]>
Commit | Line | Data |
---|---|---|
359fbe65 PM |
1 | /* |
2 | * ARM Generic Interrupt Controller v3 | |
3 | * | |
4 | * Copyright (c) 2016 Linaro Limited | |
5 | * Written by Peter Maydell | |
6 | * | |
7 | * This code is licensed under the GPL, version 2 or (at your option) | |
8 | * any later version. | |
9 | */ | |
10 | ||
11 | /* This file contains the code for the system register interface | |
12 | * portions of the GICv3. | |
13 | */ | |
14 | ||
15 | #include "qemu/osdep.h" | |
77620ba6 | 16 | #include "qemu/bitops.h" |
359fbe65 PM |
17 | #include "trace.h" |
18 | #include "gicv3_internal.h" | |
19 | #include "cpu.h" | |
20 | ||
21 | static GICv3CPUState *icc_cs_from_env(CPUARMState *env) | |
22 | { | |
23 | /* Given the CPU, find the right GICv3CPUState struct. | |
24 | * Since we registered the CPU interface with the EL change hook as | |
25 | * the opaque pointer, we can just directly get from the CPU to it. | |
26 | */ | |
27 | return arm_get_el_change_hook_opaque(arm_env_get_cpu(env)); | |
28 | } | |
29 | ||
30 | static bool gicv3_use_ns_bank(CPUARMState *env) | |
31 | { | |
32 | /* Return true if we should use the NonSecure bank for a banked GIC | |
33 | * CPU interface register. Note that this differs from the | |
34 | * access_secure_reg() function because GICv3 banked registers are | |
35 | * banked even for AArch64, unlike the other CPU system registers. | |
36 | */ | |
37 | return !arm_is_secure_below_el3(env); | |
38 | } | |
39 | ||
4eb833b5 PM |
40 | /* The minimum BPR for the virtual interface is a configurable property */ |
41 | static inline int icv_min_vbpr(GICv3CPUState *cs) | |
42 | { | |
43 | return 7 - cs->vprebits; | |
44 | } | |
45 | ||
83f036fe | 46 | /* Simple accessor functions for LR fields */ |
df313f48 PM |
47 | static uint32_t ich_lr_vintid(uint64_t lr) |
48 | { | |
49 | return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); | |
50 | } | |
51 | ||
52 | static uint32_t ich_lr_pintid(uint64_t lr) | |
53 | { | |
54 | return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); | |
55 | } | |
56 | ||
57 | static uint32_t ich_lr_prio(uint64_t lr) | |
58 | { | |
59 | return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); | |
60 | } | |
61 | ||
83f036fe PM |
62 | static int ich_lr_state(uint64_t lr) |
63 | { | |
64 | return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); | |
65 | } | |
66 | ||
77620ba6 PM |
67 | static bool icv_access(CPUARMState *env, int hcr_flags) |
68 | { | |
69 | /* Return true if this ICC_ register access should really be | |
70 | * directed to an ICV_ access. hcr_flags is a mask of | |
71 | * HCR_EL2 bits to check: we treat this as an ICV_ access | |
72 | * if we are in NS EL1 and at least one of the specified | |
73 | * HCR_EL2 bits is set. | |
74 | * | |
75 | * ICV registers fall into four categories: | |
76 | * * access if NS EL1 and HCR_EL2.FMO == 1: | |
77 | * all ICV regs with '0' in their name | |
78 | * * access if NS EL1 and HCR_EL2.IMO == 1: | |
79 | * all ICV regs with '1' in their name | |
80 | * * access if NS EL1 and either IMO or FMO == 1: | |
81 | * CTLR, DIR, PMR, RPR | |
82 | */ | |
83 | return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1 | |
84 | && !arm_is_secure_below_el3(env); | |
85 | } | |
86 | ||
83f036fe PM |
87 | static int read_vbpr(GICv3CPUState *cs, int grp) |
88 | { | |
89 | /* Read VBPR value out of the VMCR field (caller must handle | |
90 | * VCBPR effects if required) | |
91 | */ | |
92 | if (grp == GICV3_G0) { | |
93 | return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, | |
94 | ICH_VMCR_EL2_VBPR0_LENGTH); | |
95 | } else { | |
96 | return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, | |
97 | ICH_VMCR_EL2_VBPR1_LENGTH); | |
98 | } | |
99 | } | |
100 | ||
101 | static void write_vbpr(GICv3CPUState *cs, int grp, int value) | |
102 | { | |
103 | /* Write new VBPR1 value, handling the "writing a value less than | |
104 | * the minimum sets it to the minimum" semantics. | |
105 | */ | |
106 | int min = icv_min_vbpr(cs); | |
107 | ||
108 | if (grp != GICV3_G0) { | |
109 | min++; | |
110 | } | |
111 | ||
112 | value = MAX(value, min); | |
113 | ||
114 | if (grp == GICV3_G0) { | |
115 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, | |
116 | ICH_VMCR_EL2_VBPR0_LENGTH, value); | |
117 | } else { | |
118 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, | |
119 | ICH_VMCR_EL2_VBPR1_LENGTH, value); | |
120 | } | |
121 | } | |
122 | ||
77620ba6 PM |
123 | static uint32_t icv_fullprio_mask(GICv3CPUState *cs) |
124 | { | |
125 | /* Return a mask word which clears the unimplemented priority bits | |
126 | * from a priority value for a virtual interrupt. (Not to be confused | |
127 | * with the group priority, whose mask depends on the value of VBPR | |
128 | * for the interrupt group.) | |
129 | */ | |
130 | return ~0U << (8 - cs->vpribits); | |
131 | } | |
132 | ||
df313f48 PM |
133 | static int ich_highest_active_virt_prio(GICv3CPUState *cs) |
134 | { | |
135 | /* Calculate the current running priority based on the set bits | |
136 | * in the ICH Active Priority Registers. | |
137 | */ | |
138 | int i; | |
139 | int aprmax = 1 << (cs->vprebits - 5); | |
140 | ||
141 | assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); | |
142 | ||
143 | for (i = 0; i < aprmax; i++) { | |
144 | uint32_t apr = cs->ich_apr[GICV3_G0][i] | | |
145 | cs->ich_apr[GICV3_G1NS][i]; | |
146 | ||
147 | if (!apr) { | |
148 | continue; | |
149 | } | |
150 | return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); | |
151 | } | |
152 | /* No current active interrupts: return idle priority */ | |
153 | return 0xff; | |
154 | } | |
155 | ||
156 | static int hppvi_index(GICv3CPUState *cs) | |
157 | { | |
158 | /* Return the list register index of the highest priority pending | |
159 | * virtual interrupt, as per the HighestPriorityVirtualInterrupt | |
160 | * pseudocode. If no pending virtual interrupts, return -1. | |
161 | */ | |
162 | int idx = -1; | |
163 | int i; | |
164 | /* Note that a list register entry with a priority of 0xff will | |
165 | * never be reported by this function; this is the architecturally | |
166 | * correct behaviour. | |
167 | */ | |
168 | int prio = 0xff; | |
169 | ||
170 | if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { | |
171 | /* Both groups disabled, definitely nothing to do */ | |
172 | return idx; | |
173 | } | |
174 | ||
175 | for (i = 0; i < cs->num_list_regs; i++) { | |
176 | uint64_t lr = cs->ich_lr_el2[i]; | |
177 | int thisprio; | |
178 | ||
179 | if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { | |
180 | /* Not Pending */ | |
181 | continue; | |
182 | } | |
183 | ||
184 | /* Ignore interrupts if relevant group enable not set */ | |
185 | if (lr & ICH_LR_EL2_GROUP) { | |
186 | if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | |
187 | continue; | |
188 | } | |
189 | } else { | |
190 | if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { | |
191 | continue; | |
192 | } | |
193 | } | |
194 | ||
195 | thisprio = ich_lr_prio(lr); | |
196 | ||
197 | if (thisprio < prio) { | |
198 | prio = thisprio; | |
199 | idx = i; | |
200 | } | |
201 | } | |
202 | ||
203 | return idx; | |
204 | } | |
205 | ||
83f036fe PM |
206 | static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, |
207 | uint32_t *misr) | |
208 | { | |
209 | /* Return a set of bits indicating the EOI maintenance interrupt status | |
210 | * for each list register. The EOI maintenance interrupt status is | |
211 | * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 | |
212 | * (see the GICv3 spec for the ICH_EISR_EL2 register). | |
213 | * If misr is not NULL then we should also collect the information | |
214 | * about the MISR.EOI, MISR.NP and MISR.U bits. | |
215 | */ | |
216 | uint32_t value = 0; | |
217 | int validcount = 0; | |
218 | bool seenpending = false; | |
219 | int i; | |
220 | ||
221 | for (i = 0; i < cs->num_list_regs; i++) { | |
222 | uint64_t lr = cs->ich_lr_el2[i]; | |
223 | ||
224 | if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) | |
225 | == ICH_LR_EL2_EOI) { | |
226 | value |= (1 << i); | |
227 | } | |
228 | if ((lr & ICH_LR_EL2_STATE_MASK)) { | |
229 | validcount++; | |
230 | } | |
231 | if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { | |
232 | seenpending = true; | |
233 | } | |
234 | } | |
235 | ||
236 | if (misr) { | |
237 | if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { | |
238 | *misr |= ICH_MISR_EL2_U; | |
239 | } | |
240 | if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { | |
241 | *misr |= ICH_MISR_EL2_NP; | |
242 | } | |
243 | if (value) { | |
244 | *misr |= ICH_MISR_EL2_EOI; | |
245 | } | |
246 | } | |
247 | return value; | |
248 | } | |
249 | ||
250 | static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) | |
251 | { | |
252 | /* Return a set of bits indicating the maintenance interrupt status | |
253 | * (as seen in the ICH_MISR_EL2 register). | |
254 | */ | |
255 | uint32_t value = 0; | |
256 | ||
257 | /* Scan list registers and fill in the U, NP and EOI bits */ | |
258 | eoi_maintenance_interrupt_state(cs, &value); | |
259 | ||
260 | if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) { | |
261 | value |= ICH_MISR_EL2_LRENP; | |
262 | } | |
263 | ||
264 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && | |
265 | (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { | |
266 | value |= ICH_MISR_EL2_VGRP0E; | |
267 | } | |
268 | ||
269 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && | |
270 | !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | |
271 | value |= ICH_MISR_EL2_VGRP0D; | |
272 | } | |
273 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && | |
274 | (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | |
275 | value |= ICH_MISR_EL2_VGRP1E; | |
276 | } | |
277 | ||
278 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && | |
279 | !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | |
280 | value |= ICH_MISR_EL2_VGRP1D; | |
281 | } | |
282 | ||
283 | return value; | |
284 | } | |
285 | ||
286 | static void gicv3_cpuif_virt_update(GICv3CPUState *cs) | |
287 | { | |
288 | } | |
289 | ||
77620ba6 PM |
290 | static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
291 | { | |
292 | GICv3CPUState *cs = icc_cs_from_env(env); | |
293 | int regno = ri->opc2 & 3; | |
294 | int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; | |
295 | uint64_t value = cs->ich_apr[grp][regno]; | |
296 | ||
297 | trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | |
298 | return value; | |
299 | } | |
300 | ||
301 | static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
302 | uint64_t value) | |
303 | { | |
304 | GICv3CPUState *cs = icc_cs_from_env(env); | |
305 | int regno = ri->opc2 & 3; | |
306 | int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; | |
307 | ||
308 | trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | |
309 | ||
310 | cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; | |
311 | ||
312 | gicv3_cpuif_virt_update(cs); | |
313 | return; | |
314 | } | |
315 | ||
316 | static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
317 | { | |
318 | GICv3CPUState *cs = icc_cs_from_env(env); | |
319 | int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; | |
320 | uint64_t bpr; | |
321 | bool satinc = false; | |
322 | ||
323 | if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { | |
324 | /* reads return bpr0 + 1 saturated to 7, writes ignored */ | |
325 | grp = GICV3_G0; | |
326 | satinc = true; | |
327 | } | |
328 | ||
329 | bpr = read_vbpr(cs, grp); | |
330 | ||
331 | if (satinc) { | |
332 | bpr++; | |
333 | bpr = MIN(bpr, 7); | |
334 | } | |
335 | ||
336 | trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); | |
337 | ||
338 | return bpr; | |
339 | } | |
340 | ||
341 | static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
342 | uint64_t value) | |
343 | { | |
344 | GICv3CPUState *cs = icc_cs_from_env(env); | |
345 | int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; | |
346 | ||
347 | trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, | |
348 | gicv3_redist_affid(cs), value); | |
349 | ||
350 | if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { | |
351 | /* reads return bpr0 + 1 saturated to 7, writes ignored */ | |
352 | return; | |
353 | } | |
354 | ||
355 | write_vbpr(cs, grp, value); | |
356 | ||
357 | gicv3_cpuif_virt_update(cs); | |
358 | } | |
359 | ||
360 | static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
361 | { | |
362 | GICv3CPUState *cs = icc_cs_from_env(env); | |
363 | uint64_t value; | |
364 | ||
365 | value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, | |
366 | ICH_VMCR_EL2_VPMR_LENGTH); | |
367 | ||
368 | trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); | |
369 | return value; | |
370 | } | |
371 | ||
372 | static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
373 | uint64_t value) | |
374 | { | |
375 | GICv3CPUState *cs = icc_cs_from_env(env); | |
376 | ||
377 | trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); | |
378 | ||
379 | value &= icv_fullprio_mask(cs); | |
380 | ||
381 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, | |
382 | ICH_VMCR_EL2_VPMR_LENGTH, value); | |
383 | ||
384 | gicv3_cpuif_virt_update(cs); | |
385 | } | |
386 | ||
387 | static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
388 | { | |
389 | GICv3CPUState *cs = icc_cs_from_env(env); | |
390 | int enbit; | |
391 | uint64_t value; | |
392 | ||
393 | enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; | |
394 | value = extract64(cs->ich_vmcr_el2, enbit, 1); | |
395 | ||
396 | trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, | |
397 | gicv3_redist_affid(cs), value); | |
398 | return value; | |
399 | } | |
400 | ||
401 | static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
402 | uint64_t value) | |
403 | { | |
404 | GICv3CPUState *cs = icc_cs_from_env(env); | |
405 | int enbit; | |
406 | ||
407 | trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, | |
408 | gicv3_redist_affid(cs), value); | |
409 | ||
410 | enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; | |
411 | ||
412 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); | |
413 | gicv3_cpuif_virt_update(cs); | |
414 | } | |
415 | ||
416 | static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
417 | { | |
418 | GICv3CPUState *cs = icc_cs_from_env(env); | |
419 | uint64_t value; | |
420 | ||
421 | /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) | |
422 | * should match the ones reported in ich_vtr_read(). | |
423 | */ | |
424 | value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | | |
425 | (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); | |
426 | ||
427 | if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { | |
428 | value |= ICC_CTLR_EL1_EOIMODE; | |
429 | } | |
430 | ||
431 | if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { | |
432 | value |= ICC_CTLR_EL1_CBPR; | |
433 | } | |
434 | ||
435 | trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); | |
436 | return value; | |
437 | } | |
438 | ||
439 | static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
440 | uint64_t value) | |
441 | { | |
442 | GICv3CPUState *cs = icc_cs_from_env(env); | |
443 | ||
444 | trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); | |
445 | ||
446 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, | |
447 | 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); | |
448 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, | |
449 | 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); | |
450 | ||
451 | gicv3_cpuif_virt_update(cs); | |
452 | } | |
453 | ||
df313f48 PM |
454 | static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
455 | { | |
456 | GICv3CPUState *cs = icc_cs_from_env(env); | |
457 | int prio = ich_highest_active_virt_prio(cs); | |
458 | ||
459 | trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); | |
460 | return prio; | |
461 | } | |
462 | ||
463 | static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
464 | { | |
465 | GICv3CPUState *cs = icc_cs_from_env(env); | |
466 | int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; | |
467 | int idx = hppvi_index(cs); | |
468 | uint64_t value = INTID_SPURIOUS; | |
469 | ||
470 | if (idx >= 0) { | |
471 | uint64_t lr = cs->ich_lr_el2[idx]; | |
472 | int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | |
473 | ||
474 | if (grp == thisgrp) { | |
475 | value = ich_lr_vintid(lr); | |
476 | } | |
477 | } | |
478 | ||
479 | trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value); | |
480 | return value; | |
481 | } | |
482 | ||
f7b9358e PM |
483 | static int icc_highest_active_prio(GICv3CPUState *cs) |
484 | { | |
485 | /* Calculate the current running priority based on the set bits | |
486 | * in the Active Priority Registers. | |
487 | */ | |
488 | int i; | |
489 | ||
490 | for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { | |
491 | uint32_t apr = cs->icc_apr[GICV3_G0][i] | | |
492 | cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; | |
493 | ||
494 | if (!apr) { | |
495 | continue; | |
496 | } | |
497 | return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1); | |
498 | } | |
499 | /* No current active interrupts: return idle priority */ | |
500 | return 0xff; | |
501 | } | |
502 | ||
503 | static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) | |
504 | { | |
505 | /* Return a mask word which clears the subpriority bits from | |
506 | * a priority value for an interrupt in the specified group. | |
507 | * This depends on the BPR value: | |
508 | * a BPR of 0 means the group priority bits are [7:1]; | |
509 | * a BPR of 1 means they are [7:2], and so on down to | |
510 | * a BPR of 7 meaning no group priority bits at all. | |
511 | * Which BPR to use depends on the group of the interrupt and | |
512 | * the current ICC_CTLR.CBPR settings. | |
513 | */ | |
514 | if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || | |
515 | (group == GICV3_G1NS && | |
516 | cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { | |
517 | group = GICV3_G0; | |
518 | } | |
519 | ||
520 | return ~0U << ((cs->icc_bpr[group] & 7) + 1); | |
521 | } | |
522 | ||
523 | static bool icc_no_enabled_hppi(GICv3CPUState *cs) | |
524 | { | |
525 | /* Return true if there is no pending interrupt, or the | |
526 | * highest priority pending interrupt is in a group which has been | |
527 | * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. | |
528 | */ | |
529 | return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); | |
530 | } | |
531 | ||
532 | static bool icc_hppi_can_preempt(GICv3CPUState *cs) | |
533 | { | |
534 | /* Return true if we have a pending interrupt of sufficient | |
535 | * priority to preempt. | |
536 | */ | |
537 | int rprio; | |
538 | uint32_t mask; | |
539 | ||
540 | if (icc_no_enabled_hppi(cs)) { | |
541 | return false; | |
542 | } | |
543 | ||
544 | if (cs->hppi.prio >= cs->icc_pmr_el1) { | |
545 | /* Priority mask masks this interrupt */ | |
546 | return false; | |
547 | } | |
548 | ||
549 | rprio = icc_highest_active_prio(cs); | |
550 | if (rprio == 0xff) { | |
551 | /* No currently running interrupt so we can preempt */ | |
552 | return true; | |
553 | } | |
554 | ||
555 | mask = icc_gprio_mask(cs, cs->hppi.grp); | |
556 | ||
557 | /* We only preempt a running interrupt if the pending interrupt's | |
558 | * group priority is sufficient (the subpriorities are not considered). | |
559 | */ | |
560 | if ((cs->hppi.prio & mask) < (rprio & mask)) { | |
561 | return true; | |
562 | } | |
563 | ||
564 | return false; | |
565 | } | |
566 | ||
567 | void gicv3_cpuif_update(GICv3CPUState *cs) | |
568 | { | |
569 | /* Tell the CPU about its highest priority pending interrupt */ | |
570 | int irqlevel = 0; | |
571 | int fiqlevel = 0; | |
572 | ARMCPU *cpu = ARM_CPU(cs->cpu); | |
573 | CPUARMState *env = &cpu->env; | |
574 | ||
575 | trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, | |
576 | cs->hppi.grp, cs->hppi.prio); | |
577 | ||
578 | if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { | |
579 | /* If a Security-enabled GIC sends a G1S interrupt to a | |
580 | * Security-disabled CPU, we must treat it as if it were G0. | |
581 | */ | |
582 | cs->hppi.grp = GICV3_G0; | |
583 | } | |
584 | ||
585 | if (icc_hppi_can_preempt(cs)) { | |
586 | /* We have an interrupt: should we signal it as IRQ or FIQ? | |
587 | * This is described in the GICv3 spec section 4.6.2. | |
588 | */ | |
589 | bool isfiq; | |
590 | ||
591 | switch (cs->hppi.grp) { | |
592 | case GICV3_G0: | |
593 | isfiq = true; | |
594 | break; | |
595 | case GICV3_G1: | |
596 | isfiq = (!arm_is_secure(env) || | |
597 | (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); | |
598 | break; | |
599 | case GICV3_G1NS: | |
600 | isfiq = arm_is_secure(env); | |
601 | break; | |
602 | default: | |
603 | g_assert_not_reached(); | |
604 | } | |
605 | ||
606 | if (isfiq) { | |
607 | fiqlevel = 1; | |
608 | } else { | |
609 | irqlevel = 1; | |
610 | } | |
611 | } | |
612 | ||
613 | trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); | |
614 | ||
615 | qemu_set_irq(cs->parent_fiq, fiqlevel); | |
616 | qemu_set_irq(cs->parent_irq, irqlevel); | |
617 | } | |
618 | ||
359fbe65 PM |
619 | static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
620 | { | |
621 | GICv3CPUState *cs = icc_cs_from_env(env); | |
622 | uint32_t value = cs->icc_pmr_el1; | |
623 | ||
77620ba6 PM |
624 | if (icv_access(env, HCR_FMO | HCR_IMO)) { |
625 | return icv_pmr_read(env, ri); | |
626 | } | |
627 | ||
359fbe65 PM |
628 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && |
629 | (env->cp15.scr_el3 & SCR_FIQ)) { | |
630 | /* NS access and Group 0 is inaccessible to NS: return the | |
631 | * NS view of the current priority | |
632 | */ | |
633 | if (value & 0x80) { | |
634 | /* Secure priorities not visible to NS */ | |
635 | value = 0; | |
636 | } else if (value != 0xff) { | |
637 | value = (value << 1) & 0xff; | |
638 | } | |
639 | } | |
640 | ||
641 | trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); | |
642 | ||
643 | return value; | |
644 | } | |
645 | ||
646 | static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
647 | uint64_t value) | |
648 | { | |
649 | GICv3CPUState *cs = icc_cs_from_env(env); | |
650 | ||
77620ba6 PM |
651 | if (icv_access(env, HCR_FMO | HCR_IMO)) { |
652 | return icv_pmr_write(env, ri, value); | |
653 | } | |
654 | ||
359fbe65 PM |
655 | trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); |
656 | ||
657 | value &= 0xff; | |
658 | ||
659 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && | |
660 | (env->cp15.scr_el3 & SCR_FIQ)) { | |
661 | /* NS access and Group 0 is inaccessible to NS: return the | |
662 | * NS view of the current priority | |
663 | */ | |
664 | if (!(cs->icc_pmr_el1 & 0x80)) { | |
665 | /* Current PMR in the secure range, don't allow NS to change it */ | |
666 | return; | |
667 | } | |
668 | value = (value >> 1) & 0x80; | |
669 | } | |
670 | cs->icc_pmr_el1 = value; | |
671 | gicv3_cpuif_update(cs); | |
672 | } | |
673 | ||
227a8653 PM |
674 | static void icc_activate_irq(GICv3CPUState *cs, int irq) |
675 | { | |
676 | /* Move the interrupt from the Pending state to Active, and update | |
677 | * the Active Priority Registers | |
678 | */ | |
679 | uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); | |
680 | int prio = cs->hppi.prio & mask; | |
681 | int aprbit = prio >> 1; | |
682 | int regno = aprbit / 32; | |
683 | int regbit = aprbit % 32; | |
684 | ||
685 | cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); | |
686 | ||
687 | if (irq < GIC_INTERNAL) { | |
688 | cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); | |
689 | cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); | |
690 | gicv3_redist_update(cs); | |
691 | } else { | |
692 | gicv3_gicd_active_set(cs->gic, irq); | |
693 | gicv3_gicd_pending_clear(cs->gic, irq); | |
694 | gicv3_update(cs->gic, irq, 1); | |
695 | } | |
696 | } | |
697 | ||
698 | static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) | |
699 | { | |
700 | /* Return the highest priority pending interrupt register value | |
701 | * for group 0. | |
702 | */ | |
703 | bool irq_is_secure; | |
704 | ||
705 | if (cs->hppi.prio == 0xff) { | |
706 | return INTID_SPURIOUS; | |
707 | } | |
708 | ||
709 | /* Check whether we can return the interrupt or if we should return | |
710 | * a special identifier, as per the CheckGroup0ForSpecialIdentifiers | |
711 | * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM | |
712 | * is always zero.) | |
713 | */ | |
714 | irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && | |
715 | (cs->hppi.grp != GICV3_G1NS)); | |
716 | ||
717 | if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { | |
718 | return INTID_SPURIOUS; | |
719 | } | |
720 | if (irq_is_secure && !arm_is_secure(env)) { | |
721 | /* Secure interrupts not visible to Nonsecure */ | |
722 | return INTID_SPURIOUS; | |
723 | } | |
724 | ||
725 | if (cs->hppi.grp != GICV3_G0) { | |
726 | /* Indicate to EL3 that there's a Group 1 interrupt for the other | |
727 | * state pending. | |
728 | */ | |
729 | return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; | |
730 | } | |
731 | ||
732 | return cs->hppi.irq; | |
733 | } | |
734 | ||
735 | static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) | |
736 | { | |
737 | /* Return the highest priority pending interrupt register value | |
738 | * for group 1. | |
739 | */ | |
740 | bool irq_is_secure; | |
741 | ||
742 | if (cs->hppi.prio == 0xff) { | |
743 | return INTID_SPURIOUS; | |
744 | } | |
745 | ||
746 | /* Check whether we can return the interrupt or if we should return | |
747 | * a special identifier, as per the CheckGroup1ForSpecialIdentifiers | |
748 | * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM | |
749 | * is always zero.) | |
750 | */ | |
751 | irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && | |
752 | (cs->hppi.grp != GICV3_G1NS)); | |
753 | ||
754 | if (cs->hppi.grp == GICV3_G0) { | |
755 | /* Group 0 interrupts not visible via HPPIR1 */ | |
756 | return INTID_SPURIOUS; | |
757 | } | |
758 | if (irq_is_secure) { | |
759 | if (!arm_is_secure(env)) { | |
760 | /* Secure interrupts not visible in Non-secure */ | |
761 | return INTID_SPURIOUS; | |
762 | } | |
763 | } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { | |
764 | /* Group 1 non-secure interrupts not visible in Secure EL1 */ | |
765 | return INTID_SPURIOUS; | |
766 | } | |
767 | ||
768 | return cs->hppi.irq; | |
769 | } | |
770 | ||
771 | static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
772 | { | |
773 | GICv3CPUState *cs = icc_cs_from_env(env); | |
774 | uint64_t intid; | |
775 | ||
776 | if (!icc_hppi_can_preempt(cs)) { | |
777 | intid = INTID_SPURIOUS; | |
778 | } else { | |
779 | intid = icc_hppir0_value(cs, env); | |
780 | } | |
781 | ||
782 | if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { | |
783 | icc_activate_irq(cs, intid); | |
784 | } | |
785 | ||
786 | trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); | |
787 | return intid; | |
788 | } | |
789 | ||
790 | static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
791 | { | |
792 | GICv3CPUState *cs = icc_cs_from_env(env); | |
793 | uint64_t intid; | |
794 | ||
795 | if (!icc_hppi_can_preempt(cs)) { | |
796 | intid = INTID_SPURIOUS; | |
797 | } else { | |
798 | intid = icc_hppir1_value(cs, env); | |
799 | } | |
800 | ||
801 | if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { | |
802 | icc_activate_irq(cs, intid); | |
803 | } | |
804 | ||
805 | trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); | |
806 | return intid; | |
807 | } | |
808 | ||
809 | static void icc_drop_prio(GICv3CPUState *cs, int grp) | |
810 | { | |
811 | /* Drop the priority of the currently active interrupt in | |
812 | * the specified group. | |
813 | * | |
814 | * Note that we can guarantee (because of the requirement to nest | |
815 | * ICC_IAR reads [which activate an interrupt and raise priority] | |
816 | * with ICC_EOIR writes [which drop the priority for the interrupt]) | |
817 | * that the interrupt we're being called for is the highest priority | |
818 | * active interrupt, meaning that it has the lowest set bit in the | |
819 | * APR registers. | |
820 | * | |
821 | * If the guest does not honour the ordering constraints then the | |
822 | * behaviour of the GIC is UNPREDICTABLE, which for us means that | |
823 | * the values of the APR registers might become incorrect and the | |
824 | * running priority will be wrong, so interrupts that should preempt | |
825 | * might not do so, and interrupts that should not preempt might do so. | |
826 | */ | |
827 | int i; | |
828 | ||
829 | for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) { | |
830 | uint64_t *papr = &cs->icc_apr[grp][i]; | |
831 | ||
832 | if (!*papr) { | |
833 | continue; | |
834 | } | |
835 | /* Clear the lowest set bit */ | |
836 | *papr &= *papr - 1; | |
837 | break; | |
838 | } | |
839 | ||
840 | /* running priority change means we need an update for this cpu i/f */ | |
841 | gicv3_cpuif_update(cs); | |
842 | } | |
843 | ||
844 | static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) | |
845 | { | |
846 | /* Return true if we should split priority drop and interrupt | |
847 | * deactivation, ie whether the relevant EOIMode bit is set. | |
848 | */ | |
849 | if (arm_is_el3_or_mon(env)) { | |
850 | return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; | |
851 | } | |
852 | if (arm_is_secure_below_el3(env)) { | |
853 | return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; | |
854 | } else { | |
855 | return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; | |
856 | } | |
857 | } | |
858 | ||
859 | static int icc_highest_active_group(GICv3CPUState *cs) | |
860 | { | |
861 | /* Return the group with the highest priority active interrupt. | |
862 | * We can do this by just comparing the APRs to see which one | |
863 | * has the lowest set bit. | |
864 | * (If more than one group is active at the same priority then | |
865 | * we're in UNPREDICTABLE territory.) | |
866 | */ | |
867 | int i; | |
868 | ||
869 | for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { | |
870 | int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); | |
871 | int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); | |
872 | int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); | |
873 | ||
874 | if (g1nsctz < g0ctz && g1nsctz < g1ctz) { | |
875 | return GICV3_G1NS; | |
876 | } | |
877 | if (g1ctz < g0ctz) { | |
878 | return GICV3_G1; | |
879 | } | |
880 | if (g0ctz < 32) { | |
881 | return GICV3_G0; | |
882 | } | |
883 | } | |
884 | /* No set active bits? UNPREDICTABLE; return -1 so the caller | |
885 | * ignores the spurious EOI attempt. | |
886 | */ | |
887 | return -1; | |
888 | } | |
889 | ||
890 | static void icc_deactivate_irq(GICv3CPUState *cs, int irq) | |
891 | { | |
892 | if (irq < GIC_INTERNAL) { | |
893 | cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); | |
894 | gicv3_redist_update(cs); | |
895 | } else { | |
896 | gicv3_gicd_active_clear(cs->gic, irq); | |
897 | gicv3_update(cs->gic, irq, 1); | |
898 | } | |
899 | } | |
900 | ||
df313f48 PM |
901 | static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) |
902 | { | |
903 | /* Return true if we should split priority drop and interrupt | |
904 | * deactivation, ie whether the virtual EOIMode bit is set. | |
905 | */ | |
906 | return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; | |
907 | } | |
908 | ||
909 | static int icv_find_active(GICv3CPUState *cs, int irq) | |
910 | { | |
911 | /* Given an interrupt number for an active interrupt, return the index | |
912 | * of the corresponding list register, or -1 if there is no match. | |
913 | * Corresponds to FindActiveVirtualInterrupt pseudocode. | |
914 | */ | |
915 | int i; | |
916 | ||
917 | for (i = 0; i < cs->num_list_regs; i++) { | |
918 | uint64_t lr = cs->ich_lr_el2[i]; | |
919 | ||
920 | if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { | |
921 | return i; | |
922 | } | |
923 | } | |
924 | ||
925 | return -1; | |
926 | } | |
927 | ||
928 | static void icv_deactivate_irq(GICv3CPUState *cs, int idx) | |
929 | { | |
930 | /* Deactivate the interrupt in the specified list register index */ | |
931 | uint64_t lr = cs->ich_lr_el2[idx]; | |
932 | ||
933 | if (lr & ICH_LR_EL2_HW) { | |
934 | /* Deactivate the associated physical interrupt */ | |
935 | int pirq = ich_lr_pintid(lr); | |
936 | ||
937 | if (pirq < INTID_SECURE) { | |
938 | icc_deactivate_irq(cs, pirq); | |
939 | } | |
940 | } | |
941 | ||
942 | /* Clear the 'active' part of the state, so ActivePending->Pending | |
943 | * and Active->Invalid. | |
944 | */ | |
945 | lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; | |
946 | cs->ich_lr_el2[idx] = lr; | |
947 | } | |
948 | ||
949 | static void icv_increment_eoicount(GICv3CPUState *cs) | |
950 | { | |
951 | /* Increment the EOICOUNT field in ICH_HCR_EL2 */ | |
952 | int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, | |
953 | ICH_HCR_EL2_EOICOUNT_LENGTH); | |
954 | ||
955 | cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, | |
956 | ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); | |
957 | } | |
958 | ||
959 | static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
960 | uint64_t value) | |
961 | { | |
962 | /* Deactivate interrupt */ | |
963 | GICv3CPUState *cs = icc_cs_from_env(env); | |
964 | int idx; | |
965 | int irq = value & 0xffffff; | |
966 | ||
967 | trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); | |
968 | ||
969 | if (irq >= cs->gic->num_irq) { | |
970 | /* Also catches special interrupt numbers and LPIs */ | |
971 | return; | |
972 | } | |
973 | ||
974 | if (!icv_eoi_split(env, cs)) { | |
975 | return; | |
976 | } | |
977 | ||
978 | idx = icv_find_active(cs, irq); | |
979 | ||
980 | if (idx < 0) { | |
981 | /* No list register matching this, so increment the EOI count | |
982 | * (might trigger a maintenance interrupt) | |
983 | */ | |
984 | icv_increment_eoicount(cs); | |
985 | } else { | |
986 | icv_deactivate_irq(cs, idx); | |
987 | } | |
988 | ||
989 | gicv3_cpuif_virt_update(cs); | |
990 | } | |
991 | ||
227a8653 PM |
992 | static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, |
993 | uint64_t value) | |
994 | { | |
995 | /* End of Interrupt */ | |
996 | GICv3CPUState *cs = icc_cs_from_env(env); | |
997 | int irq = value & 0xffffff; | |
998 | int grp; | |
999 | ||
081b1b98 PM |
1000 | trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1, |
1001 | gicv3_redist_affid(cs), value); | |
227a8653 PM |
1002 | |
1003 | if (ri->crm == 8) { | |
1004 | /* EOIR0 */ | |
1005 | grp = GICV3_G0; | |
1006 | } else { | |
1007 | /* EOIR1 */ | |
1008 | if (arm_is_secure(env)) { | |
1009 | grp = GICV3_G1; | |
1010 | } else { | |
1011 | grp = GICV3_G1NS; | |
1012 | } | |
1013 | } | |
1014 | ||
1015 | if (irq >= cs->gic->num_irq) { | |
1016 | /* This handles two cases: | |
1017 | * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] | |
1018 | * to the GICC_EOIR, the GIC ignores that write. | |
1019 | * 2. If software writes the number of a non-existent interrupt | |
1020 | * this must be a subcase of "value written does not match the last | |
1021 | * valid interrupt value read from the Interrupt Acknowledge | |
1022 | * register" and so this is UNPREDICTABLE. We choose to ignore it. | |
1023 | */ | |
1024 | return; | |
1025 | } | |
1026 | ||
1027 | if (icc_highest_active_group(cs) != grp) { | |
1028 | return; | |
1029 | } | |
1030 | ||
1031 | icc_drop_prio(cs, grp); | |
1032 | ||
1033 | if (!icc_eoi_split(env, cs)) { | |
1034 | /* Priority drop and deactivate not split: deactivate irq now */ | |
1035 | icc_deactivate_irq(cs, irq); | |
1036 | } | |
1037 | } | |
1038 | ||
1039 | static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1040 | { | |
1041 | GICv3CPUState *cs = icc_cs_from_env(env); | |
df313f48 PM |
1042 | uint64_t value; |
1043 | ||
1044 | if (icv_access(env, HCR_FMO)) { | |
1045 | return icv_hppir_read(env, ri); | |
1046 | } | |
227a8653 | 1047 | |
df313f48 | 1048 | value = icc_hppir0_value(cs, env); |
227a8653 PM |
1049 | trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); |
1050 | return value; | |
1051 | } | |
1052 | ||
1053 | static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1054 | { | |
1055 | GICv3CPUState *cs = icc_cs_from_env(env); | |
df313f48 PM |
1056 | uint64_t value; |
1057 | ||
1058 | if (icv_access(env, HCR_IMO)) { | |
1059 | return icv_hppir_read(env, ri); | |
1060 | } | |
227a8653 | 1061 | |
df313f48 | 1062 | value = icc_hppir1_value(cs, env); |
227a8653 PM |
1063 | trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); |
1064 | return value; | |
1065 | } | |
1066 | ||
359fbe65 PM |
1067 | static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1068 | { | |
1069 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1070 | int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; | |
1071 | bool satinc = false; | |
1072 | uint64_t bpr; | |
1073 | ||
77620ba6 PM |
1074 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1075 | return icv_bpr_read(env, ri); | |
1076 | } | |
1077 | ||
359fbe65 PM |
1078 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { |
1079 | grp = GICV3_G1NS; | |
1080 | } | |
1081 | ||
1082 | if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && | |
1083 | (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { | |
1084 | /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses | |
1085 | * modify BPR0 | |
1086 | */ | |
1087 | grp = GICV3_G0; | |
1088 | } | |
1089 | ||
1090 | if (grp == GICV3_G1NS && arm_current_el(env) < 3 && | |
1091 | (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { | |
1092 | /* reads return bpr0 + 1 sat to 7, writes ignored */ | |
1093 | grp = GICV3_G0; | |
1094 | satinc = true; | |
1095 | } | |
1096 | ||
1097 | bpr = cs->icc_bpr[grp]; | |
1098 | if (satinc) { | |
1099 | bpr++; | |
1100 | bpr = MIN(bpr, 7); | |
1101 | } | |
1102 | ||
081b1b98 | 1103 | trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); |
359fbe65 PM |
1104 | |
1105 | return bpr; | |
1106 | } | |
1107 | ||
1108 | static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1109 | uint64_t value) | |
1110 | { | |
1111 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1112 | int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; | |
1113 | ||
77620ba6 PM |
1114 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1115 | icv_bpr_write(env, ri, value); | |
1116 | return; | |
1117 | } | |
1118 | ||
081b1b98 PM |
1119 | trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, |
1120 | gicv3_redist_affid(cs), value); | |
359fbe65 PM |
1121 | |
1122 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | |
1123 | grp = GICV3_G1NS; | |
1124 | } | |
1125 | ||
1126 | if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && | |
1127 | (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { | |
1128 | /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses | |
1129 | * modify BPR0 | |
1130 | */ | |
1131 | grp = GICV3_G0; | |
1132 | } | |
1133 | ||
1134 | if (grp == GICV3_G1NS && arm_current_el(env) < 3 && | |
1135 | (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { | |
1136 | /* reads return bpr0 + 1 sat to 7, writes ignored */ | |
1137 | return; | |
1138 | } | |
1139 | ||
1140 | cs->icc_bpr[grp] = value & 7; | |
1141 | gicv3_cpuif_update(cs); | |
1142 | } | |
1143 | ||
1144 | static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1145 | { | |
1146 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1147 | uint64_t value; | |
1148 | ||
1149 | int regno = ri->opc2 & 3; | |
1150 | int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1; | |
1151 | ||
77620ba6 PM |
1152 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1153 | return icv_ap_read(env, ri); | |
1154 | } | |
1155 | ||
359fbe65 PM |
1156 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { |
1157 | grp = GICV3_G1NS; | |
1158 | } | |
1159 | ||
1160 | value = cs->icc_apr[grp][regno]; | |
1161 | ||
081b1b98 | 1162 | trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); |
359fbe65 PM |
1163 | return value; |
1164 | } | |
1165 | ||
1166 | static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1167 | uint64_t value) | |
1168 | { | |
1169 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1170 | ||
1171 | int regno = ri->opc2 & 3; | |
1172 | int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1; | |
1173 | ||
77620ba6 PM |
1174 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1175 | icv_ap_write(env, ri, value); | |
1176 | return; | |
1177 | } | |
1178 | ||
081b1b98 | 1179 | trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); |
359fbe65 PM |
1180 | |
1181 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | |
1182 | grp = GICV3_G1NS; | |
1183 | } | |
1184 | ||
1185 | /* It's not possible to claim that a Non-secure interrupt is active | |
1186 | * at a priority outside the Non-secure range (128..255), since this | |
1187 | * would otherwise allow malicious NS code to block delivery of S interrupts | |
1188 | * by writing a bad value to these registers. | |
1189 | */ | |
1190 | if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { | |
1191 | return; | |
1192 | } | |
1193 | ||
1194 | cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; | |
1195 | gicv3_cpuif_update(cs); | |
1196 | } | |
1197 | ||
227a8653 PM |
1198 | static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1199 | uint64_t value) | |
1200 | { | |
1201 | /* Deactivate interrupt */ | |
1202 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1203 | int irq = value & 0xffffff; | |
1204 | bool irq_is_secure, single_sec_state, irq_is_grp0; | |
1205 | bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; | |
1206 | ||
df313f48 PM |
1207 | if (icv_access(env, HCR_FMO | HCR_IMO)) { |
1208 | icv_dir_write(env, ri, value); | |
1209 | return; | |
1210 | } | |
1211 | ||
227a8653 PM |
1212 | trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); |
1213 | ||
1214 | if (irq >= cs->gic->num_irq) { | |
1215 | /* Also catches special interrupt numbers and LPIs */ | |
1216 | return; | |
1217 | } | |
1218 | ||
1219 | if (!icc_eoi_split(env, cs)) { | |
1220 | return; | |
1221 | } | |
1222 | ||
1223 | int grp = gicv3_irq_group(cs->gic, cs, irq); | |
1224 | ||
1225 | single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; | |
1226 | irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); | |
1227 | irq_is_grp0 = grp == GICV3_G0; | |
1228 | ||
1229 | /* Check whether we're allowed to deactivate this interrupt based | |
1230 | * on its group and the current CPU state. | |
1231 | * These checks are laid out to correspond to the spec's pseudocode. | |
1232 | */ | |
1233 | route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; | |
1234 | route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; | |
1235 | /* No need to include !IsSecure in route_*_to_el2 as it's only | |
1236 | * tested in cases where we know !IsSecure is true. | |
1237 | */ | |
1238 | route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO; | |
1239 | route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO; | |
1240 | ||
1241 | switch (arm_current_el(env)) { | |
1242 | case 3: | |
1243 | break; | |
1244 | case 2: | |
1245 | if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { | |
1246 | break; | |
1247 | } | |
1248 | if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { | |
1249 | break; | |
1250 | } | |
1251 | return; | |
1252 | case 1: | |
1253 | if (!arm_is_secure_below_el3(env)) { | |
1254 | if (single_sec_state && irq_is_grp0 && | |
1255 | !route_fiq_to_el3 && !route_fiq_to_el2) { | |
1256 | break; | |
1257 | } | |
1258 | if (!irq_is_secure && !irq_is_grp0 && | |
1259 | !route_irq_to_el3 && !route_irq_to_el2) { | |
1260 | break; | |
1261 | } | |
1262 | } else { | |
1263 | if (irq_is_grp0 && !route_fiq_to_el3) { | |
1264 | break; | |
1265 | } | |
1266 | if (!irq_is_grp0 && | |
1267 | (!irq_is_secure || !single_sec_state) && | |
1268 | !route_irq_to_el3) { | |
1269 | break; | |
1270 | } | |
1271 | } | |
1272 | return; | |
1273 | default: | |
1274 | g_assert_not_reached(); | |
1275 | } | |
1276 | ||
1277 | icc_deactivate_irq(cs, irq); | |
1278 | } | |
1279 | ||
1280 | static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1281 | { | |
1282 | GICv3CPUState *cs = icc_cs_from_env(env); | |
df313f48 PM |
1283 | int prio; |
1284 | ||
1285 | if (icv_access(env, HCR_FMO | HCR_IMO)) { | |
1286 | return icv_rpr_read(env, ri); | |
1287 | } | |
1288 | ||
1289 | prio = icc_highest_active_prio(cs); | |
227a8653 PM |
1290 | |
1291 | if (arm_feature(env, ARM_FEATURE_EL3) && | |
1292 | !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { | |
1293 | /* NS GIC access and Group 0 is inaccessible to NS */ | |
1294 | if (prio & 0x80) { | |
1295 | /* NS mustn't see priorities in the Secure half of the range */ | |
1296 | prio = 0; | |
1297 | } else if (prio != 0xff) { | |
1298 | /* Non-idle priority: show the Non-secure view of it */ | |
1299 | prio = (prio << 1) & 0xff; | |
1300 | } | |
1301 | } | |
1302 | ||
1303 | trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); | |
1304 | return prio; | |
1305 | } | |
1306 | ||
b1a0eb77 PM |
1307 | static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, |
1308 | uint64_t value, int grp, bool ns) | |
1309 | { | |
1310 | GICv3State *s = cs->gic; | |
1311 | ||
1312 | /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ | |
1313 | uint64_t aff = extract64(value, 48, 8) << 16 | | |
1314 | extract64(value, 32, 8) << 8 | | |
1315 | extract64(value, 16, 8); | |
1316 | uint32_t targetlist = extract64(value, 0, 16); | |
1317 | uint32_t irq = extract64(value, 24, 4); | |
1318 | bool irm = extract64(value, 40, 1); | |
1319 | int i; | |
1320 | ||
1321 | if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { | |
1322 | /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 | |
1323 | * interrupts as Group 0 interrupts and must send Secure Group 0 | |
1324 | * interrupts to the target CPUs. | |
1325 | */ | |
1326 | grp = GICV3_G0; | |
1327 | } | |
1328 | ||
1329 | trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, | |
1330 | aff, targetlist); | |
1331 | ||
1332 | for (i = 0; i < s->num_cpu; i++) { | |
1333 | GICv3CPUState *ocs = &s->cpu[i]; | |
1334 | ||
1335 | if (irm) { | |
1336 | /* IRM == 1 : route to all CPUs except self */ | |
1337 | if (cs == ocs) { | |
1338 | continue; | |
1339 | } | |
1340 | } else { | |
1341 | /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] | |
1342 | * where the corresponding bit is set in targetlist | |
1343 | */ | |
1344 | int aff0; | |
1345 | ||
1346 | if (ocs->gicr_typer >> 40 != aff) { | |
1347 | continue; | |
1348 | } | |
1349 | aff0 = extract64(ocs->gicr_typer, 32, 8); | |
1350 | if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { | |
1351 | continue; | |
1352 | } | |
1353 | } | |
1354 | ||
1355 | /* The redistributor will check against its own GICR_NSACR as needed */ | |
1356 | gicv3_redist_send_sgi(ocs, grp, irq, ns); | |
1357 | } | |
1358 | } | |
1359 | ||
1360 | static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1361 | uint64_t value) | |
1362 | { | |
1363 | /* Generate Secure Group 0 SGI. */ | |
1364 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1365 | bool ns = !arm_is_secure(env); | |
1366 | ||
1367 | icc_generate_sgi(env, cs, value, GICV3_G0, ns); | |
1368 | } | |
1369 | ||
1370 | static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1371 | uint64_t value) | |
1372 | { | |
1373 | /* Generate Group 1 SGI for the current Security state */ | |
1374 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1375 | int grp; | |
1376 | bool ns = !arm_is_secure(env); | |
1377 | ||
1378 | grp = ns ? GICV3_G1NS : GICV3_G1; | |
1379 | icc_generate_sgi(env, cs, value, grp, ns); | |
1380 | } | |
1381 | ||
1382 | static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1383 | uint64_t value) | |
1384 | { | |
1385 | /* Generate Group 1 SGI for the Security state that is not | |
1386 | * the current state | |
1387 | */ | |
1388 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1389 | int grp; | |
1390 | bool ns = !arm_is_secure(env); | |
1391 | ||
1392 | grp = ns ? GICV3_G1 : GICV3_G1NS; | |
1393 | icc_generate_sgi(env, cs, value, grp, ns); | |
1394 | } | |
1395 | ||
359fbe65 PM |
1396 | static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1397 | { | |
1398 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1399 | int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; | |
1400 | uint64_t value; | |
1401 | ||
77620ba6 PM |
1402 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1403 | return icv_igrpen_read(env, ri); | |
1404 | } | |
1405 | ||
359fbe65 PM |
1406 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { |
1407 | grp = GICV3_G1NS; | |
1408 | } | |
1409 | ||
1410 | value = cs->icc_igrpen[grp]; | |
081b1b98 PM |
1411 | trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, |
1412 | gicv3_redist_affid(cs), value); | |
359fbe65 PM |
1413 | return value; |
1414 | } | |
1415 | ||
1416 | static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1417 | uint64_t value) | |
1418 | { | |
1419 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1420 | int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; | |
1421 | ||
77620ba6 PM |
1422 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1423 | icv_igrpen_write(env, ri, value); | |
1424 | return; | |
1425 | } | |
1426 | ||
081b1b98 PM |
1427 | trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, |
1428 | gicv3_redist_affid(cs), value); | |
359fbe65 PM |
1429 | |
1430 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | |
1431 | grp = GICV3_G1NS; | |
1432 | } | |
1433 | ||
1434 | cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; | |
1435 | gicv3_cpuif_update(cs); | |
1436 | } | |
1437 | ||
1438 | static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1439 | { | |
1440 | GICv3CPUState *cs = icc_cs_from_env(env); | |
081b1b98 | 1441 | uint64_t value; |
359fbe65 PM |
1442 | |
1443 | /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ | |
081b1b98 PM |
1444 | value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); |
1445 | trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); | |
1446 | return value; | |
359fbe65 PM |
1447 | } |
1448 | ||
1449 | static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1450 | uint64_t value) | |
1451 | { | |
1452 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1453 | ||
1454 | trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); | |
1455 | ||
1456 | /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ | |
1457 | cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); | |
1458 | cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); | |
1459 | gicv3_cpuif_update(cs); | |
1460 | } | |
1461 | ||
1462 | static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1463 | { | |
1464 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1465 | int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; | |
1466 | uint64_t value; | |
1467 | ||
77620ba6 PM |
1468 | if (icv_access(env, HCR_FMO | HCR_IMO)) { |
1469 | return icv_ctlr_read(env, ri); | |
1470 | } | |
1471 | ||
359fbe65 PM |
1472 | value = cs->icc_ctlr_el1[bank]; |
1473 | trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); | |
1474 | return value; | |
1475 | } | |
1476 | ||
1477 | static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1478 | uint64_t value) | |
1479 | { | |
1480 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1481 | int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; | |
1482 | uint64_t mask; | |
1483 | ||
77620ba6 PM |
1484 | if (icv_access(env, HCR_FMO | HCR_IMO)) { |
1485 | icv_ctlr_write(env, ri, value); | |
1486 | return; | |
1487 | } | |
1488 | ||
359fbe65 PM |
1489 | trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); |
1490 | ||
1491 | /* Only CBPR and EOIMODE can be RW; | |
1492 | * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or | |
1493 | * the asseciated priority-based routing of them); | |
1494 | * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. | |
1495 | */ | |
1496 | if (arm_feature(env, ARM_FEATURE_EL3) && | |
1497 | ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { | |
1498 | mask = ICC_CTLR_EL1_EOIMODE; | |
1499 | } else { | |
1500 | mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; | |
1501 | } | |
1502 | ||
1503 | cs->icc_ctlr_el1[bank] &= ~mask; | |
1504 | cs->icc_ctlr_el1[bank] |= (value & mask); | |
1505 | gicv3_cpuif_update(cs); | |
1506 | } | |
1507 | ||
1508 | ||
1509 | static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1510 | { | |
1511 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1512 | uint64_t value; | |
1513 | ||
1514 | value = cs->icc_ctlr_el3; | |
1515 | if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { | |
1516 | value |= ICC_CTLR_EL3_EOIMODE_EL1NS; | |
1517 | } | |
1518 | if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { | |
1519 | value |= ICC_CTLR_EL3_CBPR_EL1NS; | |
1520 | } | |
1521 | if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { | |
1522 | value |= ICC_CTLR_EL3_EOIMODE_EL1S; | |
1523 | } | |
1524 | if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { | |
1525 | value |= ICC_CTLR_EL3_CBPR_EL1S; | |
1526 | } | |
1527 | ||
1528 | trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); | |
1529 | return value; | |
1530 | } | |
1531 | ||
1532 | static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1533 | uint64_t value) | |
1534 | { | |
1535 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1536 | uint64_t mask; | |
1537 | ||
1538 | trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); | |
1539 | ||
1540 | /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ | |
1541 | cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); | |
1542 | if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { | |
1543 | cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; | |
1544 | } | |
1545 | if (value & ICC_CTLR_EL3_CBPR_EL1NS) { | |
1546 | cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; | |
1547 | } | |
1548 | ||
1549 | cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); | |
1550 | if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { | |
1551 | cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; | |
1552 | } | |
1553 | if (value & ICC_CTLR_EL3_CBPR_EL1S) { | |
1554 | cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; | |
1555 | } | |
1556 | ||
1557 | /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */ | |
1558 | mask = ICC_CTLR_EL3_EOIMODE_EL3; | |
1559 | ||
1560 | cs->icc_ctlr_el3 &= ~mask; | |
1561 | cs->icc_ctlr_el3 |= (value & mask); | |
1562 | gicv3_cpuif_update(cs); | |
1563 | } | |
1564 | ||
1565 | static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, | |
1566 | const ARMCPRegInfo *ri, bool isread) | |
1567 | { | |
1568 | CPAccessResult r = CP_ACCESS_OK; | |
1569 | ||
1570 | if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { | |
1571 | switch (arm_current_el(env)) { | |
1572 | case 1: | |
1573 | if (arm_is_secure_below_el3(env) || | |
1574 | ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) { | |
1575 | r = CP_ACCESS_TRAP_EL3; | |
1576 | } | |
1577 | break; | |
1578 | case 2: | |
1579 | r = CP_ACCESS_TRAP_EL3; | |
1580 | break; | |
1581 | case 3: | |
1582 | if (!is_a64(env) && !arm_is_el3_or_mon(env)) { | |
1583 | r = CP_ACCESS_TRAP_EL3; | |
1584 | } | |
92b30c2f | 1585 | break; |
359fbe65 PM |
1586 | default: |
1587 | g_assert_not_reached(); | |
1588 | } | |
1589 | } | |
1590 | ||
1591 | if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { | |
1592 | r = CP_ACCESS_TRAP; | |
1593 | } | |
1594 | return r; | |
1595 | } | |
1596 | ||
1597 | static CPAccessResult gicv3_fiq_access(CPUARMState *env, | |
1598 | const ARMCPRegInfo *ri, bool isread) | |
1599 | { | |
1600 | CPAccessResult r = CP_ACCESS_OK; | |
1601 | ||
1602 | if (env->cp15.scr_el3 & SCR_FIQ) { | |
1603 | switch (arm_current_el(env)) { | |
1604 | case 1: | |
1605 | if (arm_is_secure_below_el3(env) || | |
1606 | ((env->cp15.hcr_el2 & HCR_FMO) == 0)) { | |
1607 | r = CP_ACCESS_TRAP_EL3; | |
1608 | } | |
1609 | break; | |
1610 | case 2: | |
1611 | r = CP_ACCESS_TRAP_EL3; | |
1612 | break; | |
1613 | case 3: | |
1614 | if (!is_a64(env) && !arm_is_el3_or_mon(env)) { | |
1615 | r = CP_ACCESS_TRAP_EL3; | |
1616 | } | |
92b30c2f | 1617 | break; |
359fbe65 PM |
1618 | default: |
1619 | g_assert_not_reached(); | |
1620 | } | |
1621 | } | |
1622 | ||
1623 | if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { | |
1624 | r = CP_ACCESS_TRAP; | |
1625 | } | |
1626 | return r; | |
1627 | } | |
1628 | ||
1629 | static CPAccessResult gicv3_irq_access(CPUARMState *env, | |
1630 | const ARMCPRegInfo *ri, bool isread) | |
1631 | { | |
1632 | CPAccessResult r = CP_ACCESS_OK; | |
1633 | ||
1634 | if (env->cp15.scr_el3 & SCR_IRQ) { | |
1635 | switch (arm_current_el(env)) { | |
1636 | case 1: | |
1637 | if (arm_is_secure_below_el3(env) || | |
1638 | ((env->cp15.hcr_el2 & HCR_IMO) == 0)) { | |
1639 | r = CP_ACCESS_TRAP_EL3; | |
1640 | } | |
1641 | break; | |
1642 | case 2: | |
1643 | r = CP_ACCESS_TRAP_EL3; | |
1644 | break; | |
1645 | case 3: | |
1646 | if (!is_a64(env) && !arm_is_el3_or_mon(env)) { | |
1647 | r = CP_ACCESS_TRAP_EL3; | |
1648 | } | |
1649 | break; | |
1650 | default: | |
1651 | g_assert_not_reached(); | |
1652 | } | |
1653 | } | |
1654 | ||
1655 | if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { | |
1656 | r = CP_ACCESS_TRAP; | |
1657 | } | |
1658 | return r; | |
1659 | } | |
1660 | ||
1661 | static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1662 | { | |
1663 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1664 | ||
1665 | cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | | |
1666 | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | | |
1667 | (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); | |
1668 | cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | | |
1669 | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | | |
1670 | (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); | |
1671 | cs->icc_pmr_el1 = 0; | |
1672 | cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR; | |
1673 | cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR; | |
1674 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1675 | cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS; | |
1676 | } else { | |
1677 | cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR; | |
1678 | } | |
1679 | memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); | |
1680 | memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); | |
1681 | cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | | |
1682 | (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | | |
1683 | (7 << ICC_CTLR_EL3_PRIBITS_SHIFT); | |
4eb833b5 PM |
1684 | |
1685 | memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); | |
1686 | cs->ich_hcr_el2 = 0; | |
1687 | memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); | |
1688 | cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | | |
1689 | (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR1_SHIFT) | | |
1690 | (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); | |
359fbe65 PM |
1691 | } |
1692 | ||
1693 | static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { | |
1694 | { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, | |
1695 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, | |
1696 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1697 | .access = PL1_RW, .accessfn = gicv3_irqfiq_access, | |
1698 | .readfn = icc_pmr_read, | |
1699 | .writefn = icc_pmr_write, | |
1700 | /* We hang the whole cpu interface reset routine off here | |
1701 | * rather than parcelling it out into one little function | |
1702 | * per register | |
1703 | */ | |
1704 | .resetfn = icc_reset, | |
1705 | }, | |
227a8653 PM |
1706 | { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, |
1707 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, | |
1708 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1709 | .access = PL1_R, .accessfn = gicv3_fiq_access, | |
1710 | .readfn = icc_iar0_read, | |
1711 | }, | |
1712 | { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, | |
1713 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, | |
1714 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1715 | .access = PL1_W, .accessfn = gicv3_fiq_access, | |
1716 | .writefn = icc_eoir_write, | |
1717 | }, | |
1718 | { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, | |
1719 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, | |
1720 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1721 | .access = PL1_R, .accessfn = gicv3_fiq_access, | |
1722 | .readfn = icc_hppir0_read, | |
1723 | }, | |
359fbe65 PM |
1724 | { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, |
1725 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, | |
1726 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1727 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 1728 | .readfn = icc_bpr_read, |
359fbe65 PM |
1729 | .writefn = icc_bpr_write, |
1730 | }, | |
1731 | { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, | |
1732 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, | |
1733 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1734 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 1735 | .readfn = icc_ap_read, |
359fbe65 PM |
1736 | .writefn = icc_ap_write, |
1737 | }, | |
1738 | { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, | |
1739 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, | |
1740 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1741 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 1742 | .readfn = icc_ap_read, |
359fbe65 PM |
1743 | .writefn = icc_ap_write, |
1744 | }, | |
1745 | { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, | |
1746 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, | |
1747 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1748 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 1749 | .readfn = icc_ap_read, |
359fbe65 PM |
1750 | .writefn = icc_ap_write, |
1751 | }, | |
1752 | { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, | |
1753 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, | |
1754 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1755 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 1756 | .readfn = icc_ap_read, |
359fbe65 PM |
1757 | .writefn = icc_ap_write, |
1758 | }, | |
1759 | /* All the ICC_AP1R*_EL1 registers are banked */ | |
1760 | { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, | |
1761 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, | |
1762 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1763 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
1764 | .readfn = icc_ap_read, | |
1765 | .writefn = icc_ap_write, | |
1766 | }, | |
1767 | { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, | |
1768 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, | |
1769 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1770 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
1771 | .readfn = icc_ap_read, | |
1772 | .writefn = icc_ap_write, | |
1773 | }, | |
1774 | { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, | |
1775 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, | |
1776 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1777 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
1778 | .readfn = icc_ap_read, | |
1779 | .writefn = icc_ap_write, | |
1780 | }, | |
1781 | { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, | |
1782 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, | |
1783 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1784 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
1785 | .readfn = icc_ap_read, | |
1786 | .writefn = icc_ap_write, | |
1787 | }, | |
227a8653 PM |
1788 | { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, |
1789 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, | |
1790 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1791 | .access = PL1_W, .accessfn = gicv3_irqfiq_access, | |
1792 | .writefn = icc_dir_write, | |
1793 | }, | |
1794 | { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, | |
1795 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, | |
1796 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1797 | .access = PL1_R, .accessfn = gicv3_irqfiq_access, | |
1798 | .readfn = icc_rpr_read, | |
1799 | }, | |
b1a0eb77 PM |
1800 | { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, |
1801 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, | |
1802 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1803 | .access = PL1_W, .accessfn = gicv3_irqfiq_access, | |
1804 | .writefn = icc_sgi1r_write, | |
1805 | }, | |
1806 | { .name = "ICC_SGI1R", | |
1807 | .cp = 15, .opc1 = 0, .crm = 12, | |
1808 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, | |
1809 | .access = PL1_W, .accessfn = gicv3_irqfiq_access, | |
1810 | .writefn = icc_sgi1r_write, | |
1811 | }, | |
1812 | { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, | |
1813 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, | |
1814 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1815 | .access = PL1_W, .accessfn = gicv3_irqfiq_access, | |
1816 | .writefn = icc_asgi1r_write, | |
1817 | }, | |
1818 | { .name = "ICC_ASGI1R", | |
1819 | .cp = 15, .opc1 = 1, .crm = 12, | |
1820 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, | |
1821 | .access = PL1_W, .accessfn = gicv3_irqfiq_access, | |
1822 | .writefn = icc_asgi1r_write, | |
1823 | }, | |
1824 | { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, | |
1825 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, | |
1826 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1827 | .access = PL1_W, .accessfn = gicv3_irqfiq_access, | |
1828 | .writefn = icc_sgi0r_write, | |
1829 | }, | |
1830 | { .name = "ICC_SGI0R", | |
1831 | .cp = 15, .opc1 = 2, .crm = 12, | |
1832 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, | |
1833 | .access = PL1_W, .accessfn = gicv3_irqfiq_access, | |
1834 | .writefn = icc_sgi0r_write, | |
1835 | }, | |
227a8653 PM |
1836 | { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, |
1837 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, | |
1838 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1839 | .access = PL1_R, .accessfn = gicv3_irq_access, | |
1840 | .readfn = icc_iar1_read, | |
1841 | }, | |
1842 | { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, | |
1843 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, | |
1844 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1845 | .access = PL1_W, .accessfn = gicv3_irq_access, | |
1846 | .writefn = icc_eoir_write, | |
1847 | }, | |
1848 | { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, | |
1849 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, | |
1850 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1851 | .access = PL1_R, .accessfn = gicv3_irq_access, | |
1852 | .readfn = icc_hppir1_read, | |
1853 | }, | |
359fbe65 PM |
1854 | /* This register is banked */ |
1855 | { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, | |
1856 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, | |
1857 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1858 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
1859 | .readfn = icc_bpr_read, | |
1860 | .writefn = icc_bpr_write, | |
1861 | }, | |
1862 | /* This register is banked */ | |
1863 | { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, | |
1864 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, | |
1865 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1866 | .access = PL1_RW, .accessfn = gicv3_irqfiq_access, | |
1867 | .readfn = icc_ctlr_el1_read, | |
1868 | .writefn = icc_ctlr_el1_write, | |
1869 | }, | |
1870 | { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, | |
1871 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, | |
1872 | .type = ARM_CP_NO_RAW | ARM_CP_CONST, | |
1873 | .access = PL1_RW, | |
1874 | /* We don't support IRQ/FIQ bypass and system registers are | |
1875 | * always enabled, so all our bits are RAZ/WI or RAO/WI. | |
1876 | * This register is banked but since it's constant we don't | |
1877 | * need to do anything special. | |
1878 | */ | |
1879 | .resetvalue = 0x7, | |
1880 | }, | |
1881 | { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, | |
1882 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, | |
1883 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1884 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 1885 | .readfn = icc_igrpen_read, |
359fbe65 PM |
1886 | .writefn = icc_igrpen_write, |
1887 | }, | |
1888 | /* This register is banked */ | |
1889 | { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, | |
1890 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, | |
1891 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1892 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
1893 | .readfn = icc_igrpen_read, | |
1894 | .writefn = icc_igrpen_write, | |
1895 | }, | |
1896 | { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, | |
1897 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, | |
1898 | .type = ARM_CP_NO_RAW | ARM_CP_CONST, | |
1899 | .access = PL2_RW, | |
1900 | /* We don't support IRQ/FIQ bypass and system registers are | |
1901 | * always enabled, so all our bits are RAZ/WI or RAO/WI. | |
1902 | */ | |
1903 | .resetvalue = 0xf, | |
1904 | }, | |
1905 | { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, | |
1906 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, | |
1907 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1908 | .access = PL3_RW, | |
359fbe65 PM |
1909 | .readfn = icc_ctlr_el3_read, |
1910 | .writefn = icc_ctlr_el3_write, | |
1911 | }, | |
1912 | { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, | |
1913 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, | |
1914 | .type = ARM_CP_NO_RAW | ARM_CP_CONST, | |
1915 | .access = PL3_RW, | |
1916 | /* We don't support IRQ/FIQ bypass and system registers are | |
1917 | * always enabled, so all our bits are RAZ/WI or RAO/WI. | |
1918 | */ | |
1919 | .resetvalue = 0xf, | |
1920 | }, | |
1921 | { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, | |
1922 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, | |
1923 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
1924 | .access = PL3_RW, | |
1925 | .readfn = icc_igrpen1_el3_read, | |
1926 | .writefn = icc_igrpen1_el3_write, | |
1927 | }, | |
1928 | REGINFO_SENTINEL | |
1929 | }; | |
1930 | ||
83f036fe PM |
1931 | static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1932 | { | |
1933 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1934 | int regno = ri->opc2 & 3; | |
1935 | int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; | |
1936 | uint64_t value; | |
1937 | ||
1938 | value = cs->ich_apr[grp][regno]; | |
1939 | trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | |
1940 | return value; | |
1941 | } | |
1942 | ||
1943 | static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1944 | uint64_t value) | |
1945 | { | |
1946 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1947 | int regno = ri->opc2 & 3; | |
1948 | int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; | |
1949 | ||
1950 | trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | |
1951 | ||
1952 | cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; | |
1953 | gicv3_cpuif_virt_update(cs); | |
1954 | } | |
1955 | ||
1956 | static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1957 | { | |
1958 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1959 | uint64_t value = cs->ich_hcr_el2; | |
1960 | ||
1961 | trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); | |
1962 | return value; | |
1963 | } | |
1964 | ||
1965 | static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1966 | uint64_t value) | |
1967 | { | |
1968 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1969 | ||
1970 | trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); | |
1971 | ||
1972 | value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | | |
1973 | ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | | |
1974 | ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | | |
1975 | ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | | |
1976 | ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; | |
1977 | ||
1978 | cs->ich_hcr_el2 = value; | |
1979 | gicv3_cpuif_virt_update(cs); | |
1980 | } | |
1981 | ||
1982 | static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1983 | { | |
1984 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1985 | uint64_t value = cs->ich_vmcr_el2; | |
1986 | ||
1987 | trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); | |
1988 | return value; | |
1989 | } | |
1990 | ||
1991 | static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1992 | uint64_t value) | |
1993 | { | |
1994 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1995 | ||
1996 | trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); | |
1997 | ||
1998 | value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | | |
1999 | ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | | |
2000 | ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; | |
2001 | value |= ICH_VMCR_EL2_VFIQEN; | |
2002 | ||
2003 | cs->ich_vmcr_el2 = value; | |
2004 | /* Enforce "writing BPRs to less than minimum sets them to the minimum" | |
2005 | * by reading and writing back the fields. | |
2006 | */ | |
2007 | write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0)); | |
2008 | write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); | |
2009 | ||
2010 | gicv3_cpuif_virt_update(cs); | |
2011 | } | |
2012 | ||
2013 | static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2014 | { | |
2015 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2016 | int regno = ri->opc2 | ((ri->crm & 1) << 3); | |
2017 | uint64_t value; | |
2018 | ||
2019 | /* This read function handles all of: | |
2020 | * 64-bit reads of the whole LR | |
2021 | * 32-bit reads of the low half of the LR | |
2022 | * 32-bit reads of the high half of the LR | |
2023 | */ | |
2024 | if (ri->state == ARM_CP_STATE_AA32) { | |
2025 | if (ri->crm >= 14) { | |
2026 | value = extract64(cs->ich_lr_el2[regno], 32, 32); | |
2027 | trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); | |
2028 | } else { | |
2029 | value = extract64(cs->ich_lr_el2[regno], 0, 32); | |
2030 | trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); | |
2031 | } | |
2032 | } else { | |
2033 | value = cs->ich_lr_el2[regno]; | |
2034 | trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); | |
2035 | } | |
2036 | ||
2037 | return value; | |
2038 | } | |
2039 | ||
2040 | static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2041 | uint64_t value) | |
2042 | { | |
2043 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2044 | int regno = ri->opc2 | ((ri->crm & 1) << 3); | |
2045 | ||
2046 | /* This write function handles all of: | |
2047 | * 64-bit writes to the whole LR | |
2048 | * 32-bit writes to the low half of the LR | |
2049 | * 32-bit writes to the high half of the LR | |
2050 | */ | |
2051 | if (ri->state == ARM_CP_STATE_AA32) { | |
2052 | if (ri->crm >= 14) { | |
2053 | trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); | |
2054 | value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); | |
2055 | } else { | |
2056 | trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); | |
2057 | value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); | |
2058 | } | |
2059 | } else { | |
2060 | trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); | |
2061 | } | |
2062 | ||
2063 | /* Enforce RES0 bits in priority field */ | |
2064 | if (cs->vpribits < 8) { | |
2065 | value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, | |
2066 | 8 - cs->vpribits, 0); | |
2067 | } | |
2068 | ||
2069 | cs->ich_lr_el2[regno] = value; | |
2070 | gicv3_cpuif_virt_update(cs); | |
2071 | } | |
2072 | ||
2073 | static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2074 | { | |
2075 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2076 | uint64_t value; | |
2077 | ||
2078 | value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) | |
2079 | | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V | |
2080 | | (1 << ICH_VTR_EL2_IDBITS_SHIFT) | |
2081 | | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) | |
2082 | | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); | |
2083 | ||
2084 | trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); | |
2085 | return value; | |
2086 | } | |
2087 | ||
2088 | static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2089 | { | |
2090 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2091 | uint64_t value = maintenance_interrupt_state(cs); | |
2092 | ||
2093 | trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); | |
2094 | return value; | |
2095 | } | |
2096 | ||
2097 | static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2098 | { | |
2099 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2100 | uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); | |
2101 | ||
2102 | trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); | |
2103 | return value; | |
2104 | } | |
2105 | ||
2106 | static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2107 | { | |
2108 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2109 | uint64_t value = 0; | |
2110 | int i; | |
2111 | ||
2112 | for (i = 0; i < cs->num_list_regs; i++) { | |
2113 | uint64_t lr = cs->ich_lr_el2[i]; | |
2114 | ||
2115 | if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && | |
2116 | ((lr & ICH_LR_EL2_HW) == 1 || (lr & ICH_LR_EL2_EOI) == 0)) { | |
2117 | value |= (1 << i); | |
2118 | } | |
2119 | } | |
2120 | ||
2121 | trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); | |
2122 | return value; | |
2123 | } | |
2124 | ||
2125 | static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { | |
2126 | { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, | |
2127 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, | |
2128 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2129 | .access = PL2_RW, | |
2130 | .readfn = ich_ap_read, | |
2131 | .writefn = ich_ap_write, | |
2132 | }, | |
2133 | { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, | |
2134 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, | |
2135 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2136 | .access = PL2_RW, | |
2137 | .readfn = ich_ap_read, | |
2138 | .writefn = ich_ap_write, | |
2139 | }, | |
2140 | { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, | |
2141 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, | |
2142 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2143 | .access = PL2_RW, | |
2144 | .readfn = ich_hcr_read, | |
2145 | .writefn = ich_hcr_write, | |
2146 | }, | |
2147 | { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, | |
2148 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, | |
2149 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2150 | .access = PL2_R, | |
2151 | .readfn = ich_vtr_read, | |
2152 | }, | |
2153 | { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, | |
2154 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, | |
2155 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2156 | .access = PL2_R, | |
2157 | .readfn = ich_misr_read, | |
2158 | }, | |
2159 | { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, | |
2160 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, | |
2161 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2162 | .access = PL2_R, | |
2163 | .readfn = ich_eisr_read, | |
2164 | }, | |
2165 | { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, | |
2166 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, | |
2167 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2168 | .access = PL2_R, | |
2169 | .readfn = ich_elrsr_read, | |
2170 | }, | |
2171 | { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, | |
2172 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, | |
2173 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2174 | .access = PL2_RW, | |
2175 | .readfn = ich_vmcr_read, | |
2176 | .writefn = ich_vmcr_write, | |
2177 | }, | |
2178 | REGINFO_SENTINEL | |
2179 | }; | |
2180 | ||
2181 | static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { | |
2182 | { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, | |
2183 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, | |
2184 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2185 | .access = PL2_RW, | |
2186 | .readfn = ich_ap_read, | |
2187 | .writefn = ich_ap_write, | |
2188 | }, | |
2189 | { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, | |
2190 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, | |
2191 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2192 | .access = PL2_RW, | |
2193 | .readfn = ich_ap_read, | |
2194 | .writefn = ich_ap_write, | |
2195 | }, | |
2196 | REGINFO_SENTINEL | |
2197 | }; | |
2198 | ||
2199 | static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { | |
2200 | { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, | |
2201 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, | |
2202 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2203 | .access = PL2_RW, | |
2204 | .readfn = ich_ap_read, | |
2205 | .writefn = ich_ap_write, | |
2206 | }, | |
2207 | { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, | |
2208 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, | |
2209 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2210 | .access = PL2_RW, | |
2211 | .readfn = ich_ap_read, | |
2212 | .writefn = ich_ap_write, | |
2213 | }, | |
2214 | { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, | |
2215 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, | |
2216 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2217 | .access = PL2_RW, | |
2218 | .readfn = ich_ap_read, | |
2219 | .writefn = ich_ap_write, | |
2220 | }, | |
2221 | { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, | |
2222 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, | |
2223 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2224 | .access = PL2_RW, | |
2225 | .readfn = ich_ap_read, | |
2226 | .writefn = ich_ap_write, | |
2227 | }, | |
2228 | REGINFO_SENTINEL | |
2229 | }; | |
2230 | ||
359fbe65 PM |
2231 | static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) |
2232 | { | |
f7b9358e PM |
2233 | GICv3CPUState *cs = opaque; |
2234 | ||
2235 | gicv3_cpuif_update(cs); | |
359fbe65 PM |
2236 | } |
2237 | ||
2238 | void gicv3_init_cpuif(GICv3State *s) | |
2239 | { | |
2240 | /* Called from the GICv3 realize function; register our system | |
2241 | * registers with the CPU | |
2242 | */ | |
2243 | int i; | |
2244 | ||
2245 | for (i = 0; i < s->num_cpu; i++) { | |
2246 | ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); | |
2247 | GICv3CPUState *cs = &s->cpu[i]; | |
2248 | ||
2249 | /* Note that we can't just use the GICv3CPUState as an opaque pointer | |
2250 | * in define_arm_cp_regs_with_opaque(), because when we're called back | |
2251 | * it might be with code translated by CPU 0 but run by CPU 1, in | |
2252 | * which case we'd get the wrong value. | |
2253 | * So instead we define the regs with no ri->opaque info, and | |
2254 | * get back to the GICv3CPUState from the ARMCPU by reading back | |
2255 | * the opaque pointer from the el_change_hook, which we're going | |
2256 | * to need to register anyway. | |
2257 | */ | |
2258 | define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); | |
83f036fe PM |
2259 | if (arm_feature(&cpu->env, ARM_FEATURE_EL2) |
2260 | && cpu->gic_num_lrs) { | |
2261 | int j; | |
2262 | ||
2263 | cs->num_list_regs = cpu->gic_num_lrs; | |
2264 | cs->vpribits = cpu->gic_vpribits; | |
2265 | cs->vprebits = cpu->gic_vprebits; | |
2266 | ||
2267 | /* Check against architectural constraints: getting these | |
2268 | * wrong would be a bug in the CPU code defining these, | |
2269 | * and the implementation relies on them holding. | |
2270 | */ | |
2271 | g_assert(cs->vprebits <= cs->vpribits); | |
2272 | g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); | |
2273 | g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); | |
2274 | ||
2275 | define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); | |
2276 | ||
2277 | for (j = 0; j < cs->num_list_regs; j++) { | |
2278 | /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs | |
2279 | * are split into two cp15 regs, LR (the low part, with the | |
2280 | * same encoding as the AArch64 LR) and LRC (the high part). | |
2281 | */ | |
2282 | ARMCPRegInfo lr_regset[] = { | |
2283 | { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, | |
2284 | .opc0 = 3, .opc1 = 4, .crn = 12, | |
2285 | .crm = 12 + (j >> 3), .opc2 = j & 7, | |
2286 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2287 | .access = PL2_RW, | |
2288 | .readfn = ich_lr_read, | |
2289 | .writefn = ich_lr_write, | |
2290 | }, | |
2291 | { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, | |
2292 | .cp = 15, .opc1 = 4, .crn = 12, | |
2293 | .crm = 14 + (j >> 3), .opc2 = j & 7, | |
2294 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2295 | .access = PL2_RW, | |
2296 | .readfn = ich_lr_read, | |
2297 | .writefn = ich_lr_write, | |
2298 | }, | |
2299 | REGINFO_SENTINEL | |
2300 | }; | |
2301 | define_arm_cp_regs(cpu, lr_regset); | |
2302 | } | |
2303 | if (cs->vprebits >= 6) { | |
2304 | define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); | |
2305 | } | |
2306 | if (cs->vprebits == 7) { | |
2307 | define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); | |
2308 | } | |
2309 | } | |
359fbe65 PM |
2310 | arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); |
2311 | } | |
2312 | } |