 1486 | int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; |
359fbe65 | 1487 | |
77620ba6 PM |
1488 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1489 | icv_ap_write(env, ri, value); | |
1490 | return; | |
1491 | } | |
1492 | ||
081b1b98 | 1493 | trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); |
359fbe65 PM |
1494 | |
1495 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | |
1496 | grp = GICV3_G1NS; | |
1497 | } | |
1498 | ||
1499 | /* It's not possible to claim that a Non-secure interrupt is active | |
1500 | * at a priority outside the Non-secure range (128..255), since this | |
1501 | * would otherwise allow malicious NS code to block delivery of S interrupts | |
1502 | * by writing a bad value to these registers. | |
1503 | */ | |
1504 | if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { | |
1505 | return; | |
1506 | } | |
1507 | ||
1508 | cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; | |
1509 | gicv3_cpuif_update(cs); | |
1510 | } | |
1511 | ||
227a8653 PM |
1512 | static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1513 | uint64_t value) | |
1514 | { | |
1515 | /* Deactivate interrupt */ | |
1516 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1517 | int irq = value & 0xffffff; | |
1518 | bool irq_is_secure, single_sec_state, irq_is_grp0; | |
1519 | bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; | |
1520 | ||
df313f48 PM |
1521 | if (icv_access(env, HCR_FMO | HCR_IMO)) { |
1522 | icv_dir_write(env, ri, value); | |
1523 | return; | |
1524 | } | |
1525 | ||
227a8653 PM |
1526 | trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); |
1527 | ||
1528 | if (irq >= cs->gic->num_irq) { | |
1529 | /* Also catches special interrupt numbers and LPIs */ | |
1530 | return; | |
1531 | } | |
1532 | ||
1533 | if (!icc_eoi_split(env, cs)) { | |
1534 | return; | |
1535 | } | |
1536 | ||
1537 | int grp = gicv3_irq_group(cs->gic, cs, irq); | |
1538 | ||
1539 | single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; | |
1540 | irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); | |
1541 | irq_is_grp0 = grp == GICV3_G0; | |
1542 | ||
1543 | /* Check whether we're allowed to deactivate this interrupt based | |
1544 | * on its group and the current CPU state. | |
1545 | * These checks are laid out to correspond to the spec's pseudocode. | |
1546 | */ | |
1547 | route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; | |
1548 | route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; | |
1549 | /* No need to include !IsSecure in route_*_to_el2 as it's only | |
1550 | * tested in cases where we know !IsSecure is true. | |
1551 | */ | |
1552 | route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO; | |
1553 | route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO; | |
1554 | ||
1555 | switch (arm_current_el(env)) { | |
1556 | case 3: | |
1557 | break; | |
1558 | case 2: | |
1559 | if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { | |
1560 | break; | |
1561 | } | |
1562 | if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { | |
1563 | break; | |
1564 | } | |
1565 | return; | |
1566 | case 1: | |
1567 | if (!arm_is_secure_below_el3(env)) { | |
1568 | if (single_sec_state && irq_is_grp0 && | |
1569 | !route_fiq_to_el3 && !route_fiq_to_el2) { | |
1570 | break; | |
1571 | } | |
1572 | if (!irq_is_secure && !irq_is_grp0 && | |
1573 | !route_irq_to_el3 && !route_irq_to_el2) { | |
1574 | break; | |
1575 | } | |
1576 | } else { | |
1577 | if (irq_is_grp0 && !route_fiq_to_el3) { | |
1578 | break; | |
1579 | } | |
1580 | if (!irq_is_grp0 && | |
1581 | (!irq_is_secure || !single_sec_state) && | |
1582 | !route_irq_to_el3) { | |
1583 | break; | |
1584 | } | |
1585 | } | |
1586 | return; | |
1587 | default: | |
1588 | g_assert_not_reached(); | |
1589 | } | |
1590 | ||
1591 | icc_deactivate_irq(cs, irq); | |
1592 | } | |
1593 | ||
1594 | static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1595 | { | |
1596 | GICv3CPUState *cs = icc_cs_from_env(env); | |
df313f48 PM |
1597 | int prio; |
1598 | ||
1599 | if (icv_access(env, HCR_FMO | HCR_IMO)) { | |
1600 | return icv_rpr_read(env, ri); | |
1601 | } | |
1602 | ||
1603 | prio = icc_highest_active_prio(cs); | |
227a8653 PM |
1604 | |
1605 | if (arm_feature(env, ARM_FEATURE_EL3) && | |
1606 | !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { | |
1607 | /* NS GIC access and Group 0 is inaccessible to NS */ | |
a2e2d7fc | 1608 | if ((prio & 0x80) == 0) { |
227a8653 PM |
1609 | /* NS mustn't see priorities in the Secure half of the range */ |
1610 | prio = 0; | |
1611 | } else if (prio != 0xff) { | |
1612 | /* Non-idle priority: show the Non-secure view of it */ | |
1613 | prio = (prio << 1) & 0xff; | |
1614 | } | |
1615 | } | |
1616 | ||
1617 | trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); | |
1618 | return prio; | |
1619 | } | |
1620 | ||
b1a0eb77 PM |
1621 | static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, |
1622 | uint64_t value, int grp, bool ns) | |
1623 | { | |
1624 | GICv3State *s = cs->gic; | |
1625 | ||
1626 | /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ | |
1627 | uint64_t aff = extract64(value, 48, 8) << 16 | | |
1628 | extract64(value, 32, 8) << 8 | | |
1629 | extract64(value, 16, 8); | |
1630 | uint32_t targetlist = extract64(value, 0, 16); | |
1631 | uint32_t irq = extract64(value, 24, 4); | |
1632 | bool irm = extract64(value, 40, 1); | |
1633 | int i; | |
1634 | ||
1635 | if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { | |
1636 | /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 | |
1637 | * interrupts as Group 0 interrupts and must send Secure Group 0 | |
1638 | * interrupts to the target CPUs. | |
1639 | */ | |
1640 | grp = GICV3_G0; | |
1641 | } | |
1642 | ||
1643 | trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, | |
1644 | aff, targetlist); | |
1645 | ||
1646 | for (i = 0; i < s->num_cpu; i++) { | |
1647 | GICv3CPUState *ocs = &s->cpu[i]; | |
1648 | ||
1649 | if (irm) { | |
1650 | /* IRM == 1 : route to all CPUs except self */ | |
1651 | if (cs == ocs) { | |
1652 | continue; | |
1653 | } | |
1654 | } else { | |
1655 | /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] | |
1656 | * where the corresponding bit is set in targetlist | |
1657 | */ | |
1658 | int aff0; | |
1659 | ||
1660 | if (ocs->gicr_typer >> 40 != aff) { | |
1661 | continue; | |
1662 | } | |
1663 | aff0 = extract64(ocs->gicr_typer, 32, 8); | |
1664 | if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { | |
1665 | continue; | |
1666 | } | |
1667 | } | |
1668 | ||
1669 | /* The redistributor will check against its own GICR_NSACR as needed */ | |
1670 | gicv3_redist_send_sgi(ocs, grp, irq, ns); | |
1671 | } | |
1672 | } | |
1673 | ||
1674 | static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1675 | uint64_t value) | |
1676 | { | |
1677 | /* Generate Secure Group 0 SGI. */ | |
1678 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1679 | bool ns = !arm_is_secure(env); | |
1680 | ||
1681 | icc_generate_sgi(env, cs, value, GICV3_G0, ns); | |
1682 | } | |
1683 | ||
1684 | static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1685 | uint64_t value) | |
1686 | { | |
1687 | /* Generate Group 1 SGI for the current Security state */ | |
1688 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1689 | int grp; | |
1690 | bool ns = !arm_is_secure(env); | |
1691 | ||
1692 | grp = ns ? GICV3_G1NS : GICV3_G1; | |
1693 | icc_generate_sgi(env, cs, value, grp, ns); | |
1694 | } | |
1695 | ||
1696 | static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1697 | uint64_t value) | |
1698 | { | |
1699 | /* Generate Group 1 SGI for the Security state that is not | |
1700 | * the current state | |
1701 | */ | |
1702 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1703 | int grp; | |
1704 | bool ns = !arm_is_secure(env); | |
1705 | ||
1706 | grp = ns ? GICV3_G1 : GICV3_G1NS; | |
1707 | icc_generate_sgi(env, cs, value, grp, ns); | |
1708 | } | |
1709 | ||
359fbe65 PM |
1710 | static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1711 | { | |
1712 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1713 | int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; | |
1714 | uint64_t value; | |
1715 | ||
77620ba6 PM |
1716 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1717 | return icv_igrpen_read(env, ri); | |
1718 | } | |
1719 | ||
359fbe65 PM |
1720 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { |
1721 | grp = GICV3_G1NS; | |
1722 | } | |
1723 | ||
1724 | value = cs->icc_igrpen[grp]; | |
081b1b98 PM |
1725 | trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, |
1726 | gicv3_redist_affid(cs), value); | |
359fbe65 PM |
1727 | return value; |
1728 | } | |
1729 | ||
1730 | static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1731 | uint64_t value) | |
1732 | { | |
1733 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1734 | int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; | |
1735 | ||
77620ba6 PM |
1736 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1737 | icv_igrpen_write(env, ri, value); | |
1738 | return; | |
1739 | } | |
1740 | ||
081b1b98 PM |
1741 | trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, |
1742 | gicv3_redist_affid(cs), value); | |
359fbe65 PM |
1743 | |
1744 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | |
1745 | grp = GICV3_G1NS; | |
1746 | } | |
1747 | ||
1748 | cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; | |
1749 | gicv3_cpuif_update(cs); | |
1750 | } | |
1751 | ||
1752 | static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1753 | { | |
1754 | GICv3CPUState *cs = icc_cs_from_env(env); | |
081b1b98 | 1755 | uint64_t value; |
359fbe65 PM |
1756 | |
1757 | /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ | |
081b1b98 PM |
1758 | value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); |
1759 | trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); | |
1760 | return value; | |
359fbe65 PM |
1761 | } |
1762 | ||
1763 | static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1764 | uint64_t value) | |
1765 | { | |
1766 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1767 | ||
1768 | trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); | |
1769 | ||
1770 | /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ | |
1771 | cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); | |
1772 | cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); | |
1773 | gicv3_cpuif_update(cs); | |
1774 | } | |
1775 | ||
1776 | static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1777 | { | |
1778 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1779 | int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; | |
1780 | uint64_t value; | |
1781 | ||
77620ba6 PM |
1782 | if (icv_access(env, HCR_FMO | HCR_IMO)) { |
1783 | return icv_ctlr_read(env, ri); | |
1784 | } | |
1785 | ||
359fbe65 PM |
1786 | value = cs->icc_ctlr_el1[bank]; |
1787 | trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); | |
1788 | return value; | |
1789 | } | |
1790 | ||
1791 | static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1792 | uint64_t value) | |
1793 | { | |
1794 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1795 | int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; | |
1796 | uint64_t mask; | |
1797 | ||
77620ba6 PM |
1798 | if (icv_access(env, HCR_FMO | HCR_IMO)) { |
1799 | icv_ctlr_write(env, ri, value); | |
1800 | return; | |
1801 | } | |
1802 | ||
359fbe65 PM |
1803 | trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); |
1804 | ||
1805 | /* Only CBPR and EOIMODE can be RW; | |
1806 | * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or | |
1807 | * the asseciated priority-based routing of them); | |
1808 | * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. | |
1809 | */ | |
1810 | if (arm_feature(env, ARM_FEATURE_EL3) && | |
1811 | ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { | |
1812 | mask = ICC_CTLR_EL1_EOIMODE; | |
1813 | } else { | |
1814 | mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; | |
1815 | } | |
1816 | ||
1817 | cs->icc_ctlr_el1[bank] &= ~mask; | |
1818 | cs->icc_ctlr_el1[bank] |= (value & mask); | |
1819 | gicv3_cpuif_update(cs); | |
1820 | } | |
1821 | ||
1822 | ||
1823 | static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1824 | { | |
1825 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1826 | uint64_t value; | |
1827 | ||
1828 | value = cs->icc_ctlr_el3; | |
1829 | if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { | |
1830 | value |= ICC_CTLR_EL3_EOIMODE_EL1NS; | |
1831 | } | |
1832 | if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { | |
1833 | value |= ICC_CTLR_EL3_CBPR_EL1NS; | |
1834 | } | |
1835 | if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { | |
1836 | value |= ICC_CTLR_EL3_EOIMODE_EL1S; | |
1837 | } | |
1838 | if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { | |
1839 | value |= ICC_CTLR_EL3_CBPR_EL1S; | |
1840 | } | |
1841 | ||
1842 | trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); | |
1843 | return value; | |
1844 | } | |
1845 | ||
1846 | static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1847 | uint64_t value) | |
1848 | { | |
1849 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1850 | uint64_t mask; | |
1851 | ||
1852 | trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); | |
1853 | ||
1854 | /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ | |
1855 | cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); | |
1856 | if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { | |
1857 | cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; | |
1858 | } | |
1859 | if (value & ICC_CTLR_EL3_CBPR_EL1NS) { | |
1860 | cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; | |
1861 | } | |
1862 | ||
1863 | cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); | |
1864 | if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { | |
1865 | cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; | |
1866 | } | |
1867 | if (value & ICC_CTLR_EL3_CBPR_EL1S) { | |
1868 | cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; | |
1869 | } | |
1870 | ||
1871 | /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */ | |
1872 | mask = ICC_CTLR_EL3_EOIMODE_EL3; | |
1873 | ||
1874 | cs->icc_ctlr_el3 &= ~mask; | |
1875 | cs->icc_ctlr_el3 |= (value & mask); | |
1876 | gicv3_cpuif_update(cs); | |
1877 | } | |
1878 | ||
1879 | static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, | |
1880 | const ARMCPRegInfo *ri, bool isread) | |
1881 | { | |
1882 | CPAccessResult r = CP_ACCESS_OK; | |
86830554 PM |
1883 | GICv3CPUState *cs = icc_cs_from_env(env); |
1884 | int el = arm_current_el(env); | |
1885 | ||
1886 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && | |
1887 | el == 1 && !arm_is_secure_below_el3(env)) { | |
1888 | /* Takes priority over a possible EL3 trap */ | |
1889 | return CP_ACCESS_TRAP_EL2; | |
1890 | } | |
359fbe65 PM |
1891 | |
1892 | if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { | |
86830554 | 1893 | switch (el) { |
359fbe65 PM |
1894 | case 1: |
1895 | if (arm_is_secure_below_el3(env) || | |
1896 | ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) { | |
1897 | r = CP_ACCESS_TRAP_EL3; | |
1898 | } | |
1899 | break; | |
1900 | case 2: | |
1901 | r = CP_ACCESS_TRAP_EL3; | |
1902 | break; | |
1903 | case 3: | |
1904 | if (!is_a64(env) && !arm_is_el3_or_mon(env)) { | |
1905 | r = CP_ACCESS_TRAP_EL3; | |
1906 | } | |
92b30c2f | 1907 | break; |
359fbe65 PM |
1908 | default: |
1909 | g_assert_not_reached(); | |
1910 | } | |
1911 | } | |
1912 | ||
1913 | if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { | |
1914 | r = CP_ACCESS_TRAP; | |
1915 | } | |
1916 | return r; | |
1917 | } | |
1918 | ||
86830554 PM |
1919 | static CPAccessResult gicv3_dir_access(CPUARMState *env, |
1920 | const ARMCPRegInfo *ri, bool isread) | |
1921 | { | |
1922 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1923 | ||
1924 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && | |
1925 | arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { | |
1926 | /* Takes priority over a possible EL3 trap */ | |
1927 | return CP_ACCESS_TRAP_EL2; | |
1928 | } | |
1929 | ||
1930 | return gicv3_irqfiq_access(env, ri, isread); | |
1931 | } | |
1932 | ||
1933 | static CPAccessResult gicv3_sgi_access(CPUARMState *env, | |
1934 | const ARMCPRegInfo *ri, bool isread) | |
1935 | { | |
1936 | if ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) && | |
1937 | arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { | |
1938 | /* Takes priority over a possible EL3 trap */ | |
1939 | return CP_ACCESS_TRAP_EL2; | |
1940 | } | |
1941 | ||
1942 | return gicv3_irqfiq_access(env, ri, isread); | |
1943 | } | |
1944 | ||
359fbe65 PM |
1945 | static CPAccessResult gicv3_fiq_access(CPUARMState *env, |
1946 | const ARMCPRegInfo *ri, bool isread) | |
1947 | { | |
1948 | CPAccessResult r = CP_ACCESS_OK; | |
86830554 PM |
1949 | GICv3CPUState *cs = icc_cs_from_env(env); |
1950 | int el = arm_current_el(env); | |
1951 | ||
1952 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && | |
1953 | el == 1 && !arm_is_secure_below_el3(env)) { | |
1954 | /* Takes priority over a possible EL3 trap */ | |
1955 | return CP_ACCESS_TRAP_EL2; | |
1956 | } | |
359fbe65 PM |
1957 | |
1958 | if (env->cp15.scr_el3 & SCR_FIQ) { | |
86830554 | 1959 | switch (el) { |
359fbe65 PM |
1960 | case 1: |
1961 | if (arm_is_secure_below_el3(env) || | |
1962 | ((env->cp15.hcr_el2 & HCR_FMO) == 0)) { | |
1963 | r = CP_ACCESS_TRAP_EL3; | |
1964 | } | |
1965 | break; | |
1966 | case 2: | |
1967 | r = CP_ACCESS_TRAP_EL3; | |
1968 | break; | |
1969 | case 3: | |
1970 | if (!is_a64(env) && !arm_is_el3_or_mon(env)) { | |
1971 | r = CP_ACCESS_TRAP_EL3; | |
1972 | } | |
92b30c2f | 1973 | break; |
359fbe65 PM |
1974 | default: |
1975 | g_assert_not_reached(); | |
1976 | } | |
1977 | } | |
1978 | ||
1979 | if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { | |
1980 | r = CP_ACCESS_TRAP; | |
1981 | } | |
1982 | return r; | |
1983 | } | |
1984 | ||
1985 | static CPAccessResult gicv3_irq_access(CPUARMState *env, | |
1986 | const ARMCPRegInfo *ri, bool isread) | |
1987 | { | |
1988 | CPAccessResult r = CP_ACCESS_OK; | |
86830554 PM |
1989 | GICv3CPUState *cs = icc_cs_from_env(env); |
1990 | int el = arm_current_el(env); | |
1991 | ||
1992 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && | |
1993 | el == 1 && !arm_is_secure_below_el3(env)) { | |
1994 | /* Takes priority over a possible EL3 trap */ | |
1995 | return CP_ACCESS_TRAP_EL2; | |
1996 | } | |
359fbe65 PM |
1997 | |
1998 | if (env->cp15.scr_el3 & SCR_IRQ) { | |
86830554 | 1999 | switch (el) { |
359fbe65 PM |
2000 | case 1: |
2001 | if (arm_is_secure_below_el3(env) || | |
2002 | ((env->cp15.hcr_el2 & HCR_IMO) == 0)) { | |
2003 | r = CP_ACCESS_TRAP_EL3; | |
2004 | } | |
2005 | break; | |
2006 | case 2: | |
2007 | r = CP_ACCESS_TRAP_EL3; | |
2008 | break; | |
2009 | case 3: | |
2010 | if (!is_a64(env) && !arm_is_el3_or_mon(env)) { | |
2011 | r = CP_ACCESS_TRAP_EL3; | |
2012 | } | |
2013 | break; | |
2014 | default: | |
2015 | g_assert_not_reached(); | |
2016 | } | |
2017 | } | |
2018 | ||
2019 | if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { | |
2020 | r = CP_ACCESS_TRAP; | |
2021 | } | |
2022 | return r; | |
2023 | } | |
2024 | ||
2025 | static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
2026 | { | |
2027 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2028 | ||
2029 | cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | | |
2030 | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | | |
2031 | (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); | |
2032 | cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | | |
2033 | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | | |
2034 | (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); | |
2035 | cs->icc_pmr_el1 = 0; | |
2036 | cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR; | |
2037 | cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR; | |
64175afc | 2038 | cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS; |
359fbe65 PM |
2039 | memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); |
2040 | memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); | |
2041 | cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | | |
2042 | (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | | |
2043 | (7 << ICC_CTLR_EL3_PRIBITS_SHIFT); | |
4eb833b5 PM |
2044 | |
2045 | memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); | |
2046 | cs->ich_hcr_el2 = 0; | |
2047 | memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); | |
2048 | cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | | |
f5dc1b77 | 2049 | ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | |
4eb833b5 | 2050 | (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); |
359fbe65 PM |
2051 | } |
2052 | ||
2053 | static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { | |
2054 | { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, | |
2055 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, | |
2056 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2057 | .access = PL1_RW, .accessfn = gicv3_irqfiq_access, | |
2058 | .readfn = icc_pmr_read, | |
2059 | .writefn = icc_pmr_write, | |
2060 | /* We hang the whole cpu interface reset routine off here | |
2061 | * rather than parcelling it out into one little function | |
2062 | * per register | |
2063 | */ | |
2064 | .resetfn = icc_reset, | |
2065 | }, | |
227a8653 PM |
2066 | { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, |
2067 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, | |
2068 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2069 | .access = PL1_R, .accessfn = gicv3_fiq_access, | |
2070 | .readfn = icc_iar0_read, | |
2071 | }, | |
2072 | { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, | |
2073 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, | |
2074 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2075 | .access = PL1_W, .accessfn = gicv3_fiq_access, | |
2076 | .writefn = icc_eoir_write, | |
2077 | }, | |
2078 | { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, | |
2079 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, | |
2080 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2081 | .access = PL1_R, .accessfn = gicv3_fiq_access, | |
2082 | .readfn = icc_hppir0_read, | |
2083 | }, | |
359fbe65 PM |
2084 | { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, |
2085 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, | |
2086 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2087 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 2088 | .readfn = icc_bpr_read, |
359fbe65 PM |
2089 | .writefn = icc_bpr_write, |
2090 | }, | |
2091 | { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, | |
2092 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, | |
2093 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2094 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 2095 | .readfn = icc_ap_read, |
359fbe65 PM |
2096 | .writefn = icc_ap_write, |
2097 | }, | |
2098 | { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, | |
2099 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, | |
2100 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2101 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 2102 | .readfn = icc_ap_read, |
359fbe65 PM |
2103 | .writefn = icc_ap_write, |
2104 | }, | |
2105 | { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, | |
2106 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, | |
2107 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2108 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 2109 | .readfn = icc_ap_read, |
359fbe65 PM |
2110 | .writefn = icc_ap_write, |
2111 | }, | |
2112 | { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, | |
2113 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, | |
2114 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2115 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 2116 | .readfn = icc_ap_read, |
359fbe65 PM |
2117 | .writefn = icc_ap_write, |
2118 | }, | |
2119 | /* All the ICC_AP1R*_EL1 registers are banked */ | |
2120 | { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, | |
2121 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, | |
2122 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2123 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
2124 | .readfn = icc_ap_read, | |
2125 | .writefn = icc_ap_write, | |
2126 | }, | |
2127 | { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, | |
2128 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, | |
2129 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2130 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
2131 | .readfn = icc_ap_read, | |
2132 | .writefn = icc_ap_write, | |
2133 | }, | |
2134 | { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, | |
2135 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, | |
2136 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2137 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
2138 | .readfn = icc_ap_read, | |
2139 | .writefn = icc_ap_write, | |
2140 | }, | |
2141 | { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, | |
2142 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, | |
2143 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2144 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
2145 | .readfn = icc_ap_read, | |
2146 | .writefn = icc_ap_write, | |
2147 | }, | |
227a8653 PM |
2148 | { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, |
2149 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, | |
2150 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
86830554 | 2151 | .access = PL1_W, .accessfn = gicv3_dir_access, |
227a8653 PM |
2152 | .writefn = icc_dir_write, |
2153 | }, | |
2154 | { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, | |
2155 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, | |
2156 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2157 | .access = PL1_R, .accessfn = gicv3_irqfiq_access, | |
2158 | .readfn = icc_rpr_read, | |
2159 | }, | |
b1a0eb77 PM |
2160 | { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, |
2161 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, | |
2162 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
86830554 | 2163 | .access = PL1_W, .accessfn = gicv3_sgi_access, |
b1a0eb77 PM |
2164 | .writefn = icc_sgi1r_write, |
2165 | }, | |
2166 | { .name = "ICC_SGI1R", | |
2167 | .cp = 15, .opc1 = 0, .crm = 12, | |
2168 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, | |
86830554 | 2169 | .access = PL1_W, .accessfn = gicv3_sgi_access, |
b1a0eb77 PM |
2170 | .writefn = icc_sgi1r_write, |
2171 | }, | |
2172 | { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, | |
2173 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, | |
2174 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
86830554 | 2175 | .access = PL1_W, .accessfn = gicv3_sgi_access, |
b1a0eb77 PM |
2176 | .writefn = icc_asgi1r_write, |
2177 | }, | |
2178 | { .name = "ICC_ASGI1R", | |
2179 | .cp = 15, .opc1 = 1, .crm = 12, | |
2180 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, | |
86830554 | 2181 | .access = PL1_W, .accessfn = gicv3_sgi_access, |
b1a0eb77 PM |
2182 | .writefn = icc_asgi1r_write, |
2183 | }, | |
2184 | { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, | |
2185 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, | |
2186 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
86830554 | 2187 | .access = PL1_W, .accessfn = gicv3_sgi_access, |
b1a0eb77 PM |
2188 | .writefn = icc_sgi0r_write, |
2189 | }, | |
2190 | { .name = "ICC_SGI0R", | |
2191 | .cp = 15, .opc1 = 2, .crm = 12, | |
2192 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, | |
86830554 | 2193 | .access = PL1_W, .accessfn = gicv3_sgi_access, |
b1a0eb77 PM |
2194 | .writefn = icc_sgi0r_write, |
2195 | }, | |
227a8653 PM |
2196 | { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, |
2197 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, | |
2198 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2199 | .access = PL1_R, .accessfn = gicv3_irq_access, | |
2200 | .readfn = icc_iar1_read, | |
2201 | }, | |
2202 | { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, | |
2203 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, | |
2204 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2205 | .access = PL1_W, .accessfn = gicv3_irq_access, | |
2206 | .writefn = icc_eoir_write, | |
2207 | }, | |
2208 | { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, | |
2209 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, | |
2210 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2211 | .access = PL1_R, .accessfn = gicv3_irq_access, | |
2212 | .readfn = icc_hppir1_read, | |
2213 | }, | |
359fbe65 PM |
2214 | /* This register is banked */ |
2215 | { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, | |
2216 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, | |
2217 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2218 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
2219 | .readfn = icc_bpr_read, | |
2220 | .writefn = icc_bpr_write, | |
2221 | }, | |
2222 | /* This register is banked */ | |
2223 | { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, | |
2224 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, | |
2225 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2226 | .access = PL1_RW, .accessfn = gicv3_irqfiq_access, | |
2227 | .readfn = icc_ctlr_el1_read, | |
2228 | .writefn = icc_ctlr_el1_write, | |
2229 | }, | |
2230 | { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, | |
2231 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, | |
2232 | .type = ARM_CP_NO_RAW | ARM_CP_CONST, | |
2233 | .access = PL1_RW, | |
2234 | /* We don't support IRQ/FIQ bypass and system registers are | |
2235 | * always enabled, so all our bits are RAZ/WI or RAO/WI. | |
2236 | * This register is banked but since it's constant we don't | |
2237 | * need to do anything special. | |
2238 | */ | |
2239 | .resetvalue = 0x7, | |
2240 | }, | |
2241 | { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, | |
2242 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, | |
2243 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2244 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 2245 | .readfn = icc_igrpen_read, |
359fbe65 PM |
2246 | .writefn = icc_igrpen_write, |
2247 | }, | |
2248 | /* This register is banked */ | |
2249 | { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, | |
2250 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, | |
2251 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2252 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
2253 | .readfn = icc_igrpen_read, | |
2254 | .writefn = icc_igrpen_write, | |
2255 | }, | |
2256 | { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, | |
2257 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, | |
2258 | .type = ARM_CP_NO_RAW | ARM_CP_CONST, | |
2259 | .access = PL2_RW, | |
2260 | /* We don't support IRQ/FIQ bypass and system registers are | |
2261 | * always enabled, so all our bits are RAZ/WI or RAO/WI. | |
2262 | */ | |
2263 | .resetvalue = 0xf, | |
2264 | }, | |
2265 | { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, | |
2266 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, | |
2267 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2268 | .access = PL3_RW, | |
359fbe65 PM |
2269 | .readfn = icc_ctlr_el3_read, |
2270 | .writefn = icc_ctlr_el3_write, | |
2271 | }, | |
2272 | { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, | |
2273 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, | |
2274 | .type = ARM_CP_NO_RAW | ARM_CP_CONST, | |
2275 | .access = PL3_RW, | |
2276 | /* We don't support IRQ/FIQ bypass and system registers are | |
2277 | * always enabled, so all our bits are RAZ/WI or RAO/WI. | |
2278 | */ | |
2279 | .resetvalue = 0xf, | |
2280 | }, | |
2281 | { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, | |
2282 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, | |
2283 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2284 | .access = PL3_RW, | |
2285 | .readfn = icc_igrpen1_el3_read, | |
2286 | .writefn = icc_igrpen1_el3_write, | |
2287 | }, | |
2288 | REGINFO_SENTINEL | |
2289 | }; | |
2290 | ||
83f036fe PM |
2291 | static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2292 | { | |
2293 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2294 | int regno = ri->opc2 & 3; | |
887aae10 | 2295 | int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; |
83f036fe PM |
2296 | uint64_t value; |
2297 | ||
2298 | value = cs->ich_apr[grp][regno]; | |
2299 | trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | |
2300 | return value; | |
2301 | } | |
2302 | ||
2303 | static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2304 | uint64_t value) | |
2305 | { | |
2306 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2307 | int regno = ri->opc2 & 3; | |
887aae10 | 2308 | int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; |
83f036fe PM |
2309 | |
2310 | trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | |
2311 | ||
2312 | cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; | |
2313 | gicv3_cpuif_virt_update(cs); | |
2314 | } | |
2315 | ||
2316 | static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2317 | { | |
2318 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2319 | uint64_t value = cs->ich_hcr_el2; | |
2320 | ||
2321 | trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); | |
2322 | return value; | |
2323 | } | |
2324 | ||
2325 | static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2326 | uint64_t value) | |
2327 | { | |
2328 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2329 | ||
2330 | trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); | |
2331 | ||
2332 | value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | | |
2333 | ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | | |
2334 | ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | | |
2335 | ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | | |
2336 | ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; | |
2337 | ||
2338 | cs->ich_hcr_el2 = value; | |
2339 | gicv3_cpuif_virt_update(cs); | |
2340 | } | |
2341 | ||
2342 | static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2343 | { | |
2344 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2345 | uint64_t value = cs->ich_vmcr_el2; | |
2346 | ||
2347 | trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); | |
2348 | return value; | |
2349 | } | |
2350 | ||
2351 | static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2352 | uint64_t value) | |
2353 | { | |
2354 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2355 | ||
2356 | trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); | |
2357 | ||
2358 | value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | | |
2359 | ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | | |
2360 | ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; | |
2361 | value |= ICH_VMCR_EL2_VFIQEN; | |
2362 | ||
2363 | cs->ich_vmcr_el2 = value; | |
2364 | /* Enforce "writing BPRs to less than minimum sets them to the minimum" | |
2365 | * by reading and writing back the fields. | |
2366 | */ | |
2367 | write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0)); | |
2368 | write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); | |
2369 | ||
2370 | gicv3_cpuif_virt_update(cs); | |
2371 | } | |
2372 | ||
2373 | static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2374 | { | |
2375 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2376 | int regno = ri->opc2 | ((ri->crm & 1) << 3); | |
2377 | uint64_t value; | |
2378 | ||
2379 | /* This read function handles all of: | |
2380 | * 64-bit reads of the whole LR | |
2381 | * 32-bit reads of the low half of the LR | |
2382 | * 32-bit reads of the high half of the LR | |
2383 | */ | |
2384 | if (ri->state == ARM_CP_STATE_AA32) { | |
2385 | if (ri->crm >= 14) { | |
2386 | value = extract64(cs->ich_lr_el2[regno], 32, 32); | |
2387 | trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); | |
2388 | } else { | |
2389 | value = extract64(cs->ich_lr_el2[regno], 0, 32); | |
2390 | trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); | |
2391 | } | |
2392 | } else { | |
2393 | value = cs->ich_lr_el2[regno]; | |
2394 | trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); | |
2395 | } | |
2396 | ||
2397 | return value; | |
2398 | } | |
2399 | ||
2400 | static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2401 | uint64_t value) | |
2402 | { | |
2403 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2404 | int regno = ri->opc2 | ((ri->crm & 1) << 3); | |
2405 | ||
2406 | /* This write function handles all of: | |
2407 | * 64-bit writes to the whole LR | |
2408 | * 32-bit writes to the low half of the LR | |
2409 | * 32-bit writes to the high half of the LR | |
2410 | */ | |
2411 | if (ri->state == ARM_CP_STATE_AA32) { | |
2412 | if (ri->crm >= 14) { | |
2413 | trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); | |
2414 | value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); | |
2415 | } else { | |
2416 | trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); | |
2417 | value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); | |
2418 | } | |
2419 | } else { | |
2420 | trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); | |
2421 | } | |
2422 | ||
2423 | /* Enforce RES0 bits in priority field */ | |
2424 | if (cs->vpribits < 8) { | |
2425 | value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, | |
2426 | 8 - cs->vpribits, 0); | |
2427 | } | |
2428 | ||
2429 | cs->ich_lr_el2[regno] = value; | |
2430 | gicv3_cpuif_virt_update(cs); | |
2431 | } | |
2432 | ||
2433 | static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2434 | { | |
2435 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2436 | uint64_t value; | |
2437 | ||
2438 | value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) | |
2439 | | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V | |
2440 | | (1 << ICH_VTR_EL2_IDBITS_SHIFT) | |
2441 | | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) | |
2442 | | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); | |
2443 | ||
2444 | trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); | |
2445 | return value; | |
2446 | } | |
2447 | ||
2448 | static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2449 | { | |
2450 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2451 | uint64_t value = maintenance_interrupt_state(cs); | |
2452 | ||
2453 | trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); | |
2454 | return value; | |
2455 | } | |
2456 | ||
2457 | static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2458 | { | |
2459 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2460 | uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); | |
2461 | ||
2462 | trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); | |
2463 | return value; | |
2464 | } | |
2465 | ||
2466 | static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2467 | { | |
2468 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2469 | uint64_t value = 0; | |
2470 | int i; | |
2471 | ||
2472 | for (i = 0; i < cs->num_list_regs; i++) { | |
2473 | uint64_t lr = cs->ich_lr_el2[i]; | |
2474 | ||
2475 | if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && | |
d87576e3 | 2476 | ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { |
83f036fe PM |
2477 | value |= (1 << i); |
2478 | } | |
2479 | } | |
2480 | ||
2481 | trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); | |
2482 | return value; | |
2483 | } | |
2484 | ||
2485 | static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { | |
2486 | { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, | |
2487 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, | |
2488 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2489 | .access = PL2_RW, | |
2490 | .readfn = ich_ap_read, | |
2491 | .writefn = ich_ap_write, | |
2492 | }, | |
2493 | { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, | |
2494 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, | |
2495 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2496 | .access = PL2_RW, | |
2497 | .readfn = ich_ap_read, | |
2498 | .writefn = ich_ap_write, | |
2499 | }, | |
2500 | { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, | |
2501 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, | |
2502 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2503 | .access = PL2_RW, | |
2504 | .readfn = ich_hcr_read, | |
2505 | .writefn = ich_hcr_write, | |
2506 | }, | |
2507 | { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, | |
2508 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, | |
2509 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2510 | .access = PL2_R, | |
2511 | .readfn = ich_vtr_read, | |
2512 | }, | |
2513 | { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, | |
2514 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, | |
2515 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2516 | .access = PL2_R, | |
2517 | .readfn = ich_misr_read, | |
2518 | }, | |
2519 | { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, | |
2520 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, | |
2521 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2522 | .access = PL2_R, | |
2523 | .readfn = ich_eisr_read, | |
2524 | }, | |
2525 | { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, | |
2526 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, | |
2527 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2528 | .access = PL2_R, | |
2529 | .readfn = ich_elrsr_read, | |
2530 | }, | |
2531 | { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, | |
2532 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, | |
2533 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2534 | .access = PL2_RW, | |
2535 | .readfn = ich_vmcr_read, | |
2536 | .writefn = ich_vmcr_write, | |
2537 | }, | |
2538 | REGINFO_SENTINEL | |
2539 | }; | |
2540 | ||
2541 | static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { | |
2542 | { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, | |
2543 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, | |
2544 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2545 | .access = PL2_RW, | |
2546 | .readfn = ich_ap_read, | |
2547 | .writefn = ich_ap_write, | |
2548 | }, | |
2549 | { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, | |
2550 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, | |
2551 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2552 | .access = PL2_RW, | |
2553 | .readfn = ich_ap_read, | |
2554 | .writefn = ich_ap_write, | |
2555 | }, | |
2556 | REGINFO_SENTINEL | |
2557 | }; | |
2558 | ||
2559 | static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { | |
2560 | { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, | |
2561 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, | |
2562 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2563 | .access = PL2_RW, | |
2564 | .readfn = ich_ap_read, | |
2565 | .writefn = ich_ap_write, | |
2566 | }, | |
2567 | { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, | |
2568 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, | |
2569 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2570 | .access = PL2_RW, | |
2571 | .readfn = ich_ap_read, | |
2572 | .writefn = ich_ap_write, | |
2573 | }, | |
2574 | { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, | |
2575 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, | |
2576 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2577 | .access = PL2_RW, | |
2578 | .readfn = ich_ap_read, | |
2579 | .writefn = ich_ap_write, | |
2580 | }, | |
2581 | { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, | |
2582 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, | |
2583 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2584 | .access = PL2_RW, | |
2585 | .readfn = ich_ap_read, | |
2586 | .writefn = ich_ap_write, | |
2587 | }, | |
2588 | REGINFO_SENTINEL | |
2589 | }; | |
2590 | ||
359fbe65 PM |
2591 | static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) |
2592 | { | |
f7b9358e PM |
2593 | GICv3CPUState *cs = opaque; |
2594 | ||
2595 | gicv3_cpuif_update(cs); | |
359fbe65 PM |
2596 | } |
2597 | ||
2598 | void gicv3_init_cpuif(GICv3State *s) | |
2599 | { | |
2600 | /* Called from the GICv3 realize function; register our system | |
2601 | * registers with the CPU | |
2602 | */ | |
2603 | int i; | |
2604 | ||
2605 | for (i = 0; i < s->num_cpu; i++) { | |
2606 | ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); | |
2607 | GICv3CPUState *cs = &s->cpu[i]; | |
2608 | ||
2609 | /* Note that we can't just use the GICv3CPUState as an opaque pointer | |
2610 | * in define_arm_cp_regs_with_opaque(), because when we're called back | |
2611 | * it might be with code translated by CPU 0 but run by CPU 1, in | |
2612 | * which case we'd get the wrong value. | |
2613 | * So instead we define the regs with no ri->opaque info, and | |
d5a5e4c9 | 2614 | * get back to the GICv3CPUState from the CPUARMState. |
359fbe65 PM |
2615 | */ |
2616 | define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); | |
83f036fe PM |
2617 | if (arm_feature(&cpu->env, ARM_FEATURE_EL2) |
2618 | && cpu->gic_num_lrs) { | |
2619 | int j; | |
2620 | ||
c5fc89b3 PM |
2621 | cs->maintenance_irq = cpu->gicv3_maintenance_interrupt; |
2622 | ||
83f036fe PM |
2623 | cs->num_list_regs = cpu->gic_num_lrs; |
2624 | cs->vpribits = cpu->gic_vpribits; | |
2625 | cs->vprebits = cpu->gic_vprebits; | |
2626 | ||
2627 | /* Check against architectural constraints: getting these | |
2628 | * wrong would be a bug in the CPU code defining these, | |
2629 | * and the implementation relies on them holding. | |
2630 | */ | |
2631 | g_assert(cs->vprebits <= cs->vpribits); | |
2632 | g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); | |
2633 | g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); | |
2634 | ||
2635 | define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); | |
2636 | ||
2637 | for (j = 0; j < cs->num_list_regs; j++) { | |
2638 | /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs | |
2639 | * are split into two cp15 regs, LR (the low part, with the | |
2640 | * same encoding as the AArch64 LR) and LRC (the high part). | |
2641 | */ | |
2642 | ARMCPRegInfo lr_regset[] = { | |
2643 | { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, | |
2644 | .opc0 = 3, .opc1 = 4, .crn = 12, | |
2645 | .crm = 12 + (j >> 3), .opc2 = j & 7, | |
2646 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2647 | .access = PL2_RW, | |
2648 | .readfn = ich_lr_read, | |
2649 | .writefn = ich_lr_write, | |
2650 | }, | |
2651 | { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, | |
2652 | .cp = 15, .opc1 = 4, .crn = 12, | |
2653 | .crm = 14 + (j >> 3), .opc2 = j & 7, | |
2654 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2655 | .access = PL2_RW, | |
2656 | .readfn = ich_lr_read, | |
2657 | .writefn = ich_lr_write, | |
2658 | }, | |
2659 | REGINFO_SENTINEL | |
2660 | }; | |
2661 | define_arm_cp_regs(cpu, lr_regset); | |
2662 | } | |
2663 | if (cs->vprebits >= 6) { | |
2664 | define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); | |
2665 | } | |
2666 | if (cs->vprebits == 7) { | |
2667 | define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); | |
2668 | } | |
2669 | } | |
359fbe65 PM |
2670 | arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); |
2671 | } | |
2672 | } |