]>
Commit | Line | Data |
---|---|---|
0cac1b66 BS |
1 | /* |
2 | * Common CPU TLB handling | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | ||
20 | #include "config.h" | |
21 | #include "cpu.h" | |
022c62cb PB |
22 | #include "exec/exec-all.h" |
23 | #include "exec/memory.h" | |
24 | #include "exec/address-spaces.h" | |
0cac1b66 | 25 | |
022c62cb | 26 | #include "exec/cputlb.h" |
0cac1b66 | 27 | |
022c62cb | 28 | #include "exec/memory-internal.h" |
0cac1b66 BS |
29 | |
30 | //#define DEBUG_TLB | |
31 | //#define DEBUG_TLB_CHECK | |
32 | ||
33 | /* statistics */ | |
34 | int tlb_flush_count; | |
35 | ||
36 | static const CPUTLBEntry s_cputlb_empty_entry = { | |
37 | .addr_read = -1, | |
38 | .addr_write = -1, | |
39 | .addr_code = -1, | |
40 | .addend = -1, | |
41 | }; | |
42 | ||
43 | /* NOTE: | |
44 | * If flush_global is true (the usual case), flush all tlb entries. | |
45 | * If flush_global is false, flush (at least) all tlb entries not | |
46 | * marked global. | |
47 | * | |
48 | * Since QEMU doesn't currently implement a global/not-global flag | |
49 | * for tlb entries, at the moment tlb_flush() will also flush all | |
50 | * tlb entries in the flush_global == false case. This is OK because | |
51 | * CPU architectures generally permit an implementation to drop | |
52 | * entries from the TLB at any time, so flushing more entries than | |
53 | * required is only an efficiency issue, not a correctness issue. | |
54 | */ | |
55 | void tlb_flush(CPUArchState *env, int flush_global) | |
56 | { | |
d77953b9 | 57 | CPUState *cpu = ENV_GET_CPU(env); |
0cac1b66 BS |
58 | int i; |
59 | ||
60 | #if defined(DEBUG_TLB) | |
61 | printf("tlb_flush:\n"); | |
62 | #endif | |
63 | /* must reset current TB so that interrupts cannot modify the | |
64 | links while we are modifying them */ | |
d77953b9 | 65 | cpu->current_tb = NULL; |
0cac1b66 BS |
66 | |
67 | for (i = 0; i < CPU_TLB_SIZE; i++) { | |
68 | int mmu_idx; | |
69 | ||
70 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
71 | env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry; | |
72 | } | |
73 | } | |
74 | ||
75 | memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
76 | ||
77 | env->tlb_flush_addr = -1; | |
78 | env->tlb_flush_mask = 0; | |
79 | tlb_flush_count++; | |
80 | } | |
81 | ||
82 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) | |
83 | { | |
84 | if (addr == (tlb_entry->addr_read & | |
85 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | |
86 | addr == (tlb_entry->addr_write & | |
87 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | |
88 | addr == (tlb_entry->addr_code & | |
89 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
90 | *tlb_entry = s_cputlb_empty_entry; | |
91 | } | |
92 | } | |
93 | ||
94 | void tlb_flush_page(CPUArchState *env, target_ulong addr) | |
95 | { | |
d77953b9 | 96 | CPUState *cpu = ENV_GET_CPU(env); |
0cac1b66 BS |
97 | int i; |
98 | int mmu_idx; | |
99 | ||
100 | #if defined(DEBUG_TLB) | |
101 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); | |
102 | #endif | |
103 | /* Check if we need to flush due to large pages. */ | |
104 | if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { | |
105 | #if defined(DEBUG_TLB) | |
106 | printf("tlb_flush_page: forced full flush (" | |
107 | TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", | |
108 | env->tlb_flush_addr, env->tlb_flush_mask); | |
109 | #endif | |
110 | tlb_flush(env, 1); | |
111 | return; | |
112 | } | |
113 | /* must reset current TB so that interrupts cannot modify the | |
114 | links while we are modifying them */ | |
d77953b9 | 115 | cpu->current_tb = NULL; |
0cac1b66 BS |
116 | |
117 | addr &= TARGET_PAGE_MASK; | |
118 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
119 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
120 | tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); | |
121 | } | |
122 | ||
123 | tb_flush_jmp_cache(env, addr); | |
124 | } | |
125 | ||
126 | /* update the TLBs so that writes to code in the virtual page 'addr' | |
127 | can be detected */ | |
128 | void tlb_protect_code(ram_addr_t ram_addr) | |
129 | { | |
130 | cpu_physical_memory_reset_dirty(ram_addr, | |
131 | ram_addr + TARGET_PAGE_SIZE, | |
132 | CODE_DIRTY_FLAG); | |
133 | } | |
134 | ||
135 | /* update the TLB so that writes in physical page 'phys_addr' are no longer | |
136 | tested for self modifying code */ | |
137 | void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr, | |
138 | target_ulong vaddr) | |
139 | { | |
140 | cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG); | |
141 | } | |
142 | ||
143 | static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe) | |
144 | { | |
145 | return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0; | |
146 | } | |
147 | ||
148 | void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start, | |
149 | uintptr_t length) | |
150 | { | |
151 | uintptr_t addr; | |
152 | ||
153 | if (tlb_is_dirty_ram(tlb_entry)) { | |
154 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | |
155 | if ((addr - start) < length) { | |
156 | tlb_entry->addr_write |= TLB_NOTDIRTY; | |
157 | } | |
158 | } | |
159 | } | |
160 | ||
161 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) | |
162 | { | |
163 | ram_addr_t ram_addr; | |
164 | void *p; | |
165 | ||
166 | if (tlb_is_dirty_ram(tlb_entry)) { | |
167 | p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK) | |
168 | + tlb_entry->addend); | |
169 | ram_addr = qemu_ram_addr_from_host_nofail(p); | |
170 | if (!cpu_physical_memory_is_dirty(ram_addr)) { | |
171 | tlb_entry->addr_write |= TLB_NOTDIRTY; | |
172 | } | |
173 | } | |
174 | } | |
175 | ||
176 | void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length) | |
177 | { | |
178 | CPUArchState *env; | |
179 | ||
180 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
181 | int mmu_idx; | |
182 | ||
183 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
184 | unsigned int i; | |
185 | ||
186 | for (i = 0; i < CPU_TLB_SIZE; i++) { | |
187 | tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], | |
188 | start1, length); | |
189 | } | |
190 | } | |
191 | } | |
192 | } | |
193 | ||
194 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) | |
195 | { | |
196 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { | |
197 | tlb_entry->addr_write = vaddr; | |
198 | } | |
199 | } | |
200 | ||
201 | /* update the TLB corresponding to virtual page vaddr | |
202 | so that it is no longer dirty */ | |
203 | void tlb_set_dirty(CPUArchState *env, target_ulong vaddr) | |
204 | { | |
205 | int i; | |
206 | int mmu_idx; | |
207 | ||
208 | vaddr &= TARGET_PAGE_MASK; | |
209 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
210 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
211 | tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); | |
212 | } | |
213 | } | |
214 | ||
215 | /* Our TLB does not support large pages, so remember the area covered by | |
216 | large pages and trigger a full TLB flush if these are invalidated. */ | |
217 | static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr, | |
218 | target_ulong size) | |
219 | { | |
220 | target_ulong mask = ~(size - 1); | |
221 | ||
222 | if (env->tlb_flush_addr == (target_ulong)-1) { | |
223 | env->tlb_flush_addr = vaddr & mask; | |
224 | env->tlb_flush_mask = mask; | |
225 | return; | |
226 | } | |
227 | /* Extend the existing region to include the new page. | |
228 | This is a compromise between unnecessary flushes and the cost | |
229 | of maintaining a full variable size TLB. */ | |
230 | mask &= env->tlb_flush_mask; | |
231 | while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) { | |
232 | mask <<= 1; | |
233 | } | |
234 | env->tlb_flush_addr &= mask; | |
235 | env->tlb_flush_mask = mask; | |
236 | } | |
237 | ||
238 | /* Add a new TLB entry. At most one entry for a given virtual address | |
239 | is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the | |
240 | supplied size is only used by tlb_flush_page. */ | |
241 | void tlb_set_page(CPUArchState *env, target_ulong vaddr, | |
a8170e5e | 242 | hwaddr paddr, int prot, |
0cac1b66 BS |
243 | int mmu_idx, target_ulong size) |
244 | { | |
245 | MemoryRegionSection *section; | |
246 | unsigned int index; | |
247 | target_ulong address; | |
248 | target_ulong code_address; | |
249 | uintptr_t addend; | |
250 | CPUTLBEntry *te; | |
a8170e5e | 251 | hwaddr iotlb; |
0cac1b66 BS |
252 | |
253 | assert(size >= TARGET_PAGE_SIZE); | |
254 | if (size != TARGET_PAGE_SIZE) { | |
255 | tlb_add_large_page(env, vaddr, size); | |
256 | } | |
ac1970fb | 257 | section = phys_page_find(address_space_memory.dispatch, paddr >> TARGET_PAGE_BITS); |
0cac1b66 BS |
258 | #if defined(DEBUG_TLB) |
259 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx | |
260 | " prot=%x idx=%d pd=0x%08lx\n", | |
261 | vaddr, paddr, prot, mmu_idx, pd); | |
262 | #endif | |
263 | ||
264 | address = vaddr; | |
cc5bea60 BS |
265 | if (!(memory_region_is_ram(section->mr) || |
266 | memory_region_is_romd(section->mr))) { | |
0cac1b66 BS |
267 | /* IO memory case (romd handled later) */ |
268 | address |= TLB_MMIO; | |
269 | } | |
cc5bea60 BS |
270 | if (memory_region_is_ram(section->mr) || |
271 | memory_region_is_romd(section->mr)) { | |
0cac1b66 | 272 | addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) |
cc5bea60 | 273 | + memory_region_section_addr(section, paddr); |
0cac1b66 BS |
274 | } else { |
275 | addend = 0; | |
276 | } | |
0cac1b66 BS |
277 | |
278 | code_address = address; | |
56eb21e1 MF |
279 | iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, prot, |
280 | &address); | |
0cac1b66 BS |
281 | |
282 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
283 | env->iotlb[mmu_idx][index] = iotlb - vaddr; | |
284 | te = &env->tlb_table[mmu_idx][index]; | |
285 | te->addend = addend - vaddr; | |
286 | if (prot & PAGE_READ) { | |
287 | te->addr_read = address; | |
288 | } else { | |
289 | te->addr_read = -1; | |
290 | } | |
291 | ||
292 | if (prot & PAGE_EXEC) { | |
293 | te->addr_code = code_address; | |
294 | } else { | |
295 | te->addr_code = -1; | |
296 | } | |
297 | if (prot & PAGE_WRITE) { | |
298 | if ((memory_region_is_ram(section->mr) && section->readonly) | |
cc5bea60 | 299 | || memory_region_is_romd(section->mr)) { |
0cac1b66 BS |
300 | /* Write access calls the I/O callback. */ |
301 | te->addr_write = address | TLB_MMIO; | |
302 | } else if (memory_region_is_ram(section->mr) | |
303 | && !cpu_physical_memory_is_dirty( | |
304 | section->mr->ram_addr | |
cc5bea60 | 305 | + memory_region_section_addr(section, paddr))) { |
0cac1b66 BS |
306 | te->addr_write = address | TLB_NOTDIRTY; |
307 | } else { | |
308 | te->addr_write = address; | |
309 | } | |
310 | } else { | |
311 | te->addr_write = -1; | |
312 | } | |
313 | } | |
314 | ||
315 | /* NOTE: this function can trigger an exception */ | |
316 | /* NOTE2: the returned address is not exactly the physical address: it | |
116aae36 PM |
317 | * is actually a ram_addr_t (in system mode; the user mode emulation |
318 | * version of this function returns a guest virtual address). | |
319 | */ | |
0cac1b66 BS |
320 | tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) |
321 | { | |
322 | int mmu_idx, page_index, pd; | |
323 | void *p; | |
324 | MemoryRegion *mr; | |
325 | ||
326 | page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
327 | mmu_idx = cpu_mmu_index(env1); | |
328 | if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code != | |
329 | (addr & TARGET_PAGE_MASK))) { | |
0cac1b66 | 330 | cpu_ldub_code(env1, addr); |
0cac1b66 BS |
331 | } |
332 | pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK; | |
333 | mr = iotlb_to_region(pd); | |
334 | if (memory_region_is_unassigned(mr)) { | |
335 | #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC) | |
336 | cpu_unassigned_access(env1, addr, 0, 1, 0, 4); | |
337 | #else | |
338 | cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" | |
339 | TARGET_FMT_lx "\n", addr); | |
340 | #endif | |
341 | } | |
342 | p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend); | |
343 | return qemu_ram_addr_from_host_nofail(p); | |
344 | } | |
345 | ||
346 | #define MMUSUFFIX _cmmu | |
347 | #undef GETPC | |
348 | #define GETPC() ((uintptr_t)0) | |
0cac1b66 BS |
349 | #define SOFTMMU_CODE_ACCESS |
350 | ||
351 | #define SHIFT 0 | |
022c62cb | 352 | #include "exec/softmmu_template.h" |
0cac1b66 BS |
353 | |
354 | #define SHIFT 1 | |
022c62cb | 355 | #include "exec/softmmu_template.h" |
0cac1b66 BS |
356 | |
357 | #define SHIFT 2 | |
022c62cb | 358 | #include "exec/softmmu_template.h" |
0cac1b66 BS |
359 | |
360 | #define SHIFT 3 | |
022c62cb | 361 | #include "exec/softmmu_template.h" |
0cac1b66 BS |
362 | |
363 | #undef env |