]>
Commit | Line | Data |
---|---|---|
359fbe65 PM |
1 | /* |
2 | * ARM Generic Interrupt Controller v3 | |
3 | * | |
4 | * Copyright (c) 2016 Linaro Limited | |
5 | * Written by Peter Maydell | |
6 | * | |
7 | * This code is licensed under the GPL, version 2 or (at your option) | |
8 | * any later version. | |
9 | */ | |
10 | ||
11 | /* This file contains the code for the system register interface | |
12 | * portions of the GICv3. | |
13 | */ | |
14 | ||
15 | #include "qemu/osdep.h" | |
77620ba6 | 16 | #include "qemu/bitops.h" |
359fbe65 PM |
17 | #include "trace.h" |
18 | #include "gicv3_internal.h" | |
19 | #include "cpu.h" | |
20 | ||
21 | static GICv3CPUState *icc_cs_from_env(CPUARMState *env) | |
22 | { | |
23 | /* Given the CPU, find the right GICv3CPUState struct. | |
24 | * Since we registered the CPU interface with the EL change hook as | |
25 | * the opaque pointer, we can just directly get from the CPU to it. | |
26 | */ | |
27 | return arm_get_el_change_hook_opaque(arm_env_get_cpu(env)); | |
28 | } | |
29 | ||
30 | static bool gicv3_use_ns_bank(CPUARMState *env) | |
31 | { | |
32 | /* Return true if we should use the NonSecure bank for a banked GIC | |
33 | * CPU interface register. Note that this differs from the | |
34 | * access_secure_reg() function because GICv3 banked registers are | |
35 | * banked even for AArch64, unlike the other CPU system registers. | |
36 | */ | |
37 | return !arm_is_secure_below_el3(env); | |
38 | } | |
39 | ||
4eb833b5 PM |
40 | /* The minimum BPR for the virtual interface is a configurable property */ |
41 | static inline int icv_min_vbpr(GICv3CPUState *cs) | |
42 | { | |
43 | return 7 - cs->vprebits; | |
44 | } | |
45 | ||
83f036fe | 46 | /* Simple accessor functions for LR fields */ |
df313f48 PM |
47 | static uint32_t ich_lr_vintid(uint64_t lr) |
48 | { | |
49 | return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); | |
50 | } | |
51 | ||
52 | static uint32_t ich_lr_pintid(uint64_t lr) | |
53 | { | |
54 | return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); | |
55 | } | |
56 | ||
57 | static uint32_t ich_lr_prio(uint64_t lr) | |
58 | { | |
59 | return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); | |
60 | } | |
61 | ||
83f036fe PM |
62 | static int ich_lr_state(uint64_t lr) |
63 | { | |
64 | return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); | |
65 | } | |
66 | ||
77620ba6 PM |
67 | static bool icv_access(CPUARMState *env, int hcr_flags) |
68 | { | |
69 | /* Return true if this ICC_ register access should really be | |
70 | * directed to an ICV_ access. hcr_flags is a mask of | |
71 | * HCR_EL2 bits to check: we treat this as an ICV_ access | |
72 | * if we are in NS EL1 and at least one of the specified | |
73 | * HCR_EL2 bits is set. | |
74 | * | |
75 | * ICV registers fall into four categories: | |
76 | * * access if NS EL1 and HCR_EL2.FMO == 1: | |
77 | * all ICV regs with '0' in their name | |
78 | * * access if NS EL1 and HCR_EL2.IMO == 1: | |
79 | * all ICV regs with '1' in their name | |
80 | * * access if NS EL1 and either IMO or FMO == 1: | |
81 | * CTLR, DIR, PMR, RPR | |
82 | */ | |
83 | return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1 | |
84 | && !arm_is_secure_below_el3(env); | |
85 | } | |
86 | ||
83f036fe PM |
87 | static int read_vbpr(GICv3CPUState *cs, int grp) |
88 | { | |
89 | /* Read VBPR value out of the VMCR field (caller must handle | |
90 | * VCBPR effects if required) | |
91 | */ | |
92 | if (grp == GICV3_G0) { | |
93 | return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, | |
94 | ICH_VMCR_EL2_VBPR0_LENGTH); | |
95 | } else { | |
96 | return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, | |
97 | ICH_VMCR_EL2_VBPR1_LENGTH); | |
98 | } | |
99 | } | |
100 | ||
101 | static void write_vbpr(GICv3CPUState *cs, int grp, int value) | |
102 | { | |
103 | /* Write new VBPR1 value, handling the "writing a value less than | |
104 | * the minimum sets it to the minimum" semantics. | |
105 | */ | |
106 | int min = icv_min_vbpr(cs); | |
107 | ||
108 | if (grp != GICV3_G0) { | |
109 | min++; | |
110 | } | |
111 | ||
112 | value = MAX(value, min); | |
113 | ||
114 | if (grp == GICV3_G0) { | |
115 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, | |
116 | ICH_VMCR_EL2_VBPR0_LENGTH, value); | |
117 | } else { | |
118 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, | |
119 | ICH_VMCR_EL2_VBPR1_LENGTH, value); | |
120 | } | |
121 | } | |
122 | ||
77620ba6 PM |
123 | static uint32_t icv_fullprio_mask(GICv3CPUState *cs) |
124 | { | |
125 | /* Return a mask word which clears the unimplemented priority bits | |
126 | * from a priority value for a virtual interrupt. (Not to be confused | |
127 | * with the group priority, whose mask depends on the value of VBPR | |
128 | * for the interrupt group.) | |
129 | */ | |
130 | return ~0U << (8 - cs->vpribits); | |
131 | } | |
132 | ||
df313f48 PM |
133 | static int ich_highest_active_virt_prio(GICv3CPUState *cs) |
134 | { | |
135 | /* Calculate the current running priority based on the set bits | |
136 | * in the ICH Active Priority Registers. | |
137 | */ | |
138 | int i; | |
139 | int aprmax = 1 << (cs->vprebits - 5); | |
140 | ||
141 | assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); | |
142 | ||
143 | for (i = 0; i < aprmax; i++) { | |
144 | uint32_t apr = cs->ich_apr[GICV3_G0][i] | | |
145 | cs->ich_apr[GICV3_G1NS][i]; | |
146 | ||
147 | if (!apr) { | |
148 | continue; | |
149 | } | |
150 | return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); | |
151 | } | |
152 | /* No current active interrupts: return idle priority */ | |
153 | return 0xff; | |
154 | } | |
155 | ||
156 | static int hppvi_index(GICv3CPUState *cs) | |
157 | { | |
158 | /* Return the list register index of the highest priority pending | |
159 | * virtual interrupt, as per the HighestPriorityVirtualInterrupt | |
160 | * pseudocode. If no pending virtual interrupts, return -1. | |
161 | */ | |
162 | int idx = -1; | |
163 | int i; | |
164 | /* Note that a list register entry with a priority of 0xff will | |
165 | * never be reported by this function; this is the architecturally | |
166 | * correct behaviour. | |
167 | */ | |
168 | int prio = 0xff; | |
169 | ||
170 | if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { | |
171 | /* Both groups disabled, definitely nothing to do */ | |
172 | return idx; | |
173 | } | |
174 | ||
175 | for (i = 0; i < cs->num_list_regs; i++) { | |
176 | uint64_t lr = cs->ich_lr_el2[i]; | |
177 | int thisprio; | |
178 | ||
179 | if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { | |
180 | /* Not Pending */ | |
181 | continue; | |
182 | } | |
183 | ||
184 | /* Ignore interrupts if relevant group enable not set */ | |
185 | if (lr & ICH_LR_EL2_GROUP) { | |
186 | if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | |
187 | continue; | |
188 | } | |
189 | } else { | |
190 | if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { | |
191 | continue; | |
192 | } | |
193 | } | |
194 | ||
195 | thisprio = ich_lr_prio(lr); | |
196 | ||
197 | if (thisprio < prio) { | |
198 | prio = thisprio; | |
199 | idx = i; | |
200 | } | |
201 | } | |
202 | ||
203 | return idx; | |
204 | } | |
205 | ||
b3b48f52 PM |
206 | static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) |
207 | { | |
208 | /* Return a mask word which clears the subpriority bits from | |
209 | * a priority value for a virtual interrupt in the specified group. | |
210 | * This depends on the VBPR value: | |
211 | * a BPR of 0 means the group priority bits are [7:1]; | |
212 | * a BPR of 1 means they are [7:2], and so on down to | |
213 | * a BPR of 7 meaning no group priority bits at all. | |
214 | * Which BPR to use depends on the group of the interrupt and | |
215 | * the current ICH_VMCR_EL2.VCBPR settings. | |
216 | */ | |
217 | if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { | |
218 | group = GICV3_G0; | |
219 | } | |
220 | ||
221 | return ~0U << (read_vbpr(cs, group) + 1); | |
222 | } | |
223 | ||
224 | static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) | |
225 | { | |
226 | /* Return true if we can signal this virtual interrupt defined by | |
227 | * the given list register value; see the pseudocode functions | |
228 | * CanSignalVirtualInterrupt and CanSignalVirtualInt. | |
229 | * Compare also icc_hppi_can_preempt() which is the non-virtual | |
230 | * equivalent of these checks. | |
231 | */ | |
232 | int grp; | |
233 | uint32_t mask, prio, rprio, vpmr; | |
234 | ||
235 | if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { | |
236 | /* Virtual interface disabled */ | |
237 | return false; | |
238 | } | |
239 | ||
240 | /* We don't need to check that this LR is in Pending state because | |
241 | * that has already been done in hppvi_index(). | |
242 | */ | |
243 | ||
244 | prio = ich_lr_prio(lr); | |
245 | vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, | |
246 | ICH_VMCR_EL2_VPMR_LENGTH); | |
247 | ||
248 | if (prio >= vpmr) { | |
249 | /* Priority mask masks this interrupt */ | |
250 | return false; | |
251 | } | |
252 | ||
253 | rprio = ich_highest_active_virt_prio(cs); | |
254 | if (rprio == 0xff) { | |
255 | /* No running interrupt so we can preempt */ | |
256 | return true; | |
257 | } | |
258 | ||
259 | grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | |
260 | ||
261 | mask = icv_gprio_mask(cs, grp); | |
262 | ||
263 | /* We only preempt a running interrupt if the pending interrupt's | |
264 | * group priority is sufficient (the subpriorities are not considered). | |
265 | */ | |
266 | if ((prio & mask) < (rprio & mask)) { | |
267 | return true; | |
268 | } | |
269 | ||
270 | return false; | |
271 | } | |
272 | ||
83f036fe PM |
273 | static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, |
274 | uint32_t *misr) | |
275 | { | |
276 | /* Return a set of bits indicating the EOI maintenance interrupt status | |
277 | * for each list register. The EOI maintenance interrupt status is | |
278 | * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 | |
279 | * (see the GICv3 spec for the ICH_EISR_EL2 register). | |
280 | * If misr is not NULL then we should also collect the information | |
281 | * about the MISR.EOI, MISR.NP and MISR.U bits. | |
282 | */ | |
283 | uint32_t value = 0; | |
284 | int validcount = 0; | |
285 | bool seenpending = false; | |
286 | int i; | |
287 | ||
288 | for (i = 0; i < cs->num_list_regs; i++) { | |
289 | uint64_t lr = cs->ich_lr_el2[i]; | |
290 | ||
291 | if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) | |
292 | == ICH_LR_EL2_EOI) { | |
293 | value |= (1 << i); | |
294 | } | |
295 | if ((lr & ICH_LR_EL2_STATE_MASK)) { | |
296 | validcount++; | |
297 | } | |
298 | if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { | |
299 | seenpending = true; | |
300 | } | |
301 | } | |
302 | ||
303 | if (misr) { | |
304 | if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { | |
305 | *misr |= ICH_MISR_EL2_U; | |
306 | } | |
307 | if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { | |
308 | *misr |= ICH_MISR_EL2_NP; | |
309 | } | |
310 | if (value) { | |
311 | *misr |= ICH_MISR_EL2_EOI; | |
312 | } | |
313 | } | |
314 | return value; | |
315 | } | |
316 | ||
317 | static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) | |
318 | { | |
319 | /* Return a set of bits indicating the maintenance interrupt status | |
320 | * (as seen in the ICH_MISR_EL2 register). | |
321 | */ | |
322 | uint32_t value = 0; | |
323 | ||
324 | /* Scan list registers and fill in the U, NP and EOI bits */ | |
325 | eoi_maintenance_interrupt_state(cs, &value); | |
326 | ||
327 | if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) { | |
328 | value |= ICH_MISR_EL2_LRENP; | |
329 | } | |
330 | ||
331 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && | |
332 | (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { | |
333 | value |= ICH_MISR_EL2_VGRP0E; | |
334 | } | |
335 | ||
336 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && | |
337 | !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | |
338 | value |= ICH_MISR_EL2_VGRP0D; | |
339 | } | |
340 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && | |
341 | (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | |
342 | value |= ICH_MISR_EL2_VGRP1E; | |
343 | } | |
344 | ||
345 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && | |
346 | !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | |
347 | value |= ICH_MISR_EL2_VGRP1D; | |
348 | } | |
349 | ||
350 | return value; | |
351 | } | |
352 | ||
353 | static void gicv3_cpuif_virt_update(GICv3CPUState *cs) | |
354 | { | |
c5fc89b3 PM |
355 | /* Tell the CPU about any pending virtual interrupts or |
356 | * maintenance interrupts, following a change to the state | |
357 | * of the CPU interface relevant to virtual interrupts. | |
358 | * | |
359 | * CAUTION: this function will call qemu_set_irq() on the | |
360 | * CPU maintenance IRQ line, which is typically wired up | |
361 | * to the GIC as a per-CPU interrupt. This means that it | |
362 | * will recursively call back into the GIC code via | |
363 | * gicv3_redist_set_irq() and thus into the CPU interface code's | |
364 | * gicv3_cpuif_update(). It is therefore important that this | |
365 | * function is only called as the final action of a CPU interface | |
366 | * register write implementation, after all the GIC state | |
367 | * fields have been updated. gicv3_cpuif_update() also must | |
368 | * not cause this function to be called, but that happens | |
369 | * naturally as a result of there being no architectural | |
370 | * linkage between the physical and virtual GIC logic. | |
371 | */ | |
372 | int idx; | |
373 | int irqlevel = 0; | |
374 | int fiqlevel = 0; | |
375 | int maintlevel = 0; | |
376 | ||
377 | idx = hppvi_index(cs); | |
378 | trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx); | |
379 | if (idx >= 0) { | |
380 | uint64_t lr = cs->ich_lr_el2[idx]; | |
381 | ||
382 | if (icv_hppi_can_preempt(cs, lr)) { | |
383 | /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ | |
384 | if (lr & ICH_LR_EL2_GROUP) { | |
385 | irqlevel = 1; | |
386 | } else { | |
387 | fiqlevel = 1; | |
388 | } | |
389 | } | |
390 | } | |
391 | ||
392 | if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) { | |
393 | maintlevel = maintenance_interrupt_state(cs); | |
394 | } | |
395 | ||
396 | trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, | |
397 | irqlevel, maintlevel); | |
398 | ||
399 | qemu_set_irq(cs->parent_vfiq, fiqlevel); | |
400 | qemu_set_irq(cs->parent_virq, irqlevel); | |
401 | qemu_set_irq(cs->maintenance_irq, maintlevel); | |
83f036fe PM |
402 | } |
403 | ||
77620ba6 PM |
404 | static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
405 | { | |
406 | GICv3CPUState *cs = icc_cs_from_env(env); | |
407 | int regno = ri->opc2 & 3; | |
408 | int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; | |
409 | uint64_t value = cs->ich_apr[grp][regno]; | |
410 | ||
411 | trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | |
412 | return value; | |
413 | } | |
414 | ||
415 | static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
416 | uint64_t value) | |
417 | { | |
418 | GICv3CPUState *cs = icc_cs_from_env(env); | |
419 | int regno = ri->opc2 & 3; | |
420 | int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; | |
421 | ||
422 | trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | |
423 | ||
424 | cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; | |
425 | ||
426 | gicv3_cpuif_virt_update(cs); | |
427 | return; | |
428 | } | |
429 | ||
430 | static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
431 | { | |
432 | GICv3CPUState *cs = icc_cs_from_env(env); | |
433 | int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; | |
434 | uint64_t bpr; | |
435 | bool satinc = false; | |
436 | ||
437 | if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { | |
438 | /* reads return bpr0 + 1 saturated to 7, writes ignored */ | |
439 | grp = GICV3_G0; | |
440 | satinc = true; | |
441 | } | |
442 | ||
443 | bpr = read_vbpr(cs, grp); | |
444 | ||
445 | if (satinc) { | |
446 | bpr++; | |
447 | bpr = MIN(bpr, 7); | |
448 | } | |
449 | ||
450 | trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); | |
451 | ||
452 | return bpr; | |
453 | } | |
454 | ||
455 | static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
456 | uint64_t value) | |
457 | { | |
458 | GICv3CPUState *cs = icc_cs_from_env(env); | |
459 | int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; | |
460 | ||
461 | trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, | |
462 | gicv3_redist_affid(cs), value); | |
463 | ||
464 | if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { | |
465 | /* reads return bpr0 + 1 saturated to 7, writes ignored */ | |
466 | return; | |
467 | } | |
468 | ||
469 | write_vbpr(cs, grp, value); | |
470 | ||
471 | gicv3_cpuif_virt_update(cs); | |
472 | } | |
473 | ||
474 | static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
475 | { | |
476 | GICv3CPUState *cs = icc_cs_from_env(env); | |
477 | uint64_t value; | |
478 | ||
479 | value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, | |
480 | ICH_VMCR_EL2_VPMR_LENGTH); | |
481 | ||
482 | trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); | |
483 | return value; | |
484 | } | |
485 | ||
486 | static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
487 | uint64_t value) | |
488 | { | |
489 | GICv3CPUState *cs = icc_cs_from_env(env); | |
490 | ||
491 | trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); | |
492 | ||
493 | value &= icv_fullprio_mask(cs); | |
494 | ||
495 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, | |
496 | ICH_VMCR_EL2_VPMR_LENGTH, value); | |
497 | ||
498 | gicv3_cpuif_virt_update(cs); | |
499 | } | |
500 | ||
501 | static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
502 | { | |
503 | GICv3CPUState *cs = icc_cs_from_env(env); | |
504 | int enbit; | |
505 | uint64_t value; | |
506 | ||
507 | enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; | |
508 | value = extract64(cs->ich_vmcr_el2, enbit, 1); | |
509 | ||
510 | trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, | |
511 | gicv3_redist_affid(cs), value); | |
512 | return value; | |
513 | } | |
514 | ||
515 | static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
516 | uint64_t value) | |
517 | { | |
518 | GICv3CPUState *cs = icc_cs_from_env(env); | |
519 | int enbit; | |
520 | ||
521 | trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, | |
522 | gicv3_redist_affid(cs), value); | |
523 | ||
524 | enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; | |
525 | ||
526 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); | |
527 | gicv3_cpuif_virt_update(cs); | |
528 | } | |
529 | ||
530 | static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
531 | { | |
532 | GICv3CPUState *cs = icc_cs_from_env(env); | |
533 | uint64_t value; | |
534 | ||
535 | /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) | |
536 | * should match the ones reported in ich_vtr_read(). | |
537 | */ | |
538 | value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | | |
539 | (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); | |
540 | ||
541 | if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { | |
542 | value |= ICC_CTLR_EL1_EOIMODE; | |
543 | } | |
544 | ||
545 | if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { | |
546 | value |= ICC_CTLR_EL1_CBPR; | |
547 | } | |
548 | ||
549 | trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); | |
550 | return value; | |
551 | } | |
552 | ||
553 | static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
554 | uint64_t value) | |
555 | { | |
556 | GICv3CPUState *cs = icc_cs_from_env(env); | |
557 | ||
558 | trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); | |
559 | ||
560 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, | |
561 | 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); | |
562 | cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, | |
563 | 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); | |
564 | ||
565 | gicv3_cpuif_virt_update(cs); | |
566 | } | |
567 | ||
df313f48 PM |
568 | static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
569 | { | |
570 | GICv3CPUState *cs = icc_cs_from_env(env); | |
571 | int prio = ich_highest_active_virt_prio(cs); | |
572 | ||
573 | trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); | |
574 | return prio; | |
575 | } | |
576 | ||
577 | static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
578 | { | |
579 | GICv3CPUState *cs = icc_cs_from_env(env); | |
580 | int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; | |
581 | int idx = hppvi_index(cs); | |
582 | uint64_t value = INTID_SPURIOUS; | |
583 | ||
584 | if (idx >= 0) { | |
585 | uint64_t lr = cs->ich_lr_el2[idx]; | |
586 | int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | |
587 | ||
588 | if (grp == thisgrp) { | |
589 | value = ich_lr_vintid(lr); | |
590 | } | |
591 | } | |
592 | ||
593 | trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value); | |
594 | return value; | |
595 | } | |
596 | ||
b3b48f52 PM |
597 | static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) |
598 | { | |
599 | /* Activate the interrupt in the specified list register | |
600 | * by moving it from Pending to Active state, and update the | |
601 | * Active Priority Registers. | |
602 | */ | |
603 | uint32_t mask = icv_gprio_mask(cs, grp); | |
604 | int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; | |
605 | int aprbit = prio >> (8 - cs->vprebits); | |
606 | int regno = aprbit / 32; | |
607 | int regbit = aprbit % 32; | |
608 | ||
609 | cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; | |
610 | cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; | |
611 | cs->ich_apr[grp][regno] |= (1 << regbit); | |
612 | } | |
613 | ||
614 | static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
615 | { | |
616 | GICv3CPUState *cs = icc_cs_from_env(env); | |
617 | int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; | |
618 | int idx = hppvi_index(cs); | |
619 | uint64_t intid = INTID_SPURIOUS; | |
620 | ||
621 | if (idx >= 0) { | |
622 | uint64_t lr = cs->ich_lr_el2[idx]; | |
623 | int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | |
624 | ||
625 | if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { | |
626 | intid = ich_lr_vintid(lr); | |
627 | if (intid < INTID_SECURE) { | |
628 | icv_activate_irq(cs, idx, grp); | |
629 | } else { | |
630 | /* Interrupt goes from Pending to Invalid */ | |
631 | cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; | |
632 | /* We will now return the (bogus) ID from the list register, | |
633 | * as per the pseudocode. | |
634 | */ | |
635 | } | |
636 | } | |
637 | } | |
638 | ||
639 | trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, | |
640 | gicv3_redist_affid(cs), intid); | |
641 | return intid; | |
642 | } | |
643 | ||
f7b9358e PM |
644 | static int icc_highest_active_prio(GICv3CPUState *cs) |
645 | { | |
646 | /* Calculate the current running priority based on the set bits | |
647 | * in the Active Priority Registers. | |
648 | */ | |
649 | int i; | |
650 | ||
651 | for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { | |
652 | uint32_t apr = cs->icc_apr[GICV3_G0][i] | | |
653 | cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; | |
654 | ||
655 | if (!apr) { | |
656 | continue; | |
657 | } | |
658 | return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1); | |
659 | } | |
660 | /* No current active interrupts: return idle priority */ | |
661 | return 0xff; | |
662 | } | |
663 | ||
664 | static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) | |
665 | { | |
666 | /* Return a mask word which clears the subpriority bits from | |
667 | * a priority value for an interrupt in the specified group. | |
668 | * This depends on the BPR value: | |
669 | * a BPR of 0 means the group priority bits are [7:1]; | |
670 | * a BPR of 1 means they are [7:2], and so on down to | |
671 | * a BPR of 7 meaning no group priority bits at all. | |
672 | * Which BPR to use depends on the group of the interrupt and | |
673 | * the current ICC_CTLR.CBPR settings. | |
674 | */ | |
675 | if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || | |
676 | (group == GICV3_G1NS && | |
677 | cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { | |
678 | group = GICV3_G0; | |
679 | } | |
680 | ||
681 | return ~0U << ((cs->icc_bpr[group] & 7) + 1); | |
682 | } | |
683 | ||
684 | static bool icc_no_enabled_hppi(GICv3CPUState *cs) | |
685 | { | |
686 | /* Return true if there is no pending interrupt, or the | |
687 | * highest priority pending interrupt is in a group which has been | |
688 | * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. | |
689 | */ | |
690 | return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); | |
691 | } | |
692 | ||
693 | static bool icc_hppi_can_preempt(GICv3CPUState *cs) | |
694 | { | |
695 | /* Return true if we have a pending interrupt of sufficient | |
696 | * priority to preempt. | |
697 | */ | |
698 | int rprio; | |
699 | uint32_t mask; | |
700 | ||
701 | if (icc_no_enabled_hppi(cs)) { | |
702 | return false; | |
703 | } | |
704 | ||
705 | if (cs->hppi.prio >= cs->icc_pmr_el1) { | |
706 | /* Priority mask masks this interrupt */ | |
707 | return false; | |
708 | } | |
709 | ||
710 | rprio = icc_highest_active_prio(cs); | |
711 | if (rprio == 0xff) { | |
712 | /* No currently running interrupt so we can preempt */ | |
713 | return true; | |
714 | } | |
715 | ||
716 | mask = icc_gprio_mask(cs, cs->hppi.grp); | |
717 | ||
718 | /* We only preempt a running interrupt if the pending interrupt's | |
719 | * group priority is sufficient (the subpriorities are not considered). | |
720 | */ | |
721 | if ((cs->hppi.prio & mask) < (rprio & mask)) { | |
722 | return true; | |
723 | } | |
724 | ||
725 | return false; | |
726 | } | |
727 | ||
728 | void gicv3_cpuif_update(GICv3CPUState *cs) | |
729 | { | |
730 | /* Tell the CPU about its highest priority pending interrupt */ | |
731 | int irqlevel = 0; | |
732 | int fiqlevel = 0; | |
733 | ARMCPU *cpu = ARM_CPU(cs->cpu); | |
734 | CPUARMState *env = &cpu->env; | |
735 | ||
736 | trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, | |
737 | cs->hppi.grp, cs->hppi.prio); | |
738 | ||
739 | if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { | |
740 | /* If a Security-enabled GIC sends a G1S interrupt to a | |
741 | * Security-disabled CPU, we must treat it as if it were G0. | |
742 | */ | |
743 | cs->hppi.grp = GICV3_G0; | |
744 | } | |
745 | ||
746 | if (icc_hppi_can_preempt(cs)) { | |
747 | /* We have an interrupt: should we signal it as IRQ or FIQ? | |
748 | * This is described in the GICv3 spec section 4.6.2. | |
749 | */ | |
750 | bool isfiq; | |
751 | ||
752 | switch (cs->hppi.grp) { | |
753 | case GICV3_G0: | |
754 | isfiq = true; | |
755 | break; | |
756 | case GICV3_G1: | |
757 | isfiq = (!arm_is_secure(env) || | |
758 | (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); | |
759 | break; | |
760 | case GICV3_G1NS: | |
761 | isfiq = arm_is_secure(env); | |
762 | break; | |
763 | default: | |
764 | g_assert_not_reached(); | |
765 | } | |
766 | ||
767 | if (isfiq) { | |
768 | fiqlevel = 1; | |
769 | } else { | |
770 | irqlevel = 1; | |
771 | } | |
772 | } | |
773 | ||
774 | trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); | |
775 | ||
776 | qemu_set_irq(cs->parent_fiq, fiqlevel); | |
777 | qemu_set_irq(cs->parent_irq, irqlevel); | |
778 | } | |
779 | ||
359fbe65 PM |
780 | static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
781 | { | |
782 | GICv3CPUState *cs = icc_cs_from_env(env); | |
783 | uint32_t value = cs->icc_pmr_el1; | |
784 | ||
77620ba6 PM |
785 | if (icv_access(env, HCR_FMO | HCR_IMO)) { |
786 | return icv_pmr_read(env, ri); | |
787 | } | |
788 | ||
359fbe65 PM |
789 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && |
790 | (env->cp15.scr_el3 & SCR_FIQ)) { | |
791 | /* NS access and Group 0 is inaccessible to NS: return the | |
792 | * NS view of the current priority | |
793 | */ | |
794 | if (value & 0x80) { | |
795 | /* Secure priorities not visible to NS */ | |
796 | value = 0; | |
797 | } else if (value != 0xff) { | |
798 | value = (value << 1) & 0xff; | |
799 | } | |
800 | } | |
801 | ||
802 | trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); | |
803 | ||
804 | return value; | |
805 | } | |
806 | ||
807 | static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
808 | uint64_t value) | |
809 | { | |
810 | GICv3CPUState *cs = icc_cs_from_env(env); | |
811 | ||
77620ba6 PM |
812 | if (icv_access(env, HCR_FMO | HCR_IMO)) { |
813 | return icv_pmr_write(env, ri, value); | |
814 | } | |
815 | ||
359fbe65 PM |
816 | trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); |
817 | ||
818 | value &= 0xff; | |
819 | ||
820 | if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && | |
821 | (env->cp15.scr_el3 & SCR_FIQ)) { | |
822 | /* NS access and Group 0 is inaccessible to NS: return the | |
823 | * NS view of the current priority | |
824 | */ | |
825 | if (!(cs->icc_pmr_el1 & 0x80)) { | |
826 | /* Current PMR in the secure range, don't allow NS to change it */ | |
827 | return; | |
828 | } | |
829 | value = (value >> 1) & 0x80; | |
830 | } | |
831 | cs->icc_pmr_el1 = value; | |
832 | gicv3_cpuif_update(cs); | |
833 | } | |
834 | ||
227a8653 PM |
835 | static void icc_activate_irq(GICv3CPUState *cs, int irq) |
836 | { | |
837 | /* Move the interrupt from the Pending state to Active, and update | |
838 | * the Active Priority Registers | |
839 | */ | |
840 | uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); | |
841 | int prio = cs->hppi.prio & mask; | |
842 | int aprbit = prio >> 1; | |
843 | int regno = aprbit / 32; | |
844 | int regbit = aprbit % 32; | |
845 | ||
846 | cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); | |
847 | ||
848 | if (irq < GIC_INTERNAL) { | |
849 | cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); | |
850 | cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); | |
851 | gicv3_redist_update(cs); | |
852 | } else { | |
853 | gicv3_gicd_active_set(cs->gic, irq); | |
854 | gicv3_gicd_pending_clear(cs->gic, irq); | |
855 | gicv3_update(cs->gic, irq, 1); | |
856 | } | |
857 | } | |
858 | ||
859 | static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) | |
860 | { | |
861 | /* Return the highest priority pending interrupt register value | |
862 | * for group 0. | |
863 | */ | |
864 | bool irq_is_secure; | |
865 | ||
866 | if (cs->hppi.prio == 0xff) { | |
867 | return INTID_SPURIOUS; | |
868 | } | |
869 | ||
870 | /* Check whether we can return the interrupt or if we should return | |
871 | * a special identifier, as per the CheckGroup0ForSpecialIdentifiers | |
872 | * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM | |
873 | * is always zero.) | |
874 | */ | |
875 | irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && | |
876 | (cs->hppi.grp != GICV3_G1NS)); | |
877 | ||
878 | if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { | |
879 | return INTID_SPURIOUS; | |
880 | } | |
881 | if (irq_is_secure && !arm_is_secure(env)) { | |
882 | /* Secure interrupts not visible to Nonsecure */ | |
883 | return INTID_SPURIOUS; | |
884 | } | |
885 | ||
886 | if (cs->hppi.grp != GICV3_G0) { | |
887 | /* Indicate to EL3 that there's a Group 1 interrupt for the other | |
888 | * state pending. | |
889 | */ | |
890 | return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; | |
891 | } | |
892 | ||
893 | return cs->hppi.irq; | |
894 | } | |
895 | ||
896 | static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) | |
897 | { | |
898 | /* Return the highest priority pending interrupt register value | |
899 | * for group 1. | |
900 | */ | |
901 | bool irq_is_secure; | |
902 | ||
903 | if (cs->hppi.prio == 0xff) { | |
904 | return INTID_SPURIOUS; | |
905 | } | |
906 | ||
907 | /* Check whether we can return the interrupt or if we should return | |
908 | * a special identifier, as per the CheckGroup1ForSpecialIdentifiers | |
909 | * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM | |
910 | * is always zero.) | |
911 | */ | |
912 | irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && | |
913 | (cs->hppi.grp != GICV3_G1NS)); | |
914 | ||
915 | if (cs->hppi.grp == GICV3_G0) { | |
916 | /* Group 0 interrupts not visible via HPPIR1 */ | |
917 | return INTID_SPURIOUS; | |
918 | } | |
919 | if (irq_is_secure) { | |
920 | if (!arm_is_secure(env)) { | |
921 | /* Secure interrupts not visible in Non-secure */ | |
922 | return INTID_SPURIOUS; | |
923 | } | |
924 | } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { | |
925 | /* Group 1 non-secure interrupts not visible in Secure EL1 */ | |
926 | return INTID_SPURIOUS; | |
927 | } | |
928 | ||
929 | return cs->hppi.irq; | |
930 | } | |
931 | ||
932 | static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
933 | { | |
934 | GICv3CPUState *cs = icc_cs_from_env(env); | |
935 | uint64_t intid; | |
936 | ||
b3b48f52 PM |
937 | if (icv_access(env, HCR_FMO)) { |
938 | return icv_iar_read(env, ri); | |
939 | } | |
940 | ||
227a8653 PM |
941 | if (!icc_hppi_can_preempt(cs)) { |
942 | intid = INTID_SPURIOUS; | |
943 | } else { | |
944 | intid = icc_hppir0_value(cs, env); | |
945 | } | |
946 | ||
947 | if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { | |
948 | icc_activate_irq(cs, intid); | |
949 | } | |
950 | ||
951 | trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); | |
952 | return intid; | |
953 | } | |
954 | ||
955 | static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
956 | { | |
957 | GICv3CPUState *cs = icc_cs_from_env(env); | |
958 | uint64_t intid; | |
959 | ||
b3b48f52 PM |
960 | if (icv_access(env, HCR_IMO)) { |
961 | return icv_iar_read(env, ri); | |
962 | } | |
963 | ||
227a8653 PM |
964 | if (!icc_hppi_can_preempt(cs)) { |
965 | intid = INTID_SPURIOUS; | |
966 | } else { | |
967 | intid = icc_hppir1_value(cs, env); | |
968 | } | |
969 | ||
970 | if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { | |
971 | icc_activate_irq(cs, intid); | |
972 | } | |
973 | ||
974 | trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); | |
975 | return intid; | |
976 | } | |
977 | ||
978 | static void icc_drop_prio(GICv3CPUState *cs, int grp) | |
979 | { | |
980 | /* Drop the priority of the currently active interrupt in | |
981 | * the specified group. | |
982 | * | |
983 | * Note that we can guarantee (because of the requirement to nest | |
984 | * ICC_IAR reads [which activate an interrupt and raise priority] | |
985 | * with ICC_EOIR writes [which drop the priority for the interrupt]) | |
986 | * that the interrupt we're being called for is the highest priority | |
987 | * active interrupt, meaning that it has the lowest set bit in the | |
988 | * APR registers. | |
989 | * | |
990 | * If the guest does not honour the ordering constraints then the | |
991 | * behaviour of the GIC is UNPREDICTABLE, which for us means that | |
992 | * the values of the APR registers might become incorrect and the | |
993 | * running priority will be wrong, so interrupts that should preempt | |
994 | * might not do so, and interrupts that should not preempt might do so. | |
995 | */ | |
996 | int i; | |
997 | ||
998 | for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) { | |
999 | uint64_t *papr = &cs->icc_apr[grp][i]; | |
1000 | ||
1001 | if (!*papr) { | |
1002 | continue; | |
1003 | } | |
1004 | /* Clear the lowest set bit */ | |
1005 | *papr &= *papr - 1; | |
1006 | break; | |
1007 | } | |
1008 | ||
1009 | /* running priority change means we need an update for this cpu i/f */ | |
1010 | gicv3_cpuif_update(cs); | |
1011 | } | |
1012 | ||
1013 | static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) | |
1014 | { | |
1015 | /* Return true if we should split priority drop and interrupt | |
1016 | * deactivation, ie whether the relevant EOIMode bit is set. | |
1017 | */ | |
1018 | if (arm_is_el3_or_mon(env)) { | |
1019 | return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; | |
1020 | } | |
1021 | if (arm_is_secure_below_el3(env)) { | |
1022 | return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; | |
1023 | } else { | |
1024 | return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; | |
1025 | } | |
1026 | } | |
1027 | ||
1028 | static int icc_highest_active_group(GICv3CPUState *cs) | |
1029 | { | |
1030 | /* Return the group with the highest priority active interrupt. | |
1031 | * We can do this by just comparing the APRs to see which one | |
1032 | * has the lowest set bit. | |
1033 | * (If more than one group is active at the same priority then | |
1034 | * we're in UNPREDICTABLE territory.) | |
1035 | */ | |
1036 | int i; | |
1037 | ||
1038 | for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { | |
1039 | int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); | |
1040 | int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); | |
1041 | int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); | |
1042 | ||
1043 | if (g1nsctz < g0ctz && g1nsctz < g1ctz) { | |
1044 | return GICV3_G1NS; | |
1045 | } | |
1046 | if (g1ctz < g0ctz) { | |
1047 | return GICV3_G1; | |
1048 | } | |
1049 | if (g0ctz < 32) { | |
1050 | return GICV3_G0; | |
1051 | } | |
1052 | } | |
1053 | /* No set active bits? UNPREDICTABLE; return -1 so the caller | |
1054 | * ignores the spurious EOI attempt. | |
1055 | */ | |
1056 | return -1; | |
1057 | } | |
1058 | ||
1059 | static void icc_deactivate_irq(GICv3CPUState *cs, int irq) | |
1060 | { | |
1061 | if (irq < GIC_INTERNAL) { | |
1062 | cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); | |
1063 | gicv3_redist_update(cs); | |
1064 | } else { | |
1065 | gicv3_gicd_active_clear(cs->gic, irq); | |
1066 | gicv3_update(cs->gic, irq, 1); | |
1067 | } | |
1068 | } | |
1069 | ||
df313f48 PM |
1070 | static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) |
1071 | { | |
1072 | /* Return true if we should split priority drop and interrupt | |
1073 | * deactivation, ie whether the virtual EOIMode bit is set. | |
1074 | */ | |
1075 | return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; | |
1076 | } | |
1077 | ||
1078 | static int icv_find_active(GICv3CPUState *cs, int irq) | |
1079 | { | |
1080 | /* Given an interrupt number for an active interrupt, return the index | |
1081 | * of the corresponding list register, or -1 if there is no match. | |
1082 | * Corresponds to FindActiveVirtualInterrupt pseudocode. | |
1083 | */ | |
1084 | int i; | |
1085 | ||
1086 | for (i = 0; i < cs->num_list_regs; i++) { | |
1087 | uint64_t lr = cs->ich_lr_el2[i]; | |
1088 | ||
1089 | if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { | |
1090 | return i; | |
1091 | } | |
1092 | } | |
1093 | ||
1094 | return -1; | |
1095 | } | |
1096 | ||
1097 | static void icv_deactivate_irq(GICv3CPUState *cs, int idx) | |
1098 | { | |
1099 | /* Deactivate the interrupt in the specified list register index */ | |
1100 | uint64_t lr = cs->ich_lr_el2[idx]; | |
1101 | ||
1102 | if (lr & ICH_LR_EL2_HW) { | |
1103 | /* Deactivate the associated physical interrupt */ | |
1104 | int pirq = ich_lr_pintid(lr); | |
1105 | ||
1106 | if (pirq < INTID_SECURE) { | |
1107 | icc_deactivate_irq(cs, pirq); | |
1108 | } | |
1109 | } | |
1110 | ||
1111 | /* Clear the 'active' part of the state, so ActivePending->Pending | |
1112 | * and Active->Invalid. | |
1113 | */ | |
1114 | lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; | |
1115 | cs->ich_lr_el2[idx] = lr; | |
1116 | } | |
1117 | ||
1118 | static void icv_increment_eoicount(GICv3CPUState *cs) | |
1119 | { | |
1120 | /* Increment the EOICOUNT field in ICH_HCR_EL2 */ | |
1121 | int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, | |
1122 | ICH_HCR_EL2_EOICOUNT_LENGTH); | |
1123 | ||
1124 | cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, | |
1125 | ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); | |
1126 | } | |
1127 | ||
b3b48f52 PM |
1128 | static int icv_drop_prio(GICv3CPUState *cs) |
1129 | { | |
1130 | /* Drop the priority of the currently active virtual interrupt | |
1131 | * (favouring group 0 if there is a set active bit at | |
1132 | * the same priority for both group 0 and group 1). | |
1133 | * Return the priority value for the bit we just cleared, | |
1134 | * or 0xff if no bits were set in the AP registers at all. | |
1135 | * Note that though the ich_apr[] are uint64_t only the low | |
1136 | * 32 bits are actually relevant. | |
1137 | */ | |
1138 | int i; | |
1139 | int aprmax = 1 << (cs->vprebits - 5); | |
1140 | ||
1141 | assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); | |
1142 | ||
1143 | for (i = 0; i < aprmax; i++) { | |
1144 | uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; | |
1145 | uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; | |
1146 | int apr0count, apr1count; | |
1147 | ||
1148 | if (!*papr0 && !*papr1) { | |
1149 | continue; | |
1150 | } | |
1151 | ||
1152 | /* We can't just use the bit-twiddling hack icc_drop_prio() does | |
1153 | * because we need to return the bit number we cleared so | |
1154 | * it can be compared against the list register's priority field. | |
1155 | */ | |
1156 | apr0count = ctz32(*papr0); | |
1157 | apr1count = ctz32(*papr1); | |
1158 | ||
1159 | if (apr0count <= apr1count) { | |
1160 | *papr0 &= *papr0 - 1; | |
1161 | return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); | |
1162 | } else { | |
1163 | *papr1 &= *papr1 - 1; | |
1164 | return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); | |
1165 | } | |
1166 | } | |
1167 | return 0xff; | |
1168 | } | |
1169 | ||
df313f48 PM |
1170 | static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1171 | uint64_t value) | |
1172 | { | |
1173 | /* Deactivate interrupt */ | |
1174 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1175 | int idx; | |
1176 | int irq = value & 0xffffff; | |
1177 | ||
1178 | trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); | |
1179 | ||
1180 | if (irq >= cs->gic->num_irq) { | |
1181 | /* Also catches special interrupt numbers and LPIs */ | |
1182 | return; | |
1183 | } | |
1184 | ||
1185 | if (!icv_eoi_split(env, cs)) { | |
1186 | return; | |
1187 | } | |
1188 | ||
1189 | idx = icv_find_active(cs, irq); | |
1190 | ||
1191 | if (idx < 0) { | |
1192 | /* No list register matching this, so increment the EOI count | |
1193 | * (might trigger a maintenance interrupt) | |
1194 | */ | |
1195 | icv_increment_eoicount(cs); | |
1196 | } else { | |
1197 | icv_deactivate_irq(cs, idx); | |
1198 | } | |
1199 | ||
1200 | gicv3_cpuif_virt_update(cs); | |
1201 | } | |
1202 | ||
b3b48f52 PM |
1203 | static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1204 | uint64_t value) | |
1205 | { | |
1206 | /* End of Interrupt */ | |
1207 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1208 | int irq = value & 0xffffff; | |
1209 | int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; | |
1210 | int idx, dropprio; | |
1211 | ||
1212 | trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, | |
1213 | gicv3_redist_affid(cs), value); | |
1214 | ||
1215 | if (irq >= cs->gic->num_irq) { | |
1216 | /* Also catches special interrupt numbers and LPIs */ | |
1217 | return; | |
1218 | } | |
1219 | ||
1220 | /* We implement the IMPDEF choice of "drop priority before doing | |
1221 | * error checks" (because that lets us avoid scanning the AP | |
1222 | * registers twice). | |
1223 | */ | |
1224 | dropprio = icv_drop_prio(cs); | |
1225 | if (dropprio == 0xff) { | |
1226 | /* No active interrupt. It is CONSTRAINED UNPREDICTABLE | |
1227 | * whether the list registers are checked in this | |
1228 | * situation; we choose not to. | |
1229 | */ | |
1230 | return; | |
1231 | } | |
1232 | ||
1233 | idx = icv_find_active(cs, irq); | |
1234 | ||
1235 | if (idx < 0) { | |
1236 | /* No valid list register corresponding to EOI ID */ | |
1237 | icv_increment_eoicount(cs); | |
1238 | } else { | |
1239 | uint64_t lr = cs->ich_lr_el2[idx]; | |
1240 | int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | |
1241 | int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); | |
1242 | ||
1243 | if (thisgrp == grp && lr_gprio == dropprio) { | |
1244 | if (!icv_eoi_split(env, cs)) { | |
1245 | /* Priority drop and deactivate not split: deactivate irq now */ | |
1246 | icv_deactivate_irq(cs, idx); | |
1247 | } | |
1248 | } | |
1249 | } | |
1250 | ||
1251 | gicv3_cpuif_virt_update(cs); | |
1252 | } | |
1253 | ||
227a8653 PM |
1254 | static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1255 | uint64_t value) | |
1256 | { | |
1257 | /* End of Interrupt */ | |
1258 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1259 | int irq = value & 0xffffff; | |
1260 | int grp; | |
1261 | ||
b3b48f52 PM |
1262 | if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) { |
1263 | icv_eoir_write(env, ri, value); | |
1264 | return; | |
1265 | } | |
1266 | ||
081b1b98 PM |
1267 | trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1, |
1268 | gicv3_redist_affid(cs), value); | |
227a8653 PM |
1269 | |
1270 | if (ri->crm == 8) { | |
1271 | /* EOIR0 */ | |
1272 | grp = GICV3_G0; | |
1273 | } else { | |
1274 | /* EOIR1 */ | |
1275 | if (arm_is_secure(env)) { | |
1276 | grp = GICV3_G1; | |
1277 | } else { | |
1278 | grp = GICV3_G1NS; | |
1279 | } | |
1280 | } | |
1281 | ||
1282 | if (irq >= cs->gic->num_irq) { | |
1283 | /* This handles two cases: | |
1284 | * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] | |
1285 | * to the GICC_EOIR, the GIC ignores that write. | |
1286 | * 2. If software writes the number of a non-existent interrupt | |
1287 | * this must be a subcase of "value written does not match the last | |
1288 | * valid interrupt value read from the Interrupt Acknowledge | |
1289 | * register" and so this is UNPREDICTABLE. We choose to ignore it. | |
1290 | */ | |
1291 | return; | |
1292 | } | |
1293 | ||
1294 | if (icc_highest_active_group(cs) != grp) { | |
1295 | return; | |
1296 | } | |
1297 | ||
1298 | icc_drop_prio(cs, grp); | |
1299 | ||
1300 | if (!icc_eoi_split(env, cs)) { | |
1301 | /* Priority drop and deactivate not split: deactivate irq now */ | |
1302 | icc_deactivate_irq(cs, irq); | |
1303 | } | |
1304 | } | |
1305 | ||
1306 | static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1307 | { | |
1308 | GICv3CPUState *cs = icc_cs_from_env(env); | |
df313f48 PM |
1309 | uint64_t value; |
1310 | ||
1311 | if (icv_access(env, HCR_FMO)) { | |
1312 | return icv_hppir_read(env, ri); | |
1313 | } | |
227a8653 | 1314 | |
df313f48 | 1315 | value = icc_hppir0_value(cs, env); |
227a8653 PM |
1316 | trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); |
1317 | return value; | |
1318 | } | |
1319 | ||
1320 | static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1321 | { | |
1322 | GICv3CPUState *cs = icc_cs_from_env(env); | |
df313f48 PM |
1323 | uint64_t value; |
1324 | ||
1325 | if (icv_access(env, HCR_IMO)) { | |
1326 | return icv_hppir_read(env, ri); | |
1327 | } | |
227a8653 | 1328 | |
df313f48 | 1329 | value = icc_hppir1_value(cs, env); |
227a8653 PM |
1330 | trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); |
1331 | return value; | |
1332 | } | |
1333 | ||
359fbe65 PM |
1334 | static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1335 | { | |
1336 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1337 | int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; | |
1338 | bool satinc = false; | |
1339 | uint64_t bpr; | |
1340 | ||
77620ba6 PM |
1341 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1342 | return icv_bpr_read(env, ri); | |
1343 | } | |
1344 | ||
359fbe65 PM |
1345 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { |
1346 | grp = GICV3_G1NS; | |
1347 | } | |
1348 | ||
1349 | if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && | |
1350 | (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { | |
1351 | /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses | |
1352 | * modify BPR0 | |
1353 | */ | |
1354 | grp = GICV3_G0; | |
1355 | } | |
1356 | ||
1357 | if (grp == GICV3_G1NS && arm_current_el(env) < 3 && | |
1358 | (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { | |
1359 | /* reads return bpr0 + 1 sat to 7, writes ignored */ | |
1360 | grp = GICV3_G0; | |
1361 | satinc = true; | |
1362 | } | |
1363 | ||
1364 | bpr = cs->icc_bpr[grp]; | |
1365 | if (satinc) { | |
1366 | bpr++; | |
1367 | bpr = MIN(bpr, 7); | |
1368 | } | |
1369 | ||
081b1b98 | 1370 | trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); |
359fbe65 PM |
1371 | |
1372 | return bpr; | |
1373 | } | |
1374 | ||
1375 | static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1376 | uint64_t value) | |
1377 | { | |
1378 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1379 | int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; | |
1380 | ||
77620ba6 PM |
1381 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1382 | icv_bpr_write(env, ri, value); | |
1383 | return; | |
1384 | } | |
1385 | ||
081b1b98 PM |
1386 | trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, |
1387 | gicv3_redist_affid(cs), value); | |
359fbe65 PM |
1388 | |
1389 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | |
1390 | grp = GICV3_G1NS; | |
1391 | } | |
1392 | ||
1393 | if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && | |
1394 | (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { | |
1395 | /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses | |
1396 | * modify BPR0 | |
1397 | */ | |
1398 | grp = GICV3_G0; | |
1399 | } | |
1400 | ||
1401 | if (grp == GICV3_G1NS && arm_current_el(env) < 3 && | |
1402 | (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { | |
1403 | /* reads return bpr0 + 1 sat to 7, writes ignored */ | |
1404 | return; | |
1405 | } | |
1406 | ||
1407 | cs->icc_bpr[grp] = value & 7; | |
1408 | gicv3_cpuif_update(cs); | |
1409 | } | |
1410 | ||
1411 | static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1412 | { | |
1413 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1414 | uint64_t value; | |
1415 | ||
1416 | int regno = ri->opc2 & 3; | |
1417 | int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1; | |
1418 | ||
77620ba6 PM |
1419 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1420 | return icv_ap_read(env, ri); | |
1421 | } | |
1422 | ||
359fbe65 PM |
1423 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { |
1424 | grp = GICV3_G1NS; | |
1425 | } | |
1426 | ||
1427 | value = cs->icc_apr[grp][regno]; | |
1428 | ||
081b1b98 | 1429 | trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); |
359fbe65 PM |
1430 | return value; |
1431 | } | |
1432 | ||
1433 | static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1434 | uint64_t value) | |
1435 | { | |
1436 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1437 | ||
1438 | int regno = ri->opc2 & 3; | |
1439 | int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1; | |
1440 | ||
77620ba6 PM |
1441 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1442 | icv_ap_write(env, ri, value); | |
1443 | return; | |
1444 | } | |
1445 | ||
081b1b98 | 1446 | trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); |
359fbe65 PM |
1447 | |
1448 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | |
1449 | grp = GICV3_G1NS; | |
1450 | } | |
1451 | ||
1452 | /* It's not possible to claim that a Non-secure interrupt is active | |
1453 | * at a priority outside the Non-secure range (128..255), since this | |
1454 | * would otherwise allow malicious NS code to block delivery of S interrupts | |
1455 | * by writing a bad value to these registers. | |
1456 | */ | |
1457 | if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { | |
1458 | return; | |
1459 | } | |
1460 | ||
1461 | cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; | |
1462 | gicv3_cpuif_update(cs); | |
1463 | } | |
1464 | ||
227a8653 PM |
1465 | static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1466 | uint64_t value) | |
1467 | { | |
1468 | /* Deactivate interrupt */ | |
1469 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1470 | int irq = value & 0xffffff; | |
1471 | bool irq_is_secure, single_sec_state, irq_is_grp0; | |
1472 | bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; | |
1473 | ||
df313f48 PM |
1474 | if (icv_access(env, HCR_FMO | HCR_IMO)) { |
1475 | icv_dir_write(env, ri, value); | |
1476 | return; | |
1477 | } | |
1478 | ||
227a8653 PM |
1479 | trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); |
1480 | ||
1481 | if (irq >= cs->gic->num_irq) { | |
1482 | /* Also catches special interrupt numbers and LPIs */ | |
1483 | return; | |
1484 | } | |
1485 | ||
1486 | if (!icc_eoi_split(env, cs)) { | |
1487 | return; | |
1488 | } | |
1489 | ||
1490 | int grp = gicv3_irq_group(cs->gic, cs, irq); | |
1491 | ||
1492 | single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; | |
1493 | irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); | |
1494 | irq_is_grp0 = grp == GICV3_G0; | |
1495 | ||
1496 | /* Check whether we're allowed to deactivate this interrupt based | |
1497 | * on its group and the current CPU state. | |
1498 | * These checks are laid out to correspond to the spec's pseudocode. | |
1499 | */ | |
1500 | route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; | |
1501 | route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; | |
1502 | /* No need to include !IsSecure in route_*_to_el2 as it's only | |
1503 | * tested in cases where we know !IsSecure is true. | |
1504 | */ | |
1505 | route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO; | |
1506 | route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO; | |
1507 | ||
1508 | switch (arm_current_el(env)) { | |
1509 | case 3: | |
1510 | break; | |
1511 | case 2: | |
1512 | if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { | |
1513 | break; | |
1514 | } | |
1515 | if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { | |
1516 | break; | |
1517 | } | |
1518 | return; | |
1519 | case 1: | |
1520 | if (!arm_is_secure_below_el3(env)) { | |
1521 | if (single_sec_state && irq_is_grp0 && | |
1522 | !route_fiq_to_el3 && !route_fiq_to_el2) { | |
1523 | break; | |
1524 | } | |
1525 | if (!irq_is_secure && !irq_is_grp0 && | |
1526 | !route_irq_to_el3 && !route_irq_to_el2) { | |
1527 | break; | |
1528 | } | |
1529 | } else { | |
1530 | if (irq_is_grp0 && !route_fiq_to_el3) { | |
1531 | break; | |
1532 | } | |
1533 | if (!irq_is_grp0 && | |
1534 | (!irq_is_secure || !single_sec_state) && | |
1535 | !route_irq_to_el3) { | |
1536 | break; | |
1537 | } | |
1538 | } | |
1539 | return; | |
1540 | default: | |
1541 | g_assert_not_reached(); | |
1542 | } | |
1543 | ||
1544 | icc_deactivate_irq(cs, irq); | |
1545 | } | |
1546 | ||
1547 | static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1548 | { | |
1549 | GICv3CPUState *cs = icc_cs_from_env(env); | |
df313f48 PM |
1550 | int prio; |
1551 | ||
1552 | if (icv_access(env, HCR_FMO | HCR_IMO)) { | |
1553 | return icv_rpr_read(env, ri); | |
1554 | } | |
1555 | ||
1556 | prio = icc_highest_active_prio(cs); | |
227a8653 PM |
1557 | |
1558 | if (arm_feature(env, ARM_FEATURE_EL3) && | |
1559 | !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { | |
1560 | /* NS GIC access and Group 0 is inaccessible to NS */ | |
1561 | if (prio & 0x80) { | |
1562 | /* NS mustn't see priorities in the Secure half of the range */ | |
1563 | prio = 0; | |
1564 | } else if (prio != 0xff) { | |
1565 | /* Non-idle priority: show the Non-secure view of it */ | |
1566 | prio = (prio << 1) & 0xff; | |
1567 | } | |
1568 | } | |
1569 | ||
1570 | trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); | |
1571 | return prio; | |
1572 | } | |
1573 | ||
b1a0eb77 PM |
1574 | static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, |
1575 | uint64_t value, int grp, bool ns) | |
1576 | { | |
1577 | GICv3State *s = cs->gic; | |
1578 | ||
1579 | /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ | |
1580 | uint64_t aff = extract64(value, 48, 8) << 16 | | |
1581 | extract64(value, 32, 8) << 8 | | |
1582 | extract64(value, 16, 8); | |
1583 | uint32_t targetlist = extract64(value, 0, 16); | |
1584 | uint32_t irq = extract64(value, 24, 4); | |
1585 | bool irm = extract64(value, 40, 1); | |
1586 | int i; | |
1587 | ||
1588 | if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { | |
1589 | /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 | |
1590 | * interrupts as Group 0 interrupts and must send Secure Group 0 | |
1591 | * interrupts to the target CPUs. | |
1592 | */ | |
1593 | grp = GICV3_G0; | |
1594 | } | |
1595 | ||
1596 | trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, | |
1597 | aff, targetlist); | |
1598 | ||
1599 | for (i = 0; i < s->num_cpu; i++) { | |
1600 | GICv3CPUState *ocs = &s->cpu[i]; | |
1601 | ||
1602 | if (irm) { | |
1603 | /* IRM == 1 : route to all CPUs except self */ | |
1604 | if (cs == ocs) { | |
1605 | continue; | |
1606 | } | |
1607 | } else { | |
1608 | /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] | |
1609 | * where the corresponding bit is set in targetlist | |
1610 | */ | |
1611 | int aff0; | |
1612 | ||
1613 | if (ocs->gicr_typer >> 40 != aff) { | |
1614 | continue; | |
1615 | } | |
1616 | aff0 = extract64(ocs->gicr_typer, 32, 8); | |
1617 | if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { | |
1618 | continue; | |
1619 | } | |
1620 | } | |
1621 | ||
1622 | /* The redistributor will check against its own GICR_NSACR as needed */ | |
1623 | gicv3_redist_send_sgi(ocs, grp, irq, ns); | |
1624 | } | |
1625 | } | |
1626 | ||
1627 | static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1628 | uint64_t value) | |
1629 | { | |
1630 | /* Generate Secure Group 0 SGI. */ | |
1631 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1632 | bool ns = !arm_is_secure(env); | |
1633 | ||
1634 | icc_generate_sgi(env, cs, value, GICV3_G0, ns); | |
1635 | } | |
1636 | ||
1637 | static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1638 | uint64_t value) | |
1639 | { | |
1640 | /* Generate Group 1 SGI for the current Security state */ | |
1641 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1642 | int grp; | |
1643 | bool ns = !arm_is_secure(env); | |
1644 | ||
1645 | grp = ns ? GICV3_G1NS : GICV3_G1; | |
1646 | icc_generate_sgi(env, cs, value, grp, ns); | |
1647 | } | |
1648 | ||
1649 | static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1650 | uint64_t value) | |
1651 | { | |
1652 | /* Generate Group 1 SGI for the Security state that is not | |
1653 | * the current state | |
1654 | */ | |
1655 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1656 | int grp; | |
1657 | bool ns = !arm_is_secure(env); | |
1658 | ||
1659 | grp = ns ? GICV3_G1 : GICV3_G1NS; | |
1660 | icc_generate_sgi(env, cs, value, grp, ns); | |
1661 | } | |
1662 | ||
359fbe65 PM |
1663 | static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) |
1664 | { | |
1665 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1666 | int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; | |
1667 | uint64_t value; | |
1668 | ||
77620ba6 PM |
1669 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1670 | return icv_igrpen_read(env, ri); | |
1671 | } | |
1672 | ||
359fbe65 PM |
1673 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { |
1674 | grp = GICV3_G1NS; | |
1675 | } | |
1676 | ||
1677 | value = cs->icc_igrpen[grp]; | |
081b1b98 PM |
1678 | trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, |
1679 | gicv3_redist_affid(cs), value); | |
359fbe65 PM |
1680 | return value; |
1681 | } | |
1682 | ||
1683 | static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1684 | uint64_t value) | |
1685 | { | |
1686 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1687 | int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; | |
1688 | ||
77620ba6 PM |
1689 | if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { |
1690 | icv_igrpen_write(env, ri, value); | |
1691 | return; | |
1692 | } | |
1693 | ||
081b1b98 PM |
1694 | trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, |
1695 | gicv3_redist_affid(cs), value); | |
359fbe65 PM |
1696 | |
1697 | if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | |
1698 | grp = GICV3_G1NS; | |
1699 | } | |
1700 | ||
1701 | cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; | |
1702 | gicv3_cpuif_update(cs); | |
1703 | } | |
1704 | ||
1705 | static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1706 | { | |
1707 | GICv3CPUState *cs = icc_cs_from_env(env); | |
081b1b98 | 1708 | uint64_t value; |
359fbe65 PM |
1709 | |
1710 | /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ | |
081b1b98 PM |
1711 | value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); |
1712 | trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); | |
1713 | return value; | |
359fbe65 PM |
1714 | } |
1715 | ||
1716 | static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1717 | uint64_t value) | |
1718 | { | |
1719 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1720 | ||
1721 | trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); | |
1722 | ||
1723 | /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ | |
1724 | cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); | |
1725 | cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); | |
1726 | gicv3_cpuif_update(cs); | |
1727 | } | |
1728 | ||
1729 | static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1730 | { | |
1731 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1732 | int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; | |
1733 | uint64_t value; | |
1734 | ||
77620ba6 PM |
1735 | if (icv_access(env, HCR_FMO | HCR_IMO)) { |
1736 | return icv_ctlr_read(env, ri); | |
1737 | } | |
1738 | ||
359fbe65 PM |
1739 | value = cs->icc_ctlr_el1[bank]; |
1740 | trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); | |
1741 | return value; | |
1742 | } | |
1743 | ||
1744 | static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1745 | uint64_t value) | |
1746 | { | |
1747 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1748 | int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; | |
1749 | uint64_t mask; | |
1750 | ||
77620ba6 PM |
1751 | if (icv_access(env, HCR_FMO | HCR_IMO)) { |
1752 | icv_ctlr_write(env, ri, value); | |
1753 | return; | |
1754 | } | |
1755 | ||
359fbe65 PM |
1756 | trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); |
1757 | ||
1758 | /* Only CBPR and EOIMODE can be RW; | |
1759 | * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or | |
1760 | * the asseciated priority-based routing of them); | |
1761 | * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. | |
1762 | */ | |
1763 | if (arm_feature(env, ARM_FEATURE_EL3) && | |
1764 | ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { | |
1765 | mask = ICC_CTLR_EL1_EOIMODE; | |
1766 | } else { | |
1767 | mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; | |
1768 | } | |
1769 | ||
1770 | cs->icc_ctlr_el1[bank] &= ~mask; | |
1771 | cs->icc_ctlr_el1[bank] |= (value & mask); | |
1772 | gicv3_cpuif_update(cs); | |
1773 | } | |
1774 | ||
1775 | ||
1776 | static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1777 | { | |
1778 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1779 | uint64_t value; | |
1780 | ||
1781 | value = cs->icc_ctlr_el3; | |
1782 | if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { | |
1783 | value |= ICC_CTLR_EL3_EOIMODE_EL1NS; | |
1784 | } | |
1785 | if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { | |
1786 | value |= ICC_CTLR_EL3_CBPR_EL1NS; | |
1787 | } | |
1788 | if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { | |
1789 | value |= ICC_CTLR_EL3_EOIMODE_EL1S; | |
1790 | } | |
1791 | if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { | |
1792 | value |= ICC_CTLR_EL3_CBPR_EL1S; | |
1793 | } | |
1794 | ||
1795 | trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); | |
1796 | return value; | |
1797 | } | |
1798 | ||
1799 | static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1800 | uint64_t value) | |
1801 | { | |
1802 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1803 | uint64_t mask; | |
1804 | ||
1805 | trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); | |
1806 | ||
1807 | /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ | |
1808 | cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); | |
1809 | if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { | |
1810 | cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; | |
1811 | } | |
1812 | if (value & ICC_CTLR_EL3_CBPR_EL1NS) { | |
1813 | cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; | |
1814 | } | |
1815 | ||
1816 | cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); | |
1817 | if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { | |
1818 | cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; | |
1819 | } | |
1820 | if (value & ICC_CTLR_EL3_CBPR_EL1S) { | |
1821 | cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; | |
1822 | } | |
1823 | ||
1824 | /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */ | |
1825 | mask = ICC_CTLR_EL3_EOIMODE_EL3; | |
1826 | ||
1827 | cs->icc_ctlr_el3 &= ~mask; | |
1828 | cs->icc_ctlr_el3 |= (value & mask); | |
1829 | gicv3_cpuif_update(cs); | |
1830 | } | |
1831 | ||
1832 | static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, | |
1833 | const ARMCPRegInfo *ri, bool isread) | |
1834 | { | |
1835 | CPAccessResult r = CP_ACCESS_OK; | |
86830554 PM |
1836 | GICv3CPUState *cs = icc_cs_from_env(env); |
1837 | int el = arm_current_el(env); | |
1838 | ||
1839 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && | |
1840 | el == 1 && !arm_is_secure_below_el3(env)) { | |
1841 | /* Takes priority over a possible EL3 trap */ | |
1842 | return CP_ACCESS_TRAP_EL2; | |
1843 | } | |
359fbe65 PM |
1844 | |
1845 | if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { | |
86830554 | 1846 | switch (el) { |
359fbe65 PM |
1847 | case 1: |
1848 | if (arm_is_secure_below_el3(env) || | |
1849 | ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) { | |
1850 | r = CP_ACCESS_TRAP_EL3; | |
1851 | } | |
1852 | break; | |
1853 | case 2: | |
1854 | r = CP_ACCESS_TRAP_EL3; | |
1855 | break; | |
1856 | case 3: | |
1857 | if (!is_a64(env) && !arm_is_el3_or_mon(env)) { | |
1858 | r = CP_ACCESS_TRAP_EL3; | |
1859 | } | |
92b30c2f | 1860 | break; |
359fbe65 PM |
1861 | default: |
1862 | g_assert_not_reached(); | |
1863 | } | |
1864 | } | |
1865 | ||
1866 | if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { | |
1867 | r = CP_ACCESS_TRAP; | |
1868 | } | |
1869 | return r; | |
1870 | } | |
1871 | ||
86830554 PM |
1872 | static CPAccessResult gicv3_dir_access(CPUARMState *env, |
1873 | const ARMCPRegInfo *ri, bool isread) | |
1874 | { | |
1875 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1876 | ||
1877 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && | |
1878 | arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { | |
1879 | /* Takes priority over a possible EL3 trap */ | |
1880 | return CP_ACCESS_TRAP_EL2; | |
1881 | } | |
1882 | ||
1883 | return gicv3_irqfiq_access(env, ri, isread); | |
1884 | } | |
1885 | ||
1886 | static CPAccessResult gicv3_sgi_access(CPUARMState *env, | |
1887 | const ARMCPRegInfo *ri, bool isread) | |
1888 | { | |
1889 | if ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) && | |
1890 | arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { | |
1891 | /* Takes priority over a possible EL3 trap */ | |
1892 | return CP_ACCESS_TRAP_EL2; | |
1893 | } | |
1894 | ||
1895 | return gicv3_irqfiq_access(env, ri, isread); | |
1896 | } | |
1897 | ||
359fbe65 PM |
1898 | static CPAccessResult gicv3_fiq_access(CPUARMState *env, |
1899 | const ARMCPRegInfo *ri, bool isread) | |
1900 | { | |
1901 | CPAccessResult r = CP_ACCESS_OK; | |
86830554 PM |
1902 | GICv3CPUState *cs = icc_cs_from_env(env); |
1903 | int el = arm_current_el(env); | |
1904 | ||
1905 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && | |
1906 | el == 1 && !arm_is_secure_below_el3(env)) { | |
1907 | /* Takes priority over a possible EL3 trap */ | |
1908 | return CP_ACCESS_TRAP_EL2; | |
1909 | } | |
359fbe65 PM |
1910 | |
1911 | if (env->cp15.scr_el3 & SCR_FIQ) { | |
86830554 | 1912 | switch (el) { |
359fbe65 PM |
1913 | case 1: |
1914 | if (arm_is_secure_below_el3(env) || | |
1915 | ((env->cp15.hcr_el2 & HCR_FMO) == 0)) { | |
1916 | r = CP_ACCESS_TRAP_EL3; | |
1917 | } | |
1918 | break; | |
1919 | case 2: | |
1920 | r = CP_ACCESS_TRAP_EL3; | |
1921 | break; | |
1922 | case 3: | |
1923 | if (!is_a64(env) && !arm_is_el3_or_mon(env)) { | |
1924 | r = CP_ACCESS_TRAP_EL3; | |
1925 | } | |
92b30c2f | 1926 | break; |
359fbe65 PM |
1927 | default: |
1928 | g_assert_not_reached(); | |
1929 | } | |
1930 | } | |
1931 | ||
1932 | if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { | |
1933 | r = CP_ACCESS_TRAP; | |
1934 | } | |
1935 | return r; | |
1936 | } | |
1937 | ||
1938 | static CPAccessResult gicv3_irq_access(CPUARMState *env, | |
1939 | const ARMCPRegInfo *ri, bool isread) | |
1940 | { | |
1941 | CPAccessResult r = CP_ACCESS_OK; | |
86830554 PM |
1942 | GICv3CPUState *cs = icc_cs_from_env(env); |
1943 | int el = arm_current_el(env); | |
1944 | ||
1945 | if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && | |
1946 | el == 1 && !arm_is_secure_below_el3(env)) { | |
1947 | /* Takes priority over a possible EL3 trap */ | |
1948 | return CP_ACCESS_TRAP_EL2; | |
1949 | } | |
359fbe65 PM |
1950 | |
1951 | if (env->cp15.scr_el3 & SCR_IRQ) { | |
86830554 | 1952 | switch (el) { |
359fbe65 PM |
1953 | case 1: |
1954 | if (arm_is_secure_below_el3(env) || | |
1955 | ((env->cp15.hcr_el2 & HCR_IMO) == 0)) { | |
1956 | r = CP_ACCESS_TRAP_EL3; | |
1957 | } | |
1958 | break; | |
1959 | case 2: | |
1960 | r = CP_ACCESS_TRAP_EL3; | |
1961 | break; | |
1962 | case 3: | |
1963 | if (!is_a64(env) && !arm_is_el3_or_mon(env)) { | |
1964 | r = CP_ACCESS_TRAP_EL3; | |
1965 | } | |
1966 | break; | |
1967 | default: | |
1968 | g_assert_not_reached(); | |
1969 | } | |
1970 | } | |
1971 | ||
1972 | if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { | |
1973 | r = CP_ACCESS_TRAP; | |
1974 | } | |
1975 | return r; | |
1976 | } | |
1977 | ||
1978 | static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1979 | { | |
1980 | GICv3CPUState *cs = icc_cs_from_env(env); | |
1981 | ||
1982 | cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | | |
1983 | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | | |
1984 | (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); | |
1985 | cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | | |
1986 | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | | |
1987 | (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); | |
1988 | cs->icc_pmr_el1 = 0; | |
1989 | cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR; | |
1990 | cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR; | |
1991 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1992 | cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS; | |
1993 | } else { | |
1994 | cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR; | |
1995 | } | |
1996 | memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); | |
1997 | memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); | |
1998 | cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | | |
1999 | (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | | |
2000 | (7 << ICC_CTLR_EL3_PRIBITS_SHIFT); | |
4eb833b5 PM |
2001 | |
2002 | memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); | |
2003 | cs->ich_hcr_el2 = 0; | |
2004 | memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); | |
2005 | cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | | |
2006 | (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR1_SHIFT) | | |
2007 | (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); | |
359fbe65 PM |
2008 | } |
2009 | ||
2010 | static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { | |
2011 | { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, | |
2012 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, | |
2013 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2014 | .access = PL1_RW, .accessfn = gicv3_irqfiq_access, | |
2015 | .readfn = icc_pmr_read, | |
2016 | .writefn = icc_pmr_write, | |
2017 | /* We hang the whole cpu interface reset routine off here | |
2018 | * rather than parcelling it out into one little function | |
2019 | * per register | |
2020 | */ | |
2021 | .resetfn = icc_reset, | |
2022 | }, | |
227a8653 PM |
2023 | { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, |
2024 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, | |
2025 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2026 | .access = PL1_R, .accessfn = gicv3_fiq_access, | |
2027 | .readfn = icc_iar0_read, | |
2028 | }, | |
2029 | { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, | |
2030 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, | |
2031 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2032 | .access = PL1_W, .accessfn = gicv3_fiq_access, | |
2033 | .writefn = icc_eoir_write, | |
2034 | }, | |
2035 | { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, | |
2036 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, | |
2037 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2038 | .access = PL1_R, .accessfn = gicv3_fiq_access, | |
2039 | .readfn = icc_hppir0_read, | |
2040 | }, | |
359fbe65 PM |
2041 | { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, |
2042 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, | |
2043 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2044 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 2045 | .readfn = icc_bpr_read, |
359fbe65 PM |
2046 | .writefn = icc_bpr_write, |
2047 | }, | |
2048 | { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, | |
2049 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, | |
2050 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2051 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 2052 | .readfn = icc_ap_read, |
359fbe65 PM |
2053 | .writefn = icc_ap_write, |
2054 | }, | |
2055 | { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, | |
2056 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, | |
2057 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2058 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 2059 | .readfn = icc_ap_read, |
359fbe65 PM |
2060 | .writefn = icc_ap_write, |
2061 | }, | |
2062 | { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, | |
2063 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, | |
2064 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2065 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 2066 | .readfn = icc_ap_read, |
359fbe65 PM |
2067 | .writefn = icc_ap_write, |
2068 | }, | |
2069 | { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, | |
2070 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, | |
2071 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2072 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 2073 | .readfn = icc_ap_read, |
359fbe65 PM |
2074 | .writefn = icc_ap_write, |
2075 | }, | |
2076 | /* All the ICC_AP1R*_EL1 registers are banked */ | |
2077 | { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, | |
2078 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, | |
2079 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2080 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
2081 | .readfn = icc_ap_read, | |
2082 | .writefn = icc_ap_write, | |
2083 | }, | |
2084 | { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, | |
2085 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, | |
2086 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2087 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
2088 | .readfn = icc_ap_read, | |
2089 | .writefn = icc_ap_write, | |
2090 | }, | |
2091 | { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, | |
2092 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, | |
2093 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2094 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
2095 | .readfn = icc_ap_read, | |
2096 | .writefn = icc_ap_write, | |
2097 | }, | |
2098 | { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, | |
2099 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, | |
2100 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2101 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
2102 | .readfn = icc_ap_read, | |
2103 | .writefn = icc_ap_write, | |
2104 | }, | |
227a8653 PM |
2105 | { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, |
2106 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, | |
2107 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
86830554 | 2108 | .access = PL1_W, .accessfn = gicv3_dir_access, |
227a8653 PM |
2109 | .writefn = icc_dir_write, |
2110 | }, | |
2111 | { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, | |
2112 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, | |
2113 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2114 | .access = PL1_R, .accessfn = gicv3_irqfiq_access, | |
2115 | .readfn = icc_rpr_read, | |
2116 | }, | |
b1a0eb77 PM |
2117 | { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, |
2118 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, | |
2119 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
86830554 | 2120 | .access = PL1_W, .accessfn = gicv3_sgi_access, |
b1a0eb77 PM |
2121 | .writefn = icc_sgi1r_write, |
2122 | }, | |
2123 | { .name = "ICC_SGI1R", | |
2124 | .cp = 15, .opc1 = 0, .crm = 12, | |
2125 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, | |
86830554 | 2126 | .access = PL1_W, .accessfn = gicv3_sgi_access, |
b1a0eb77 PM |
2127 | .writefn = icc_sgi1r_write, |
2128 | }, | |
2129 | { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, | |
2130 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, | |
2131 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
86830554 | 2132 | .access = PL1_W, .accessfn = gicv3_sgi_access, |
b1a0eb77 PM |
2133 | .writefn = icc_asgi1r_write, |
2134 | }, | |
2135 | { .name = "ICC_ASGI1R", | |
2136 | .cp = 15, .opc1 = 1, .crm = 12, | |
2137 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, | |
86830554 | 2138 | .access = PL1_W, .accessfn = gicv3_sgi_access, |
b1a0eb77 PM |
2139 | .writefn = icc_asgi1r_write, |
2140 | }, | |
2141 | { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, | |
2142 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, | |
2143 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
86830554 | 2144 | .access = PL1_W, .accessfn = gicv3_sgi_access, |
b1a0eb77 PM |
2145 | .writefn = icc_sgi0r_write, |
2146 | }, | |
2147 | { .name = "ICC_SGI0R", | |
2148 | .cp = 15, .opc1 = 2, .crm = 12, | |
2149 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, | |
86830554 | 2150 | .access = PL1_W, .accessfn = gicv3_sgi_access, |
b1a0eb77 PM |
2151 | .writefn = icc_sgi0r_write, |
2152 | }, | |
227a8653 PM |
2153 | { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, |
2154 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, | |
2155 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2156 | .access = PL1_R, .accessfn = gicv3_irq_access, | |
2157 | .readfn = icc_iar1_read, | |
2158 | }, | |
2159 | { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, | |
2160 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, | |
2161 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2162 | .access = PL1_W, .accessfn = gicv3_irq_access, | |
2163 | .writefn = icc_eoir_write, | |
2164 | }, | |
2165 | { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, | |
2166 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, | |
2167 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2168 | .access = PL1_R, .accessfn = gicv3_irq_access, | |
2169 | .readfn = icc_hppir1_read, | |
2170 | }, | |
359fbe65 PM |
2171 | /* This register is banked */ |
2172 | { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, | |
2173 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, | |
2174 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2175 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
2176 | .readfn = icc_bpr_read, | |
2177 | .writefn = icc_bpr_write, | |
2178 | }, | |
2179 | /* This register is banked */ | |
2180 | { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, | |
2181 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, | |
2182 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2183 | .access = PL1_RW, .accessfn = gicv3_irqfiq_access, | |
2184 | .readfn = icc_ctlr_el1_read, | |
2185 | .writefn = icc_ctlr_el1_write, | |
2186 | }, | |
2187 | { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, | |
2188 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, | |
2189 | .type = ARM_CP_NO_RAW | ARM_CP_CONST, | |
2190 | .access = PL1_RW, | |
2191 | /* We don't support IRQ/FIQ bypass and system registers are | |
2192 | * always enabled, so all our bits are RAZ/WI or RAO/WI. | |
2193 | * This register is banked but since it's constant we don't | |
2194 | * need to do anything special. | |
2195 | */ | |
2196 | .resetvalue = 0x7, | |
2197 | }, | |
2198 | { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, | |
2199 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, | |
2200 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2201 | .access = PL1_RW, .accessfn = gicv3_fiq_access, | |
e971fa04 | 2202 | .readfn = icc_igrpen_read, |
359fbe65 PM |
2203 | .writefn = icc_igrpen_write, |
2204 | }, | |
2205 | /* This register is banked */ | |
2206 | { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, | |
2207 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, | |
2208 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2209 | .access = PL1_RW, .accessfn = gicv3_irq_access, | |
2210 | .readfn = icc_igrpen_read, | |
2211 | .writefn = icc_igrpen_write, | |
2212 | }, | |
2213 | { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, | |
2214 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, | |
2215 | .type = ARM_CP_NO_RAW | ARM_CP_CONST, | |
2216 | .access = PL2_RW, | |
2217 | /* We don't support IRQ/FIQ bypass and system registers are | |
2218 | * always enabled, so all our bits are RAZ/WI or RAO/WI. | |
2219 | */ | |
2220 | .resetvalue = 0xf, | |
2221 | }, | |
2222 | { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, | |
2223 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, | |
2224 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2225 | .access = PL3_RW, | |
359fbe65 PM |
2226 | .readfn = icc_ctlr_el3_read, |
2227 | .writefn = icc_ctlr_el3_write, | |
2228 | }, | |
2229 | { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, | |
2230 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, | |
2231 | .type = ARM_CP_NO_RAW | ARM_CP_CONST, | |
2232 | .access = PL3_RW, | |
2233 | /* We don't support IRQ/FIQ bypass and system registers are | |
2234 | * always enabled, so all our bits are RAZ/WI or RAO/WI. | |
2235 | */ | |
2236 | .resetvalue = 0xf, | |
2237 | }, | |
2238 | { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, | |
2239 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, | |
2240 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2241 | .access = PL3_RW, | |
2242 | .readfn = icc_igrpen1_el3_read, | |
2243 | .writefn = icc_igrpen1_el3_write, | |
2244 | }, | |
2245 | REGINFO_SENTINEL | |
2246 | }; | |
2247 | ||
83f036fe PM |
2248 | static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
2249 | { | |
2250 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2251 | int regno = ri->opc2 & 3; | |
2252 | int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; | |
2253 | uint64_t value; | |
2254 | ||
2255 | value = cs->ich_apr[grp][regno]; | |
2256 | trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | |
2257 | return value; | |
2258 | } | |
2259 | ||
2260 | static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2261 | uint64_t value) | |
2262 | { | |
2263 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2264 | int regno = ri->opc2 & 3; | |
2265 | int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; | |
2266 | ||
2267 | trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | |
2268 | ||
2269 | cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; | |
2270 | gicv3_cpuif_virt_update(cs); | |
2271 | } | |
2272 | ||
2273 | static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2274 | { | |
2275 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2276 | uint64_t value = cs->ich_hcr_el2; | |
2277 | ||
2278 | trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); | |
2279 | return value; | |
2280 | } | |
2281 | ||
2282 | static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2283 | uint64_t value) | |
2284 | { | |
2285 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2286 | ||
2287 | trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); | |
2288 | ||
2289 | value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | | |
2290 | ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | | |
2291 | ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | | |
2292 | ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | | |
2293 | ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; | |
2294 | ||
2295 | cs->ich_hcr_el2 = value; | |
2296 | gicv3_cpuif_virt_update(cs); | |
2297 | } | |
2298 | ||
2299 | static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2300 | { | |
2301 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2302 | uint64_t value = cs->ich_vmcr_el2; | |
2303 | ||
2304 | trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); | |
2305 | return value; | |
2306 | } | |
2307 | ||
2308 | static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2309 | uint64_t value) | |
2310 | { | |
2311 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2312 | ||
2313 | trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); | |
2314 | ||
2315 | value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | | |
2316 | ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | | |
2317 | ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; | |
2318 | value |= ICH_VMCR_EL2_VFIQEN; | |
2319 | ||
2320 | cs->ich_vmcr_el2 = value; | |
2321 | /* Enforce "writing BPRs to less than minimum sets them to the minimum" | |
2322 | * by reading and writing back the fields. | |
2323 | */ | |
2324 | write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0)); | |
2325 | write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); | |
2326 | ||
2327 | gicv3_cpuif_virt_update(cs); | |
2328 | } | |
2329 | ||
2330 | static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2331 | { | |
2332 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2333 | int regno = ri->opc2 | ((ri->crm & 1) << 3); | |
2334 | uint64_t value; | |
2335 | ||
2336 | /* This read function handles all of: | |
2337 | * 64-bit reads of the whole LR | |
2338 | * 32-bit reads of the low half of the LR | |
2339 | * 32-bit reads of the high half of the LR | |
2340 | */ | |
2341 | if (ri->state == ARM_CP_STATE_AA32) { | |
2342 | if (ri->crm >= 14) { | |
2343 | value = extract64(cs->ich_lr_el2[regno], 32, 32); | |
2344 | trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); | |
2345 | } else { | |
2346 | value = extract64(cs->ich_lr_el2[regno], 0, 32); | |
2347 | trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); | |
2348 | } | |
2349 | } else { | |
2350 | value = cs->ich_lr_el2[regno]; | |
2351 | trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); | |
2352 | } | |
2353 | ||
2354 | return value; | |
2355 | } | |
2356 | ||
2357 | static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2358 | uint64_t value) | |
2359 | { | |
2360 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2361 | int regno = ri->opc2 | ((ri->crm & 1) << 3); | |
2362 | ||
2363 | /* This write function handles all of: | |
2364 | * 64-bit writes to the whole LR | |
2365 | * 32-bit writes to the low half of the LR | |
2366 | * 32-bit writes to the high half of the LR | |
2367 | */ | |
2368 | if (ri->state == ARM_CP_STATE_AA32) { | |
2369 | if (ri->crm >= 14) { | |
2370 | trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); | |
2371 | value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); | |
2372 | } else { | |
2373 | trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); | |
2374 | value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); | |
2375 | } | |
2376 | } else { | |
2377 | trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); | |
2378 | } | |
2379 | ||
2380 | /* Enforce RES0 bits in priority field */ | |
2381 | if (cs->vpribits < 8) { | |
2382 | value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, | |
2383 | 8 - cs->vpribits, 0); | |
2384 | } | |
2385 | ||
2386 | cs->ich_lr_el2[regno] = value; | |
2387 | gicv3_cpuif_virt_update(cs); | |
2388 | } | |
2389 | ||
2390 | static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2391 | { | |
2392 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2393 | uint64_t value; | |
2394 | ||
2395 | value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) | |
2396 | | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V | |
2397 | | (1 << ICH_VTR_EL2_IDBITS_SHIFT) | |
2398 | | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) | |
2399 | | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); | |
2400 | ||
2401 | trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); | |
2402 | return value; | |
2403 | } | |
2404 | ||
2405 | static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2406 | { | |
2407 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2408 | uint64_t value = maintenance_interrupt_state(cs); | |
2409 | ||
2410 | trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); | |
2411 | return value; | |
2412 | } | |
2413 | ||
2414 | static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2415 | { | |
2416 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2417 | uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); | |
2418 | ||
2419 | trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); | |
2420 | return value; | |
2421 | } | |
2422 | ||
2423 | static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2424 | { | |
2425 | GICv3CPUState *cs = icc_cs_from_env(env); | |
2426 | uint64_t value = 0; | |
2427 | int i; | |
2428 | ||
2429 | for (i = 0; i < cs->num_list_regs; i++) { | |
2430 | uint64_t lr = cs->ich_lr_el2[i]; | |
2431 | ||
2432 | if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && | |
d87576e3 | 2433 | ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { |
83f036fe PM |
2434 | value |= (1 << i); |
2435 | } | |
2436 | } | |
2437 | ||
2438 | trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); | |
2439 | return value; | |
2440 | } | |
2441 | ||
2442 | static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { | |
2443 | { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, | |
2444 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, | |
2445 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2446 | .access = PL2_RW, | |
2447 | .readfn = ich_ap_read, | |
2448 | .writefn = ich_ap_write, | |
2449 | }, | |
2450 | { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, | |
2451 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, | |
2452 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2453 | .access = PL2_RW, | |
2454 | .readfn = ich_ap_read, | |
2455 | .writefn = ich_ap_write, | |
2456 | }, | |
2457 | { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, | |
2458 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, | |
2459 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2460 | .access = PL2_RW, | |
2461 | .readfn = ich_hcr_read, | |
2462 | .writefn = ich_hcr_write, | |
2463 | }, | |
2464 | { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, | |
2465 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, | |
2466 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2467 | .access = PL2_R, | |
2468 | .readfn = ich_vtr_read, | |
2469 | }, | |
2470 | { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, | |
2471 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, | |
2472 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2473 | .access = PL2_R, | |
2474 | .readfn = ich_misr_read, | |
2475 | }, | |
2476 | { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, | |
2477 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, | |
2478 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2479 | .access = PL2_R, | |
2480 | .readfn = ich_eisr_read, | |
2481 | }, | |
2482 | { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, | |
2483 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, | |
2484 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2485 | .access = PL2_R, | |
2486 | .readfn = ich_elrsr_read, | |
2487 | }, | |
2488 | { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, | |
2489 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, | |
2490 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2491 | .access = PL2_RW, | |
2492 | .readfn = ich_vmcr_read, | |
2493 | .writefn = ich_vmcr_write, | |
2494 | }, | |
2495 | REGINFO_SENTINEL | |
2496 | }; | |
2497 | ||
2498 | static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { | |
2499 | { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, | |
2500 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, | |
2501 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2502 | .access = PL2_RW, | |
2503 | .readfn = ich_ap_read, | |
2504 | .writefn = ich_ap_write, | |
2505 | }, | |
2506 | { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, | |
2507 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, | |
2508 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2509 | .access = PL2_RW, | |
2510 | .readfn = ich_ap_read, | |
2511 | .writefn = ich_ap_write, | |
2512 | }, | |
2513 | REGINFO_SENTINEL | |
2514 | }; | |
2515 | ||
2516 | static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { | |
2517 | { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, | |
2518 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, | |
2519 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2520 | .access = PL2_RW, | |
2521 | .readfn = ich_ap_read, | |
2522 | .writefn = ich_ap_write, | |
2523 | }, | |
2524 | { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, | |
2525 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, | |
2526 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2527 | .access = PL2_RW, | |
2528 | .readfn = ich_ap_read, | |
2529 | .writefn = ich_ap_write, | |
2530 | }, | |
2531 | { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, | |
2532 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, | |
2533 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2534 | .access = PL2_RW, | |
2535 | .readfn = ich_ap_read, | |
2536 | .writefn = ich_ap_write, | |
2537 | }, | |
2538 | { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, | |
2539 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, | |
2540 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2541 | .access = PL2_RW, | |
2542 | .readfn = ich_ap_read, | |
2543 | .writefn = ich_ap_write, | |
2544 | }, | |
2545 | REGINFO_SENTINEL | |
2546 | }; | |
2547 | ||
359fbe65 PM |
2548 | static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) |
2549 | { | |
f7b9358e PM |
2550 | GICv3CPUState *cs = opaque; |
2551 | ||
2552 | gicv3_cpuif_update(cs); | |
359fbe65 PM |
2553 | } |
2554 | ||
2555 | void gicv3_init_cpuif(GICv3State *s) | |
2556 | { | |
2557 | /* Called from the GICv3 realize function; register our system | |
2558 | * registers with the CPU | |
2559 | */ | |
2560 | int i; | |
2561 | ||
2562 | for (i = 0; i < s->num_cpu; i++) { | |
2563 | ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); | |
2564 | GICv3CPUState *cs = &s->cpu[i]; | |
2565 | ||
2566 | /* Note that we can't just use the GICv3CPUState as an opaque pointer | |
2567 | * in define_arm_cp_regs_with_opaque(), because when we're called back | |
2568 | * it might be with code translated by CPU 0 but run by CPU 1, in | |
2569 | * which case we'd get the wrong value. | |
2570 | * So instead we define the regs with no ri->opaque info, and | |
2571 | * get back to the GICv3CPUState from the ARMCPU by reading back | |
2572 | * the opaque pointer from the el_change_hook, which we're going | |
2573 | * to need to register anyway. | |
2574 | */ | |
2575 | define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); | |
83f036fe PM |
2576 | if (arm_feature(&cpu->env, ARM_FEATURE_EL2) |
2577 | && cpu->gic_num_lrs) { | |
2578 | int j; | |
2579 | ||
c5fc89b3 PM |
2580 | cs->maintenance_irq = cpu->gicv3_maintenance_interrupt; |
2581 | ||
83f036fe PM |
2582 | cs->num_list_regs = cpu->gic_num_lrs; |
2583 | cs->vpribits = cpu->gic_vpribits; | |
2584 | cs->vprebits = cpu->gic_vprebits; | |
2585 | ||
2586 | /* Check against architectural constraints: getting these | |
2587 | * wrong would be a bug in the CPU code defining these, | |
2588 | * and the implementation relies on them holding. | |
2589 | */ | |
2590 | g_assert(cs->vprebits <= cs->vpribits); | |
2591 | g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); | |
2592 | g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); | |
2593 | ||
2594 | define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); | |
2595 | ||
2596 | for (j = 0; j < cs->num_list_regs; j++) { | |
2597 | /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs | |
2598 | * are split into two cp15 regs, LR (the low part, with the | |
2599 | * same encoding as the AArch64 LR) and LRC (the high part). | |
2600 | */ | |
2601 | ARMCPRegInfo lr_regset[] = { | |
2602 | { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, | |
2603 | .opc0 = 3, .opc1 = 4, .crn = 12, | |
2604 | .crm = 12 + (j >> 3), .opc2 = j & 7, | |
2605 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2606 | .access = PL2_RW, | |
2607 | .readfn = ich_lr_read, | |
2608 | .writefn = ich_lr_write, | |
2609 | }, | |
2610 | { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, | |
2611 | .cp = 15, .opc1 = 4, .crn = 12, | |
2612 | .crm = 14 + (j >> 3), .opc2 = j & 7, | |
2613 | .type = ARM_CP_IO | ARM_CP_NO_RAW, | |
2614 | .access = PL2_RW, | |
2615 | .readfn = ich_lr_read, | |
2616 | .writefn = ich_lr_write, | |
2617 | }, | |
2618 | REGINFO_SENTINEL | |
2619 | }; | |
2620 | define_arm_cp_regs(cpu, lr_regset); | |
2621 | } | |
2622 | if (cs->vprebits >= 6) { | |
2623 | define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); | |
2624 | } | |
2625 | if (cs->vprebits == 7) { | |
2626 | define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); | |
2627 | } | |
2628 | } | |
359fbe65 PM |
2629 | arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); |
2630 | } | |
2631 | } |