]> Git Repo - qemu.git/blame - hw/intc/arm_gicv3_cpuif.c
hw/intc/arm_gicv3: Implement ICV_ HPPIR, DIR and RPR registers
[qemu.git] / hw / intc / arm_gicv3_cpuif.c
CommitLineData
359fbe65
PM
1/*
2 * ARM Generic Interrupt Controller v3
3 *
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
6 *
7 * This code is licensed under the GPL, version 2 or (at your option)
8 * any later version.
9 */
10
11/* This file contains the code for the system register interface
12 * portions of the GICv3.
13 */
14
15#include "qemu/osdep.h"
77620ba6 16#include "qemu/bitops.h"
359fbe65
PM
17#include "trace.h"
18#include "gicv3_internal.h"
19#include "cpu.h"
20
21static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
22{
23 /* Given the CPU, find the right GICv3CPUState struct.
24 * Since we registered the CPU interface with the EL change hook as
25 * the opaque pointer, we can just directly get from the CPU to it.
26 */
27 return arm_get_el_change_hook_opaque(arm_env_get_cpu(env));
28}
29
30static bool gicv3_use_ns_bank(CPUARMState *env)
31{
32 /* Return true if we should use the NonSecure bank for a banked GIC
33 * CPU interface register. Note that this differs from the
34 * access_secure_reg() function because GICv3 banked registers are
35 * banked even for AArch64, unlike the other CPU system registers.
36 */
37 return !arm_is_secure_below_el3(env);
38}
39
4eb833b5
PM
40/* The minimum BPR for the virtual interface is a configurable property */
41static inline int icv_min_vbpr(GICv3CPUState *cs)
42{
43 return 7 - cs->vprebits;
44}
45
83f036fe 46/* Simple accessor functions for LR fields */
df313f48
PM
47static uint32_t ich_lr_vintid(uint64_t lr)
48{
49 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
50}
51
52static uint32_t ich_lr_pintid(uint64_t lr)
53{
54 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
55}
56
57static uint32_t ich_lr_prio(uint64_t lr)
58{
59 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
60}
61
83f036fe
PM
62static int ich_lr_state(uint64_t lr)
63{
64 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
65}
66
77620ba6
PM
67static bool icv_access(CPUARMState *env, int hcr_flags)
68{
69 /* Return true if this ICC_ register access should really be
70 * directed to an ICV_ access. hcr_flags is a mask of
71 * HCR_EL2 bits to check: we treat this as an ICV_ access
72 * if we are in NS EL1 and at least one of the specified
73 * HCR_EL2 bits is set.
74 *
75 * ICV registers fall into four categories:
76 * * access if NS EL1 and HCR_EL2.FMO == 1:
77 * all ICV regs with '0' in their name
78 * * access if NS EL1 and HCR_EL2.IMO == 1:
79 * all ICV regs with '1' in their name
80 * * access if NS EL1 and either IMO or FMO == 1:
81 * CTLR, DIR, PMR, RPR
82 */
83 return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1
84 && !arm_is_secure_below_el3(env);
85}
86
83f036fe
PM
87static int read_vbpr(GICv3CPUState *cs, int grp)
88{
89 /* Read VBPR value out of the VMCR field (caller must handle
90 * VCBPR effects if required)
91 */
92 if (grp == GICV3_G0) {
93 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
94 ICH_VMCR_EL2_VBPR0_LENGTH);
95 } else {
96 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
97 ICH_VMCR_EL2_VBPR1_LENGTH);
98 }
99}
100
101static void write_vbpr(GICv3CPUState *cs, int grp, int value)
102{
103 /* Write new VBPR1 value, handling the "writing a value less than
104 * the minimum sets it to the minimum" semantics.
105 */
106 int min = icv_min_vbpr(cs);
107
108 if (grp != GICV3_G0) {
109 min++;
110 }
111
112 value = MAX(value, min);
113
114 if (grp == GICV3_G0) {
115 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
116 ICH_VMCR_EL2_VBPR0_LENGTH, value);
117 } else {
118 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
119 ICH_VMCR_EL2_VBPR1_LENGTH, value);
120 }
121}
122
77620ba6
PM
123static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
124{
125 /* Return a mask word which clears the unimplemented priority bits
126 * from a priority value for a virtual interrupt. (Not to be confused
127 * with the group priority, whose mask depends on the value of VBPR
128 * for the interrupt group.)
129 */
130 return ~0U << (8 - cs->vpribits);
131}
132
df313f48
PM
133static int ich_highest_active_virt_prio(GICv3CPUState *cs)
134{
135 /* Calculate the current running priority based on the set bits
136 * in the ICH Active Priority Registers.
137 */
138 int i;
139 int aprmax = 1 << (cs->vprebits - 5);
140
141 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
142
143 for (i = 0; i < aprmax; i++) {
144 uint32_t apr = cs->ich_apr[GICV3_G0][i] |
145 cs->ich_apr[GICV3_G1NS][i];
146
147 if (!apr) {
148 continue;
149 }
150 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
151 }
152 /* No current active interrupts: return idle priority */
153 return 0xff;
154}
155
156static int hppvi_index(GICv3CPUState *cs)
157{
158 /* Return the list register index of the highest priority pending
159 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
160 * pseudocode. If no pending virtual interrupts, return -1.
161 */
162 int idx = -1;
163 int i;
164 /* Note that a list register entry with a priority of 0xff will
165 * never be reported by this function; this is the architecturally
166 * correct behaviour.
167 */
168 int prio = 0xff;
169
170 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
171 /* Both groups disabled, definitely nothing to do */
172 return idx;
173 }
174
175 for (i = 0; i < cs->num_list_regs; i++) {
176 uint64_t lr = cs->ich_lr_el2[i];
177 int thisprio;
178
179 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
180 /* Not Pending */
181 continue;
182 }
183
184 /* Ignore interrupts if relevant group enable not set */
185 if (lr & ICH_LR_EL2_GROUP) {
186 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
187 continue;
188 }
189 } else {
190 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
191 continue;
192 }
193 }
194
195 thisprio = ich_lr_prio(lr);
196
197 if (thisprio < prio) {
198 prio = thisprio;
199 idx = i;
200 }
201 }
202
203 return idx;
204}
205
83f036fe
PM
206static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
207 uint32_t *misr)
208{
209 /* Return a set of bits indicating the EOI maintenance interrupt status
210 * for each list register. The EOI maintenance interrupt status is
211 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
212 * (see the GICv3 spec for the ICH_EISR_EL2 register).
213 * If misr is not NULL then we should also collect the information
214 * about the MISR.EOI, MISR.NP and MISR.U bits.
215 */
216 uint32_t value = 0;
217 int validcount = 0;
218 bool seenpending = false;
219 int i;
220
221 for (i = 0; i < cs->num_list_regs; i++) {
222 uint64_t lr = cs->ich_lr_el2[i];
223
224 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
225 == ICH_LR_EL2_EOI) {
226 value |= (1 << i);
227 }
228 if ((lr & ICH_LR_EL2_STATE_MASK)) {
229 validcount++;
230 }
231 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
232 seenpending = true;
233 }
234 }
235
236 if (misr) {
237 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
238 *misr |= ICH_MISR_EL2_U;
239 }
240 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
241 *misr |= ICH_MISR_EL2_NP;
242 }
243 if (value) {
244 *misr |= ICH_MISR_EL2_EOI;
245 }
246 }
247 return value;
248}
249
250static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
251{
252 /* Return a set of bits indicating the maintenance interrupt status
253 * (as seen in the ICH_MISR_EL2 register).
254 */
255 uint32_t value = 0;
256
257 /* Scan list registers and fill in the U, NP and EOI bits */
258 eoi_maintenance_interrupt_state(cs, &value);
259
260 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
261 value |= ICH_MISR_EL2_LRENP;
262 }
263
264 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
265 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
266 value |= ICH_MISR_EL2_VGRP0E;
267 }
268
269 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
270 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
271 value |= ICH_MISR_EL2_VGRP0D;
272 }
273 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
274 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
275 value |= ICH_MISR_EL2_VGRP1E;
276 }
277
278 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
279 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
280 value |= ICH_MISR_EL2_VGRP1D;
281 }
282
283 return value;
284}
285
286static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
287{
288}
289
77620ba6
PM
290static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
291{
292 GICv3CPUState *cs = icc_cs_from_env(env);
293 int regno = ri->opc2 & 3;
294 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
295 uint64_t value = cs->ich_apr[grp][regno];
296
297 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
298 return value;
299}
300
301static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
302 uint64_t value)
303{
304 GICv3CPUState *cs = icc_cs_from_env(env);
305 int regno = ri->opc2 & 3;
306 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
307
308 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
309
310 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
311
312 gicv3_cpuif_virt_update(cs);
313 return;
314}
315
316static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
317{
318 GICv3CPUState *cs = icc_cs_from_env(env);
319 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
320 uint64_t bpr;
321 bool satinc = false;
322
323 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
324 /* reads return bpr0 + 1 saturated to 7, writes ignored */
325 grp = GICV3_G0;
326 satinc = true;
327 }
328
329 bpr = read_vbpr(cs, grp);
330
331 if (satinc) {
332 bpr++;
333 bpr = MIN(bpr, 7);
334 }
335
336 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
337
338 return bpr;
339}
340
341static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
342 uint64_t value)
343{
344 GICv3CPUState *cs = icc_cs_from_env(env);
345 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
346
347 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
348 gicv3_redist_affid(cs), value);
349
350 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
351 /* reads return bpr0 + 1 saturated to 7, writes ignored */
352 return;
353 }
354
355 write_vbpr(cs, grp, value);
356
357 gicv3_cpuif_virt_update(cs);
358}
359
360static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
361{
362 GICv3CPUState *cs = icc_cs_from_env(env);
363 uint64_t value;
364
365 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
366 ICH_VMCR_EL2_VPMR_LENGTH);
367
368 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
369 return value;
370}
371
372static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
373 uint64_t value)
374{
375 GICv3CPUState *cs = icc_cs_from_env(env);
376
377 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
378
379 value &= icv_fullprio_mask(cs);
380
381 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
382 ICH_VMCR_EL2_VPMR_LENGTH, value);
383
384 gicv3_cpuif_virt_update(cs);
385}
386
387static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
388{
389 GICv3CPUState *cs = icc_cs_from_env(env);
390 int enbit;
391 uint64_t value;
392
393 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
394 value = extract64(cs->ich_vmcr_el2, enbit, 1);
395
396 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
397 gicv3_redist_affid(cs), value);
398 return value;
399}
400
401static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
402 uint64_t value)
403{
404 GICv3CPUState *cs = icc_cs_from_env(env);
405 int enbit;
406
407 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
408 gicv3_redist_affid(cs), value);
409
410 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
411
412 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
413 gicv3_cpuif_virt_update(cs);
414}
415
416static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
417{
418 GICv3CPUState *cs = icc_cs_from_env(env);
419 uint64_t value;
420
421 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
422 * should match the ones reported in ich_vtr_read().
423 */
424 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
425 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
426
427 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
428 value |= ICC_CTLR_EL1_EOIMODE;
429 }
430
431 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
432 value |= ICC_CTLR_EL1_CBPR;
433 }
434
435 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
436 return value;
437}
438
439static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
440 uint64_t value)
441{
442 GICv3CPUState *cs = icc_cs_from_env(env);
443
444 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
445
446 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
447 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
448 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
449 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
450
451 gicv3_cpuif_virt_update(cs);
452}
453
df313f48
PM
454static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
455{
456 GICv3CPUState *cs = icc_cs_from_env(env);
457 int prio = ich_highest_active_virt_prio(cs);
458
459 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
460 return prio;
461}
462
463static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
464{
465 GICv3CPUState *cs = icc_cs_from_env(env);
466 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
467 int idx = hppvi_index(cs);
468 uint64_t value = INTID_SPURIOUS;
469
470 if (idx >= 0) {
471 uint64_t lr = cs->ich_lr_el2[idx];
472 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
473
474 if (grp == thisgrp) {
475 value = ich_lr_vintid(lr);
476 }
477 }
478
479 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
480 return value;
481}
482
f7b9358e
PM
483static int icc_highest_active_prio(GICv3CPUState *cs)
484{
485 /* Calculate the current running priority based on the set bits
486 * in the Active Priority Registers.
487 */
488 int i;
489
490 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
491 uint32_t apr = cs->icc_apr[GICV3_G0][i] |
492 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
493
494 if (!apr) {
495 continue;
496 }
497 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
498 }
499 /* No current active interrupts: return idle priority */
500 return 0xff;
501}
502
503static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
504{
505 /* Return a mask word which clears the subpriority bits from
506 * a priority value for an interrupt in the specified group.
507 * This depends on the BPR value:
508 * a BPR of 0 means the group priority bits are [7:1];
509 * a BPR of 1 means they are [7:2], and so on down to
510 * a BPR of 7 meaning no group priority bits at all.
511 * Which BPR to use depends on the group of the interrupt and
512 * the current ICC_CTLR.CBPR settings.
513 */
514 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
515 (group == GICV3_G1NS &&
516 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
517 group = GICV3_G0;
518 }
519
520 return ~0U << ((cs->icc_bpr[group] & 7) + 1);
521}
522
523static bool icc_no_enabled_hppi(GICv3CPUState *cs)
524{
525 /* Return true if there is no pending interrupt, or the
526 * highest priority pending interrupt is in a group which has been
527 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
528 */
529 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
530}
531
532static bool icc_hppi_can_preempt(GICv3CPUState *cs)
533{
534 /* Return true if we have a pending interrupt of sufficient
535 * priority to preempt.
536 */
537 int rprio;
538 uint32_t mask;
539
540 if (icc_no_enabled_hppi(cs)) {
541 return false;
542 }
543
544 if (cs->hppi.prio >= cs->icc_pmr_el1) {
545 /* Priority mask masks this interrupt */
546 return false;
547 }
548
549 rprio = icc_highest_active_prio(cs);
550 if (rprio == 0xff) {
551 /* No currently running interrupt so we can preempt */
552 return true;
553 }
554
555 mask = icc_gprio_mask(cs, cs->hppi.grp);
556
557 /* We only preempt a running interrupt if the pending interrupt's
558 * group priority is sufficient (the subpriorities are not considered).
559 */
560 if ((cs->hppi.prio & mask) < (rprio & mask)) {
561 return true;
562 }
563
564 return false;
565}
566
567void gicv3_cpuif_update(GICv3CPUState *cs)
568{
569 /* Tell the CPU about its highest priority pending interrupt */
570 int irqlevel = 0;
571 int fiqlevel = 0;
572 ARMCPU *cpu = ARM_CPU(cs->cpu);
573 CPUARMState *env = &cpu->env;
574
575 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
576 cs->hppi.grp, cs->hppi.prio);
577
578 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
579 /* If a Security-enabled GIC sends a G1S interrupt to a
580 * Security-disabled CPU, we must treat it as if it were G0.
581 */
582 cs->hppi.grp = GICV3_G0;
583 }
584
585 if (icc_hppi_can_preempt(cs)) {
586 /* We have an interrupt: should we signal it as IRQ or FIQ?
587 * This is described in the GICv3 spec section 4.6.2.
588 */
589 bool isfiq;
590
591 switch (cs->hppi.grp) {
592 case GICV3_G0:
593 isfiq = true;
594 break;
595 case GICV3_G1:
596 isfiq = (!arm_is_secure(env) ||
597 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
598 break;
599 case GICV3_G1NS:
600 isfiq = arm_is_secure(env);
601 break;
602 default:
603 g_assert_not_reached();
604 }
605
606 if (isfiq) {
607 fiqlevel = 1;
608 } else {
609 irqlevel = 1;
610 }
611 }
612
613 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
614
615 qemu_set_irq(cs->parent_fiq, fiqlevel);
616 qemu_set_irq(cs->parent_irq, irqlevel);
617}
618
359fbe65
PM
619static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
620{
621 GICv3CPUState *cs = icc_cs_from_env(env);
622 uint32_t value = cs->icc_pmr_el1;
623
77620ba6
PM
624 if (icv_access(env, HCR_FMO | HCR_IMO)) {
625 return icv_pmr_read(env, ri);
626 }
627
359fbe65
PM
628 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
629 (env->cp15.scr_el3 & SCR_FIQ)) {
630 /* NS access and Group 0 is inaccessible to NS: return the
631 * NS view of the current priority
632 */
633 if (value & 0x80) {
634 /* Secure priorities not visible to NS */
635 value = 0;
636 } else if (value != 0xff) {
637 value = (value << 1) & 0xff;
638 }
639 }
640
641 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
642
643 return value;
644}
645
646static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
647 uint64_t value)
648{
649 GICv3CPUState *cs = icc_cs_from_env(env);
650
77620ba6
PM
651 if (icv_access(env, HCR_FMO | HCR_IMO)) {
652 return icv_pmr_write(env, ri, value);
653 }
654
359fbe65
PM
655 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
656
657 value &= 0xff;
658
659 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
660 (env->cp15.scr_el3 & SCR_FIQ)) {
661 /* NS access and Group 0 is inaccessible to NS: return the
662 * NS view of the current priority
663 */
664 if (!(cs->icc_pmr_el1 & 0x80)) {
665 /* Current PMR in the secure range, don't allow NS to change it */
666 return;
667 }
668 value = (value >> 1) & 0x80;
669 }
670 cs->icc_pmr_el1 = value;
671 gicv3_cpuif_update(cs);
672}
673
227a8653
PM
674static void icc_activate_irq(GICv3CPUState *cs, int irq)
675{
676 /* Move the interrupt from the Pending state to Active, and update
677 * the Active Priority Registers
678 */
679 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
680 int prio = cs->hppi.prio & mask;
681 int aprbit = prio >> 1;
682 int regno = aprbit / 32;
683 int regbit = aprbit % 32;
684
685 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
686
687 if (irq < GIC_INTERNAL) {
688 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
689 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
690 gicv3_redist_update(cs);
691 } else {
692 gicv3_gicd_active_set(cs->gic, irq);
693 gicv3_gicd_pending_clear(cs->gic, irq);
694 gicv3_update(cs->gic, irq, 1);
695 }
696}
697
698static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
699{
700 /* Return the highest priority pending interrupt register value
701 * for group 0.
702 */
703 bool irq_is_secure;
704
705 if (cs->hppi.prio == 0xff) {
706 return INTID_SPURIOUS;
707 }
708
709 /* Check whether we can return the interrupt or if we should return
710 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
711 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
712 * is always zero.)
713 */
714 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
715 (cs->hppi.grp != GICV3_G1NS));
716
717 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
718 return INTID_SPURIOUS;
719 }
720 if (irq_is_secure && !arm_is_secure(env)) {
721 /* Secure interrupts not visible to Nonsecure */
722 return INTID_SPURIOUS;
723 }
724
725 if (cs->hppi.grp != GICV3_G0) {
726 /* Indicate to EL3 that there's a Group 1 interrupt for the other
727 * state pending.
728 */
729 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
730 }
731
732 return cs->hppi.irq;
733}
734
735static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
736{
737 /* Return the highest priority pending interrupt register value
738 * for group 1.
739 */
740 bool irq_is_secure;
741
742 if (cs->hppi.prio == 0xff) {
743 return INTID_SPURIOUS;
744 }
745
746 /* Check whether we can return the interrupt or if we should return
747 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
748 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
749 * is always zero.)
750 */
751 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
752 (cs->hppi.grp != GICV3_G1NS));
753
754 if (cs->hppi.grp == GICV3_G0) {
755 /* Group 0 interrupts not visible via HPPIR1 */
756 return INTID_SPURIOUS;
757 }
758 if (irq_is_secure) {
759 if (!arm_is_secure(env)) {
760 /* Secure interrupts not visible in Non-secure */
761 return INTID_SPURIOUS;
762 }
763 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
764 /* Group 1 non-secure interrupts not visible in Secure EL1 */
765 return INTID_SPURIOUS;
766 }
767
768 return cs->hppi.irq;
769}
770
771static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
772{
773 GICv3CPUState *cs = icc_cs_from_env(env);
774 uint64_t intid;
775
776 if (!icc_hppi_can_preempt(cs)) {
777 intid = INTID_SPURIOUS;
778 } else {
779 intid = icc_hppir0_value(cs, env);
780 }
781
782 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
783 icc_activate_irq(cs, intid);
784 }
785
786 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
787 return intid;
788}
789
790static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
791{
792 GICv3CPUState *cs = icc_cs_from_env(env);
793 uint64_t intid;
794
795 if (!icc_hppi_can_preempt(cs)) {
796 intid = INTID_SPURIOUS;
797 } else {
798 intid = icc_hppir1_value(cs, env);
799 }
800
801 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
802 icc_activate_irq(cs, intid);
803 }
804
805 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
806 return intid;
807}
808
809static void icc_drop_prio(GICv3CPUState *cs, int grp)
810{
811 /* Drop the priority of the currently active interrupt in
812 * the specified group.
813 *
814 * Note that we can guarantee (because of the requirement to nest
815 * ICC_IAR reads [which activate an interrupt and raise priority]
816 * with ICC_EOIR writes [which drop the priority for the interrupt])
817 * that the interrupt we're being called for is the highest priority
818 * active interrupt, meaning that it has the lowest set bit in the
819 * APR registers.
820 *
821 * If the guest does not honour the ordering constraints then the
822 * behaviour of the GIC is UNPREDICTABLE, which for us means that
823 * the values of the APR registers might become incorrect and the
824 * running priority will be wrong, so interrupts that should preempt
825 * might not do so, and interrupts that should not preempt might do so.
826 */
827 int i;
828
829 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
830 uint64_t *papr = &cs->icc_apr[grp][i];
831
832 if (!*papr) {
833 continue;
834 }
835 /* Clear the lowest set bit */
836 *papr &= *papr - 1;
837 break;
838 }
839
840 /* running priority change means we need an update for this cpu i/f */
841 gicv3_cpuif_update(cs);
842}
843
844static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
845{
846 /* Return true if we should split priority drop and interrupt
847 * deactivation, ie whether the relevant EOIMode bit is set.
848 */
849 if (arm_is_el3_or_mon(env)) {
850 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
851 }
852 if (arm_is_secure_below_el3(env)) {
853 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
854 } else {
855 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
856 }
857}
858
859static int icc_highest_active_group(GICv3CPUState *cs)
860{
861 /* Return the group with the highest priority active interrupt.
862 * We can do this by just comparing the APRs to see which one
863 * has the lowest set bit.
864 * (If more than one group is active at the same priority then
865 * we're in UNPREDICTABLE territory.)
866 */
867 int i;
868
869 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
870 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
871 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
872 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
873
874 if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
875 return GICV3_G1NS;
876 }
877 if (g1ctz < g0ctz) {
878 return GICV3_G1;
879 }
880 if (g0ctz < 32) {
881 return GICV3_G0;
882 }
883 }
884 /* No set active bits? UNPREDICTABLE; return -1 so the caller
885 * ignores the spurious EOI attempt.
886 */
887 return -1;
888}
889
890static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
891{
892 if (irq < GIC_INTERNAL) {
893 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
894 gicv3_redist_update(cs);
895 } else {
896 gicv3_gicd_active_clear(cs->gic, irq);
897 gicv3_update(cs->gic, irq, 1);
898 }
899}
900
df313f48
PM
901static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
902{
903 /* Return true if we should split priority drop and interrupt
904 * deactivation, ie whether the virtual EOIMode bit is set.
905 */
906 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
907}
908
909static int icv_find_active(GICv3CPUState *cs, int irq)
910{
911 /* Given an interrupt number for an active interrupt, return the index
912 * of the corresponding list register, or -1 if there is no match.
913 * Corresponds to FindActiveVirtualInterrupt pseudocode.
914 */
915 int i;
916
917 for (i = 0; i < cs->num_list_regs; i++) {
918 uint64_t lr = cs->ich_lr_el2[i];
919
920 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
921 return i;
922 }
923 }
924
925 return -1;
926}
927
928static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
929{
930 /* Deactivate the interrupt in the specified list register index */
931 uint64_t lr = cs->ich_lr_el2[idx];
932
933 if (lr & ICH_LR_EL2_HW) {
934 /* Deactivate the associated physical interrupt */
935 int pirq = ich_lr_pintid(lr);
936
937 if (pirq < INTID_SECURE) {
938 icc_deactivate_irq(cs, pirq);
939 }
940 }
941
942 /* Clear the 'active' part of the state, so ActivePending->Pending
943 * and Active->Invalid.
944 */
945 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
946 cs->ich_lr_el2[idx] = lr;
947}
948
949static void icv_increment_eoicount(GICv3CPUState *cs)
950{
951 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
952 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
953 ICH_HCR_EL2_EOICOUNT_LENGTH);
954
955 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
956 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
957}
958
959static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
960 uint64_t value)
961{
962 /* Deactivate interrupt */
963 GICv3CPUState *cs = icc_cs_from_env(env);
964 int idx;
965 int irq = value & 0xffffff;
966
967 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
968
969 if (irq >= cs->gic->num_irq) {
970 /* Also catches special interrupt numbers and LPIs */
971 return;
972 }
973
974 if (!icv_eoi_split(env, cs)) {
975 return;
976 }
977
978 idx = icv_find_active(cs, irq);
979
980 if (idx < 0) {
981 /* No list register matching this, so increment the EOI count
982 * (might trigger a maintenance interrupt)
983 */
984 icv_increment_eoicount(cs);
985 } else {
986 icv_deactivate_irq(cs, idx);
987 }
988
989 gicv3_cpuif_virt_update(cs);
990}
991
227a8653
PM
992static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
993 uint64_t value)
994{
995 /* End of Interrupt */
996 GICv3CPUState *cs = icc_cs_from_env(env);
997 int irq = value & 0xffffff;
998 int grp;
999
081b1b98
PM
1000 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
1001 gicv3_redist_affid(cs), value);
227a8653
PM
1002
1003 if (ri->crm == 8) {
1004 /* EOIR0 */
1005 grp = GICV3_G0;
1006 } else {
1007 /* EOIR1 */
1008 if (arm_is_secure(env)) {
1009 grp = GICV3_G1;
1010 } else {
1011 grp = GICV3_G1NS;
1012 }
1013 }
1014
1015 if (irq >= cs->gic->num_irq) {
1016 /* This handles two cases:
1017 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1018 * to the GICC_EOIR, the GIC ignores that write.
1019 * 2. If software writes the number of a non-existent interrupt
1020 * this must be a subcase of "value written does not match the last
1021 * valid interrupt value read from the Interrupt Acknowledge
1022 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1023 */
1024 return;
1025 }
1026
1027 if (icc_highest_active_group(cs) != grp) {
1028 return;
1029 }
1030
1031 icc_drop_prio(cs, grp);
1032
1033 if (!icc_eoi_split(env, cs)) {
1034 /* Priority drop and deactivate not split: deactivate irq now */
1035 icc_deactivate_irq(cs, irq);
1036 }
1037}
1038
1039static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1040{
1041 GICv3CPUState *cs = icc_cs_from_env(env);
df313f48
PM
1042 uint64_t value;
1043
1044 if (icv_access(env, HCR_FMO)) {
1045 return icv_hppir_read(env, ri);
1046 }
227a8653 1047
df313f48 1048 value = icc_hppir0_value(cs, env);
227a8653
PM
1049 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1050 return value;
1051}
1052
1053static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1054{
1055 GICv3CPUState *cs = icc_cs_from_env(env);
df313f48
PM
1056 uint64_t value;
1057
1058 if (icv_access(env, HCR_IMO)) {
1059 return icv_hppir_read(env, ri);
1060 }
227a8653 1061
df313f48 1062 value = icc_hppir1_value(cs, env);
227a8653
PM
1063 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1064 return value;
1065}
1066
359fbe65
PM
1067static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1068{
1069 GICv3CPUState *cs = icc_cs_from_env(env);
1070 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1071 bool satinc = false;
1072 uint64_t bpr;
1073
77620ba6
PM
1074 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1075 return icv_bpr_read(env, ri);
1076 }
1077
359fbe65
PM
1078 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1079 grp = GICV3_G1NS;
1080 }
1081
1082 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1083 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1084 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1085 * modify BPR0
1086 */
1087 grp = GICV3_G0;
1088 }
1089
1090 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1091 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1092 /* reads return bpr0 + 1 sat to 7, writes ignored */
1093 grp = GICV3_G0;
1094 satinc = true;
1095 }
1096
1097 bpr = cs->icc_bpr[grp];
1098 if (satinc) {
1099 bpr++;
1100 bpr = MIN(bpr, 7);
1101 }
1102
081b1b98 1103 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
359fbe65
PM
1104
1105 return bpr;
1106}
1107
1108static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1109 uint64_t value)
1110{
1111 GICv3CPUState *cs = icc_cs_from_env(env);
1112 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1113
77620ba6
PM
1114 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1115 icv_bpr_write(env, ri, value);
1116 return;
1117 }
1118
081b1b98
PM
1119 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1120 gicv3_redist_affid(cs), value);
359fbe65
PM
1121
1122 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1123 grp = GICV3_G1NS;
1124 }
1125
1126 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1127 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1128 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1129 * modify BPR0
1130 */
1131 grp = GICV3_G0;
1132 }
1133
1134 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1135 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1136 /* reads return bpr0 + 1 sat to 7, writes ignored */
1137 return;
1138 }
1139
1140 cs->icc_bpr[grp] = value & 7;
1141 gicv3_cpuif_update(cs);
1142}
1143
1144static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1145{
1146 GICv3CPUState *cs = icc_cs_from_env(env);
1147 uint64_t value;
1148
1149 int regno = ri->opc2 & 3;
1150 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
1151
77620ba6
PM
1152 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1153 return icv_ap_read(env, ri);
1154 }
1155
359fbe65
PM
1156 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1157 grp = GICV3_G1NS;
1158 }
1159
1160 value = cs->icc_apr[grp][regno];
1161
081b1b98 1162 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
359fbe65
PM
1163 return value;
1164}
1165
1166static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1167 uint64_t value)
1168{
1169 GICv3CPUState *cs = icc_cs_from_env(env);
1170
1171 int regno = ri->opc2 & 3;
1172 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
1173
77620ba6
PM
1174 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1175 icv_ap_write(env, ri, value);
1176 return;
1177 }
1178
081b1b98 1179 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
359fbe65
PM
1180
1181 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1182 grp = GICV3_G1NS;
1183 }
1184
1185 /* It's not possible to claim that a Non-secure interrupt is active
1186 * at a priority outside the Non-secure range (128..255), since this
1187 * would otherwise allow malicious NS code to block delivery of S interrupts
1188 * by writing a bad value to these registers.
1189 */
1190 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1191 return;
1192 }
1193
1194 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1195 gicv3_cpuif_update(cs);
1196}
1197
227a8653
PM
1198static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1199 uint64_t value)
1200{
1201 /* Deactivate interrupt */
1202 GICv3CPUState *cs = icc_cs_from_env(env);
1203 int irq = value & 0xffffff;
1204 bool irq_is_secure, single_sec_state, irq_is_grp0;
1205 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1206
df313f48
PM
1207 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1208 icv_dir_write(env, ri, value);
1209 return;
1210 }
1211
227a8653
PM
1212 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1213
1214 if (irq >= cs->gic->num_irq) {
1215 /* Also catches special interrupt numbers and LPIs */
1216 return;
1217 }
1218
1219 if (!icc_eoi_split(env, cs)) {
1220 return;
1221 }
1222
1223 int grp = gicv3_irq_group(cs->gic, cs, irq);
1224
1225 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1226 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1227 irq_is_grp0 = grp == GICV3_G0;
1228
1229 /* Check whether we're allowed to deactivate this interrupt based
1230 * on its group and the current CPU state.
1231 * These checks are laid out to correspond to the spec's pseudocode.
1232 */
1233 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1234 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1235 /* No need to include !IsSecure in route_*_to_el2 as it's only
1236 * tested in cases where we know !IsSecure is true.
1237 */
1238 route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
1239 route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
1240
1241 switch (arm_current_el(env)) {
1242 case 3:
1243 break;
1244 case 2:
1245 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1246 break;
1247 }
1248 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1249 break;
1250 }
1251 return;
1252 case 1:
1253 if (!arm_is_secure_below_el3(env)) {
1254 if (single_sec_state && irq_is_grp0 &&
1255 !route_fiq_to_el3 && !route_fiq_to_el2) {
1256 break;
1257 }
1258 if (!irq_is_secure && !irq_is_grp0 &&
1259 !route_irq_to_el3 && !route_irq_to_el2) {
1260 break;
1261 }
1262 } else {
1263 if (irq_is_grp0 && !route_fiq_to_el3) {
1264 break;
1265 }
1266 if (!irq_is_grp0 &&
1267 (!irq_is_secure || !single_sec_state) &&
1268 !route_irq_to_el3) {
1269 break;
1270 }
1271 }
1272 return;
1273 default:
1274 g_assert_not_reached();
1275 }
1276
1277 icc_deactivate_irq(cs, irq);
1278}
1279
1280static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1281{
1282 GICv3CPUState *cs = icc_cs_from_env(env);
df313f48
PM
1283 int prio;
1284
1285 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1286 return icv_rpr_read(env, ri);
1287 }
1288
1289 prio = icc_highest_active_prio(cs);
227a8653
PM
1290
1291 if (arm_feature(env, ARM_FEATURE_EL3) &&
1292 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1293 /* NS GIC access and Group 0 is inaccessible to NS */
1294 if (prio & 0x80) {
1295 /* NS mustn't see priorities in the Secure half of the range */
1296 prio = 0;
1297 } else if (prio != 0xff) {
1298 /* Non-idle priority: show the Non-secure view of it */
1299 prio = (prio << 1) & 0xff;
1300 }
1301 }
1302
1303 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1304 return prio;
1305}
1306
b1a0eb77
PM
1307static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1308 uint64_t value, int grp, bool ns)
1309{
1310 GICv3State *s = cs->gic;
1311
1312 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1313 uint64_t aff = extract64(value, 48, 8) << 16 |
1314 extract64(value, 32, 8) << 8 |
1315 extract64(value, 16, 8);
1316 uint32_t targetlist = extract64(value, 0, 16);
1317 uint32_t irq = extract64(value, 24, 4);
1318 bool irm = extract64(value, 40, 1);
1319 int i;
1320
1321 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1322 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1323 * interrupts as Group 0 interrupts and must send Secure Group 0
1324 * interrupts to the target CPUs.
1325 */
1326 grp = GICV3_G0;
1327 }
1328
1329 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1330 aff, targetlist);
1331
1332 for (i = 0; i < s->num_cpu; i++) {
1333 GICv3CPUState *ocs = &s->cpu[i];
1334
1335 if (irm) {
1336 /* IRM == 1 : route to all CPUs except self */
1337 if (cs == ocs) {
1338 continue;
1339 }
1340 } else {
1341 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1342 * where the corresponding bit is set in targetlist
1343 */
1344 int aff0;
1345
1346 if (ocs->gicr_typer >> 40 != aff) {
1347 continue;
1348 }
1349 aff0 = extract64(ocs->gicr_typer, 32, 8);
1350 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1351 continue;
1352 }
1353 }
1354
1355 /* The redistributor will check against its own GICR_NSACR as needed */
1356 gicv3_redist_send_sgi(ocs, grp, irq, ns);
1357 }
1358}
1359
1360static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1361 uint64_t value)
1362{
1363 /* Generate Secure Group 0 SGI. */
1364 GICv3CPUState *cs = icc_cs_from_env(env);
1365 bool ns = !arm_is_secure(env);
1366
1367 icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1368}
1369
1370static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1371 uint64_t value)
1372{
1373 /* Generate Group 1 SGI for the current Security state */
1374 GICv3CPUState *cs = icc_cs_from_env(env);
1375 int grp;
1376 bool ns = !arm_is_secure(env);
1377
1378 grp = ns ? GICV3_G1NS : GICV3_G1;
1379 icc_generate_sgi(env, cs, value, grp, ns);
1380}
1381
1382static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1383 uint64_t value)
1384{
1385 /* Generate Group 1 SGI for the Security state that is not
1386 * the current state
1387 */
1388 GICv3CPUState *cs = icc_cs_from_env(env);
1389 int grp;
1390 bool ns = !arm_is_secure(env);
1391
1392 grp = ns ? GICV3_G1 : GICV3_G1NS;
1393 icc_generate_sgi(env, cs, value, grp, ns);
1394}
1395
359fbe65
PM
1396static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1397{
1398 GICv3CPUState *cs = icc_cs_from_env(env);
1399 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1400 uint64_t value;
1401
77620ba6
PM
1402 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1403 return icv_igrpen_read(env, ri);
1404 }
1405
359fbe65
PM
1406 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1407 grp = GICV3_G1NS;
1408 }
1409
1410 value = cs->icc_igrpen[grp];
081b1b98
PM
1411 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1412 gicv3_redist_affid(cs), value);
359fbe65
PM
1413 return value;
1414}
1415
1416static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1417 uint64_t value)
1418{
1419 GICv3CPUState *cs = icc_cs_from_env(env);
1420 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1421
77620ba6
PM
1422 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1423 icv_igrpen_write(env, ri, value);
1424 return;
1425 }
1426
081b1b98
PM
1427 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1428 gicv3_redist_affid(cs), value);
359fbe65
PM
1429
1430 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1431 grp = GICV3_G1NS;
1432 }
1433
1434 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1435 gicv3_cpuif_update(cs);
1436}
1437
1438static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1439{
1440 GICv3CPUState *cs = icc_cs_from_env(env);
081b1b98 1441 uint64_t value;
359fbe65
PM
1442
1443 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
081b1b98
PM
1444 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1445 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1446 return value;
359fbe65
PM
1447}
1448
1449static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1450 uint64_t value)
1451{
1452 GICv3CPUState *cs = icc_cs_from_env(env);
1453
1454 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1455
1456 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1457 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1458 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1459 gicv3_cpuif_update(cs);
1460}
1461
1462static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1463{
1464 GICv3CPUState *cs = icc_cs_from_env(env);
1465 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1466 uint64_t value;
1467
77620ba6
PM
1468 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1469 return icv_ctlr_read(env, ri);
1470 }
1471
359fbe65
PM
1472 value = cs->icc_ctlr_el1[bank];
1473 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1474 return value;
1475}
1476
1477static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478 uint64_t value)
1479{
1480 GICv3CPUState *cs = icc_cs_from_env(env);
1481 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1482 uint64_t mask;
1483
77620ba6
PM
1484 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1485 icv_ctlr_write(env, ri, value);
1486 return;
1487 }
1488
359fbe65
PM
1489 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1490
1491 /* Only CBPR and EOIMODE can be RW;
1492 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1493 * the asseciated priority-based routing of them);
1494 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1495 */
1496 if (arm_feature(env, ARM_FEATURE_EL3) &&
1497 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1498 mask = ICC_CTLR_EL1_EOIMODE;
1499 } else {
1500 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1501 }
1502
1503 cs->icc_ctlr_el1[bank] &= ~mask;
1504 cs->icc_ctlr_el1[bank] |= (value & mask);
1505 gicv3_cpuif_update(cs);
1506}
1507
1508
1509static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1510{
1511 GICv3CPUState *cs = icc_cs_from_env(env);
1512 uint64_t value;
1513
1514 value = cs->icc_ctlr_el3;
1515 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1516 value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1517 }
1518 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1519 value |= ICC_CTLR_EL3_CBPR_EL1NS;
1520 }
1521 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1522 value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1523 }
1524 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1525 value |= ICC_CTLR_EL3_CBPR_EL1S;
1526 }
1527
1528 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1529 return value;
1530}
1531
1532static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1533 uint64_t value)
1534{
1535 GICv3CPUState *cs = icc_cs_from_env(env);
1536 uint64_t mask;
1537
1538 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1539
1540 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1541 cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1542 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1543 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1544 }
1545 if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1546 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1547 }
1548
1549 cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1550 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1551 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1552 }
1553 if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1554 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1555 }
1556
1557 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1558 mask = ICC_CTLR_EL3_EOIMODE_EL3;
1559
1560 cs->icc_ctlr_el3 &= ~mask;
1561 cs->icc_ctlr_el3 |= (value & mask);
1562 gicv3_cpuif_update(cs);
1563}
1564
1565static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1566 const ARMCPRegInfo *ri, bool isread)
1567{
1568 CPAccessResult r = CP_ACCESS_OK;
1569
1570 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1571 switch (arm_current_el(env)) {
1572 case 1:
1573 if (arm_is_secure_below_el3(env) ||
1574 ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) {
1575 r = CP_ACCESS_TRAP_EL3;
1576 }
1577 break;
1578 case 2:
1579 r = CP_ACCESS_TRAP_EL3;
1580 break;
1581 case 3:
1582 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1583 r = CP_ACCESS_TRAP_EL3;
1584 }
92b30c2f 1585 break;
359fbe65
PM
1586 default:
1587 g_assert_not_reached();
1588 }
1589 }
1590
1591 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1592 r = CP_ACCESS_TRAP;
1593 }
1594 return r;
1595}
1596
1597static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1598 const ARMCPRegInfo *ri, bool isread)
1599{
1600 CPAccessResult r = CP_ACCESS_OK;
1601
1602 if (env->cp15.scr_el3 & SCR_FIQ) {
1603 switch (arm_current_el(env)) {
1604 case 1:
1605 if (arm_is_secure_below_el3(env) ||
1606 ((env->cp15.hcr_el2 & HCR_FMO) == 0)) {
1607 r = CP_ACCESS_TRAP_EL3;
1608 }
1609 break;
1610 case 2:
1611 r = CP_ACCESS_TRAP_EL3;
1612 break;
1613 case 3:
1614 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1615 r = CP_ACCESS_TRAP_EL3;
1616 }
92b30c2f 1617 break;
359fbe65
PM
1618 default:
1619 g_assert_not_reached();
1620 }
1621 }
1622
1623 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1624 r = CP_ACCESS_TRAP;
1625 }
1626 return r;
1627}
1628
1629static CPAccessResult gicv3_irq_access(CPUARMState *env,
1630 const ARMCPRegInfo *ri, bool isread)
1631{
1632 CPAccessResult r = CP_ACCESS_OK;
1633
1634 if (env->cp15.scr_el3 & SCR_IRQ) {
1635 switch (arm_current_el(env)) {
1636 case 1:
1637 if (arm_is_secure_below_el3(env) ||
1638 ((env->cp15.hcr_el2 & HCR_IMO) == 0)) {
1639 r = CP_ACCESS_TRAP_EL3;
1640 }
1641 break;
1642 case 2:
1643 r = CP_ACCESS_TRAP_EL3;
1644 break;
1645 case 3:
1646 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1647 r = CP_ACCESS_TRAP_EL3;
1648 }
1649 break;
1650 default:
1651 g_assert_not_reached();
1652 }
1653 }
1654
1655 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1656 r = CP_ACCESS_TRAP;
1657 }
1658 return r;
1659}
1660
1661static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1662{
1663 GICv3CPUState *cs = icc_cs_from_env(env);
1664
1665 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
1666 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
1667 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
1668 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
1669 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
1670 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
1671 cs->icc_pmr_el1 = 0;
1672 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
1673 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
1674 if (arm_feature(env, ARM_FEATURE_EL3)) {
1675 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
1676 } else {
1677 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
1678 }
1679 memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
1680 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
1681 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
1682 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
1683 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
4eb833b5
PM
1684
1685 memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
1686 cs->ich_hcr_el2 = 0;
1687 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
1688 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
1689 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR1_SHIFT) |
1690 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
359fbe65
PM
1691}
1692
1693static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
1694 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
1695 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
1696 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1697 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
1698 .readfn = icc_pmr_read,
1699 .writefn = icc_pmr_write,
1700 /* We hang the whole cpu interface reset routine off here
1701 * rather than parcelling it out into one little function
1702 * per register
1703 */
1704 .resetfn = icc_reset,
1705 },
227a8653
PM
1706 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
1707 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
1708 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1709 .access = PL1_R, .accessfn = gicv3_fiq_access,
1710 .readfn = icc_iar0_read,
1711 },
1712 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
1713 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
1714 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1715 .access = PL1_W, .accessfn = gicv3_fiq_access,
1716 .writefn = icc_eoir_write,
1717 },
1718 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
1719 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
1720 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1721 .access = PL1_R, .accessfn = gicv3_fiq_access,
1722 .readfn = icc_hppir0_read,
1723 },
359fbe65
PM
1724 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
1725 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
1726 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1727 .access = PL1_RW, .accessfn = gicv3_fiq_access,
e971fa04 1728 .readfn = icc_bpr_read,
359fbe65
PM
1729 .writefn = icc_bpr_write,
1730 },
1731 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
1732 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
1733 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1734 .access = PL1_RW, .accessfn = gicv3_fiq_access,
e971fa04 1735 .readfn = icc_ap_read,
359fbe65
PM
1736 .writefn = icc_ap_write,
1737 },
1738 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
1739 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
1740 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1741 .access = PL1_RW, .accessfn = gicv3_fiq_access,
e971fa04 1742 .readfn = icc_ap_read,
359fbe65
PM
1743 .writefn = icc_ap_write,
1744 },
1745 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
1746 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
1747 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1748 .access = PL1_RW, .accessfn = gicv3_fiq_access,
e971fa04 1749 .readfn = icc_ap_read,
359fbe65
PM
1750 .writefn = icc_ap_write,
1751 },
1752 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
1753 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
1754 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1755 .access = PL1_RW, .accessfn = gicv3_fiq_access,
e971fa04 1756 .readfn = icc_ap_read,
359fbe65
PM
1757 .writefn = icc_ap_write,
1758 },
1759 /* All the ICC_AP1R*_EL1 registers are banked */
1760 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
1761 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
1762 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1763 .access = PL1_RW, .accessfn = gicv3_irq_access,
1764 .readfn = icc_ap_read,
1765 .writefn = icc_ap_write,
1766 },
1767 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
1768 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
1769 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1770 .access = PL1_RW, .accessfn = gicv3_irq_access,
1771 .readfn = icc_ap_read,
1772 .writefn = icc_ap_write,
1773 },
1774 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
1775 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
1776 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1777 .access = PL1_RW, .accessfn = gicv3_irq_access,
1778 .readfn = icc_ap_read,
1779 .writefn = icc_ap_write,
1780 },
1781 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
1782 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
1783 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1784 .access = PL1_RW, .accessfn = gicv3_irq_access,
1785 .readfn = icc_ap_read,
1786 .writefn = icc_ap_write,
1787 },
227a8653
PM
1788 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
1789 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
1790 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1791 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1792 .writefn = icc_dir_write,
1793 },
1794 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
1795 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
1796 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1797 .access = PL1_R, .accessfn = gicv3_irqfiq_access,
1798 .readfn = icc_rpr_read,
1799 },
b1a0eb77
PM
1800 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
1801 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
1802 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1803 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1804 .writefn = icc_sgi1r_write,
1805 },
1806 { .name = "ICC_SGI1R",
1807 .cp = 15, .opc1 = 0, .crm = 12,
1808 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
1809 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1810 .writefn = icc_sgi1r_write,
1811 },
1812 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
1813 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
1814 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1815 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1816 .writefn = icc_asgi1r_write,
1817 },
1818 { .name = "ICC_ASGI1R",
1819 .cp = 15, .opc1 = 1, .crm = 12,
1820 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
1821 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1822 .writefn = icc_asgi1r_write,
1823 },
1824 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
1825 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
1826 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1827 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1828 .writefn = icc_sgi0r_write,
1829 },
1830 { .name = "ICC_SGI0R",
1831 .cp = 15, .opc1 = 2, .crm = 12,
1832 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
1833 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1834 .writefn = icc_sgi0r_write,
1835 },
227a8653
PM
1836 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
1837 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
1838 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1839 .access = PL1_R, .accessfn = gicv3_irq_access,
1840 .readfn = icc_iar1_read,
1841 },
1842 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
1843 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
1844 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1845 .access = PL1_W, .accessfn = gicv3_irq_access,
1846 .writefn = icc_eoir_write,
1847 },
1848 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
1849 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
1850 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1851 .access = PL1_R, .accessfn = gicv3_irq_access,
1852 .readfn = icc_hppir1_read,
1853 },
359fbe65
PM
1854 /* This register is banked */
1855 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
1856 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
1857 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1858 .access = PL1_RW, .accessfn = gicv3_irq_access,
1859 .readfn = icc_bpr_read,
1860 .writefn = icc_bpr_write,
1861 },
1862 /* This register is banked */
1863 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
1864 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
1865 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1866 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
1867 .readfn = icc_ctlr_el1_read,
1868 .writefn = icc_ctlr_el1_write,
1869 },
1870 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
1871 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
1872 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
1873 .access = PL1_RW,
1874 /* We don't support IRQ/FIQ bypass and system registers are
1875 * always enabled, so all our bits are RAZ/WI or RAO/WI.
1876 * This register is banked but since it's constant we don't
1877 * need to do anything special.
1878 */
1879 .resetvalue = 0x7,
1880 },
1881 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
1882 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
1883 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1884 .access = PL1_RW, .accessfn = gicv3_fiq_access,
e971fa04 1885 .readfn = icc_igrpen_read,
359fbe65
PM
1886 .writefn = icc_igrpen_write,
1887 },
1888 /* This register is banked */
1889 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
1890 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
1891 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1892 .access = PL1_RW, .accessfn = gicv3_irq_access,
1893 .readfn = icc_igrpen_read,
1894 .writefn = icc_igrpen_write,
1895 },
1896 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
1897 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
1898 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
1899 .access = PL2_RW,
1900 /* We don't support IRQ/FIQ bypass and system registers are
1901 * always enabled, so all our bits are RAZ/WI or RAO/WI.
1902 */
1903 .resetvalue = 0xf,
1904 },
1905 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
1906 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
1907 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1908 .access = PL3_RW,
359fbe65
PM
1909 .readfn = icc_ctlr_el3_read,
1910 .writefn = icc_ctlr_el3_write,
1911 },
1912 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
1913 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
1914 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
1915 .access = PL3_RW,
1916 /* We don't support IRQ/FIQ bypass and system registers are
1917 * always enabled, so all our bits are RAZ/WI or RAO/WI.
1918 */
1919 .resetvalue = 0xf,
1920 },
1921 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
1922 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
1923 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1924 .access = PL3_RW,
1925 .readfn = icc_igrpen1_el3_read,
1926 .writefn = icc_igrpen1_el3_write,
1927 },
1928 REGINFO_SENTINEL
1929};
1930
83f036fe
PM
1931static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1932{
1933 GICv3CPUState *cs = icc_cs_from_env(env);
1934 int regno = ri->opc2 & 3;
1935 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
1936 uint64_t value;
1937
1938 value = cs->ich_apr[grp][regno];
1939 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1940 return value;
1941}
1942
1943static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1944 uint64_t value)
1945{
1946 GICv3CPUState *cs = icc_cs_from_env(env);
1947 int regno = ri->opc2 & 3;
1948 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
1949
1950 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1951
1952 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
1953 gicv3_cpuif_virt_update(cs);
1954}
1955
1956static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1957{
1958 GICv3CPUState *cs = icc_cs_from_env(env);
1959 uint64_t value = cs->ich_hcr_el2;
1960
1961 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
1962 return value;
1963}
1964
1965static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1966 uint64_t value)
1967{
1968 GICv3CPUState *cs = icc_cs_from_env(env);
1969
1970 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
1971
1972 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
1973 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
1974 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
1975 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
1976 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
1977
1978 cs->ich_hcr_el2 = value;
1979 gicv3_cpuif_virt_update(cs);
1980}
1981
1982static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1983{
1984 GICv3CPUState *cs = icc_cs_from_env(env);
1985 uint64_t value = cs->ich_vmcr_el2;
1986
1987 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
1988 return value;
1989}
1990
1991static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1992 uint64_t value)
1993{
1994 GICv3CPUState *cs = icc_cs_from_env(env);
1995
1996 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
1997
1998 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
1999 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2000 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2001 value |= ICH_VMCR_EL2_VFIQEN;
2002
2003 cs->ich_vmcr_el2 = value;
2004 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2005 * by reading and writing back the fields.
2006 */
2007 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0));
2008 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2009
2010 gicv3_cpuif_virt_update(cs);
2011}
2012
2013static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2014{
2015 GICv3CPUState *cs = icc_cs_from_env(env);
2016 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2017 uint64_t value;
2018
2019 /* This read function handles all of:
2020 * 64-bit reads of the whole LR
2021 * 32-bit reads of the low half of the LR
2022 * 32-bit reads of the high half of the LR
2023 */
2024 if (ri->state == ARM_CP_STATE_AA32) {
2025 if (ri->crm >= 14) {
2026 value = extract64(cs->ich_lr_el2[regno], 32, 32);
2027 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2028 } else {
2029 value = extract64(cs->ich_lr_el2[regno], 0, 32);
2030 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2031 }
2032 } else {
2033 value = cs->ich_lr_el2[regno];
2034 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2035 }
2036
2037 return value;
2038}
2039
2040static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2041 uint64_t value)
2042{
2043 GICv3CPUState *cs = icc_cs_from_env(env);
2044 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2045
2046 /* This write function handles all of:
2047 * 64-bit writes to the whole LR
2048 * 32-bit writes to the low half of the LR
2049 * 32-bit writes to the high half of the LR
2050 */
2051 if (ri->state == ARM_CP_STATE_AA32) {
2052 if (ri->crm >= 14) {
2053 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2054 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2055 } else {
2056 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2057 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2058 }
2059 } else {
2060 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2061 }
2062
2063 /* Enforce RES0 bits in priority field */
2064 if (cs->vpribits < 8) {
2065 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2066 8 - cs->vpribits, 0);
2067 }
2068
2069 cs->ich_lr_el2[regno] = value;
2070 gicv3_cpuif_virt_update(cs);
2071}
2072
2073static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2074{
2075 GICv3CPUState *cs = icc_cs_from_env(env);
2076 uint64_t value;
2077
2078 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2079 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2080 | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2081 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2082 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2083
2084 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2085 return value;
2086}
2087
2088static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2089{
2090 GICv3CPUState *cs = icc_cs_from_env(env);
2091 uint64_t value = maintenance_interrupt_state(cs);
2092
2093 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2094 return value;
2095}
2096
2097static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2098{
2099 GICv3CPUState *cs = icc_cs_from_env(env);
2100 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2101
2102 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2103 return value;
2104}
2105
2106static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2107{
2108 GICv3CPUState *cs = icc_cs_from_env(env);
2109 uint64_t value = 0;
2110 int i;
2111
2112 for (i = 0; i < cs->num_list_regs; i++) {
2113 uint64_t lr = cs->ich_lr_el2[i];
2114
2115 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2116 ((lr & ICH_LR_EL2_HW) == 1 || (lr & ICH_LR_EL2_EOI) == 0)) {
2117 value |= (1 << i);
2118 }
2119 }
2120
2121 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2122 return value;
2123}
2124
2125static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2126 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2127 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2128 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2129 .access = PL2_RW,
2130 .readfn = ich_ap_read,
2131 .writefn = ich_ap_write,
2132 },
2133 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2134 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2135 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2136 .access = PL2_RW,
2137 .readfn = ich_ap_read,
2138 .writefn = ich_ap_write,
2139 },
2140 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2141 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2142 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2143 .access = PL2_RW,
2144 .readfn = ich_hcr_read,
2145 .writefn = ich_hcr_write,
2146 },
2147 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2148 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2149 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2150 .access = PL2_R,
2151 .readfn = ich_vtr_read,
2152 },
2153 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2154 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2155 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2156 .access = PL2_R,
2157 .readfn = ich_misr_read,
2158 },
2159 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2160 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2161 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2162 .access = PL2_R,
2163 .readfn = ich_eisr_read,
2164 },
2165 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2166 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2167 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2168 .access = PL2_R,
2169 .readfn = ich_elrsr_read,
2170 },
2171 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2172 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2173 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2174 .access = PL2_RW,
2175 .readfn = ich_vmcr_read,
2176 .writefn = ich_vmcr_write,
2177 },
2178 REGINFO_SENTINEL
2179};
2180
2181static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2182 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2183 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2184 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2185 .access = PL2_RW,
2186 .readfn = ich_ap_read,
2187 .writefn = ich_ap_write,
2188 },
2189 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2190 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2191 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2192 .access = PL2_RW,
2193 .readfn = ich_ap_read,
2194 .writefn = ich_ap_write,
2195 },
2196 REGINFO_SENTINEL
2197};
2198
2199static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2200 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2201 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2202 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2203 .access = PL2_RW,
2204 .readfn = ich_ap_read,
2205 .writefn = ich_ap_write,
2206 },
2207 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2208 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2209 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2210 .access = PL2_RW,
2211 .readfn = ich_ap_read,
2212 .writefn = ich_ap_write,
2213 },
2214 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2215 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2216 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2217 .access = PL2_RW,
2218 .readfn = ich_ap_read,
2219 .writefn = ich_ap_write,
2220 },
2221 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2222 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2223 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2224 .access = PL2_RW,
2225 .readfn = ich_ap_read,
2226 .writefn = ich_ap_write,
2227 },
2228 REGINFO_SENTINEL
2229};
2230
359fbe65
PM
2231static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2232{
f7b9358e
PM
2233 GICv3CPUState *cs = opaque;
2234
2235 gicv3_cpuif_update(cs);
359fbe65
PM
2236}
2237
2238void gicv3_init_cpuif(GICv3State *s)
2239{
2240 /* Called from the GICv3 realize function; register our system
2241 * registers with the CPU
2242 */
2243 int i;
2244
2245 for (i = 0; i < s->num_cpu; i++) {
2246 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2247 GICv3CPUState *cs = &s->cpu[i];
2248
2249 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2250 * in define_arm_cp_regs_with_opaque(), because when we're called back
2251 * it might be with code translated by CPU 0 but run by CPU 1, in
2252 * which case we'd get the wrong value.
2253 * So instead we define the regs with no ri->opaque info, and
2254 * get back to the GICv3CPUState from the ARMCPU by reading back
2255 * the opaque pointer from the el_change_hook, which we're going
2256 * to need to register anyway.
2257 */
2258 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
83f036fe
PM
2259 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2260 && cpu->gic_num_lrs) {
2261 int j;
2262
2263 cs->num_list_regs = cpu->gic_num_lrs;
2264 cs->vpribits = cpu->gic_vpribits;
2265 cs->vprebits = cpu->gic_vprebits;
2266
2267 /* Check against architectural constraints: getting these
2268 * wrong would be a bug in the CPU code defining these,
2269 * and the implementation relies on them holding.
2270 */
2271 g_assert(cs->vprebits <= cs->vpribits);
2272 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2273 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2274
2275 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2276
2277 for (j = 0; j < cs->num_list_regs; j++) {
2278 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2279 * are split into two cp15 regs, LR (the low part, with the
2280 * same encoding as the AArch64 LR) and LRC (the high part).
2281 */
2282 ARMCPRegInfo lr_regset[] = {
2283 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2284 .opc0 = 3, .opc1 = 4, .crn = 12,
2285 .crm = 12 + (j >> 3), .opc2 = j & 7,
2286 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2287 .access = PL2_RW,
2288 .readfn = ich_lr_read,
2289 .writefn = ich_lr_write,
2290 },
2291 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2292 .cp = 15, .opc1 = 4, .crn = 12,
2293 .crm = 14 + (j >> 3), .opc2 = j & 7,
2294 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2295 .access = PL2_RW,
2296 .readfn = ich_lr_read,
2297 .writefn = ich_lr_write,
2298 },
2299 REGINFO_SENTINEL
2300 };
2301 define_arm_cp_regs(cpu, lr_regset);
2302 }
2303 if (cs->vprebits >= 6) {
2304 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2305 }
2306 if (cs->vprebits == 7) {
2307 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2308 }
2309 }
359fbe65
PM
2310 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
2311 }
2312}
This page took 0.311748 seconds and 4 git commands to generate.