]>
Commit | Line | Data |
---|---|---|
0cac1b66 BS |
1 | /* |
2 | * Common CPU TLB handling | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | ||
20 | #include "config.h" | |
21 | #include "cpu.h" | |
22 | #include "exec-all.h" | |
23 | #include "memory.h" | |
24 | ||
25 | #include "cputlb.h" | |
26 | ||
7762c2c1 | 27 | #include "memory-internal.h" |
0cac1b66 BS |
28 | |
29 | //#define DEBUG_TLB | |
30 | //#define DEBUG_TLB_CHECK | |
31 | ||
32 | /* statistics */ | |
33 | int tlb_flush_count; | |
34 | ||
35 | static const CPUTLBEntry s_cputlb_empty_entry = { | |
36 | .addr_read = -1, | |
37 | .addr_write = -1, | |
38 | .addr_code = -1, | |
39 | .addend = -1, | |
40 | }; | |
41 | ||
42 | /* NOTE: | |
43 | * If flush_global is true (the usual case), flush all tlb entries. | |
44 | * If flush_global is false, flush (at least) all tlb entries not | |
45 | * marked global. | |
46 | * | |
47 | * Since QEMU doesn't currently implement a global/not-global flag | |
48 | * for tlb entries, at the moment tlb_flush() will also flush all | |
49 | * tlb entries in the flush_global == false case. This is OK because | |
50 | * CPU architectures generally permit an implementation to drop | |
51 | * entries from the TLB at any time, so flushing more entries than | |
52 | * required is only an efficiency issue, not a correctness issue. | |
53 | */ | |
54 | void tlb_flush(CPUArchState *env, int flush_global) | |
55 | { | |
56 | int i; | |
57 | ||
58 | #if defined(DEBUG_TLB) | |
59 | printf("tlb_flush:\n"); | |
60 | #endif | |
61 | /* must reset current TB so that interrupts cannot modify the | |
62 | links while we are modifying them */ | |
63 | env->current_tb = NULL; | |
64 | ||
65 | for (i = 0; i < CPU_TLB_SIZE; i++) { | |
66 | int mmu_idx; | |
67 | ||
68 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
69 | env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry; | |
70 | } | |
71 | } | |
72 | ||
73 | memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
74 | ||
75 | env->tlb_flush_addr = -1; | |
76 | env->tlb_flush_mask = 0; | |
77 | tlb_flush_count++; | |
78 | } | |
79 | ||
80 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) | |
81 | { | |
82 | if (addr == (tlb_entry->addr_read & | |
83 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | |
84 | addr == (tlb_entry->addr_write & | |
85 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | |
86 | addr == (tlb_entry->addr_code & | |
87 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
88 | *tlb_entry = s_cputlb_empty_entry; | |
89 | } | |
90 | } | |
91 | ||
92 | void tlb_flush_page(CPUArchState *env, target_ulong addr) | |
93 | { | |
94 | int i; | |
95 | int mmu_idx; | |
96 | ||
97 | #if defined(DEBUG_TLB) | |
98 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); | |
99 | #endif | |
100 | /* Check if we need to flush due to large pages. */ | |
101 | if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { | |
102 | #if defined(DEBUG_TLB) | |
103 | printf("tlb_flush_page: forced full flush (" | |
104 | TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", | |
105 | env->tlb_flush_addr, env->tlb_flush_mask); | |
106 | #endif | |
107 | tlb_flush(env, 1); | |
108 | return; | |
109 | } | |
110 | /* must reset current TB so that interrupts cannot modify the | |
111 | links while we are modifying them */ | |
112 | env->current_tb = NULL; | |
113 | ||
114 | addr &= TARGET_PAGE_MASK; | |
115 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
116 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
117 | tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); | |
118 | } | |
119 | ||
120 | tb_flush_jmp_cache(env, addr); | |
121 | } | |
122 | ||
123 | /* update the TLBs so that writes to code in the virtual page 'addr' | |
124 | can be detected */ | |
125 | void tlb_protect_code(ram_addr_t ram_addr) | |
126 | { | |
127 | cpu_physical_memory_reset_dirty(ram_addr, | |
128 | ram_addr + TARGET_PAGE_SIZE, | |
129 | CODE_DIRTY_FLAG); | |
130 | } | |
131 | ||
132 | /* update the TLB so that writes in physical page 'phys_addr' are no longer | |
133 | tested for self modifying code */ | |
134 | void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr, | |
135 | target_ulong vaddr) | |
136 | { | |
137 | cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG); | |
138 | } | |
139 | ||
140 | static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe) | |
141 | { | |
142 | return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0; | |
143 | } | |
144 | ||
145 | void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start, | |
146 | uintptr_t length) | |
147 | { | |
148 | uintptr_t addr; | |
149 | ||
150 | if (tlb_is_dirty_ram(tlb_entry)) { | |
151 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | |
152 | if ((addr - start) < length) { | |
153 | tlb_entry->addr_write |= TLB_NOTDIRTY; | |
154 | } | |
155 | } | |
156 | } | |
157 | ||
158 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) | |
159 | { | |
160 | ram_addr_t ram_addr; | |
161 | void *p; | |
162 | ||
163 | if (tlb_is_dirty_ram(tlb_entry)) { | |
164 | p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK) | |
165 | + tlb_entry->addend); | |
166 | ram_addr = qemu_ram_addr_from_host_nofail(p); | |
167 | if (!cpu_physical_memory_is_dirty(ram_addr)) { | |
168 | tlb_entry->addr_write |= TLB_NOTDIRTY; | |
169 | } | |
170 | } | |
171 | } | |
172 | ||
173 | void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length) | |
174 | { | |
175 | CPUArchState *env; | |
176 | ||
177 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
178 | int mmu_idx; | |
179 | ||
180 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
181 | unsigned int i; | |
182 | ||
183 | for (i = 0; i < CPU_TLB_SIZE; i++) { | |
184 | tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], | |
185 | start1, length); | |
186 | } | |
187 | } | |
188 | } | |
189 | } | |
190 | ||
191 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) | |
192 | { | |
193 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { | |
194 | tlb_entry->addr_write = vaddr; | |
195 | } | |
196 | } | |
197 | ||
198 | /* update the TLB corresponding to virtual page vaddr | |
199 | so that it is no longer dirty */ | |
200 | void tlb_set_dirty(CPUArchState *env, target_ulong vaddr) | |
201 | { | |
202 | int i; | |
203 | int mmu_idx; | |
204 | ||
205 | vaddr &= TARGET_PAGE_MASK; | |
206 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
207 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
208 | tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); | |
209 | } | |
210 | } | |
211 | ||
212 | /* Our TLB does not support large pages, so remember the area covered by | |
213 | large pages and trigger a full TLB flush if these are invalidated. */ | |
214 | static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr, | |
215 | target_ulong size) | |
216 | { | |
217 | target_ulong mask = ~(size - 1); | |
218 | ||
219 | if (env->tlb_flush_addr == (target_ulong)-1) { | |
220 | env->tlb_flush_addr = vaddr & mask; | |
221 | env->tlb_flush_mask = mask; | |
222 | return; | |
223 | } | |
224 | /* Extend the existing region to include the new page. | |
225 | This is a compromise between unnecessary flushes and the cost | |
226 | of maintaining a full variable size TLB. */ | |
227 | mask &= env->tlb_flush_mask; | |
228 | while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) { | |
229 | mask <<= 1; | |
230 | } | |
231 | env->tlb_flush_addr &= mask; | |
232 | env->tlb_flush_mask = mask; | |
233 | } | |
234 | ||
235 | /* Add a new TLB entry. At most one entry for a given virtual address | |
236 | is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the | |
237 | supplied size is only used by tlb_flush_page. */ | |
238 | void tlb_set_page(CPUArchState *env, target_ulong vaddr, | |
239 | target_phys_addr_t paddr, int prot, | |
240 | int mmu_idx, target_ulong size) | |
241 | { | |
242 | MemoryRegionSection *section; | |
243 | unsigned int index; | |
244 | target_ulong address; | |
245 | target_ulong code_address; | |
246 | uintptr_t addend; | |
247 | CPUTLBEntry *te; | |
248 | target_phys_addr_t iotlb; | |
249 | ||
250 | assert(size >= TARGET_PAGE_SIZE); | |
251 | if (size != TARGET_PAGE_SIZE) { | |
252 | tlb_add_large_page(env, vaddr, size); | |
253 | } | |
254 | section = phys_page_find(paddr >> TARGET_PAGE_BITS); | |
255 | #if defined(DEBUG_TLB) | |
256 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx | |
257 | " prot=%x idx=%d pd=0x%08lx\n", | |
258 | vaddr, paddr, prot, mmu_idx, pd); | |
259 | #endif | |
260 | ||
261 | address = vaddr; | |
cc5bea60 BS |
262 | if (!(memory_region_is_ram(section->mr) || |
263 | memory_region_is_romd(section->mr))) { | |
0cac1b66 BS |
264 | /* IO memory case (romd handled later) */ |
265 | address |= TLB_MMIO; | |
266 | } | |
cc5bea60 BS |
267 | if (memory_region_is_ram(section->mr) || |
268 | memory_region_is_romd(section->mr)) { | |
0cac1b66 | 269 | addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) |
cc5bea60 | 270 | + memory_region_section_addr(section, paddr); |
0cac1b66 BS |
271 | } else { |
272 | addend = 0; | |
273 | } | |
0cac1b66 BS |
274 | |
275 | code_address = address; | |
56eb21e1 MF |
276 | iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, prot, |
277 | &address); | |
0cac1b66 BS |
278 | |
279 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
280 | env->iotlb[mmu_idx][index] = iotlb - vaddr; | |
281 | te = &env->tlb_table[mmu_idx][index]; | |
282 | te->addend = addend - vaddr; | |
283 | if (prot & PAGE_READ) { | |
284 | te->addr_read = address; | |
285 | } else { | |
286 | te->addr_read = -1; | |
287 | } | |
288 | ||
289 | if (prot & PAGE_EXEC) { | |
290 | te->addr_code = code_address; | |
291 | } else { | |
292 | te->addr_code = -1; | |
293 | } | |
294 | if (prot & PAGE_WRITE) { | |
295 | if ((memory_region_is_ram(section->mr) && section->readonly) | |
cc5bea60 | 296 | || memory_region_is_romd(section->mr)) { |
0cac1b66 BS |
297 | /* Write access calls the I/O callback. */ |
298 | te->addr_write = address | TLB_MMIO; | |
299 | } else if (memory_region_is_ram(section->mr) | |
300 | && !cpu_physical_memory_is_dirty( | |
301 | section->mr->ram_addr | |
cc5bea60 | 302 | + memory_region_section_addr(section, paddr))) { |
0cac1b66 BS |
303 | te->addr_write = address | TLB_NOTDIRTY; |
304 | } else { | |
305 | te->addr_write = address; | |
306 | } | |
307 | } else { | |
308 | te->addr_write = -1; | |
309 | } | |
310 | } | |
311 | ||
312 | /* NOTE: this function can trigger an exception */ | |
313 | /* NOTE2: the returned address is not exactly the physical address: it | |
116aae36 PM |
314 | * is actually a ram_addr_t (in system mode; the user mode emulation |
315 | * version of this function returns a guest virtual address). | |
316 | */ | |
0cac1b66 BS |
317 | tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) |
318 | { | |
319 | int mmu_idx, page_index, pd; | |
320 | void *p; | |
321 | MemoryRegion *mr; | |
322 | ||
323 | page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
324 | mmu_idx = cpu_mmu_index(env1); | |
325 | if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code != | |
326 | (addr & TARGET_PAGE_MASK))) { | |
0cac1b66 | 327 | cpu_ldub_code(env1, addr); |
0cac1b66 BS |
328 | } |
329 | pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK; | |
330 | mr = iotlb_to_region(pd); | |
331 | if (memory_region_is_unassigned(mr)) { | |
332 | #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC) | |
333 | cpu_unassigned_access(env1, addr, 0, 1, 0, 4); | |
334 | #else | |
335 | cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" | |
336 | TARGET_FMT_lx "\n", addr); | |
337 | #endif | |
338 | } | |
339 | p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend); | |
340 | return qemu_ram_addr_from_host_nofail(p); | |
341 | } | |
342 | ||
343 | #define MMUSUFFIX _cmmu | |
344 | #undef GETPC | |
345 | #define GETPC() ((uintptr_t)0) | |
0cac1b66 BS |
346 | #define SOFTMMU_CODE_ACCESS |
347 | ||
348 | #define SHIFT 0 | |
349 | #include "softmmu_template.h" | |
350 | ||
351 | #define SHIFT 1 | |
352 | #include "softmmu_template.h" | |
353 | ||
354 | #define SHIFT 2 | |
355 | #include "softmmu_template.h" | |
356 | ||
357 | #define SHIFT 3 | |
358 | #include "softmmu_template.h" | |
359 | ||
360 | #undef env |