]> Git Repo - qemu.git/blame - migration/ram.c
unicore32-softmmu.mak: express dependencies with Kconfig
[qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <[email protected]>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
e688df6b 28
1393a485 29#include "qemu/osdep.h"
33c11879 30#include "cpu.h"
56e93d26 31#include <zlib.h>
f348b6d1 32#include "qemu/cutils.h"
56e93d26
JQ
33#include "qemu/bitops.h"
34#include "qemu/bitmap.h"
7205c9ec 35#include "qemu/main-loop.h"
56eb90af 36#include "qemu/pmem.h"
709e3fe8 37#include "xbzrle.h"
7b1e1a22 38#include "ram.h"
6666c96a 39#include "migration.h"
71bb07db 40#include "socket.h"
f2a8f0a6 41#include "migration/register.h"
7b1e1a22 42#include "migration/misc.h"
08a0aee1 43#include "qemu-file.h"
be07b0ac 44#include "postcopy-ram.h"
53d37d36 45#include "page_cache.h"
56e93d26 46#include "qemu/error-report.h"
e688df6b 47#include "qapi/error.h"
9af23989 48#include "qapi/qapi-events-migration.h"
8acabf69 49#include "qapi/qmp/qerror.h"
56e93d26 50#include "trace.h"
56e93d26 51#include "exec/ram_addr.h"
f9494614 52#include "exec/target_page.h"
56e93d26 53#include "qemu/rcu_queue.h"
a91246c9 54#include "migration/colo.h"
53d37d36 55#include "block.h"
af8b7d2b
JQ
56#include "sysemu/sysemu.h"
57#include "qemu/uuid.h"
edd090c7 58#include "savevm.h"
b9ee2f7d 59#include "qemu/iov.h"
56e93d26 60
56e93d26
JQ
61/***********************************************************/
62/* ram save/restore */
63
bb890ed5
JQ
64/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
56e93d26 70#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
bb890ed5 71#define RAM_SAVE_FLAG_ZERO 0x02
56e93d26
JQ
72#define RAM_SAVE_FLAG_MEM_SIZE 0x04
73#define RAM_SAVE_FLAG_PAGE 0x08
74#define RAM_SAVE_FLAG_EOS 0x10
75#define RAM_SAVE_FLAG_CONTINUE 0x20
76#define RAM_SAVE_FLAG_XBZRLE 0x40
77/* 0x80 is reserved in migration.h start with 0x100 next */
78#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
56e93d26
JQ
80static inline bool is_zero_range(uint8_t *p, uint64_t size)
81{
a1febc49 82 return buffer_is_zero(p, size);
56e93d26
JQ
83}
84
9360447d
JQ
85XBZRLECacheStats xbzrle_counters;
86
56e93d26
JQ
87/* struct contains XBZRLE cache and a static page
88 used by the compression */
89static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
c00e0928
JQ
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
f265e0e4
JQ
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
56e93d26
JQ
101} XBZRLE;
102
56e93d26
JQ
103static void XBZRLE_cache_lock(void)
104{
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107}
108
109static void XBZRLE_cache_unlock(void)
110{
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113}
114
3d0684b2
JQ
115/**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
c9dede2d 123 * Returns 0 for success or -1 for error
3d0684b2
JQ
124 *
125 * @new_size: new cache size
8acabf69 126 * @errp: set *errp if the check failed, with reason
56e93d26 127 */
c9dede2d 128int xbzrle_cache_resize(int64_t new_size, Error **errp)
56e93d26
JQ
129{
130 PageCache *new_cache;
c9dede2d 131 int64_t ret = 0;
56e93d26 132
8acabf69
JQ
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
2a313e5c
JQ
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
c9dede2d 142 return 0;
2a313e5c
JQ
143 }
144
56e93d26
JQ
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
80f8dfde 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
56e93d26 149 if (!new_cache) {
56e93d26
JQ
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
56e93d26
JQ
157out:
158 XBZRLE_cache_unlock();
159 return ret;
160}
161
fbd162e6
YK
162static bool ramblock_is_ignored(RAMBlock *block)
163{
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
166}
167
b895de50 168/* Should be holding either ram_list.mutex, or the RCU lock. */
fbd162e6
YK
169#define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
172
b895de50 173#define RAMBLOCK_FOREACH_MIGRATABLE(block) \
343f632c 174 INTERNAL_RAMBLOCK_FOREACH(block) \
b895de50
CLG
175 if (!qemu_ram_is_migratable(block)) {} else
176
343f632c
DDAG
177#undef RAMBLOCK_FOREACH
178
fbd162e6
YK
179int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
180{
181 RAMBlock *block;
182 int ret = 0;
183
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 rcu_read_unlock();
192 return ret;
193}
194
f9494614
AP
195static void ramblock_recv_map_init(void)
196{
197 RAMBlock *rb;
198
fbd162e6 199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
202 }
203}
204
205int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
206{
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
209}
210
1cba9f6e
DDAG
211bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
212{
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
214}
215
f9494614
AP
216void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
217{
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
219}
220
221void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
223{
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
227}
228
a335debb
PX
229#define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
230
231/*
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
233 *
234 * Returns >0 if success with sent bytes, or <0 if error.
235 */
236int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
238{
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
242
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
246 }
247
248 nbits = block->used_length >> TARGET_PAGE_BITS;
249
250 /*
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
254 */
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
256
257 /*
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
261 */
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
263
264 /* Size of the bitmap, in bytes */
a725ef9f 265 size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
266
267 /*
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
272 */
273 size = ROUND_UP(size, 8);
274
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
277 /*
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
280 */
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
283
bf269906 284 g_free(le_bitmap);
a335debb
PX
285
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
288 }
289
290 return size + sizeof(size);
291}
292
ec481c6c
JQ
293/*
294 * An outstanding page request, on the source, having been received
295 * and queued
296 */
297struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
301
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
303};
304
6f37bb8b
JQ
305/* State of RAM for migration */
306struct RAMState {
204b88b8
JQ
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
6f37bb8b
JQ
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
269ace29
JQ
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
6f37bb8b
JQ
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
6eeb63f7
WW
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
8d820d6f
JQ
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
f664da80
JQ
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
eac74159 326 /* bytes transferred at start_time */
c4bdf0cf 327 uint64_t bytes_xfer_prev;
a66cd90c 328 /* number of dirty pages since start_time */
68908ed6 329 uint64_t num_dirty_pages_period;
b5833fde
JQ
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
76e03000
XG
332
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
340
be8b02ed
XG
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
9360447d 345 /* number of dirty bits in the bitmap */
2dfaf12e 346 uint64_t migration_dirty_pages;
386a907b 347 /* Protects modification of the bitmap and migration dirty pages */
108cfae0 348 QemuMutex bitmap_mutex;
68a098f3
JQ
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
ec481c6c
JQ
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
b58deb34 353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
6f37bb8b
JQ
354};
355typedef struct RAMState RAMState;
356
53518d94 357static RAMState *ram_state;
6f37bb8b 358
bd227060
WW
359static NotifierWithReturnList precopy_notifier_list;
360
361void precopy_infrastructure_init(void)
362{
363 notifier_with_return_list_init(&precopy_notifier_list);
364}
365
366void precopy_add_notifier(NotifierWithReturn *n)
367{
368 notifier_with_return_list_add(&precopy_notifier_list, n);
369}
370
371void precopy_remove_notifier(NotifierWithReturn *n)
372{
373 notifier_with_return_remove(n);
374}
375
376int precopy_notify(PrecopyNotifyReason reason, Error **errp)
377{
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
381
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
383}
384
6eeb63f7
WW
385void precopy_enable_free_page_optimization(void)
386{
387 if (!ram_state) {
388 return;
389 }
390
391 ram_state->fpo_enabled = true;
392}
393
9edabd4d 394uint64_t ram_bytes_remaining(void)
2f4fde93 395{
bae416e5
DDAG
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
397 0;
2f4fde93
JQ
398}
399
9360447d 400MigrationStats ram_counters;
96506894 401
b8fb8cb7
DDAG
402/* used by the search for pages to send */
403struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
a935e30f
JQ
406 /* Current page to search from */
407 unsigned long page;
b8fb8cb7
DDAG
408 /* Set once we wrap around */
409 bool complete_round;
410};
411typedef struct PageSearchStatus PageSearchStatus;
412
76e03000
XG
413CompressionStats compression_counters;
414
56e93d26 415struct CompressParam {
56e93d26 416 bool done;
90e56fb4 417 bool quit;
5e5fdcff 418 bool zero_page;
56e93d26
JQ
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
34ab9e97
XG
424
425 /* internally used fields */
dcaf446e 426 z_stream stream;
34ab9e97 427 uint8_t *originbuf;
56e93d26
JQ
428};
429typedef struct CompressParam CompressParam;
430
431struct DecompressParam {
73a8912b 432 bool done;
90e56fb4 433 bool quit;
56e93d26
JQ
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
d341d9f3 437 uint8_t *compbuf;
56e93d26 438 int len;
797ca154 439 z_stream stream;
56e93d26
JQ
440};
441typedef struct DecompressParam DecompressParam;
442
443static CompressParam *comp_param;
444static QemuThread *compress_threads;
445/* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
448 */
0d9f9a5c
LL
449static QemuMutex comp_done_lock;
450static QemuCond comp_done_cond;
56e93d26
JQ
451/* The empty QEMUFileOps will be used by file in CompressParam */
452static const QEMUFileOps empty_ops = { };
453
34ab9e97 454static QEMUFile *decomp_file;
56e93d26
JQ
455static DecompressParam *decomp_param;
456static QemuThread *decompress_threads;
73a8912b
LL
457static QemuMutex decomp_done_lock;
458static QemuCond decomp_done_cond;
56e93d26 459
5e5fdcff 460static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 461 ram_addr_t offset, uint8_t *source_buf);
56e93d26
JQ
462
463static void *do_data_compress(void *opaque)
464{
465 CompressParam *param = opaque;
a7a9a88f
LL
466 RAMBlock *block;
467 ram_addr_t offset;
5e5fdcff 468 bool zero_page;
56e93d26 469
a7a9a88f 470 qemu_mutex_lock(&param->mutex);
90e56fb4 471 while (!param->quit) {
a7a9a88f
LL
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
477
5e5fdcff
XG
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
a7a9a88f 480
0d9f9a5c 481 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 482 param->done = true;
5e5fdcff 483 param->zero_page = zero_page;
0d9f9a5c
LL
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
486
487 qemu_mutex_lock(&param->mutex);
488 } else {
56e93d26
JQ
489 qemu_cond_wait(&param->cond, &param->mutex);
490 }
56e93d26 491 }
a7a9a88f 492 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
493
494 return NULL;
495}
496
f0afa331 497static void compress_threads_save_cleanup(void)
56e93d26
JQ
498{
499 int i, thread_count;
500
05306935 501 if (!migrate_use_compression() || !comp_param) {
56e93d26
JQ
502 return;
503 }
05306935 504
56e93d26
JQ
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
dcaf446e
XG
507 /*
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
510 */
511 if (!comp_param[i].file) {
512 break;
513 }
05306935
FL
514
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
519
56e93d26 520 qemu_thread_join(compress_threads + i);
56e93d26
JQ
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
dcaf446e 523 deflateEnd(&comp_param[i].stream);
34ab9e97 524 g_free(comp_param[i].originbuf);
dcaf446e
XG
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
56e93d26 527 }
0d9f9a5c
LL
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
530 g_free(compress_threads);
531 g_free(comp_param);
56e93d26
JQ
532 compress_threads = NULL;
533 comp_param = NULL;
56e93d26
JQ
534}
535
dcaf446e 536static int compress_threads_save_setup(void)
56e93d26
JQ
537{
538 int i, thread_count;
539
540 if (!migrate_use_compression()) {
dcaf446e 541 return 0;
56e93d26 542 }
56e93d26
JQ
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
56e93d26 548 for (i = 0; i < thread_count; i++) {
34ab9e97
XG
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
552 }
553
dcaf446e
XG
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
34ab9e97 556 g_free(comp_param[i].originbuf);
dcaf446e
XG
557 goto exit;
558 }
559
e110aa91
C
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
56e93d26
JQ
562 */
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
90e56fb4 565 comp_param[i].quit = false;
56e93d26
JQ
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
571 }
dcaf446e
XG
572 return 0;
573
574exit:
575 compress_threads_save_cleanup();
576 return -1;
56e93d26
JQ
577}
578
f986c3d2
JQ
579/* Multiple fd's */
580
af8b7d2b
JQ
581#define MULTIFD_MAGIC 0x11223344U
582#define MULTIFD_VERSION 1
583
6df264ac
JQ
584#define MULTIFD_FLAG_SYNC (1 << 0)
585
af8b7d2b
JQ
586typedef struct {
587 uint32_t magic;
588 uint32_t version;
589 unsigned char uuid[16]; /* QemuUUID */
590 uint8_t id;
591} __attribute__((packed)) MultiFDInit_t;
592
2a26c979
JQ
593typedef struct {
594 uint32_t magic;
595 uint32_t version;
596 uint32_t flags;
597 uint32_t size;
598 uint32_t used;
599 uint64_t packet_num;
600 char ramblock[256];
601 uint64_t offset[];
602} __attribute__((packed)) MultiFDPacket_t;
603
34c55a94
JQ
604typedef struct {
605 /* number of used pages */
606 uint32_t used;
607 /* number of allocated pages */
608 uint32_t allocated;
609 /* global number of generated multifd packets */
610 uint64_t packet_num;
611 /* offset of each page */
612 ram_addr_t *offset;
613 /* pointer to each page */
614 struct iovec *iov;
615 RAMBlock *block;
616} MultiFDPages_t;
617
8c4598f2
JQ
618typedef struct {
619 /* this fields are not changed once the thread is created */
620 /* channel number */
f986c3d2 621 uint8_t id;
8c4598f2 622 /* channel thread name */
f986c3d2 623 char *name;
8c4598f2 624 /* channel thread id */
f986c3d2 625 QemuThread thread;
8c4598f2 626 /* communication channel */
60df2d4a 627 QIOChannel *c;
8c4598f2 628 /* sem where to wait for more work */
f986c3d2 629 QemuSemaphore sem;
8c4598f2 630 /* this mutex protects the following parameters */
f986c3d2 631 QemuMutex mutex;
8c4598f2 632 /* is this channel thread running */
66770707 633 bool running;
8c4598f2 634 /* should this thread finish */
f986c3d2 635 bool quit;
0beb5ed3
JQ
636 /* thread has work to do */
637 int pending_job;
34c55a94
JQ
638 /* array of pages to sent */
639 MultiFDPages_t *pages;
2a26c979
JQ
640 /* packet allocated len */
641 uint32_t packet_len;
642 /* pointer to the packet */
643 MultiFDPacket_t *packet;
644 /* multifd flags for each packet */
645 uint32_t flags;
646 /* global number of generated multifd packets */
647 uint64_t packet_num;
408ea6ae
JQ
648 /* thread local variables */
649 /* packets sent through this channel */
650 uint64_t num_packets;
651 /* pages sent through this channel */
652 uint64_t num_pages;
6df264ac
JQ
653 /* syncs main thread and channels */
654 QemuSemaphore sem_sync;
8c4598f2
JQ
655} MultiFDSendParams;
656
657typedef struct {
658 /* this fields are not changed once the thread is created */
659 /* channel number */
660 uint8_t id;
661 /* channel thread name */
662 char *name;
663 /* channel thread id */
664 QemuThread thread;
665 /* communication channel */
666 QIOChannel *c;
8c4598f2
JQ
667 /* this mutex protects the following parameters */
668 QemuMutex mutex;
669 /* is this channel thread running */
670 bool running;
34c55a94
JQ
671 /* array of pages to receive */
672 MultiFDPages_t *pages;
2a26c979
JQ
673 /* packet allocated len */
674 uint32_t packet_len;
675 /* pointer to the packet */
676 MultiFDPacket_t *packet;
677 /* multifd flags for each packet */
678 uint32_t flags;
679 /* global number of generated multifd packets */
680 uint64_t packet_num;
408ea6ae
JQ
681 /* thread local variables */
682 /* packets sent through this channel */
683 uint64_t num_packets;
684 /* pages sent through this channel */
685 uint64_t num_pages;
6df264ac
JQ
686 /* syncs main thread and channels */
687 QemuSemaphore sem_sync;
8c4598f2 688} MultiFDRecvParams;
f986c3d2 689
af8b7d2b
JQ
690static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
691{
692 MultiFDInit_t msg;
693 int ret;
694
695 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
696 msg.version = cpu_to_be32(MULTIFD_VERSION);
697 msg.id = p->id;
698 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
699
700 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
701 if (ret != 0) {
702 return -1;
703 }
704 return 0;
705}
706
707static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
708{
709 MultiFDInit_t msg;
710 int ret;
711
712 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
713 if (ret != 0) {
714 return -1;
715 }
716
341ba0df
PM
717 msg.magic = be32_to_cpu(msg.magic);
718 msg.version = be32_to_cpu(msg.version);
af8b7d2b
JQ
719
720 if (msg.magic != MULTIFD_MAGIC) {
721 error_setg(errp, "multifd: received packet magic %x "
722 "expected %x", msg.magic, MULTIFD_MAGIC);
723 return -1;
724 }
725
726 if (msg.version != MULTIFD_VERSION) {
727 error_setg(errp, "multifd: received packet version %d "
728 "expected %d", msg.version, MULTIFD_VERSION);
729 return -1;
730 }
731
732 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
733 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
734 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
735
736 error_setg(errp, "multifd: received uuid '%s' and expected "
737 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
738 g_free(uuid);
739 g_free(msg_uuid);
740 return -1;
741 }
742
743 if (msg.id > migrate_multifd_channels()) {
744 error_setg(errp, "multifd: received channel version %d "
745 "expected %d", msg.version, MULTIFD_VERSION);
746 return -1;
747 }
748
749 return msg.id;
750}
751
34c55a94
JQ
752static MultiFDPages_t *multifd_pages_init(size_t size)
753{
754 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
755
756 pages->allocated = size;
757 pages->iov = g_new0(struct iovec, size);
758 pages->offset = g_new0(ram_addr_t, size);
759
760 return pages;
761}
762
763static void multifd_pages_clear(MultiFDPages_t *pages)
764{
765 pages->used = 0;
766 pages->allocated = 0;
767 pages->packet_num = 0;
768 pages->block = NULL;
769 g_free(pages->iov);
770 pages->iov = NULL;
771 g_free(pages->offset);
772 pages->offset = NULL;
773 g_free(pages);
774}
775
2a26c979
JQ
776static void multifd_send_fill_packet(MultiFDSendParams *p)
777{
778 MultiFDPacket_t *packet = p->packet;
779 int i;
780
781 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
782 packet->version = cpu_to_be32(MULTIFD_VERSION);
783 packet->flags = cpu_to_be32(p->flags);
784 packet->size = cpu_to_be32(migrate_multifd_page_count());
785 packet->used = cpu_to_be32(p->pages->used);
786 packet->packet_num = cpu_to_be64(p->packet_num);
787
788 if (p->pages->block) {
789 strncpy(packet->ramblock, p->pages->block->idstr, 256);
790 }
791
792 for (i = 0; i < p->pages->used; i++) {
793 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
794 }
795}
796
797static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
798{
799 MultiFDPacket_t *packet = p->packet;
800 RAMBlock *block;
801 int i;
802
341ba0df 803 packet->magic = be32_to_cpu(packet->magic);
2a26c979
JQ
804 if (packet->magic != MULTIFD_MAGIC) {
805 error_setg(errp, "multifd: received packet "
806 "magic %x and expected magic %x",
807 packet->magic, MULTIFD_MAGIC);
808 return -1;
809 }
810
341ba0df 811 packet->version = be32_to_cpu(packet->version);
2a26c979
JQ
812 if (packet->version != MULTIFD_VERSION) {
813 error_setg(errp, "multifd: received packet "
814 "version %d and expected version %d",
815 packet->version, MULTIFD_VERSION);
816 return -1;
817 }
818
819 p->flags = be32_to_cpu(packet->flags);
820
341ba0df 821 packet->size = be32_to_cpu(packet->size);
2a26c979
JQ
822 if (packet->size > migrate_multifd_page_count()) {
823 error_setg(errp, "multifd: received packet "
824 "with size %d and expected maximum size %d",
825 packet->size, migrate_multifd_page_count()) ;
826 return -1;
827 }
828
829 p->pages->used = be32_to_cpu(packet->used);
830 if (p->pages->used > packet->size) {
831 error_setg(errp, "multifd: received packet "
832 "with size %d and expected maximum size %d",
833 p->pages->used, packet->size) ;
834 return -1;
835 }
836
837 p->packet_num = be64_to_cpu(packet->packet_num);
838
839 if (p->pages->used) {
840 /* make sure that ramblock is 0 terminated */
841 packet->ramblock[255] = 0;
842 block = qemu_ram_block_by_name(packet->ramblock);
843 if (!block) {
844 error_setg(errp, "multifd: unknown ram block %s",
845 packet->ramblock);
846 return -1;
847 }
848 }
849
850 for (i = 0; i < p->pages->used; i++) {
851 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
852
853 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
854 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
855 " (max " RAM_ADDR_FMT ")",
856 offset, block->max_length);
857 return -1;
858 }
859 p->pages->iov[i].iov_base = block->host + offset;
860 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
861 }
862
863 return 0;
864}
865
f986c3d2
JQ
866struct {
867 MultiFDSendParams *params;
868 /* number of created threads */
869 int count;
34c55a94
JQ
870 /* array of pages to sent */
871 MultiFDPages_t *pages;
6df264ac
JQ
872 /* syncs main thread and channels */
873 QemuSemaphore sem_sync;
874 /* global number of generated multifd packets */
875 uint64_t packet_num;
b9ee2f7d
JQ
876 /* send channels ready */
877 QemuSemaphore channels_ready;
f986c3d2
JQ
878} *multifd_send_state;
879
b9ee2f7d
JQ
880/*
881 * How we use multifd_send_state->pages and channel->pages?
882 *
883 * We create a pages for each channel, and a main one. Each time that
884 * we need to send a batch of pages we interchange the ones between
885 * multifd_send_state and the channel that is sending it. There are
886 * two reasons for that:
887 * - to not have to do so many mallocs during migration
888 * - to make easier to know what to free at the end of migration
889 *
890 * This way we always know who is the owner of each "pages" struct,
891 * and we don't need any loocking. It belongs to the migration thread
892 * or to the channel thread. Switching is safe because the migration
893 * thread is using the channel mutex when changing it, and the channel
894 * have to had finish with its own, otherwise pending_job can't be
895 * false.
896 */
897
898static void multifd_send_pages(void)
899{
900 int i;
901 static int next_channel;
902 MultiFDSendParams *p = NULL; /* make happy gcc */
903 MultiFDPages_t *pages = multifd_send_state->pages;
904 uint64_t transferred;
905
906 qemu_sem_wait(&multifd_send_state->channels_ready);
907 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
908 p = &multifd_send_state->params[i];
909
910 qemu_mutex_lock(&p->mutex);
911 if (!p->pending_job) {
912 p->pending_job++;
913 next_channel = (i + 1) % migrate_multifd_channels();
914 break;
915 }
916 qemu_mutex_unlock(&p->mutex);
917 }
918 p->pages->used = 0;
919
920 p->packet_num = multifd_send_state->packet_num++;
921 p->pages->block = NULL;
922 multifd_send_state->pages = p->pages;
923 p->pages = pages;
4fcefd44 924 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
b9ee2f7d
JQ
925 ram_counters.multifd_bytes += transferred;
926 ram_counters.transferred += transferred;;
927 qemu_mutex_unlock(&p->mutex);
928 qemu_sem_post(&p->sem);
929}
930
931static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
932{
933 MultiFDPages_t *pages = multifd_send_state->pages;
934
935 if (!pages->block) {
936 pages->block = block;
937 }
938
939 if (pages->block == block) {
940 pages->offset[pages->used] = offset;
941 pages->iov[pages->used].iov_base = block->host + offset;
942 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
943 pages->used++;
944
945 if (pages->used < pages->allocated) {
946 return;
947 }
948 }
949
950 multifd_send_pages();
951
952 if (pages->block != block) {
953 multifd_queue_page(block, offset);
954 }
955}
956
66770707 957static void multifd_send_terminate_threads(Error *err)
f986c3d2
JQ
958{
959 int i;
960
7a169d74
JQ
961 if (err) {
962 MigrationState *s = migrate_get_current();
963 migrate_set_error(s, err);
964 if (s->state == MIGRATION_STATUS_SETUP ||
965 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
966 s->state == MIGRATION_STATUS_DEVICE ||
967 s->state == MIGRATION_STATUS_ACTIVE) {
968 migrate_set_state(&s->state, s->state,
969 MIGRATION_STATUS_FAILED);
970 }
971 }
972
66770707 973 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
974 MultiFDSendParams *p = &multifd_send_state->params[i];
975
976 qemu_mutex_lock(&p->mutex);
977 p->quit = true;
978 qemu_sem_post(&p->sem);
979 qemu_mutex_unlock(&p->mutex);
980 }
981}
982
1398b2e3 983void multifd_save_cleanup(void)
f986c3d2
JQ
984{
985 int i;
f986c3d2
JQ
986
987 if (!migrate_use_multifd()) {
1398b2e3 988 return;
f986c3d2 989 }
66770707
JQ
990 multifd_send_terminate_threads(NULL);
991 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
992 MultiFDSendParams *p = &multifd_send_state->params[i];
993
66770707
JQ
994 if (p->running) {
995 qemu_thread_join(&p->thread);
996 }
60df2d4a
JQ
997 socket_send_channel_destroy(p->c);
998 p->c = NULL;
f986c3d2
JQ
999 qemu_mutex_destroy(&p->mutex);
1000 qemu_sem_destroy(&p->sem);
6df264ac 1001 qemu_sem_destroy(&p->sem_sync);
f986c3d2
JQ
1002 g_free(p->name);
1003 p->name = NULL;
34c55a94
JQ
1004 multifd_pages_clear(p->pages);
1005 p->pages = NULL;
2a26c979
JQ
1006 p->packet_len = 0;
1007 g_free(p->packet);
1008 p->packet = NULL;
f986c3d2 1009 }
b9ee2f7d 1010 qemu_sem_destroy(&multifd_send_state->channels_ready);
6df264ac 1011 qemu_sem_destroy(&multifd_send_state->sem_sync);
f986c3d2
JQ
1012 g_free(multifd_send_state->params);
1013 multifd_send_state->params = NULL;
34c55a94
JQ
1014 multifd_pages_clear(multifd_send_state->pages);
1015 multifd_send_state->pages = NULL;
f986c3d2
JQ
1016 g_free(multifd_send_state);
1017 multifd_send_state = NULL;
f986c3d2
JQ
1018}
1019
6df264ac
JQ
1020static void multifd_send_sync_main(void)
1021{
1022 int i;
1023
1024 if (!migrate_use_multifd()) {
1025 return;
1026 }
b9ee2f7d
JQ
1027 if (multifd_send_state->pages->used) {
1028 multifd_send_pages();
1029 }
6df264ac
JQ
1030 for (i = 0; i < migrate_multifd_channels(); i++) {
1031 MultiFDSendParams *p = &multifd_send_state->params[i];
1032
1033 trace_multifd_send_sync_main_signal(p->id);
1034
1035 qemu_mutex_lock(&p->mutex);
b9ee2f7d
JQ
1036
1037 p->packet_num = multifd_send_state->packet_num++;
6df264ac
JQ
1038 p->flags |= MULTIFD_FLAG_SYNC;
1039 p->pending_job++;
1040 qemu_mutex_unlock(&p->mutex);
1041 qemu_sem_post(&p->sem);
1042 }
1043 for (i = 0; i < migrate_multifd_channels(); i++) {
1044 MultiFDSendParams *p = &multifd_send_state->params[i];
1045
1046 trace_multifd_send_sync_main_wait(p->id);
1047 qemu_sem_wait(&multifd_send_state->sem_sync);
1048 }
1049 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1050}
1051
f986c3d2
JQ
1052static void *multifd_send_thread(void *opaque)
1053{
1054 MultiFDSendParams *p = opaque;
af8b7d2b 1055 Error *local_err = NULL;
8b2db7f5 1056 int ret;
af8b7d2b 1057
408ea6ae 1058 trace_multifd_send_thread_start(p->id);
74637e6f 1059 rcu_register_thread();
408ea6ae 1060
af8b7d2b
JQ
1061 if (multifd_send_initial_packet(p, &local_err) < 0) {
1062 goto out;
1063 }
408ea6ae
JQ
1064 /* initial packet */
1065 p->num_packets = 1;
f986c3d2
JQ
1066
1067 while (true) {
d82628e4 1068 qemu_sem_wait(&p->sem);
f986c3d2 1069 qemu_mutex_lock(&p->mutex);
0beb5ed3
JQ
1070
1071 if (p->pending_job) {
1072 uint32_t used = p->pages->used;
1073 uint64_t packet_num = p->packet_num;
1074 uint32_t flags = p->flags;
1075
1076 multifd_send_fill_packet(p);
1077 p->flags = 0;
1078 p->num_packets++;
1079 p->num_pages += used;
1080 p->pages->used = 0;
1081 qemu_mutex_unlock(&p->mutex);
1082
1083 trace_multifd_send(p->id, packet_num, used, flags);
1084
8b2db7f5
JQ
1085 ret = qio_channel_write_all(p->c, (void *)p->packet,
1086 p->packet_len, &local_err);
1087 if (ret != 0) {
1088 break;
1089 }
1090
1091 ret = qio_channel_writev_all(p->c, p->pages->iov, used, &local_err);
1092 if (ret != 0) {
1093 break;
1094 }
0beb5ed3
JQ
1095
1096 qemu_mutex_lock(&p->mutex);
1097 p->pending_job--;
1098 qemu_mutex_unlock(&p->mutex);
6df264ac
JQ
1099
1100 if (flags & MULTIFD_FLAG_SYNC) {
1101 qemu_sem_post(&multifd_send_state->sem_sync);
1102 }
b9ee2f7d 1103 qemu_sem_post(&multifd_send_state->channels_ready);
0beb5ed3 1104 } else if (p->quit) {
f986c3d2
JQ
1105 qemu_mutex_unlock(&p->mutex);
1106 break;
6df264ac
JQ
1107 } else {
1108 qemu_mutex_unlock(&p->mutex);
1109 /* sometimes there are spurious wakeups */
f986c3d2 1110 }
f986c3d2
JQ
1111 }
1112
af8b7d2b
JQ
1113out:
1114 if (local_err) {
1115 multifd_send_terminate_threads(local_err);
1116 }
1117
66770707
JQ
1118 qemu_mutex_lock(&p->mutex);
1119 p->running = false;
1120 qemu_mutex_unlock(&p->mutex);
1121
74637e6f 1122 rcu_unregister_thread();
408ea6ae
JQ
1123 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1124
f986c3d2
JQ
1125 return NULL;
1126}
1127
60df2d4a
JQ
1128static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1129{
1130 MultiFDSendParams *p = opaque;
1131 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1132 Error *local_err = NULL;
1133
1134 if (qio_task_propagate_error(task, &local_err)) {
1398b2e3
FL
1135 migrate_set_error(migrate_get_current(), local_err);
1136 multifd_save_cleanup();
60df2d4a
JQ
1137 } else {
1138 p->c = QIO_CHANNEL(sioc);
1139 qio_channel_set_delay(p->c, false);
1140 p->running = true;
1141 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1142 QEMU_THREAD_JOINABLE);
1143
1144 atomic_inc(&multifd_send_state->count);
1145 }
1146}
1147
f986c3d2
JQ
1148int multifd_save_setup(void)
1149{
1150 int thread_count;
34c55a94 1151 uint32_t page_count = migrate_multifd_page_count();
f986c3d2
JQ
1152 uint8_t i;
1153
1154 if (!migrate_use_multifd()) {
1155 return 0;
1156 }
1157 thread_count = migrate_multifd_channels();
1158 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1159 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
66770707 1160 atomic_set(&multifd_send_state->count, 0);
34c55a94 1161 multifd_send_state->pages = multifd_pages_init(page_count);
6df264ac 1162 qemu_sem_init(&multifd_send_state->sem_sync, 0);
b9ee2f7d 1163 qemu_sem_init(&multifd_send_state->channels_ready, 0);
34c55a94 1164
f986c3d2
JQ
1165 for (i = 0; i < thread_count; i++) {
1166 MultiFDSendParams *p = &multifd_send_state->params[i];
1167
1168 qemu_mutex_init(&p->mutex);
1169 qemu_sem_init(&p->sem, 0);
6df264ac 1170 qemu_sem_init(&p->sem_sync, 0);
f986c3d2 1171 p->quit = false;
0beb5ed3 1172 p->pending_job = 0;
f986c3d2 1173 p->id = i;
34c55a94 1174 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1175 p->packet_len = sizeof(MultiFDPacket_t)
1176 + sizeof(ram_addr_t) * page_count;
1177 p->packet = g_malloc0(p->packet_len);
f986c3d2 1178 p->name = g_strdup_printf("multifdsend_%d", i);
60df2d4a 1179 socket_send_channel_create(multifd_new_send_channel_async, p);
f986c3d2
JQ
1180 }
1181 return 0;
1182}
1183
f986c3d2
JQ
1184struct {
1185 MultiFDRecvParams *params;
1186 /* number of created threads */
1187 int count;
6df264ac
JQ
1188 /* syncs main thread and channels */
1189 QemuSemaphore sem_sync;
1190 /* global number of generated multifd packets */
1191 uint64_t packet_num;
f986c3d2
JQ
1192} *multifd_recv_state;
1193
66770707 1194static void multifd_recv_terminate_threads(Error *err)
f986c3d2
JQ
1195{
1196 int i;
1197
7a169d74
JQ
1198 if (err) {
1199 MigrationState *s = migrate_get_current();
1200 migrate_set_error(s, err);
1201 if (s->state == MIGRATION_STATUS_SETUP ||
1202 s->state == MIGRATION_STATUS_ACTIVE) {
1203 migrate_set_state(&s->state, s->state,
1204 MIGRATION_STATUS_FAILED);
1205 }
1206 }
1207
66770707 1208 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1209 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1210
1211 qemu_mutex_lock(&p->mutex);
7a5cc33c
JQ
1212 /* We could arrive here for two reasons:
1213 - normal quit, i.e. everything went fine, just finished
1214 - error quit: We close the channels so the channel threads
1215 finish the qio_channel_read_all_eof() */
1216 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
f986c3d2
JQ
1217 qemu_mutex_unlock(&p->mutex);
1218 }
1219}
1220
1221int multifd_load_cleanup(Error **errp)
1222{
1223 int i;
1224 int ret = 0;
1225
1226 if (!migrate_use_multifd()) {
1227 return 0;
1228 }
66770707
JQ
1229 multifd_recv_terminate_threads(NULL);
1230 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1231 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1232
66770707
JQ
1233 if (p->running) {
1234 qemu_thread_join(&p->thread);
1235 }
60df2d4a
JQ
1236 object_unref(OBJECT(p->c));
1237 p->c = NULL;
f986c3d2 1238 qemu_mutex_destroy(&p->mutex);
6df264ac 1239 qemu_sem_destroy(&p->sem_sync);
f986c3d2
JQ
1240 g_free(p->name);
1241 p->name = NULL;
34c55a94
JQ
1242 multifd_pages_clear(p->pages);
1243 p->pages = NULL;
2a26c979
JQ
1244 p->packet_len = 0;
1245 g_free(p->packet);
1246 p->packet = NULL;
f986c3d2 1247 }
6df264ac 1248 qemu_sem_destroy(&multifd_recv_state->sem_sync);
f986c3d2
JQ
1249 g_free(multifd_recv_state->params);
1250 multifd_recv_state->params = NULL;
1251 g_free(multifd_recv_state);
1252 multifd_recv_state = NULL;
1253
1254 return ret;
1255}
1256
6df264ac
JQ
1257static void multifd_recv_sync_main(void)
1258{
1259 int i;
1260
1261 if (!migrate_use_multifd()) {
1262 return;
1263 }
1264 for (i = 0; i < migrate_multifd_channels(); i++) {
1265 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1266
6df264ac
JQ
1267 trace_multifd_recv_sync_main_wait(p->id);
1268 qemu_sem_wait(&multifd_recv_state->sem_sync);
1269 qemu_mutex_lock(&p->mutex);
1270 if (multifd_recv_state->packet_num < p->packet_num) {
1271 multifd_recv_state->packet_num = p->packet_num;
1272 }
1273 qemu_mutex_unlock(&p->mutex);
1274 }
1275 for (i = 0; i < migrate_multifd_channels(); i++) {
1276 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1277
1278 trace_multifd_recv_sync_main_signal(p->id);
6df264ac
JQ
1279 qemu_sem_post(&p->sem_sync);
1280 }
1281 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1282}
1283
f986c3d2
JQ
1284static void *multifd_recv_thread(void *opaque)
1285{
1286 MultiFDRecvParams *p = opaque;
2a26c979
JQ
1287 Error *local_err = NULL;
1288 int ret;
f986c3d2 1289
408ea6ae 1290 trace_multifd_recv_thread_start(p->id);
74637e6f 1291 rcu_register_thread();
408ea6ae 1292
f986c3d2 1293 while (true) {
6df264ac
JQ
1294 uint32_t used;
1295 uint32_t flags;
0beb5ed3 1296
8b2db7f5
JQ
1297 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1298 p->packet_len, &local_err);
1299 if (ret == 0) { /* EOF */
1300 break;
1301 }
1302 if (ret == -1) { /* Error */
1303 break;
1304 }
2a26c979 1305
6df264ac
JQ
1306 qemu_mutex_lock(&p->mutex);
1307 ret = multifd_recv_unfill_packet(p, &local_err);
1308 if (ret) {
f986c3d2
JQ
1309 qemu_mutex_unlock(&p->mutex);
1310 break;
1311 }
6df264ac
JQ
1312
1313 used = p->pages->used;
1314 flags = p->flags;
1315 trace_multifd_recv(p->id, p->packet_num, used, flags);
6df264ac
JQ
1316 p->num_packets++;
1317 p->num_pages += used;
f986c3d2 1318 qemu_mutex_unlock(&p->mutex);
6df264ac 1319
8b2db7f5
JQ
1320 ret = qio_channel_readv_all(p->c, p->pages->iov, used, &local_err);
1321 if (ret != 0) {
1322 break;
1323 }
1324
6df264ac
JQ
1325 if (flags & MULTIFD_FLAG_SYNC) {
1326 qemu_sem_post(&multifd_recv_state->sem_sync);
1327 qemu_sem_wait(&p->sem_sync);
1328 }
f986c3d2
JQ
1329 }
1330
d82628e4
JQ
1331 if (local_err) {
1332 multifd_recv_terminate_threads(local_err);
1333 }
66770707
JQ
1334 qemu_mutex_lock(&p->mutex);
1335 p->running = false;
1336 qemu_mutex_unlock(&p->mutex);
1337
74637e6f 1338 rcu_unregister_thread();
408ea6ae
JQ
1339 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1340
f986c3d2
JQ
1341 return NULL;
1342}
1343
1344int multifd_load_setup(void)
1345{
1346 int thread_count;
34c55a94 1347 uint32_t page_count = migrate_multifd_page_count();
f986c3d2
JQ
1348 uint8_t i;
1349
1350 if (!migrate_use_multifd()) {
1351 return 0;
1352 }
1353 thread_count = migrate_multifd_channels();
1354 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1355 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
66770707 1356 atomic_set(&multifd_recv_state->count, 0);
6df264ac 1357 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
34c55a94 1358
f986c3d2
JQ
1359 for (i = 0; i < thread_count; i++) {
1360 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1361
1362 qemu_mutex_init(&p->mutex);
6df264ac 1363 qemu_sem_init(&p->sem_sync, 0);
f986c3d2 1364 p->id = i;
34c55a94 1365 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1366 p->packet_len = sizeof(MultiFDPacket_t)
1367 + sizeof(ram_addr_t) * page_count;
1368 p->packet = g_malloc0(p->packet_len);
f986c3d2 1369 p->name = g_strdup_printf("multifdrecv_%d", i);
f986c3d2
JQ
1370 }
1371 return 0;
1372}
1373
62c1e0ca
JQ
1374bool multifd_recv_all_channels_created(void)
1375{
1376 int thread_count = migrate_multifd_channels();
1377
1378 if (!migrate_use_multifd()) {
1379 return true;
1380 }
1381
1382 return thread_count == atomic_read(&multifd_recv_state->count);
1383}
1384
49ed0d24
FL
1385/*
1386 * Try to receive all multifd channels to get ready for the migration.
1387 * - Return true and do not set @errp when correctly receving all channels;
1388 * - Return false and do not set @errp when correctly receiving the current one;
1389 * - Return false and set @errp when failing to receive the current channel.
1390 */
1391bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
71bb07db 1392{
60df2d4a 1393 MultiFDRecvParams *p;
af8b7d2b
JQ
1394 Error *local_err = NULL;
1395 int id;
60df2d4a 1396
af8b7d2b
JQ
1397 id = multifd_recv_initial_packet(ioc, &local_err);
1398 if (id < 0) {
1399 multifd_recv_terminate_threads(local_err);
49ed0d24
FL
1400 error_propagate_prepend(errp, local_err,
1401 "failed to receive packet"
1402 " via multifd channel %d: ",
1403 atomic_read(&multifd_recv_state->count));
81e62053 1404 return false;
af8b7d2b
JQ
1405 }
1406
1407 p = &multifd_recv_state->params[id];
1408 if (p->c != NULL) {
1409 error_setg(&local_err, "multifd: received id '%d' already setup'",
1410 id);
1411 multifd_recv_terminate_threads(local_err);
49ed0d24 1412 error_propagate(errp, local_err);
81e62053 1413 return false;
af8b7d2b 1414 }
60df2d4a
JQ
1415 p->c = ioc;
1416 object_ref(OBJECT(ioc));
408ea6ae
JQ
1417 /* initial packet */
1418 p->num_packets = 1;
60df2d4a
JQ
1419
1420 p->running = true;
1421 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1422 QEMU_THREAD_JOINABLE);
1423 atomic_inc(&multifd_recv_state->count);
49ed0d24
FL
1424 return atomic_read(&multifd_recv_state->count) ==
1425 migrate_multifd_channels();
71bb07db
JQ
1426}
1427
56e93d26 1428/**
3d0684b2 1429 * save_page_header: write page header to wire
56e93d26
JQ
1430 *
1431 * If this is the 1st block, it also writes the block identification
1432 *
3d0684b2 1433 * Returns the number of bytes written
56e93d26
JQ
1434 *
1435 * @f: QEMUFile where to send the data
1436 * @block: block that contains the page we want to send
1437 * @offset: offset inside the block for the page
1438 * in the lower bits, it contains flags
1439 */
2bf3aa85
JQ
1440static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1441 ram_addr_t offset)
56e93d26 1442{
9f5f380b 1443 size_t size, len;
56e93d26 1444
24795694
JQ
1445 if (block == rs->last_sent_block) {
1446 offset |= RAM_SAVE_FLAG_CONTINUE;
1447 }
2bf3aa85 1448 qemu_put_be64(f, offset);
56e93d26
JQ
1449 size = 8;
1450
1451 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b 1452 len = strlen(block->idstr);
2bf3aa85
JQ
1453 qemu_put_byte(f, len);
1454 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
9f5f380b 1455 size += 1 + len;
24795694 1456 rs->last_sent_block = block;
56e93d26
JQ
1457 }
1458 return size;
1459}
1460
3d0684b2
JQ
1461/**
1462 * mig_throttle_guest_down: throotle down the guest
1463 *
1464 * Reduce amount of guest cpu execution to hopefully slow down memory
1465 * writes. If guest dirty memory rate is reduced below the rate at
1466 * which we can transfer pages to the destination then we should be
1467 * able to complete migration. Some workloads dirty memory way too
1468 * fast and will not effectively converge, even with auto-converge.
070afca2
JH
1469 */
1470static void mig_throttle_guest_down(void)
1471{
1472 MigrationState *s = migrate_get_current();
2594f56d
DB
1473 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1474 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
4cbc9c7f 1475 int pct_max = s->parameters.max_cpu_throttle;
070afca2
JH
1476
1477 /* We have not started throttling yet. Let's start it. */
1478 if (!cpu_throttle_active()) {
1479 cpu_throttle_set(pct_initial);
1480 } else {
1481 /* Throttling already on, just increase the rate */
4cbc9c7f
LQ
1482 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1483 pct_max));
070afca2
JH
1484 }
1485}
1486
3d0684b2
JQ
1487/**
1488 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1489 *
6f37bb8b 1490 * @rs: current RAM state
3d0684b2
JQ
1491 * @current_addr: address for the zero page
1492 *
1493 * Update the xbzrle cache to reflect a page that's been sent as all 0.
56e93d26
JQ
1494 * The important thing is that a stale (not-yet-0'd) page be replaced
1495 * by the new data.
1496 * As a bonus, if the page wasn't in the cache it gets added so that
3d0684b2 1497 * when a small write is made into the 0'd page it gets XBZRLE sent.
56e93d26 1498 */
6f37bb8b 1499static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
56e93d26 1500{
6f37bb8b 1501 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
56e93d26
JQ
1502 return;
1503 }
1504
1505 /* We don't care if this fails to allocate a new cache page
1506 * as long as it updated an old one */
c00e0928 1507 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
9360447d 1508 ram_counters.dirty_sync_count);
56e93d26
JQ
1509}
1510
1511#define ENCODING_FLAG_XBZRLE 0x1
1512
1513/**
1514 * save_xbzrle_page: compress and send current page
1515 *
1516 * Returns: 1 means that we wrote the page
1517 * 0 means that page is identical to the one already sent
1518 * -1 means that xbzrle would be longer than normal
1519 *
5a987738 1520 * @rs: current RAM state
3d0684b2
JQ
1521 * @current_data: pointer to the address of the page contents
1522 * @current_addr: addr of the page
56e93d26
JQ
1523 * @block: block that contains the page we want to send
1524 * @offset: offset inside the block for the page
1525 * @last_stage: if we are at the completion stage
56e93d26 1526 */
204b88b8 1527static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
56e93d26 1528 ram_addr_t current_addr, RAMBlock *block,
072c2511 1529 ram_addr_t offset, bool last_stage)
56e93d26
JQ
1530{
1531 int encoded_len = 0, bytes_xbzrle;
1532 uint8_t *prev_cached_page;
1533
9360447d
JQ
1534 if (!cache_is_cached(XBZRLE.cache, current_addr,
1535 ram_counters.dirty_sync_count)) {
1536 xbzrle_counters.cache_miss++;
56e93d26
JQ
1537 if (!last_stage) {
1538 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
9360447d 1539 ram_counters.dirty_sync_count) == -1) {
56e93d26
JQ
1540 return -1;
1541 } else {
1542 /* update *current_data when the page has been
1543 inserted into cache */
1544 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1545 }
1546 }
1547 return -1;
1548 }
1549
1550 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1551
1552 /* save current buffer into memory */
1553 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1554
1555 /* XBZRLE encoding (if there is no overflow) */
1556 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1557 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1558 TARGET_PAGE_SIZE);
1559 if (encoded_len == 0) {
55c4446b 1560 trace_save_xbzrle_page_skipping();
56e93d26
JQ
1561 return 0;
1562 } else if (encoded_len == -1) {
55c4446b 1563 trace_save_xbzrle_page_overflow();
9360447d 1564 xbzrle_counters.overflow++;
56e93d26
JQ
1565 /* update data in the cache */
1566 if (!last_stage) {
1567 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
1568 *current_data = prev_cached_page;
1569 }
1570 return -1;
1571 }
1572
1573 /* we need to update the data in the cache, in order to get the same data */
1574 if (!last_stage) {
1575 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1576 }
1577
1578 /* Send XBZRLE based compressed page */
2bf3aa85 1579 bytes_xbzrle = save_page_header(rs, rs->f, block,
204b88b8
JQ
1580 offset | RAM_SAVE_FLAG_XBZRLE);
1581 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1582 qemu_put_be16(rs->f, encoded_len);
1583 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
56e93d26 1584 bytes_xbzrle += encoded_len + 1 + 2;
9360447d
JQ
1585 xbzrle_counters.pages++;
1586 xbzrle_counters.bytes += bytes_xbzrle;
1587 ram_counters.transferred += bytes_xbzrle;
56e93d26
JQ
1588
1589 return 1;
1590}
1591
3d0684b2
JQ
1592/**
1593 * migration_bitmap_find_dirty: find the next dirty page from start
f3f491fc 1594 *
3d0684b2
JQ
1595 * Called with rcu_read_lock() to protect migration_bitmap
1596 *
1597 * Returns the byte offset within memory region of the start of a dirty page
1598 *
6f37bb8b 1599 * @rs: current RAM state
3d0684b2 1600 * @rb: RAMBlock where to search for dirty pages
a935e30f 1601 * @start: page where we start the search
f3f491fc 1602 */
56e93d26 1603static inline
a935e30f 1604unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
f20e2865 1605 unsigned long start)
56e93d26 1606{
6b6712ef
JQ
1607 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1608 unsigned long *bitmap = rb->bmap;
56e93d26
JQ
1609 unsigned long next;
1610
fbd162e6 1611 if (ramblock_is_ignored(rb)) {
b895de50
CLG
1612 return size;
1613 }
1614
6eeb63f7
WW
1615 /*
1616 * When the free page optimization is enabled, we need to check the bitmap
1617 * to send the non-free pages rather than all the pages in the bulk stage.
1618 */
1619 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
6b6712ef 1620 next = start + 1;
56e93d26 1621 } else {
6b6712ef 1622 next = find_next_bit(bitmap, size, start);
56e93d26
JQ
1623 }
1624
6b6712ef 1625 return next;
56e93d26
JQ
1626}
1627
06b10688 1628static inline bool migration_bitmap_clear_dirty(RAMState *rs,
f20e2865
JQ
1629 RAMBlock *rb,
1630 unsigned long page)
a82d593b
DDAG
1631{
1632 bool ret;
a82d593b 1633
386a907b 1634 qemu_mutex_lock(&rs->bitmap_mutex);
6b6712ef 1635 ret = test_and_clear_bit(page, rb->bmap);
a82d593b
DDAG
1636
1637 if (ret) {
0d8ec885 1638 rs->migration_dirty_pages--;
a82d593b 1639 }
386a907b
WW
1640 qemu_mutex_unlock(&rs->bitmap_mutex);
1641
a82d593b
DDAG
1642 return ret;
1643}
1644
15440dd5
JQ
1645static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1646 ram_addr_t start, ram_addr_t length)
56e93d26 1647{
0d8ec885 1648 rs->migration_dirty_pages +=
6b6712ef 1649 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
0d8ec885 1650 &rs->num_dirty_pages_period);
56e93d26
JQ
1651}
1652
3d0684b2
JQ
1653/**
1654 * ram_pagesize_summary: calculate all the pagesizes of a VM
1655 *
1656 * Returns a summary bitmap of the page sizes of all RAMBlocks
1657 *
1658 * For VMs with just normal pages this is equivalent to the host page
1659 * size. If it's got some huge pages then it's the OR of all the
1660 * different page sizes.
e8ca1db2
DDAG
1661 */
1662uint64_t ram_pagesize_summary(void)
1663{
1664 RAMBlock *block;
1665 uint64_t summary = 0;
1666
fbd162e6 1667 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
e8ca1db2
DDAG
1668 summary |= block->page_size;
1669 }
1670
1671 return summary;
1672}
1673
aecbfe9c
XG
1674uint64_t ram_get_total_transferred_pages(void)
1675{
1676 return ram_counters.normal + ram_counters.duplicate +
1677 compression_counters.pages + xbzrle_counters.pages;
1678}
1679
b734035b
XG
1680static void migration_update_rates(RAMState *rs, int64_t end_time)
1681{
be8b02ed 1682 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
76e03000 1683 double compressed_size;
b734035b
XG
1684
1685 /* calculate period counters */
1686 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1687 / (end_time - rs->time_last_bitmap_sync);
1688
be8b02ed 1689 if (!page_count) {
b734035b
XG
1690 return;
1691 }
1692
1693 if (migrate_use_xbzrle()) {
1694 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
be8b02ed 1695 rs->xbzrle_cache_miss_prev) / page_count;
b734035b
XG
1696 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1697 }
76e03000
XG
1698
1699 if (migrate_use_compression()) {
1700 compression_counters.busy_rate = (double)(compression_counters.busy -
1701 rs->compress_thread_busy_prev) / page_count;
1702 rs->compress_thread_busy_prev = compression_counters.busy;
1703
1704 compressed_size = compression_counters.compressed_size -
1705 rs->compressed_size_prev;
1706 if (compressed_size) {
1707 double uncompressed_size = (compression_counters.pages -
1708 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1709
1710 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1711 compression_counters.compression_rate =
1712 uncompressed_size / compressed_size;
1713
1714 rs->compress_pages_prev = compression_counters.pages;
1715 rs->compressed_size_prev = compression_counters.compressed_size;
1716 }
1717 }
b734035b
XG
1718}
1719
8d820d6f 1720static void migration_bitmap_sync(RAMState *rs)
56e93d26
JQ
1721{
1722 RAMBlock *block;
56e93d26 1723 int64_t end_time;
c4bdf0cf 1724 uint64_t bytes_xfer_now;
56e93d26 1725
9360447d 1726 ram_counters.dirty_sync_count++;
56e93d26 1727
f664da80
JQ
1728 if (!rs->time_last_bitmap_sync) {
1729 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
56e93d26
JQ
1730 }
1731
1732 trace_migration_bitmap_sync_start();
9c1f8f44 1733 memory_global_dirty_log_sync();
56e93d26 1734
108cfae0 1735 qemu_mutex_lock(&rs->bitmap_mutex);
56e93d26 1736 rcu_read_lock();
fbd162e6 1737 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
15440dd5 1738 migration_bitmap_sync_range(rs, block, 0, block->used_length);
56e93d26 1739 }
650af890 1740 ram_counters.remaining = ram_bytes_remaining();
56e93d26 1741 rcu_read_unlock();
108cfae0 1742 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 1743
a66cd90c 1744 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1ffb5dfd 1745
56e93d26
JQ
1746 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1747
1748 /* more than 1 second = 1000 millisecons */
f664da80 1749 if (end_time > rs->time_last_bitmap_sync + 1000) {
9360447d 1750 bytes_xfer_now = ram_counters.transferred;
d693c6f1 1751
9ac78b61
PL
1752 /* During block migration the auto-converge logic incorrectly detects
1753 * that ram migration makes no progress. Avoid this by disabling the
1754 * throttling logic during the bulk phase of block migration. */
1755 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
56e93d26
JQ
1756 /* The following detection logic can be refined later. For now:
1757 Check to see if the dirtied bytes is 50% more than the approx.
1758 amount of bytes that just got transferred since the last time we
070afca2
JH
1759 were in this routine. If that happens twice, start or increase
1760 throttling */
070afca2 1761
d693c6f1 1762 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
eac74159 1763 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
b4a3c64b 1764 (++rs->dirty_rate_high_cnt >= 2)) {
56e93d26 1765 trace_migration_throttle();
8d820d6f 1766 rs->dirty_rate_high_cnt = 0;
070afca2 1767 mig_throttle_guest_down();
d693c6f1 1768 }
56e93d26 1769 }
070afca2 1770
b734035b
XG
1771 migration_update_rates(rs, end_time);
1772
be8b02ed 1773 rs->target_page_count_prev = rs->target_page_count;
d693c6f1
FF
1774
1775 /* reset period counters */
f664da80 1776 rs->time_last_bitmap_sync = end_time;
a66cd90c 1777 rs->num_dirty_pages_period = 0;
d2a4d85a 1778 rs->bytes_xfer_prev = bytes_xfer_now;
56e93d26 1779 }
4addcd4f 1780 if (migrate_use_events()) {
3ab72385 1781 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
4addcd4f 1782 }
56e93d26
JQ
1783}
1784
bd227060
WW
1785static void migration_bitmap_sync_precopy(RAMState *rs)
1786{
1787 Error *local_err = NULL;
1788
1789 /*
1790 * The current notifier usage is just an optimization to migration, so we
1791 * don't stop the normal migration process in the error case.
1792 */
1793 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1794 error_report_err(local_err);
1795 }
1796
1797 migration_bitmap_sync(rs);
1798
1799 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1800 error_report_err(local_err);
1801 }
1802}
1803
6c97ec5f
XG
1804/**
1805 * save_zero_page_to_file: send the zero page to the file
1806 *
1807 * Returns the size of data written to the file, 0 means the page is not
1808 * a zero page
1809 *
1810 * @rs: current RAM state
1811 * @file: the file where the data is saved
1812 * @block: block that contains the page we want to send
1813 * @offset: offset inside the block for the page
1814 */
1815static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1816 RAMBlock *block, ram_addr_t offset)
1817{
1818 uint8_t *p = block->host + offset;
1819 int len = 0;
1820
1821 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1822 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1823 qemu_put_byte(file, 0);
1824 len += 1;
1825 }
1826 return len;
1827}
1828
56e93d26 1829/**
3d0684b2 1830 * save_zero_page: send the zero page to the stream
56e93d26 1831 *
3d0684b2 1832 * Returns the number of pages written.
56e93d26 1833 *
f7ccd61b 1834 * @rs: current RAM state
56e93d26
JQ
1835 * @block: block that contains the page we want to send
1836 * @offset: offset inside the block for the page
56e93d26 1837 */
7faccdc3 1838static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
56e93d26 1839{
6c97ec5f 1840 int len = save_zero_page_to_file(rs, rs->f, block, offset);
56e93d26 1841
6c97ec5f 1842 if (len) {
9360447d 1843 ram_counters.duplicate++;
6c97ec5f
XG
1844 ram_counters.transferred += len;
1845 return 1;
56e93d26 1846 }
6c97ec5f 1847 return -1;
56e93d26
JQ
1848}
1849
5727309d 1850static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
53f09a10 1851{
5727309d 1852 if (!migrate_release_ram() || !migration_in_postcopy()) {
53f09a10
PB
1853 return;
1854 }
1855
aaa2064c 1856 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
53f09a10
PB
1857}
1858
059ff0fb
XG
1859/*
1860 * @pages: the number of pages written by the control path,
1861 * < 0 - error
1862 * > 0 - number of pages written
1863 *
1864 * Return true if the pages has been saved, otherwise false is returned.
1865 */
1866static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1867 int *pages)
1868{
1869 uint64_t bytes_xmit = 0;
1870 int ret;
1871
1872 *pages = -1;
1873 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1874 &bytes_xmit);
1875 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1876 return false;
1877 }
1878
1879 if (bytes_xmit) {
1880 ram_counters.transferred += bytes_xmit;
1881 *pages = 1;
1882 }
1883
1884 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1885 return true;
1886 }
1887
1888 if (bytes_xmit > 0) {
1889 ram_counters.normal++;
1890 } else if (bytes_xmit == 0) {
1891 ram_counters.duplicate++;
1892 }
1893
1894 return true;
1895}
1896
65dacaa0
XG
1897/*
1898 * directly send the page to the stream
1899 *
1900 * Returns the number of pages written.
1901 *
1902 * @rs: current RAM state
1903 * @block: block that contains the page we want to send
1904 * @offset: offset inside the block for the page
1905 * @buf: the page to be sent
1906 * @async: send to page asyncly
1907 */
1908static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1909 uint8_t *buf, bool async)
1910{
1911 ram_counters.transferred += save_page_header(rs, rs->f, block,
1912 offset | RAM_SAVE_FLAG_PAGE);
1913 if (async) {
1914 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1915 migrate_release_ram() &
1916 migration_in_postcopy());
1917 } else {
1918 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1919 }
1920 ram_counters.transferred += TARGET_PAGE_SIZE;
1921 ram_counters.normal++;
1922 return 1;
1923}
1924
56e93d26 1925/**
3d0684b2 1926 * ram_save_page: send the given page to the stream
56e93d26 1927 *
3d0684b2 1928 * Returns the number of pages written.
3fd3c4b3
DDAG
1929 * < 0 - error
1930 * >=0 - Number of pages written - this might legally be 0
1931 * if xbzrle noticed the page was the same.
56e93d26 1932 *
6f37bb8b 1933 * @rs: current RAM state
56e93d26
JQ
1934 * @block: block that contains the page we want to send
1935 * @offset: offset inside the block for the page
1936 * @last_stage: if we are at the completion stage
56e93d26 1937 */
a0a8aa14 1938static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
56e93d26
JQ
1939{
1940 int pages = -1;
56e93d26 1941 uint8_t *p;
56e93d26 1942 bool send_async = true;
a08f6890 1943 RAMBlock *block = pss->block;
a935e30f 1944 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
059ff0fb 1945 ram_addr_t current_addr = block->offset + offset;
56e93d26 1946
2f68e399 1947 p = block->host + offset;
1db9d8e5 1948 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
56e93d26 1949
56e93d26 1950 XBZRLE_cache_lock();
d7400a34
XG
1951 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1952 migrate_use_xbzrle()) {
059ff0fb
XG
1953 pages = save_xbzrle_page(rs, &p, current_addr, block,
1954 offset, last_stage);
1955 if (!last_stage) {
1956 /* Can't send this cached data async, since the cache page
1957 * might get updated before it gets to the wire
56e93d26 1958 */
059ff0fb 1959 send_async = false;
56e93d26
JQ
1960 }
1961 }
1962
1963 /* XBZRLE overflow or normal page */
1964 if (pages == -1) {
65dacaa0 1965 pages = save_normal_page(rs, block, offset, p, send_async);
56e93d26
JQ
1966 }
1967
1968 XBZRLE_cache_unlock();
1969
1970 return pages;
1971}
1972
b9ee2f7d
JQ
1973static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
1974 ram_addr_t offset)
1975{
b9ee2f7d 1976 multifd_queue_page(block, offset);
b9ee2f7d
JQ
1977 ram_counters.normal++;
1978
1979 return 1;
1980}
1981
5e5fdcff 1982static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 1983 ram_addr_t offset, uint8_t *source_buf)
56e93d26 1984{
53518d94 1985 RAMState *rs = ram_state;
a7a9a88f 1986 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
5e5fdcff 1987 bool zero_page = false;
6ef3771c 1988 int ret;
56e93d26 1989
5e5fdcff
XG
1990 if (save_zero_page_to_file(rs, f, block, offset)) {
1991 zero_page = true;
1992 goto exit;
1993 }
1994
6ef3771c 1995 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
34ab9e97
XG
1996
1997 /*
1998 * copy it to a internal buffer to avoid it being modified by VM
1999 * so that we can catch up the error during compression and
2000 * decompression
2001 */
2002 memcpy(source_buf, p, TARGET_PAGE_SIZE);
6ef3771c
XG
2003 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2004 if (ret < 0) {
2005 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
b3be2896 2006 error_report("compressed data failed!");
5e5fdcff 2007 return false;
b3be2896 2008 }
56e93d26 2009
5e5fdcff 2010exit:
6ef3771c 2011 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
5e5fdcff
XG
2012 return zero_page;
2013}
2014
2015static void
2016update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2017{
76e03000
XG
2018 ram_counters.transferred += bytes_xmit;
2019
5e5fdcff
XG
2020 if (param->zero_page) {
2021 ram_counters.duplicate++;
76e03000 2022 return;
5e5fdcff 2023 }
76e03000
XG
2024
2025 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2026 compression_counters.compressed_size += bytes_xmit - 8;
2027 compression_counters.pages++;
56e93d26
JQ
2028}
2029
32b05495
XG
2030static bool save_page_use_compression(RAMState *rs);
2031
ce25d337 2032static void flush_compressed_data(RAMState *rs)
56e93d26
JQ
2033{
2034 int idx, len, thread_count;
2035
32b05495 2036 if (!save_page_use_compression(rs)) {
56e93d26
JQ
2037 return;
2038 }
2039 thread_count = migrate_compress_threads();
a7a9a88f 2040
0d9f9a5c 2041 qemu_mutex_lock(&comp_done_lock);
56e93d26 2042 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 2043 while (!comp_param[idx].done) {
0d9f9a5c 2044 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 2045 }
a7a9a88f 2046 }
0d9f9a5c 2047 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
2048
2049 for (idx = 0; idx < thread_count; idx++) {
2050 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 2051 if (!comp_param[idx].quit) {
ce25d337 2052 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
5e5fdcff
XG
2053 /*
2054 * it's safe to fetch zero_page without holding comp_done_lock
2055 * as there is no further request submitted to the thread,
2056 * i.e, the thread should be waiting for a request at this point.
2057 */
2058 update_compress_thread_counts(&comp_param[idx], len);
56e93d26 2059 }
a7a9a88f 2060 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
2061 }
2062}
2063
2064static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2065 ram_addr_t offset)
2066{
2067 param->block = block;
2068 param->offset = offset;
2069}
2070
ce25d337
JQ
2071static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2072 ram_addr_t offset)
56e93d26
JQ
2073{
2074 int idx, thread_count, bytes_xmit = -1, pages = -1;
1d58872a 2075 bool wait = migrate_compress_wait_thread();
56e93d26
JQ
2076
2077 thread_count = migrate_compress_threads();
0d9f9a5c 2078 qemu_mutex_lock(&comp_done_lock);
1d58872a
XG
2079retry:
2080 for (idx = 0; idx < thread_count; idx++) {
2081 if (comp_param[idx].done) {
2082 comp_param[idx].done = false;
2083 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2084 qemu_mutex_lock(&comp_param[idx].mutex);
2085 set_compress_params(&comp_param[idx], block, offset);
2086 qemu_cond_signal(&comp_param[idx].cond);
2087 qemu_mutex_unlock(&comp_param[idx].mutex);
2088 pages = 1;
5e5fdcff 2089 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
56e93d26 2090 break;
56e93d26
JQ
2091 }
2092 }
1d58872a
XG
2093
2094 /*
2095 * wait for the free thread if the user specifies 'compress-wait-thread',
2096 * otherwise we will post the page out in the main thread as normal page.
2097 */
2098 if (pages < 0 && wait) {
2099 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2100 goto retry;
2101 }
0d9f9a5c 2102 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
2103
2104 return pages;
2105}
2106
3d0684b2
JQ
2107/**
2108 * find_dirty_block: find the next dirty page and update any state
2109 * associated with the search process.
b9e60928 2110 *
3d0684b2 2111 * Returns if a page is found
b9e60928 2112 *
6f37bb8b 2113 * @rs: current RAM state
3d0684b2
JQ
2114 * @pss: data about the state of the current dirty page scan
2115 * @again: set to false if the search has scanned the whole of RAM
b9e60928 2116 */
f20e2865 2117static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
b9e60928 2118{
f20e2865 2119 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
6f37bb8b 2120 if (pss->complete_round && pss->block == rs->last_seen_block &&
a935e30f 2121 pss->page >= rs->last_page) {
b9e60928
DDAG
2122 /*
2123 * We've been once around the RAM and haven't found anything.
2124 * Give up.
2125 */
2126 *again = false;
2127 return false;
2128 }
a935e30f 2129 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
b9e60928 2130 /* Didn't find anything in this RAM Block */
a935e30f 2131 pss->page = 0;
b9e60928
DDAG
2132 pss->block = QLIST_NEXT_RCU(pss->block, next);
2133 if (!pss->block) {
48df9d80
XG
2134 /*
2135 * If memory migration starts over, we will meet a dirtied page
2136 * which may still exists in compression threads's ring, so we
2137 * should flush the compressed data to make sure the new page
2138 * is not overwritten by the old one in the destination.
2139 *
2140 * Also If xbzrle is on, stop using the data compression at this
2141 * point. In theory, xbzrle can do better than compression.
2142 */
2143 flush_compressed_data(rs);
2144
b9e60928
DDAG
2145 /* Hit the end of the list */
2146 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2147 /* Flag that we've looped */
2148 pss->complete_round = true;
6f37bb8b 2149 rs->ram_bulk_stage = false;
b9e60928
DDAG
2150 }
2151 /* Didn't find anything this time, but try again on the new block */
2152 *again = true;
2153 return false;
2154 } else {
2155 /* Can go around again, but... */
2156 *again = true;
2157 /* We've found something so probably don't need to */
2158 return true;
2159 }
2160}
2161
3d0684b2
JQ
2162/**
2163 * unqueue_page: gets a page of the queue
2164 *
a82d593b 2165 * Helper for 'get_queued_page' - gets a page off the queue
a82d593b 2166 *
3d0684b2
JQ
2167 * Returns the block of the page (or NULL if none available)
2168 *
ec481c6c 2169 * @rs: current RAM state
3d0684b2 2170 * @offset: used to return the offset within the RAMBlock
a82d593b 2171 */
f20e2865 2172static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
a82d593b
DDAG
2173{
2174 RAMBlock *block = NULL;
2175
ae526e32
XG
2176 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2177 return NULL;
2178 }
2179
ec481c6c
JQ
2180 qemu_mutex_lock(&rs->src_page_req_mutex);
2181 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2182 struct RAMSrcPageRequest *entry =
2183 QSIMPLEQ_FIRST(&rs->src_page_requests);
a82d593b
DDAG
2184 block = entry->rb;
2185 *offset = entry->offset;
a82d593b
DDAG
2186
2187 if (entry->len > TARGET_PAGE_SIZE) {
2188 entry->len -= TARGET_PAGE_SIZE;
2189 entry->offset += TARGET_PAGE_SIZE;
2190 } else {
2191 memory_region_unref(block->mr);
ec481c6c 2192 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
a82d593b 2193 g_free(entry);
e03a34f8 2194 migration_consume_urgent_request();
a82d593b
DDAG
2195 }
2196 }
ec481c6c 2197 qemu_mutex_unlock(&rs->src_page_req_mutex);
a82d593b
DDAG
2198
2199 return block;
2200}
2201
3d0684b2
JQ
2202/**
2203 * get_queued_page: unqueue a page from the postocpy requests
2204 *
2205 * Skips pages that are already sent (!dirty)
a82d593b 2206 *
3d0684b2 2207 * Returns if a queued page is found
a82d593b 2208 *
6f37bb8b 2209 * @rs: current RAM state
3d0684b2 2210 * @pss: data about the state of the current dirty page scan
a82d593b 2211 */
f20e2865 2212static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
a82d593b
DDAG
2213{
2214 RAMBlock *block;
2215 ram_addr_t offset;
2216 bool dirty;
2217
2218 do {
f20e2865 2219 block = unqueue_page(rs, &offset);
a82d593b
DDAG
2220 /*
2221 * We're sending this page, and since it's postcopy nothing else
2222 * will dirty it, and we must make sure it doesn't get sent again
2223 * even if this queue request was received after the background
2224 * search already sent it.
2225 */
2226 if (block) {
f20e2865
JQ
2227 unsigned long page;
2228
6b6712ef
JQ
2229 page = offset >> TARGET_PAGE_BITS;
2230 dirty = test_bit(page, block->bmap);
a82d593b 2231 if (!dirty) {
06b10688 2232 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
6b6712ef 2233 page, test_bit(page, block->unsentmap));
a82d593b 2234 } else {
f20e2865 2235 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
a82d593b
DDAG
2236 }
2237 }
2238
2239 } while (block && !dirty);
2240
2241 if (block) {
2242 /*
2243 * As soon as we start servicing pages out of order, then we have
2244 * to kill the bulk stage, since the bulk stage assumes
2245 * in (migration_bitmap_find_and_reset_dirty) that every page is
2246 * dirty, that's no longer true.
2247 */
6f37bb8b 2248 rs->ram_bulk_stage = false;
a82d593b
DDAG
2249
2250 /*
2251 * We want the background search to continue from the queued page
2252 * since the guest is likely to want other pages near to the page
2253 * it just requested.
2254 */
2255 pss->block = block;
a935e30f 2256 pss->page = offset >> TARGET_PAGE_BITS;
a82d593b
DDAG
2257 }
2258
2259 return !!block;
2260}
2261
6c595cde 2262/**
5e58f968
JQ
2263 * migration_page_queue_free: drop any remaining pages in the ram
2264 * request queue
6c595cde 2265 *
3d0684b2
JQ
2266 * It should be empty at the end anyway, but in error cases there may
2267 * be some left. in case that there is any page left, we drop it.
2268 *
6c595cde 2269 */
83c13382 2270static void migration_page_queue_free(RAMState *rs)
6c595cde 2271{
ec481c6c 2272 struct RAMSrcPageRequest *mspr, *next_mspr;
6c595cde
DDAG
2273 /* This queue generally should be empty - but in the case of a failed
2274 * migration might have some droppings in.
2275 */
2276 rcu_read_lock();
ec481c6c 2277 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
6c595cde 2278 memory_region_unref(mspr->rb->mr);
ec481c6c 2279 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
6c595cde
DDAG
2280 g_free(mspr);
2281 }
2282 rcu_read_unlock();
2283}
2284
2285/**
3d0684b2
JQ
2286 * ram_save_queue_pages: queue the page for transmission
2287 *
2288 * A request from postcopy destination for example.
2289 *
2290 * Returns zero on success or negative on error
2291 *
3d0684b2
JQ
2292 * @rbname: Name of the RAMBLock of the request. NULL means the
2293 * same that last one.
2294 * @start: starting address from the start of the RAMBlock
2295 * @len: length (in bytes) to send
6c595cde 2296 */
96506894 2297int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
6c595cde
DDAG
2298{
2299 RAMBlock *ramblock;
53518d94 2300 RAMState *rs = ram_state;
6c595cde 2301
9360447d 2302 ram_counters.postcopy_requests++;
6c595cde
DDAG
2303 rcu_read_lock();
2304 if (!rbname) {
2305 /* Reuse last RAMBlock */
68a098f3 2306 ramblock = rs->last_req_rb;
6c595cde
DDAG
2307
2308 if (!ramblock) {
2309 /*
2310 * Shouldn't happen, we can't reuse the last RAMBlock if
2311 * it's the 1st request.
2312 */
2313 error_report("ram_save_queue_pages no previous block");
2314 goto err;
2315 }
2316 } else {
2317 ramblock = qemu_ram_block_by_name(rbname);
2318
2319 if (!ramblock) {
2320 /* We shouldn't be asked for a non-existent RAMBlock */
2321 error_report("ram_save_queue_pages no block '%s'", rbname);
2322 goto err;
2323 }
68a098f3 2324 rs->last_req_rb = ramblock;
6c595cde
DDAG
2325 }
2326 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2327 if (start+len > ramblock->used_length) {
9458ad6b
JQ
2328 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2329 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde
DDAG
2330 __func__, start, len, ramblock->used_length);
2331 goto err;
2332 }
2333
ec481c6c
JQ
2334 struct RAMSrcPageRequest *new_entry =
2335 g_malloc0(sizeof(struct RAMSrcPageRequest));
6c595cde
DDAG
2336 new_entry->rb = ramblock;
2337 new_entry->offset = start;
2338 new_entry->len = len;
2339
2340 memory_region_ref(ramblock->mr);
ec481c6c
JQ
2341 qemu_mutex_lock(&rs->src_page_req_mutex);
2342 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
e03a34f8 2343 migration_make_urgent_request();
ec481c6c 2344 qemu_mutex_unlock(&rs->src_page_req_mutex);
6c595cde
DDAG
2345 rcu_read_unlock();
2346
2347 return 0;
2348
2349err:
2350 rcu_read_unlock();
2351 return -1;
2352}
2353
d7400a34
XG
2354static bool save_page_use_compression(RAMState *rs)
2355{
2356 if (!migrate_use_compression()) {
2357 return false;
2358 }
2359
2360 /*
2361 * If xbzrle is on, stop using the data compression after first
2362 * round of migration even if compression is enabled. In theory,
2363 * xbzrle can do better than compression.
2364 */
2365 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2366 return true;
2367 }
2368
2369 return false;
2370}
2371
5e5fdcff
XG
2372/*
2373 * try to compress the page before posting it out, return true if the page
2374 * has been properly handled by compression, otherwise needs other
2375 * paths to handle it
2376 */
2377static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2378{
2379 if (!save_page_use_compression(rs)) {
2380 return false;
2381 }
2382
2383 /*
2384 * When starting the process of a new block, the first page of
2385 * the block should be sent out before other pages in the same
2386 * block, and all the pages in last block should have been sent
2387 * out, keeping this order is important, because the 'cont' flag
2388 * is used to avoid resending the block name.
2389 *
2390 * We post the fist page as normal page as compression will take
2391 * much CPU resource.
2392 */
2393 if (block != rs->last_sent_block) {
2394 flush_compressed_data(rs);
2395 return false;
2396 }
2397
2398 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2399 return true;
2400 }
2401
76e03000 2402 compression_counters.busy++;
5e5fdcff
XG
2403 return false;
2404}
2405
a82d593b 2406/**
3d0684b2 2407 * ram_save_target_page: save one target page
a82d593b 2408 *
3d0684b2 2409 * Returns the number of pages written
a82d593b 2410 *
6f37bb8b 2411 * @rs: current RAM state
3d0684b2 2412 * @pss: data about the page we want to send
a82d593b 2413 * @last_stage: if we are at the completion stage
a82d593b 2414 */
a0a8aa14 2415static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2416 bool last_stage)
a82d593b 2417{
a8ec91f9
XG
2418 RAMBlock *block = pss->block;
2419 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2420 int res;
2421
2422 if (control_save_page(rs, block, offset, &res)) {
2423 return res;
2424 }
2425
5e5fdcff
XG
2426 if (save_compress_page(rs, block, offset)) {
2427 return 1;
d7400a34
XG
2428 }
2429
2430 res = save_zero_page(rs, block, offset);
2431 if (res > 0) {
2432 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2433 * page would be stale
2434 */
2435 if (!save_page_use_compression(rs)) {
2436 XBZRLE_cache_lock();
2437 xbzrle_cache_zero_page(rs, block->offset + offset);
2438 XBZRLE_cache_unlock();
2439 }
2440 ram_release_pages(block->idstr, offset, res);
2441 return res;
2442 }
2443
da3f56cb 2444 /*
5e5fdcff
XG
2445 * do not use multifd for compression as the first page in the new
2446 * block should be posted out before sending the compressed page
da3f56cb 2447 */
5e5fdcff 2448 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
b9ee2f7d 2449 return ram_save_multifd_page(rs, block, offset);
a82d593b
DDAG
2450 }
2451
1faa5665 2452 return ram_save_page(rs, pss, last_stage);
a82d593b
DDAG
2453}
2454
2455/**
3d0684b2 2456 * ram_save_host_page: save a whole host page
a82d593b 2457 *
3d0684b2
JQ
2458 * Starting at *offset send pages up to the end of the current host
2459 * page. It's valid for the initial offset to point into the middle of
2460 * a host page in which case the remainder of the hostpage is sent.
2461 * Only dirty target pages are sent. Note that the host page size may
2462 * be a huge page for this block.
1eb3fc0a
DDAG
2463 * The saving stops at the boundary of the used_length of the block
2464 * if the RAMBlock isn't a multiple of the host page size.
a82d593b 2465 *
3d0684b2
JQ
2466 * Returns the number of pages written or negative on error
2467 *
6f37bb8b 2468 * @rs: current RAM state
3d0684b2 2469 * @ms: current migration state
3d0684b2 2470 * @pss: data about the page we want to send
a82d593b 2471 * @last_stage: if we are at the completion stage
a82d593b 2472 */
a0a8aa14 2473static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2474 bool last_stage)
a82d593b
DDAG
2475{
2476 int tmppages, pages = 0;
a935e30f
JQ
2477 size_t pagesize_bits =
2478 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
4c011c37 2479
fbd162e6 2480 if (ramblock_is_ignored(pss->block)) {
b895de50
CLG
2481 error_report("block %s should not be migrated !", pss->block->idstr);
2482 return 0;
2483 }
2484
a82d593b 2485 do {
1faa5665
XG
2486 /* Check the pages is dirty and if it is send it */
2487 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2488 pss->page++;
2489 continue;
2490 }
2491
f20e2865 2492 tmppages = ram_save_target_page(rs, pss, last_stage);
a82d593b
DDAG
2493 if (tmppages < 0) {
2494 return tmppages;
2495 }
2496
2497 pages += tmppages;
1faa5665
XG
2498 if (pss->block->unsentmap) {
2499 clear_bit(pss->page, pss->block->unsentmap);
2500 }
2501
a935e30f 2502 pss->page++;
1eb3fc0a
DDAG
2503 } while ((pss->page & (pagesize_bits - 1)) &&
2504 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
a82d593b
DDAG
2505
2506 /* The offset we leave with is the last one we looked at */
a935e30f 2507 pss->page--;
a82d593b
DDAG
2508 return pages;
2509}
6c595cde 2510
56e93d26 2511/**
3d0684b2 2512 * ram_find_and_save_block: finds a dirty page and sends it to f
56e93d26
JQ
2513 *
2514 * Called within an RCU critical section.
2515 *
e8f3735f
XG
2516 * Returns the number of pages written where zero means no dirty pages,
2517 * or negative on error
56e93d26 2518 *
6f37bb8b 2519 * @rs: current RAM state
56e93d26 2520 * @last_stage: if we are at the completion stage
a82d593b
DDAG
2521 *
2522 * On systems where host-page-size > target-page-size it will send all the
2523 * pages in a host page that are dirty.
56e93d26
JQ
2524 */
2525
ce25d337 2526static int ram_find_and_save_block(RAMState *rs, bool last_stage)
56e93d26 2527{
b8fb8cb7 2528 PageSearchStatus pss;
56e93d26 2529 int pages = 0;
b9e60928 2530 bool again, found;
56e93d26 2531
0827b9e9
AA
2532 /* No dirty page as there is zero RAM */
2533 if (!ram_bytes_total()) {
2534 return pages;
2535 }
2536
6f37bb8b 2537 pss.block = rs->last_seen_block;
a935e30f 2538 pss.page = rs->last_page;
b8fb8cb7
DDAG
2539 pss.complete_round = false;
2540
2541 if (!pss.block) {
2542 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2543 }
56e93d26 2544
b9e60928 2545 do {
a82d593b 2546 again = true;
f20e2865 2547 found = get_queued_page(rs, &pss);
b9e60928 2548
a82d593b
DDAG
2549 if (!found) {
2550 /* priority queue empty, so just search for something dirty */
f20e2865 2551 found = find_dirty_block(rs, &pss, &again);
a82d593b 2552 }
f3f491fc 2553
a82d593b 2554 if (found) {
f20e2865 2555 pages = ram_save_host_page(rs, &pss, last_stage);
56e93d26 2556 }
b9e60928 2557 } while (!pages && again);
56e93d26 2558
6f37bb8b 2559 rs->last_seen_block = pss.block;
a935e30f 2560 rs->last_page = pss.page;
56e93d26
JQ
2561
2562 return pages;
2563}
2564
2565void acct_update_position(QEMUFile *f, size_t size, bool zero)
2566{
2567 uint64_t pages = size / TARGET_PAGE_SIZE;
f7ccd61b 2568
56e93d26 2569 if (zero) {
9360447d 2570 ram_counters.duplicate += pages;
56e93d26 2571 } else {
9360447d
JQ
2572 ram_counters.normal += pages;
2573 ram_counters.transferred += size;
56e93d26
JQ
2574 qemu_update_position(f, size);
2575 }
2576}
2577
fbd162e6 2578static uint64_t ram_bytes_total_common(bool count_ignored)
56e93d26
JQ
2579{
2580 RAMBlock *block;
2581 uint64_t total = 0;
2582
2583 rcu_read_lock();
fbd162e6
YK
2584 if (count_ignored) {
2585 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2586 total += block->used_length;
2587 }
2588 } else {
2589 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2590 total += block->used_length;
2591 }
99e15582 2592 }
56e93d26
JQ
2593 rcu_read_unlock();
2594 return total;
2595}
2596
fbd162e6
YK
2597uint64_t ram_bytes_total(void)
2598{
2599 return ram_bytes_total_common(false);
2600}
2601
f265e0e4 2602static void xbzrle_load_setup(void)
56e93d26 2603{
f265e0e4 2604 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
56e93d26
JQ
2605}
2606
f265e0e4
JQ
2607static void xbzrle_load_cleanup(void)
2608{
2609 g_free(XBZRLE.decoded_buf);
2610 XBZRLE.decoded_buf = NULL;
2611}
2612
7d7c96be
PX
2613static void ram_state_cleanup(RAMState **rsp)
2614{
b9ccaf6d
DDAG
2615 if (*rsp) {
2616 migration_page_queue_free(*rsp);
2617 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2618 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2619 g_free(*rsp);
2620 *rsp = NULL;
2621 }
7d7c96be
PX
2622}
2623
84593a08
PX
2624static void xbzrle_cleanup(void)
2625{
2626 XBZRLE_cache_lock();
2627 if (XBZRLE.cache) {
2628 cache_fini(XBZRLE.cache);
2629 g_free(XBZRLE.encoded_buf);
2630 g_free(XBZRLE.current_buf);
2631 g_free(XBZRLE.zero_target_page);
2632 XBZRLE.cache = NULL;
2633 XBZRLE.encoded_buf = NULL;
2634 XBZRLE.current_buf = NULL;
2635 XBZRLE.zero_target_page = NULL;
2636 }
2637 XBZRLE_cache_unlock();
2638}
2639
f265e0e4 2640static void ram_save_cleanup(void *opaque)
56e93d26 2641{
53518d94 2642 RAMState **rsp = opaque;
6b6712ef 2643 RAMBlock *block;
eb859c53 2644
2ff64038
LZ
2645 /* caller have hold iothread lock or is in a bh, so there is
2646 * no writing race against this migration_bitmap
2647 */
6b6712ef
JQ
2648 memory_global_dirty_log_stop();
2649
fbd162e6 2650 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2651 g_free(block->bmap);
2652 block->bmap = NULL;
2653 g_free(block->unsentmap);
2654 block->unsentmap = NULL;
56e93d26
JQ
2655 }
2656
84593a08 2657 xbzrle_cleanup();
f0afa331 2658 compress_threads_save_cleanup();
7d7c96be 2659 ram_state_cleanup(rsp);
56e93d26
JQ
2660}
2661
6f37bb8b 2662static void ram_state_reset(RAMState *rs)
56e93d26 2663{
6f37bb8b
JQ
2664 rs->last_seen_block = NULL;
2665 rs->last_sent_block = NULL;
269ace29 2666 rs->last_page = 0;
6f37bb8b
JQ
2667 rs->last_version = ram_list.version;
2668 rs->ram_bulk_stage = true;
6eeb63f7 2669 rs->fpo_enabled = false;
56e93d26
JQ
2670}
2671
2672#define MAX_WAIT 50 /* ms, half buffered_file limit */
2673
4f2e4252
DDAG
2674/*
2675 * 'expected' is the value you expect the bitmap mostly to be full
2676 * of; it won't bother printing lines that are all this value.
2677 * If 'todump' is null the migration bitmap is dumped.
2678 */
6b6712ef
JQ
2679void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2680 unsigned long pages)
4f2e4252 2681{
4f2e4252
DDAG
2682 int64_t cur;
2683 int64_t linelen = 128;
2684 char linebuf[129];
2685
6b6712ef 2686 for (cur = 0; cur < pages; cur += linelen) {
4f2e4252
DDAG
2687 int64_t curb;
2688 bool found = false;
2689 /*
2690 * Last line; catch the case where the line length
2691 * is longer than remaining ram
2692 */
6b6712ef
JQ
2693 if (cur + linelen > pages) {
2694 linelen = pages - cur;
4f2e4252
DDAG
2695 }
2696 for (curb = 0; curb < linelen; curb++) {
2697 bool thisbit = test_bit(cur + curb, todump);
2698 linebuf[curb] = thisbit ? '1' : '.';
2699 found = found || (thisbit != expected);
2700 }
2701 if (found) {
2702 linebuf[curb] = '\0';
2703 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2704 }
2705 }
2706}
2707
e0b266f0
DDAG
2708/* **** functions for postcopy ***** */
2709
ced1c616
PB
2710void ram_postcopy_migrated_memory_release(MigrationState *ms)
2711{
2712 struct RAMBlock *block;
ced1c616 2713
fbd162e6 2714 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2715 unsigned long *bitmap = block->bmap;
2716 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2717 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
ced1c616
PB
2718
2719 while (run_start < range) {
2720 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
aaa2064c 2721 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
ced1c616
PB
2722 (run_end - run_start) << TARGET_PAGE_BITS);
2723 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2724 }
2725 }
2726}
2727
3d0684b2
JQ
2728/**
2729 * postcopy_send_discard_bm_ram: discard a RAMBlock
2730 *
2731 * Returns zero on success
2732 *
e0b266f0
DDAG
2733 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2734 * Note: At this point the 'unsentmap' is the processed bitmap combined
2735 * with the dirtymap; so a '1' means it's either dirty or unsent.
3d0684b2
JQ
2736 *
2737 * @ms: current migration state
2738 * @pds: state for postcopy
2739 * @start: RAMBlock starting page
2740 * @length: RAMBlock size
e0b266f0
DDAG
2741 */
2742static int postcopy_send_discard_bm_ram(MigrationState *ms,
2743 PostcopyDiscardState *pds,
6b6712ef 2744 RAMBlock *block)
e0b266f0 2745{
6b6712ef 2746 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
e0b266f0 2747 unsigned long current;
6b6712ef 2748 unsigned long *unsentmap = block->unsentmap;
e0b266f0 2749
6b6712ef 2750 for (current = 0; current < end; ) {
e0b266f0
DDAG
2751 unsigned long one = find_next_bit(unsentmap, end, current);
2752
2753 if (one <= end) {
2754 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2755 unsigned long discard_length;
2756
2757 if (zero >= end) {
2758 discard_length = end - one;
2759 } else {
2760 discard_length = zero - one;
2761 }
d688c62d
DDAG
2762 if (discard_length) {
2763 postcopy_discard_send_range(ms, pds, one, discard_length);
2764 }
e0b266f0
DDAG
2765 current = one + discard_length;
2766 } else {
2767 current = one;
2768 }
2769 }
2770
2771 return 0;
2772}
2773
3d0684b2
JQ
2774/**
2775 * postcopy_each_ram_send_discard: discard all RAMBlocks
2776 *
2777 * Returns 0 for success or negative for error
2778 *
e0b266f0
DDAG
2779 * Utility for the outgoing postcopy code.
2780 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2781 * passing it bitmap indexes and name.
e0b266f0
DDAG
2782 * (qemu_ram_foreach_block ends up passing unscaled lengths
2783 * which would mean postcopy code would have to deal with target page)
3d0684b2
JQ
2784 *
2785 * @ms: current migration state
e0b266f0
DDAG
2786 */
2787static int postcopy_each_ram_send_discard(MigrationState *ms)
2788{
2789 struct RAMBlock *block;
2790 int ret;
2791
fbd162e6 2792 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2793 PostcopyDiscardState *pds =
2794 postcopy_discard_send_init(ms, block->idstr);
e0b266f0
DDAG
2795
2796 /*
2797 * Postcopy sends chunks of bitmap over the wire, but it
2798 * just needs indexes at this point, avoids it having
2799 * target page specific code.
2800 */
6b6712ef 2801 ret = postcopy_send_discard_bm_ram(ms, pds, block);
e0b266f0
DDAG
2802 postcopy_discard_send_finish(ms, pds);
2803 if (ret) {
2804 return ret;
2805 }
2806 }
2807
2808 return 0;
2809}
2810
3d0684b2
JQ
2811/**
2812 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2813 *
2814 * Helper for postcopy_chunk_hostpages; it's called twice to
2815 * canonicalize the two bitmaps, that are similar, but one is
2816 * inverted.
99e314eb 2817 *
3d0684b2
JQ
2818 * Postcopy requires that all target pages in a hostpage are dirty or
2819 * clean, not a mix. This function canonicalizes the bitmaps.
99e314eb 2820 *
3d0684b2
JQ
2821 * @ms: current migration state
2822 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2823 * otherwise we need to canonicalize partially dirty host pages
2824 * @block: block that contains the page we want to canonicalize
2825 * @pds: state for postcopy
99e314eb
DDAG
2826 */
2827static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2828 RAMBlock *block,
2829 PostcopyDiscardState *pds)
2830{
53518d94 2831 RAMState *rs = ram_state;
6b6712ef
JQ
2832 unsigned long *bitmap = block->bmap;
2833 unsigned long *unsentmap = block->unsentmap;
29c59172 2834 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
6b6712ef 2835 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
99e314eb
DDAG
2836 unsigned long run_start;
2837
29c59172
DDAG
2838 if (block->page_size == TARGET_PAGE_SIZE) {
2839 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2840 return;
2841 }
2842
99e314eb
DDAG
2843 if (unsent_pass) {
2844 /* Find a sent page */
6b6712ef 2845 run_start = find_next_zero_bit(unsentmap, pages, 0);
99e314eb
DDAG
2846 } else {
2847 /* Find a dirty page */
6b6712ef 2848 run_start = find_next_bit(bitmap, pages, 0);
99e314eb
DDAG
2849 }
2850
6b6712ef 2851 while (run_start < pages) {
99e314eb
DDAG
2852 bool do_fixup = false;
2853 unsigned long fixup_start_addr;
2854 unsigned long host_offset;
2855
2856 /*
2857 * If the start of this run of pages is in the middle of a host
2858 * page, then we need to fixup this host page.
2859 */
2860 host_offset = run_start % host_ratio;
2861 if (host_offset) {
2862 do_fixup = true;
2863 run_start -= host_offset;
2864 fixup_start_addr = run_start;
2865 /* For the next pass */
2866 run_start = run_start + host_ratio;
2867 } else {
2868 /* Find the end of this run */
2869 unsigned long run_end;
2870 if (unsent_pass) {
6b6712ef 2871 run_end = find_next_bit(unsentmap, pages, run_start + 1);
99e314eb 2872 } else {
6b6712ef 2873 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
99e314eb
DDAG
2874 }
2875 /*
2876 * If the end isn't at the start of a host page, then the
2877 * run doesn't finish at the end of a host page
2878 * and we need to discard.
2879 */
2880 host_offset = run_end % host_ratio;
2881 if (host_offset) {
2882 do_fixup = true;
2883 fixup_start_addr = run_end - host_offset;
2884 /*
2885 * This host page has gone, the next loop iteration starts
2886 * from after the fixup
2887 */
2888 run_start = fixup_start_addr + host_ratio;
2889 } else {
2890 /*
2891 * No discards on this iteration, next loop starts from
2892 * next sent/dirty page
2893 */
2894 run_start = run_end + 1;
2895 }
2896 }
2897
2898 if (do_fixup) {
2899 unsigned long page;
2900
2901 /* Tell the destination to discard this page */
2902 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2903 /* For the unsent_pass we:
2904 * discard partially sent pages
2905 * For the !unsent_pass (dirty) we:
2906 * discard partially dirty pages that were sent
2907 * (any partially sent pages were already discarded
2908 * by the previous unsent_pass)
2909 */
2910 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2911 host_ratio);
2912 }
2913
2914 /* Clean up the bitmap */
2915 for (page = fixup_start_addr;
2916 page < fixup_start_addr + host_ratio; page++) {
2917 /* All pages in this host page are now not sent */
2918 set_bit(page, unsentmap);
2919
2920 /*
2921 * Remark them as dirty, updating the count for any pages
2922 * that weren't previously dirty.
2923 */
0d8ec885 2924 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
99e314eb
DDAG
2925 }
2926 }
2927
2928 if (unsent_pass) {
2929 /* Find the next sent page for the next iteration */
6b6712ef 2930 run_start = find_next_zero_bit(unsentmap, pages, run_start);
99e314eb
DDAG
2931 } else {
2932 /* Find the next dirty page for the next iteration */
6b6712ef 2933 run_start = find_next_bit(bitmap, pages, run_start);
99e314eb
DDAG
2934 }
2935 }
2936}
2937
3d0684b2
JQ
2938/**
2939 * postcopy_chuck_hostpages: discrad any partially sent host page
2940 *
99e314eb
DDAG
2941 * Utility for the outgoing postcopy code.
2942 *
2943 * Discard any partially sent host-page size chunks, mark any partially
29c59172
DDAG
2944 * dirty host-page size chunks as all dirty. In this case the host-page
2945 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
99e314eb 2946 *
3d0684b2
JQ
2947 * Returns zero on success
2948 *
2949 * @ms: current migration state
6b6712ef 2950 * @block: block we want to work with
99e314eb 2951 */
6b6712ef 2952static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
99e314eb 2953{
6b6712ef
JQ
2954 PostcopyDiscardState *pds =
2955 postcopy_discard_send_init(ms, block->idstr);
99e314eb 2956
6b6712ef
JQ
2957 /* First pass: Discard all partially sent host pages */
2958 postcopy_chunk_hostpages_pass(ms, true, block, pds);
2959 /*
2960 * Second pass: Ensure that all partially dirty host pages are made
2961 * fully dirty.
2962 */
2963 postcopy_chunk_hostpages_pass(ms, false, block, pds);
99e314eb 2964
6b6712ef 2965 postcopy_discard_send_finish(ms, pds);
99e314eb
DDAG
2966 return 0;
2967}
2968
3d0684b2
JQ
2969/**
2970 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2971 *
2972 * Returns zero on success
2973 *
e0b266f0
DDAG
2974 * Transmit the set of pages to be discarded after precopy to the target
2975 * these are pages that:
2976 * a) Have been previously transmitted but are now dirty again
2977 * b) Pages that have never been transmitted, this ensures that
2978 * any pages on the destination that have been mapped by background
2979 * tasks get discarded (transparent huge pages is the specific concern)
2980 * Hopefully this is pretty sparse
3d0684b2
JQ
2981 *
2982 * @ms: current migration state
e0b266f0
DDAG
2983 */
2984int ram_postcopy_send_discard_bitmap(MigrationState *ms)
2985{
53518d94 2986 RAMState *rs = ram_state;
6b6712ef 2987 RAMBlock *block;
e0b266f0 2988 int ret;
e0b266f0
DDAG
2989
2990 rcu_read_lock();
2991
2992 /* This should be our last sync, the src is now paused */
eb859c53 2993 migration_bitmap_sync(rs);
e0b266f0 2994
6b6712ef
JQ
2995 /* Easiest way to make sure we don't resume in the middle of a host-page */
2996 rs->last_seen_block = NULL;
2997 rs->last_sent_block = NULL;
2998 rs->last_page = 0;
e0b266f0 2999
fbd162e6 3000 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
3001 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3002 unsigned long *bitmap = block->bmap;
3003 unsigned long *unsentmap = block->unsentmap;
3004
3005 if (!unsentmap) {
3006 /* We don't have a safe way to resize the sentmap, so
3007 * if the bitmap was resized it will be NULL at this
3008 * point.
3009 */
3010 error_report("migration ram resized during precopy phase");
3011 rcu_read_unlock();
3012 return -EINVAL;
3013 }
3014 /* Deal with TPS != HPS and huge pages */
3015 ret = postcopy_chunk_hostpages(ms, block);
3016 if (ret) {
3017 rcu_read_unlock();
3018 return ret;
3019 }
e0b266f0 3020
6b6712ef
JQ
3021 /*
3022 * Update the unsentmap to be unsentmap = unsentmap | dirty
3023 */
3024 bitmap_or(unsentmap, unsentmap, bitmap, pages);
e0b266f0 3025#ifdef DEBUG_POSTCOPY
6b6712ef 3026 ram_debug_dump_bitmap(unsentmap, true, pages);
e0b266f0 3027#endif
6b6712ef
JQ
3028 }
3029 trace_ram_postcopy_send_discard_bitmap();
e0b266f0
DDAG
3030
3031 ret = postcopy_each_ram_send_discard(ms);
3032 rcu_read_unlock();
3033
3034 return ret;
3035}
3036
3d0684b2
JQ
3037/**
3038 * ram_discard_range: discard dirtied pages at the beginning of postcopy
e0b266f0 3039 *
3d0684b2 3040 * Returns zero on success
e0b266f0 3041 *
36449157
JQ
3042 * @rbname: name of the RAMBlock of the request. NULL means the
3043 * same that last one.
3d0684b2
JQ
3044 * @start: RAMBlock starting page
3045 * @length: RAMBlock size
e0b266f0 3046 */
aaa2064c 3047int ram_discard_range(const char *rbname, uint64_t start, size_t length)
e0b266f0
DDAG
3048{
3049 int ret = -1;
3050
36449157 3051 trace_ram_discard_range(rbname, start, length);
d3a5038c 3052
e0b266f0 3053 rcu_read_lock();
36449157 3054 RAMBlock *rb = qemu_ram_block_by_name(rbname);
e0b266f0
DDAG
3055
3056 if (!rb) {
36449157 3057 error_report("ram_discard_range: Failed to find block '%s'", rbname);
e0b266f0
DDAG
3058 goto err;
3059 }
3060
814bb08f
PX
3061 /*
3062 * On source VM, we don't need to update the received bitmap since
3063 * we don't even have one.
3064 */
3065 if (rb->receivedmap) {
3066 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3067 length >> qemu_target_page_bits());
3068 }
3069
d3a5038c 3070 ret = ram_block_discard_range(rb, start, length);
e0b266f0
DDAG
3071
3072err:
3073 rcu_read_unlock();
3074
3075 return ret;
3076}
3077
84593a08
PX
3078/*
3079 * For every allocation, we will try not to crash the VM if the
3080 * allocation failed.
3081 */
3082static int xbzrle_init(void)
3083{
3084 Error *local_err = NULL;
3085
3086 if (!migrate_use_xbzrle()) {
3087 return 0;
3088 }
3089
3090 XBZRLE_cache_lock();
3091
3092 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3093 if (!XBZRLE.zero_target_page) {
3094 error_report("%s: Error allocating zero page", __func__);
3095 goto err_out;
3096 }
3097
3098 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3099 TARGET_PAGE_SIZE, &local_err);
3100 if (!XBZRLE.cache) {
3101 error_report_err(local_err);
3102 goto free_zero_page;
3103 }
3104
3105 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3106 if (!XBZRLE.encoded_buf) {
3107 error_report("%s: Error allocating encoded_buf", __func__);
3108 goto free_cache;
3109 }
3110
3111 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3112 if (!XBZRLE.current_buf) {
3113 error_report("%s: Error allocating current_buf", __func__);
3114 goto free_encoded_buf;
3115 }
3116
3117 /* We are all good */
3118 XBZRLE_cache_unlock();
3119 return 0;
3120
3121free_encoded_buf:
3122 g_free(XBZRLE.encoded_buf);
3123 XBZRLE.encoded_buf = NULL;
3124free_cache:
3125 cache_fini(XBZRLE.cache);
3126 XBZRLE.cache = NULL;
3127free_zero_page:
3128 g_free(XBZRLE.zero_target_page);
3129 XBZRLE.zero_target_page = NULL;
3130err_out:
3131 XBZRLE_cache_unlock();
3132 return -ENOMEM;
3133}
3134
53518d94 3135static int ram_state_init(RAMState **rsp)
56e93d26 3136{
7d00ee6a
PX
3137 *rsp = g_try_new0(RAMState, 1);
3138
3139 if (!*rsp) {
3140 error_report("%s: Init ramstate fail", __func__);
3141 return -1;
3142 }
53518d94
JQ
3143
3144 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3145 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3146 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
56e93d26 3147
7d00ee6a
PX
3148 /*
3149 * Count the total number of pages used by ram blocks not including any
3150 * gaps due to alignment or unplugs.
3151 */
3152 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3153
3154 ram_state_reset(*rsp);
3155
3156 return 0;
3157}
3158
d6eff5d7 3159static void ram_list_init_bitmaps(void)
7d00ee6a 3160{
d6eff5d7
PX
3161 RAMBlock *block;
3162 unsigned long pages;
56e93d26 3163
0827b9e9
AA
3164 /* Skip setting bitmap if there is no RAM */
3165 if (ram_bytes_total()) {
fbd162e6 3166 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
d6eff5d7 3167 pages = block->max_length >> TARGET_PAGE_BITS;
6b6712ef
JQ
3168 block->bmap = bitmap_new(pages);
3169 bitmap_set(block->bmap, 0, pages);
3170 if (migrate_postcopy_ram()) {
3171 block->unsentmap = bitmap_new(pages);
3172 bitmap_set(block->unsentmap, 0, pages);
3173 }
0827b9e9 3174 }
f3f491fc 3175 }
d6eff5d7
PX
3176}
3177
3178static void ram_init_bitmaps(RAMState *rs)
3179{
3180 /* For memory_global_dirty_log_start below. */
3181 qemu_mutex_lock_iothread();
3182 qemu_mutex_lock_ramlist();
3183 rcu_read_lock();
f3f491fc 3184
d6eff5d7 3185 ram_list_init_bitmaps();
56e93d26 3186 memory_global_dirty_log_start();
bd227060 3187 migration_bitmap_sync_precopy(rs);
d6eff5d7
PX
3188
3189 rcu_read_unlock();
56e93d26 3190 qemu_mutex_unlock_ramlist();
49877834 3191 qemu_mutex_unlock_iothread();
d6eff5d7
PX
3192}
3193
3194static int ram_init_all(RAMState **rsp)
3195{
3196 if (ram_state_init(rsp)) {
3197 return -1;
3198 }
3199
3200 if (xbzrle_init()) {
3201 ram_state_cleanup(rsp);
3202 return -1;
3203 }
3204
3205 ram_init_bitmaps(*rsp);
a91246c9
HZ
3206
3207 return 0;
3208}
3209
08614f34
PX
3210static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3211{
3212 RAMBlock *block;
3213 uint64_t pages = 0;
3214
3215 /*
3216 * Postcopy is not using xbzrle/compression, so no need for that.
3217 * Also, since source are already halted, we don't need to care
3218 * about dirty page logging as well.
3219 */
3220
fbd162e6 3221 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
08614f34
PX
3222 pages += bitmap_count_one(block->bmap,
3223 block->used_length >> TARGET_PAGE_BITS);
3224 }
3225
3226 /* This may not be aligned with current bitmaps. Recalculate. */
3227 rs->migration_dirty_pages = pages;
3228
3229 rs->last_seen_block = NULL;
3230 rs->last_sent_block = NULL;
3231 rs->last_page = 0;
3232 rs->last_version = ram_list.version;
3233 /*
3234 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3235 * matter what we have sent.
3236 */
3237 rs->ram_bulk_stage = false;
3238
3239 /* Update RAMState cache of output QEMUFile */
3240 rs->f = out;
3241
3242 trace_ram_state_resume_prepare(pages);
3243}
3244
6bcb05fc
WW
3245/*
3246 * This function clears bits of the free pages reported by the caller from the
3247 * migration dirty bitmap. @addr is the host address corresponding to the
3248 * start of the continuous guest free pages, and @len is the total bytes of
3249 * those pages.
3250 */
3251void qemu_guest_free_page_hint(void *addr, size_t len)
3252{
3253 RAMBlock *block;
3254 ram_addr_t offset;
3255 size_t used_len, start, npages;
3256 MigrationState *s = migrate_get_current();
3257
3258 /* This function is currently expected to be used during live migration */
3259 if (!migration_is_setup_or_active(s->state)) {
3260 return;
3261 }
3262
3263 for (; len > 0; len -= used_len, addr += used_len) {
3264 block = qemu_ram_block_from_host(addr, false, &offset);
3265 if (unlikely(!block || offset >= block->used_length)) {
3266 /*
3267 * The implementation might not support RAMBlock resize during
3268 * live migration, but it could happen in theory with future
3269 * updates. So we add a check here to capture that case.
3270 */
3271 error_report_once("%s unexpected error", __func__);
3272 return;
3273 }
3274
3275 if (len <= block->used_length - offset) {
3276 used_len = len;
3277 } else {
3278 used_len = block->used_length - offset;
3279 }
3280
3281 start = offset >> TARGET_PAGE_BITS;
3282 npages = used_len >> TARGET_PAGE_BITS;
3283
3284 qemu_mutex_lock(&ram_state->bitmap_mutex);
3285 ram_state->migration_dirty_pages -=
3286 bitmap_count_one_with_offset(block->bmap, start, npages);
3287 bitmap_clear(block->bmap, start, npages);
3288 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3289 }
3290}
3291
3d0684b2
JQ
3292/*
3293 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
a91246c9
HZ
3294 * long-running RCU critical section. When rcu-reclaims in the code
3295 * start to become numerous it will be necessary to reduce the
3296 * granularity of these critical sections.
3297 */
3298
3d0684b2
JQ
3299/**
3300 * ram_save_setup: Setup RAM for migration
3301 *
3302 * Returns zero to indicate success and negative for error
3303 *
3304 * @f: QEMUFile where to send the data
3305 * @opaque: RAMState pointer
3306 */
a91246c9
HZ
3307static int ram_save_setup(QEMUFile *f, void *opaque)
3308{
53518d94 3309 RAMState **rsp = opaque;
a91246c9
HZ
3310 RAMBlock *block;
3311
dcaf446e
XG
3312 if (compress_threads_save_setup()) {
3313 return -1;
3314 }
3315
a91246c9
HZ
3316 /* migration has already setup the bitmap, reuse it. */
3317 if (!migration_in_colo_state()) {
7d00ee6a 3318 if (ram_init_all(rsp) != 0) {
dcaf446e 3319 compress_threads_save_cleanup();
a91246c9 3320 return -1;
53518d94 3321 }
a91246c9 3322 }
53518d94 3323 (*rsp)->f = f;
a91246c9
HZ
3324
3325 rcu_read_lock();
56e93d26 3326
fbd162e6 3327 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
56e93d26 3328
b895de50 3329 RAMBLOCK_FOREACH_MIGRATABLE(block) {
56e93d26
JQ
3330 qemu_put_byte(f, strlen(block->idstr));
3331 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3332 qemu_put_be64(f, block->used_length);
ef08fb38
DDAG
3333 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3334 qemu_put_be64(f, block->page_size);
3335 }
fbd162e6
YK
3336 if (migrate_ignore_shared()) {
3337 qemu_put_be64(f, block->mr->addr);
3338 qemu_put_byte(f, ramblock_is_ignored(block) ? 1 : 0);
3339 }
56e93d26
JQ
3340 }
3341
3342 rcu_read_unlock();
3343
3344 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3345 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3346
6df264ac 3347 multifd_send_sync_main();
56e93d26 3348 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3349 qemu_fflush(f);
56e93d26
JQ
3350
3351 return 0;
3352}
3353
3d0684b2
JQ
3354/**
3355 * ram_save_iterate: iterative stage for migration
3356 *
3357 * Returns zero to indicate success and negative for error
3358 *
3359 * @f: QEMUFile where to send the data
3360 * @opaque: RAMState pointer
3361 */
56e93d26
JQ
3362static int ram_save_iterate(QEMUFile *f, void *opaque)
3363{
53518d94
JQ
3364 RAMState **temp = opaque;
3365 RAMState *rs = *temp;
56e93d26
JQ
3366 int ret;
3367 int i;
3368 int64_t t0;
5c90308f 3369 int done = 0;
56e93d26 3370
b2557345
PL
3371 if (blk_mig_bulk_active()) {
3372 /* Avoid transferring ram during bulk phase of block migration as
3373 * the bulk phase will usually take a long time and transferring
3374 * ram updates during that time is pointless. */
3375 goto out;
3376 }
3377
56e93d26 3378 rcu_read_lock();
6f37bb8b
JQ
3379 if (ram_list.version != rs->last_version) {
3380 ram_state_reset(rs);
56e93d26
JQ
3381 }
3382
3383 /* Read version before ram_list.blocks */
3384 smp_rmb();
3385
3386 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3387
3388 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3389 i = 0;
e03a34f8
DDAG
3390 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3391 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
56e93d26
JQ
3392 int pages;
3393
e03a34f8
DDAG
3394 if (qemu_file_get_error(f)) {
3395 break;
3396 }
3397
ce25d337 3398 pages = ram_find_and_save_block(rs, false);
56e93d26
JQ
3399 /* no more pages to sent */
3400 if (pages == 0) {
5c90308f 3401 done = 1;
56e93d26
JQ
3402 break;
3403 }
e8f3735f
XG
3404
3405 if (pages < 0) {
3406 qemu_file_set_error(f, pages);
3407 break;
3408 }
3409
be8b02ed 3410 rs->target_page_count += pages;
070afca2 3411
56e93d26
JQ
3412 /* we want to check in the 1st loop, just in case it was the 1st time
3413 and we had to sync the dirty bitmap.
3414 qemu_get_clock_ns() is a bit expensive, so we only check each some
3415 iterations
3416 */
3417 if ((i & 63) == 0) {
3418 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3419 if (t1 > MAX_WAIT) {
55c4446b 3420 trace_ram_save_iterate_big_wait(t1, i);
56e93d26
JQ
3421 break;
3422 }
3423 }
3424 i++;
3425 }
56e93d26
JQ
3426 rcu_read_unlock();
3427
3428 /*
3429 * Must occur before EOS (or any QEMUFile operation)
3430 * because of RDMA protocol.
3431 */
3432 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3433
6df264ac 3434 multifd_send_sync_main();
b2557345 3435out:
56e93d26 3436 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3437 qemu_fflush(f);
9360447d 3438 ram_counters.transferred += 8;
56e93d26
JQ
3439
3440 ret = qemu_file_get_error(f);
3441 if (ret < 0) {
3442 return ret;
3443 }
3444
5c90308f 3445 return done;
56e93d26
JQ
3446}
3447
3d0684b2
JQ
3448/**
3449 * ram_save_complete: function called to send the remaining amount of ram
3450 *
e8f3735f 3451 * Returns zero to indicate success or negative on error
3d0684b2
JQ
3452 *
3453 * Called with iothread lock
3454 *
3455 * @f: QEMUFile where to send the data
3456 * @opaque: RAMState pointer
3457 */
56e93d26
JQ
3458static int ram_save_complete(QEMUFile *f, void *opaque)
3459{
53518d94
JQ
3460 RAMState **temp = opaque;
3461 RAMState *rs = *temp;
e8f3735f 3462 int ret = 0;
6f37bb8b 3463
56e93d26
JQ
3464 rcu_read_lock();
3465
5727309d 3466 if (!migration_in_postcopy()) {
bd227060 3467 migration_bitmap_sync_precopy(rs);
663e6c1d 3468 }
56e93d26
JQ
3469
3470 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3471
3472 /* try transferring iterative blocks of memory */
3473
3474 /* flush all remaining blocks regardless of rate limiting */
3475 while (true) {
3476 int pages;
3477
ce25d337 3478 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
56e93d26
JQ
3479 /* no more blocks to sent */
3480 if (pages == 0) {
3481 break;
3482 }
e8f3735f
XG
3483 if (pages < 0) {
3484 ret = pages;
3485 break;
3486 }
56e93d26
JQ
3487 }
3488
ce25d337 3489 flush_compressed_data(rs);
56e93d26 3490 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
56e93d26
JQ
3491
3492 rcu_read_unlock();
d09a6fde 3493
6df264ac 3494 multifd_send_sync_main();
56e93d26 3495 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3496 qemu_fflush(f);
56e93d26 3497
e8f3735f 3498 return ret;
56e93d26
JQ
3499}
3500
c31b098f 3501static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
47995026
VSO
3502 uint64_t *res_precopy_only,
3503 uint64_t *res_compatible,
3504 uint64_t *res_postcopy_only)
56e93d26 3505{
53518d94
JQ
3506 RAMState **temp = opaque;
3507 RAMState *rs = *temp;
56e93d26
JQ
3508 uint64_t remaining_size;
3509
9edabd4d 3510 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3511
5727309d 3512 if (!migration_in_postcopy() &&
663e6c1d 3513 remaining_size < max_size) {
56e93d26
JQ
3514 qemu_mutex_lock_iothread();
3515 rcu_read_lock();
bd227060 3516 migration_bitmap_sync_precopy(rs);
56e93d26
JQ
3517 rcu_read_unlock();
3518 qemu_mutex_unlock_iothread();
9edabd4d 3519 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3520 }
c31b098f 3521
86e1167e
VSO
3522 if (migrate_postcopy_ram()) {
3523 /* We can do postcopy, and all the data is postcopiable */
47995026 3524 *res_compatible += remaining_size;
86e1167e 3525 } else {
47995026 3526 *res_precopy_only += remaining_size;
86e1167e 3527 }
56e93d26
JQ
3528}
3529
3530static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3531{
3532 unsigned int xh_len;
3533 int xh_flags;
063e760a 3534 uint8_t *loaded_data;
56e93d26 3535
56e93d26
JQ
3536 /* extract RLE header */
3537 xh_flags = qemu_get_byte(f);
3538 xh_len = qemu_get_be16(f);
3539
3540 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3541 error_report("Failed to load XBZRLE page - wrong compression!");
3542 return -1;
3543 }
3544
3545 if (xh_len > TARGET_PAGE_SIZE) {
3546 error_report("Failed to load XBZRLE page - len overflow!");
3547 return -1;
3548 }
f265e0e4 3549 loaded_data = XBZRLE.decoded_buf;
56e93d26 3550 /* load data and decode */
f265e0e4 3551 /* it can change loaded_data to point to an internal buffer */
063e760a 3552 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
3553
3554 /* decode RLE */
063e760a 3555 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
3556 TARGET_PAGE_SIZE) == -1) {
3557 error_report("Failed to load XBZRLE page - decode error!");
3558 return -1;
3559 }
3560
3561 return 0;
3562}
3563
3d0684b2
JQ
3564/**
3565 * ram_block_from_stream: read a RAMBlock id from the migration stream
3566 *
3567 * Must be called from within a rcu critical section.
3568 *
56e93d26 3569 * Returns a pointer from within the RCU-protected ram_list.
a7180877 3570 *
3d0684b2
JQ
3571 * @f: QEMUFile where to read the data from
3572 * @flags: Page flags (mostly to see if it's a continuation of previous block)
a7180877 3573 */
3d0684b2 3574static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
56e93d26
JQ
3575{
3576 static RAMBlock *block = NULL;
3577 char id[256];
3578 uint8_t len;
3579
3580 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 3581 if (!block) {
56e93d26
JQ
3582 error_report("Ack, bad migration stream!");
3583 return NULL;
3584 }
4c4bad48 3585 return block;
56e93d26
JQ
3586 }
3587
3588 len = qemu_get_byte(f);
3589 qemu_get_buffer(f, (uint8_t *)id, len);
3590 id[len] = 0;
3591
e3dd7493 3592 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
3593 if (!block) {
3594 error_report("Can't find block %s", id);
3595 return NULL;
56e93d26
JQ
3596 }
3597
fbd162e6 3598 if (ramblock_is_ignored(block)) {
b895de50
CLG
3599 error_report("block %s should not be migrated !", id);
3600 return NULL;
3601 }
3602
4c4bad48
HZ
3603 return block;
3604}
3605
3606static inline void *host_from_ram_block_offset(RAMBlock *block,
3607 ram_addr_t offset)
3608{
3609 if (!offset_in_ramblock(block, offset)) {
3610 return NULL;
3611 }
3612
3613 return block->host + offset;
56e93d26
JQ
3614}
3615
13af18f2
ZC
3616static inline void *colo_cache_from_block_offset(RAMBlock *block,
3617 ram_addr_t offset)
3618{
3619 if (!offset_in_ramblock(block, offset)) {
3620 return NULL;
3621 }
3622 if (!block->colo_cache) {
3623 error_report("%s: colo_cache is NULL in block :%s",
3624 __func__, block->idstr);
3625 return NULL;
3626 }
7d9acafa
ZC
3627
3628 /*
3629 * During colo checkpoint, we need bitmap of these migrated pages.
3630 * It help us to decide which pages in ram cache should be flushed
3631 * into VM's RAM later.
3632 */
3633 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3634 ram_state->migration_dirty_pages++;
3635 }
13af18f2
ZC
3636 return block->colo_cache + offset;
3637}
3638
3d0684b2
JQ
3639/**
3640 * ram_handle_compressed: handle the zero page case
3641 *
56e93d26
JQ
3642 * If a page (or a whole RDMA chunk) has been
3643 * determined to be zero, then zap it.
3d0684b2
JQ
3644 *
3645 * @host: host address for the zero page
3646 * @ch: what the page is filled from. We only support zero
3647 * @size: size of the zero page
56e93d26
JQ
3648 */
3649void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3650{
3651 if (ch != 0 || !is_zero_range(host, size)) {
3652 memset(host, ch, size);
3653 }
3654}
3655
797ca154
XG
3656/* return the size after decompression, or negative value on error */
3657static int
3658qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3659 const uint8_t *source, size_t source_len)
3660{
3661 int err;
3662
3663 err = inflateReset(stream);
3664 if (err != Z_OK) {
3665 return -1;
3666 }
3667
3668 stream->avail_in = source_len;
3669 stream->next_in = (uint8_t *)source;
3670 stream->avail_out = dest_len;
3671 stream->next_out = dest;
3672
3673 err = inflate(stream, Z_NO_FLUSH);
3674 if (err != Z_STREAM_END) {
3675 return -1;
3676 }
3677
3678 return stream->total_out;
3679}
3680
56e93d26
JQ
3681static void *do_data_decompress(void *opaque)
3682{
3683 DecompressParam *param = opaque;
3684 unsigned long pagesize;
33d151f4 3685 uint8_t *des;
34ab9e97 3686 int len, ret;
56e93d26 3687
33d151f4 3688 qemu_mutex_lock(&param->mutex);
90e56fb4 3689 while (!param->quit) {
33d151f4
LL
3690 if (param->des) {
3691 des = param->des;
3692 len = param->len;
3693 param->des = 0;
3694 qemu_mutex_unlock(&param->mutex);
3695
56e93d26 3696 pagesize = TARGET_PAGE_SIZE;
34ab9e97
XG
3697
3698 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3699 param->compbuf, len);
f548222c 3700 if (ret < 0 && migrate_get_current()->decompress_error_check) {
34ab9e97
XG
3701 error_report("decompress data failed");
3702 qemu_file_set_error(decomp_file, ret);
3703 }
73a8912b 3704
33d151f4
LL
3705 qemu_mutex_lock(&decomp_done_lock);
3706 param->done = true;
3707 qemu_cond_signal(&decomp_done_cond);
3708 qemu_mutex_unlock(&decomp_done_lock);
3709
3710 qemu_mutex_lock(&param->mutex);
3711 } else {
3712 qemu_cond_wait(&param->cond, &param->mutex);
3713 }
56e93d26 3714 }
33d151f4 3715 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
3716
3717 return NULL;
3718}
3719
34ab9e97 3720static int wait_for_decompress_done(void)
5533b2e9
LL
3721{
3722 int idx, thread_count;
3723
3724 if (!migrate_use_compression()) {
34ab9e97 3725 return 0;
5533b2e9
LL
3726 }
3727
3728 thread_count = migrate_decompress_threads();
3729 qemu_mutex_lock(&decomp_done_lock);
3730 for (idx = 0; idx < thread_count; idx++) {
3731 while (!decomp_param[idx].done) {
3732 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3733 }
3734 }
3735 qemu_mutex_unlock(&decomp_done_lock);
34ab9e97 3736 return qemu_file_get_error(decomp_file);
5533b2e9
LL
3737}
3738
f0afa331 3739static void compress_threads_load_cleanup(void)
56e93d26
JQ
3740{
3741 int i, thread_count;
3742
3416ab5b
JQ
3743 if (!migrate_use_compression()) {
3744 return;
3745 }
56e93d26
JQ
3746 thread_count = migrate_decompress_threads();
3747 for (i = 0; i < thread_count; i++) {
797ca154
XG
3748 /*
3749 * we use it as a indicator which shows if the thread is
3750 * properly init'd or not
3751 */
3752 if (!decomp_param[i].compbuf) {
3753 break;
3754 }
3755
56e93d26 3756 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 3757 decomp_param[i].quit = true;
56e93d26
JQ
3758 qemu_cond_signal(&decomp_param[i].cond);
3759 qemu_mutex_unlock(&decomp_param[i].mutex);
3760 }
3761 for (i = 0; i < thread_count; i++) {
797ca154
XG
3762 if (!decomp_param[i].compbuf) {
3763 break;
3764 }
3765
56e93d26
JQ
3766 qemu_thread_join(decompress_threads + i);
3767 qemu_mutex_destroy(&decomp_param[i].mutex);
3768 qemu_cond_destroy(&decomp_param[i].cond);
797ca154 3769 inflateEnd(&decomp_param[i].stream);
56e93d26 3770 g_free(decomp_param[i].compbuf);
797ca154 3771 decomp_param[i].compbuf = NULL;
56e93d26
JQ
3772 }
3773 g_free(decompress_threads);
3774 g_free(decomp_param);
56e93d26
JQ
3775 decompress_threads = NULL;
3776 decomp_param = NULL;
34ab9e97 3777 decomp_file = NULL;
56e93d26
JQ
3778}
3779
34ab9e97 3780static int compress_threads_load_setup(QEMUFile *f)
797ca154
XG
3781{
3782 int i, thread_count;
3783
3784 if (!migrate_use_compression()) {
3785 return 0;
3786 }
3787
3788 thread_count = migrate_decompress_threads();
3789 decompress_threads = g_new0(QemuThread, thread_count);
3790 decomp_param = g_new0(DecompressParam, thread_count);
3791 qemu_mutex_init(&decomp_done_lock);
3792 qemu_cond_init(&decomp_done_cond);
34ab9e97 3793 decomp_file = f;
797ca154
XG
3794 for (i = 0; i < thread_count; i++) {
3795 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3796 goto exit;
3797 }
3798
3799 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3800 qemu_mutex_init(&decomp_param[i].mutex);
3801 qemu_cond_init(&decomp_param[i].cond);
3802 decomp_param[i].done = true;
3803 decomp_param[i].quit = false;
3804 qemu_thread_create(decompress_threads + i, "decompress",
3805 do_data_decompress, decomp_param + i,
3806 QEMU_THREAD_JOINABLE);
3807 }
3808 return 0;
3809exit:
3810 compress_threads_load_cleanup();
3811 return -1;
3812}
3813
c1bc6626 3814static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
3815 void *host, int len)
3816{
3817 int idx, thread_count;
3818
3819 thread_count = migrate_decompress_threads();
73a8912b 3820 qemu_mutex_lock(&decomp_done_lock);
56e93d26
JQ
3821 while (true) {
3822 for (idx = 0; idx < thread_count; idx++) {
73a8912b 3823 if (decomp_param[idx].done) {
33d151f4
LL
3824 decomp_param[idx].done = false;
3825 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 3826 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
3827 decomp_param[idx].des = host;
3828 decomp_param[idx].len = len;
33d151f4
LL
3829 qemu_cond_signal(&decomp_param[idx].cond);
3830 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
3831 break;
3832 }
3833 }
3834 if (idx < thread_count) {
3835 break;
73a8912b
LL
3836 } else {
3837 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
3838 }
3839 }
73a8912b 3840 qemu_mutex_unlock(&decomp_done_lock);
56e93d26
JQ
3841}
3842
13af18f2
ZC
3843/*
3844 * colo cache: this is for secondary VM, we cache the whole
3845 * memory of the secondary VM, it is need to hold the global lock
3846 * to call this helper.
3847 */
3848int colo_init_ram_cache(void)
3849{
3850 RAMBlock *block;
3851
3852 rcu_read_lock();
fbd162e6 3853 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3854 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3855 NULL,
3856 false);
3857 if (!block->colo_cache) {
3858 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3859 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3860 block->used_length);
3861 goto out_locked;
3862 }
3863 memcpy(block->colo_cache, block->host, block->used_length);
3864 }
3865 rcu_read_unlock();
7d9acafa
ZC
3866 /*
3867 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3868 * with to decide which page in cache should be flushed into SVM's RAM. Here
3869 * we use the same name 'ram_bitmap' as for migration.
3870 */
3871 if (ram_bytes_total()) {
3872 RAMBlock *block;
3873
fbd162e6 3874 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
3875 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3876
3877 block->bmap = bitmap_new(pages);
3878 bitmap_set(block->bmap, 0, pages);
3879 }
3880 }
3881 ram_state = g_new0(RAMState, 1);
3882 ram_state->migration_dirty_pages = 0;
d1955d22 3883 memory_global_dirty_log_start();
7d9acafa 3884
13af18f2
ZC
3885 return 0;
3886
3887out_locked:
7d9acafa 3888
fbd162e6 3889 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3890 if (block->colo_cache) {
3891 qemu_anon_ram_free(block->colo_cache, block->used_length);
3892 block->colo_cache = NULL;
3893 }
3894 }
3895
3896 rcu_read_unlock();
3897 return -errno;
3898}
3899
3900/* It is need to hold the global lock to call this helper */
3901void colo_release_ram_cache(void)
3902{
3903 RAMBlock *block;
3904
d1955d22 3905 memory_global_dirty_log_stop();
fbd162e6 3906 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
3907 g_free(block->bmap);
3908 block->bmap = NULL;
3909 }
3910
13af18f2 3911 rcu_read_lock();
7d9acafa 3912
fbd162e6 3913 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3914 if (block->colo_cache) {
3915 qemu_anon_ram_free(block->colo_cache, block->used_length);
3916 block->colo_cache = NULL;
3917 }
3918 }
7d9acafa 3919
13af18f2 3920 rcu_read_unlock();
7d9acafa
ZC
3921 g_free(ram_state);
3922 ram_state = NULL;
13af18f2
ZC
3923}
3924
f265e0e4
JQ
3925/**
3926 * ram_load_setup: Setup RAM for migration incoming side
3927 *
3928 * Returns zero to indicate success and negative for error
3929 *
3930 * @f: QEMUFile where to receive the data
3931 * @opaque: RAMState pointer
3932 */
3933static int ram_load_setup(QEMUFile *f, void *opaque)
3934{
34ab9e97 3935 if (compress_threads_load_setup(f)) {
797ca154
XG
3936 return -1;
3937 }
3938
f265e0e4 3939 xbzrle_load_setup();
f9494614 3940 ramblock_recv_map_init();
13af18f2 3941
f265e0e4
JQ
3942 return 0;
3943}
3944
3945static int ram_load_cleanup(void *opaque)
3946{
f9494614 3947 RAMBlock *rb;
56eb90af 3948
fbd162e6 3949 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
56eb90af
JH
3950 if (ramblock_is_pmem(rb)) {
3951 pmem_persist(rb->host, rb->used_length);
3952 }
3953 }
3954
f265e0e4 3955 xbzrle_load_cleanup();
f0afa331 3956 compress_threads_load_cleanup();
f9494614 3957
fbd162e6 3958 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
3959 g_free(rb->receivedmap);
3960 rb->receivedmap = NULL;
3961 }
13af18f2 3962
f265e0e4
JQ
3963 return 0;
3964}
3965
3d0684b2
JQ
3966/**
3967 * ram_postcopy_incoming_init: allocate postcopy data structures
3968 *
3969 * Returns 0 for success and negative if there was one error
3970 *
3971 * @mis: current migration incoming state
3972 *
3973 * Allocate data structures etc needed by incoming migration with
3974 * postcopy-ram. postcopy-ram's similarly names
3975 * postcopy_ram_incoming_init does the work.
1caddf8a
DDAG
3976 */
3977int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3978{
c136180c 3979 return postcopy_ram_incoming_init(mis);
1caddf8a
DDAG
3980}
3981
3d0684b2
JQ
3982/**
3983 * ram_load_postcopy: load a page in postcopy case
3984 *
3985 * Returns 0 for success or -errno in case of error
3986 *
a7180877
DDAG
3987 * Called in postcopy mode by ram_load().
3988 * rcu_read_lock is taken prior to this being called.
3d0684b2
JQ
3989 *
3990 * @f: QEMUFile where to send the data
a7180877
DDAG
3991 */
3992static int ram_load_postcopy(QEMUFile *f)
3993{
3994 int flags = 0, ret = 0;
3995 bool place_needed = false;
1aa83678 3996 bool matches_target_page_size = false;
a7180877
DDAG
3997 MigrationIncomingState *mis = migration_incoming_get_current();
3998 /* Temporary page that is later 'placed' */
3999 void *postcopy_host_page = postcopy_get_tmp_page(mis);
c53b7ddc 4000 void *last_host = NULL;
a3b6ff6d 4001 bool all_zero = false;
a7180877
DDAG
4002
4003 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4004 ram_addr_t addr;
4005 void *host = NULL;
4006 void *page_buffer = NULL;
4007 void *place_source = NULL;
df9ff5e1 4008 RAMBlock *block = NULL;
a7180877 4009 uint8_t ch;
a7180877
DDAG
4010
4011 addr = qemu_get_be64(f);
7a9ddfbf
PX
4012
4013 /*
4014 * If qemu file error, we should stop here, and then "addr"
4015 * may be invalid
4016 */
4017 ret = qemu_file_get_error(f);
4018 if (ret) {
4019 break;
4020 }
4021
a7180877
DDAG
4022 flags = addr & ~TARGET_PAGE_MASK;
4023 addr &= TARGET_PAGE_MASK;
4024
4025 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4026 place_needed = false;
bb890ed5 4027 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
df9ff5e1 4028 block = ram_block_from_stream(f, flags);
4c4bad48
HZ
4029
4030 host = host_from_ram_block_offset(block, addr);
a7180877
DDAG
4031 if (!host) {
4032 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4033 ret = -EINVAL;
4034 break;
4035 }
1aa83678 4036 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
a7180877 4037 /*
28abd200
DDAG
4038 * Postcopy requires that we place whole host pages atomically;
4039 * these may be huge pages for RAMBlocks that are backed by
4040 * hugetlbfs.
a7180877
DDAG
4041 * To make it atomic, the data is read into a temporary page
4042 * that's moved into place later.
4043 * The migration protocol uses, possibly smaller, target-pages
4044 * however the source ensures it always sends all the components
4045 * of a host page in order.
4046 */
4047 page_buffer = postcopy_host_page +
28abd200 4048 ((uintptr_t)host & (block->page_size - 1));
a7180877 4049 /* If all TP are zero then we can optimise the place */
28abd200 4050 if (!((uintptr_t)host & (block->page_size - 1))) {
a7180877 4051 all_zero = true;
c53b7ddc
DDAG
4052 } else {
4053 /* not the 1st TP within the HP */
4054 if (host != (last_host + TARGET_PAGE_SIZE)) {
9af9e0fe 4055 error_report("Non-sequential target page %p/%p",
c53b7ddc
DDAG
4056 host, last_host);
4057 ret = -EINVAL;
4058 break;
4059 }
a7180877
DDAG
4060 }
4061
c53b7ddc 4062
a7180877
DDAG
4063 /*
4064 * If it's the last part of a host page then we place the host
4065 * page
4066 */
4067 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
28abd200 4068 (block->page_size - 1)) == 0;
a7180877
DDAG
4069 place_source = postcopy_host_page;
4070 }
c53b7ddc 4071 last_host = host;
a7180877
DDAG
4072
4073 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
bb890ed5 4074 case RAM_SAVE_FLAG_ZERO:
a7180877
DDAG
4075 ch = qemu_get_byte(f);
4076 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4077 if (ch) {
4078 all_zero = false;
4079 }
4080 break;
4081
4082 case RAM_SAVE_FLAG_PAGE:
4083 all_zero = false;
1aa83678
PX
4084 if (!matches_target_page_size) {
4085 /* For huge pages, we always use temporary buffer */
a7180877
DDAG
4086 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4087 } else {
1aa83678
PX
4088 /*
4089 * For small pages that matches target page size, we
4090 * avoid the qemu_file copy. Instead we directly use
4091 * the buffer of QEMUFile to place the page. Note: we
4092 * cannot do any QEMUFile operation before using that
4093 * buffer to make sure the buffer is valid when
4094 * placing the page.
a7180877
DDAG
4095 */
4096 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4097 TARGET_PAGE_SIZE);
4098 }
4099 break;
4100 case RAM_SAVE_FLAG_EOS:
4101 /* normal exit */
6df264ac 4102 multifd_recv_sync_main();
a7180877
DDAG
4103 break;
4104 default:
4105 error_report("Unknown combination of migration flags: %#x"
4106 " (postcopy mode)", flags);
4107 ret = -EINVAL;
7a9ddfbf
PX
4108 break;
4109 }
4110
4111 /* Detect for any possible file errors */
4112 if (!ret && qemu_file_get_error(f)) {
4113 ret = qemu_file_get_error(f);
a7180877
DDAG
4114 }
4115
7a9ddfbf 4116 if (!ret && place_needed) {
a7180877 4117 /* This gets called at the last target page in the host page */
df9ff5e1
DDAG
4118 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4119
a7180877 4120 if (all_zero) {
df9ff5e1 4121 ret = postcopy_place_page_zero(mis, place_dest,
8be4620b 4122 block);
a7180877 4123 } else {
df9ff5e1 4124 ret = postcopy_place_page(mis, place_dest,
8be4620b 4125 place_source, block);
a7180877
DDAG
4126 }
4127 }
a7180877
DDAG
4128 }
4129
4130 return ret;
4131}
4132
acab30b8
DHB
4133static bool postcopy_is_advised(void)
4134{
4135 PostcopyState ps = postcopy_state_get();
4136 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4137}
4138
4139static bool postcopy_is_running(void)
4140{
4141 PostcopyState ps = postcopy_state_get();
4142 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4143}
4144
e6f4aa18
ZC
4145/*
4146 * Flush content of RAM cache into SVM's memory.
4147 * Only flush the pages that be dirtied by PVM or SVM or both.
4148 */
4149static void colo_flush_ram_cache(void)
4150{
4151 RAMBlock *block = NULL;
4152 void *dst_host;
4153 void *src_host;
4154 unsigned long offset = 0;
4155
d1955d22
HZ
4156 memory_global_dirty_log_sync();
4157 rcu_read_lock();
fbd162e6 4158 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
d1955d22
HZ
4159 migration_bitmap_sync_range(ram_state, block, 0, block->used_length);
4160 }
4161 rcu_read_unlock();
4162
e6f4aa18
ZC
4163 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4164 rcu_read_lock();
4165 block = QLIST_FIRST_RCU(&ram_list.blocks);
4166
4167 while (block) {
4168 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4169
4170 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4171 offset = 0;
4172 block = QLIST_NEXT_RCU(block, next);
4173 } else {
4174 migration_bitmap_clear_dirty(ram_state, block, offset);
4175 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4176 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4177 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4178 }
4179 }
4180
4181 rcu_read_unlock();
4182 trace_colo_flush_ram_cache_end();
4183}
4184
56e93d26
JQ
4185static int ram_load(QEMUFile *f, void *opaque, int version_id)
4186{
edc60127 4187 int flags = 0, ret = 0, invalid_flags = 0;
56e93d26
JQ
4188 static uint64_t seq_iter;
4189 int len = 0;
a7180877
DDAG
4190 /*
4191 * If system is running in postcopy mode, page inserts to host memory must
4192 * be atomic
4193 */
acab30b8 4194 bool postcopy_running = postcopy_is_running();
ef08fb38 4195 /* ADVISE is earlier, it shows the source has the postcopy capability on */
acab30b8 4196 bool postcopy_advised = postcopy_is_advised();
56e93d26
JQ
4197
4198 seq_iter++;
4199
4200 if (version_id != 4) {
4201 ret = -EINVAL;
4202 }
4203
edc60127
JQ
4204 if (!migrate_use_compression()) {
4205 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4206 }
56e93d26
JQ
4207 /* This RCU critical section can be very long running.
4208 * When RCU reclaims in the code start to become numerous,
4209 * it will be necessary to reduce the granularity of this
4210 * critical section.
4211 */
4212 rcu_read_lock();
a7180877
DDAG
4213
4214 if (postcopy_running) {
4215 ret = ram_load_postcopy(f);
4216 }
4217
4218 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 4219 ram_addr_t addr, total_ram_bytes;
a776aa15 4220 void *host = NULL;
56e93d26
JQ
4221 uint8_t ch;
4222
4223 addr = qemu_get_be64(f);
4224 flags = addr & ~TARGET_PAGE_MASK;
4225 addr &= TARGET_PAGE_MASK;
4226
edc60127
JQ
4227 if (flags & invalid_flags) {
4228 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4229 error_report("Received an unexpected compressed page");
4230 }
4231
4232 ret = -EINVAL;
4233 break;
4234 }
4235
bb890ed5 4236 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
a776aa15 4237 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
4238 RAMBlock *block = ram_block_from_stream(f, flags);
4239
13af18f2
ZC
4240 /*
4241 * After going into COLO, we should load the Page into colo_cache.
4242 */
4243 if (migration_incoming_in_colo_state()) {
4244 host = colo_cache_from_block_offset(block, addr);
4245 } else {
4246 host = host_from_ram_block_offset(block, addr);
4247 }
a776aa15
DDAG
4248 if (!host) {
4249 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4250 ret = -EINVAL;
4251 break;
4252 }
13af18f2
ZC
4253
4254 if (!migration_incoming_in_colo_state()) {
4255 ramblock_recv_bitmap_set(block, host);
4256 }
4257
1db9d8e5 4258 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
a776aa15
DDAG
4259 }
4260
56e93d26
JQ
4261 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4262 case RAM_SAVE_FLAG_MEM_SIZE:
4263 /* Synchronize RAM block list */
4264 total_ram_bytes = addr;
4265 while (!ret && total_ram_bytes) {
4266 RAMBlock *block;
56e93d26
JQ
4267 char id[256];
4268 ram_addr_t length;
4269
4270 len = qemu_get_byte(f);
4271 qemu_get_buffer(f, (uint8_t *)id, len);
4272 id[len] = 0;
4273 length = qemu_get_be64(f);
4274
e3dd7493 4275 block = qemu_ram_block_by_name(id);
b895de50
CLG
4276 if (block && !qemu_ram_is_migratable(block)) {
4277 error_report("block %s should not be migrated !", id);
4278 ret = -EINVAL;
4279 } else if (block) {
e3dd7493
DDAG
4280 if (length != block->used_length) {
4281 Error *local_err = NULL;
56e93d26 4282
fa53a0e5 4283 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
4284 &local_err);
4285 if (local_err) {
4286 error_report_err(local_err);
56e93d26 4287 }
56e93d26 4288 }
ef08fb38
DDAG
4289 /* For postcopy we need to check hugepage sizes match */
4290 if (postcopy_advised &&
4291 block->page_size != qemu_host_page_size) {
4292 uint64_t remote_page_size = qemu_get_be64(f);
4293 if (remote_page_size != block->page_size) {
4294 error_report("Mismatched RAM page size %s "
4295 "(local) %zd != %" PRId64,
4296 id, block->page_size,
4297 remote_page_size);
4298 ret = -EINVAL;
4299 }
4300 }
fbd162e6
YK
4301 if (migrate_ignore_shared()) {
4302 hwaddr addr = qemu_get_be64(f);
4303 bool ignored = qemu_get_byte(f);
4304 if (ignored != ramblock_is_ignored(block)) {
4305 error_report("RAM block %s should %s be migrated",
4306 id, ignored ? "" : "not");
4307 ret = -EINVAL;
4308 }
4309 if (ramblock_is_ignored(block) &&
4310 block->mr->addr != addr) {
4311 error_report("Mismatched GPAs for block %s "
4312 "%" PRId64 "!= %" PRId64,
4313 id, (uint64_t)addr,
4314 (uint64_t)block->mr->addr);
4315 ret = -EINVAL;
4316 }
4317 }
e3dd7493
DDAG
4318 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4319 block->idstr);
4320 } else {
56e93d26
JQ
4321 error_report("Unknown ramblock \"%s\", cannot "
4322 "accept migration", id);
4323 ret = -EINVAL;
4324 }
4325
4326 total_ram_bytes -= length;
4327 }
4328 break;
a776aa15 4329
bb890ed5 4330 case RAM_SAVE_FLAG_ZERO:
56e93d26
JQ
4331 ch = qemu_get_byte(f);
4332 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4333 break;
a776aa15 4334
56e93d26 4335 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
4336 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4337 break;
56e93d26 4338
a776aa15 4339 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
4340 len = qemu_get_be32(f);
4341 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4342 error_report("Invalid compressed data length: %d", len);
4343 ret = -EINVAL;
4344 break;
4345 }
c1bc6626 4346 decompress_data_with_multi_threads(f, host, len);
56e93d26 4347 break;
a776aa15 4348
56e93d26 4349 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
4350 if (load_xbzrle(f, addr, host) < 0) {
4351 error_report("Failed to decompress XBZRLE page at "
4352 RAM_ADDR_FMT, addr);
4353 ret = -EINVAL;
4354 break;
4355 }
4356 break;
4357 case RAM_SAVE_FLAG_EOS:
4358 /* normal exit */
6df264ac 4359 multifd_recv_sync_main();
56e93d26
JQ
4360 break;
4361 default:
4362 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 4363 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26
JQ
4364 } else {
4365 error_report("Unknown combination of migration flags: %#x",
4366 flags);
4367 ret = -EINVAL;
4368 }
4369 }
4370 if (!ret) {
4371 ret = qemu_file_get_error(f);
4372 }
4373 }
4374
34ab9e97 4375 ret |= wait_for_decompress_done();
56e93d26 4376 rcu_read_unlock();
55c4446b 4377 trace_ram_load_complete(ret, seq_iter);
e6f4aa18
ZC
4378
4379 if (!ret && migration_incoming_in_colo_state()) {
4380 colo_flush_ram_cache();
4381 }
56e93d26
JQ
4382 return ret;
4383}
4384
c6467627
VSO
4385static bool ram_has_postcopy(void *opaque)
4386{
469dd51b 4387 RAMBlock *rb;
fbd162e6 4388 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
469dd51b
JH
4389 if (ramblock_is_pmem(rb)) {
4390 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4391 "is not supported now!", rb->idstr, rb->host);
4392 return false;
4393 }
4394 }
4395
c6467627
VSO
4396 return migrate_postcopy_ram();
4397}
4398
edd090c7
PX
4399/* Sync all the dirty bitmap with destination VM. */
4400static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4401{
4402 RAMBlock *block;
4403 QEMUFile *file = s->to_dst_file;
4404 int ramblock_count = 0;
4405
4406 trace_ram_dirty_bitmap_sync_start();
4407
fbd162e6 4408 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
edd090c7
PX
4409 qemu_savevm_send_recv_bitmap(file, block->idstr);
4410 trace_ram_dirty_bitmap_request(block->idstr);
4411 ramblock_count++;
4412 }
4413
4414 trace_ram_dirty_bitmap_sync_wait();
4415
4416 /* Wait until all the ramblocks' dirty bitmap synced */
4417 while (ramblock_count--) {
4418 qemu_sem_wait(&s->rp_state.rp_sem);
4419 }
4420
4421 trace_ram_dirty_bitmap_sync_complete();
4422
4423 return 0;
4424}
4425
4426static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4427{
4428 qemu_sem_post(&s->rp_state.rp_sem);
4429}
4430
a335debb
PX
4431/*
4432 * Read the received bitmap, revert it as the initial dirty bitmap.
4433 * This is only used when the postcopy migration is paused but wants
4434 * to resume from a middle point.
4435 */
4436int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4437{
4438 int ret = -EINVAL;
4439 QEMUFile *file = s->rp_state.from_dst_file;
4440 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
a725ef9f 4441 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
4442 uint64_t size, end_mark;
4443
4444 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4445
4446 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4447 error_report("%s: incorrect state %s", __func__,
4448 MigrationStatus_str(s->state));
4449 return -EINVAL;
4450 }
4451
4452 /*
4453 * Note: see comments in ramblock_recv_bitmap_send() on why we
4454 * need the endianess convertion, and the paddings.
4455 */
4456 local_size = ROUND_UP(local_size, 8);
4457
4458 /* Add paddings */
4459 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4460
4461 size = qemu_get_be64(file);
4462
4463 /* The size of the bitmap should match with our ramblock */
4464 if (size != local_size) {
4465 error_report("%s: ramblock '%s' bitmap size mismatch "
4466 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4467 block->idstr, size, local_size);
4468 ret = -EINVAL;
4469 goto out;
4470 }
4471
4472 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4473 end_mark = qemu_get_be64(file);
4474
4475 ret = qemu_file_get_error(file);
4476 if (ret || size != local_size) {
4477 error_report("%s: read bitmap failed for ramblock '%s': %d"
4478 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4479 __func__, block->idstr, ret, local_size, size);
4480 ret = -EIO;
4481 goto out;
4482 }
4483
4484 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4485 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4486 __func__, block->idstr, end_mark);
4487 ret = -EINVAL;
4488 goto out;
4489 }
4490
4491 /*
4492 * Endianess convertion. We are during postcopy (though paused).
4493 * The dirty bitmap won't change. We can directly modify it.
4494 */
4495 bitmap_from_le(block->bmap, le_bitmap, nbits);
4496
4497 /*
4498 * What we received is "received bitmap". Revert it as the initial
4499 * dirty bitmap for this ramblock.
4500 */
4501 bitmap_complement(block->bmap, block->bmap, nbits);
4502
4503 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4504
edd090c7
PX
4505 /*
4506 * We succeeded to sync bitmap for current ramblock. If this is
4507 * the last one to sync, we need to notify the main send thread.
4508 */
4509 ram_dirty_bitmap_reload_notify(s);
4510
a335debb
PX
4511 ret = 0;
4512out:
bf269906 4513 g_free(le_bitmap);
a335debb
PX
4514 return ret;
4515}
4516
edd090c7
PX
4517static int ram_resume_prepare(MigrationState *s, void *opaque)
4518{
4519 RAMState *rs = *(RAMState **)opaque;
08614f34 4520 int ret;
edd090c7 4521
08614f34
PX
4522 ret = ram_dirty_bitmap_sync_all(s, rs);
4523 if (ret) {
4524 return ret;
4525 }
4526
4527 ram_state_resume_prepare(rs, s->to_dst_file);
4528
4529 return 0;
edd090c7
PX
4530}
4531
56e93d26 4532static SaveVMHandlers savevm_ram_handlers = {
9907e842 4533 .save_setup = ram_save_setup,
56e93d26 4534 .save_live_iterate = ram_save_iterate,
763c906b 4535 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 4536 .save_live_complete_precopy = ram_save_complete,
c6467627 4537 .has_postcopy = ram_has_postcopy,
56e93d26
JQ
4538 .save_live_pending = ram_save_pending,
4539 .load_state = ram_load,
f265e0e4
JQ
4540 .save_cleanup = ram_save_cleanup,
4541 .load_setup = ram_load_setup,
4542 .load_cleanup = ram_load_cleanup,
edd090c7 4543 .resume_prepare = ram_resume_prepare,
56e93d26
JQ
4544};
4545
4546void ram_mig_init(void)
4547{
4548 qemu_mutex_init(&XBZRLE.lock);
6f37bb8b 4549 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
56e93d26 4550}
This page took 0.929667 seconds and 4 git commands to generate.