]>
Commit | Line | Data |
---|---|---|
31e31b8a | 1 | /* This is the Linux kernel elf-loading code, ported into user space */ |
edf8e2af MW |
2 | #include <sys/time.h> |
3 | #include <sys/param.h> | |
31e31b8a FB |
4 | |
5 | #include <stdio.h> | |
6 | #include <sys/types.h> | |
7 | #include <fcntl.h> | |
31e31b8a FB |
8 | #include <errno.h> |
9 | #include <unistd.h> | |
10 | #include <sys/mman.h> | |
edf8e2af | 11 | #include <sys/resource.h> |
31e31b8a FB |
12 | #include <stdlib.h> |
13 | #include <string.h> | |
edf8e2af | 14 | #include <time.h> |
31e31b8a | 15 | |
3ef693a0 | 16 | #include "qemu.h" |
689f936f | 17 | #include "disas.h" |
31e31b8a | 18 | |
e58ffeb3 | 19 | #ifdef _ARCH_PPC64 |
a6cc84f4 | 20 | #undef ARCH_DLINFO |
21 | #undef ELF_PLATFORM | |
22 | #undef ELF_HWCAP | |
23 | #undef ELF_CLASS | |
24 | #undef ELF_DATA | |
25 | #undef ELF_ARCH | |
26 | #endif | |
27 | ||
edf8e2af MW |
28 | #define ELF_OSABI ELFOSABI_SYSV |
29 | ||
cb33da57 BS |
30 | /* from personality.h */ |
31 | ||
32 | /* | |
33 | * Flags for bug emulation. | |
34 | * | |
35 | * These occupy the top three bytes. | |
36 | */ | |
37 | enum { | |
d97ef72e RH |
38 | ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ |
39 | FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to | |
40 | descriptors (signal handling) */ | |
41 | MMAP_PAGE_ZERO = 0x0100000, | |
42 | ADDR_COMPAT_LAYOUT = 0x0200000, | |
43 | READ_IMPLIES_EXEC = 0x0400000, | |
44 | ADDR_LIMIT_32BIT = 0x0800000, | |
45 | SHORT_INODE = 0x1000000, | |
46 | WHOLE_SECONDS = 0x2000000, | |
47 | STICKY_TIMEOUTS = 0x4000000, | |
48 | ADDR_LIMIT_3GB = 0x8000000, | |
cb33da57 BS |
49 | }; |
50 | ||
51 | /* | |
52 | * Personality types. | |
53 | * | |
54 | * These go in the low byte. Avoid using the top bit, it will | |
55 | * conflict with error returns. | |
56 | */ | |
57 | enum { | |
d97ef72e RH |
58 | PER_LINUX = 0x0000, |
59 | PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, | |
60 | PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, | |
61 | PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | |
62 | PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, | |
63 | PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, | |
64 | PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, | |
65 | PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, | |
66 | PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, | |
67 | PER_BSD = 0x0006, | |
68 | PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, | |
69 | PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, | |
70 | PER_LINUX32 = 0x0008, | |
71 | PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, | |
72 | PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ | |
73 | PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ | |
74 | PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ | |
75 | PER_RISCOS = 0x000c, | |
76 | PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, | |
77 | PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | |
78 | PER_OSF4 = 0x000f, /* OSF/1 v4 */ | |
79 | PER_HPUX = 0x0010, | |
80 | PER_MASK = 0x00ff, | |
cb33da57 BS |
81 | }; |
82 | ||
83 | /* | |
84 | * Return the base personality without flags. | |
85 | */ | |
d97ef72e | 86 | #define personality(pers) (pers & PER_MASK) |
cb33da57 | 87 | |
83fb7adf FB |
88 | /* this flag is uneffective under linux too, should be deleted */ |
89 | #ifndef MAP_DENYWRITE | |
90 | #define MAP_DENYWRITE 0 | |
91 | #endif | |
92 | ||
93 | /* should probably go in elf.h */ | |
94 | #ifndef ELIBBAD | |
95 | #define ELIBBAD 80 | |
96 | #endif | |
97 | ||
28490231 RH |
98 | #ifdef TARGET_WORDS_BIGENDIAN |
99 | #define ELF_DATA ELFDATA2MSB | |
100 | #else | |
101 | #define ELF_DATA ELFDATA2LSB | |
102 | #endif | |
103 | ||
d97ef72e | 104 | typedef target_ulong target_elf_greg_t; |
21e807fa | 105 | #ifdef USE_UID16 |
80f5ce75 LV |
106 | typedef target_ushort target_uid_t; |
107 | typedef target_ushort target_gid_t; | |
21e807fa | 108 | #else |
80f5ce75 LV |
109 | typedef target_uint target_uid_t; |
110 | typedef target_uint target_gid_t; | |
21e807fa | 111 | #endif |
80f5ce75 | 112 | typedef target_int target_pid_t; |
21e807fa | 113 | |
30ac07d4 FB |
114 | #ifdef TARGET_I386 |
115 | ||
15338fd7 FB |
116 | #define ELF_PLATFORM get_elf_platform() |
117 | ||
118 | static const char *get_elf_platform(void) | |
119 | { | |
120 | static char elf_platform[] = "i386"; | |
d5975363 | 121 | int family = (thread_env->cpuid_version >> 8) & 0xff; |
15338fd7 FB |
122 | if (family > 6) |
123 | family = 6; | |
124 | if (family >= 3) | |
125 | elf_platform[1] = '0' + family; | |
126 | return elf_platform; | |
127 | } | |
128 | ||
129 | #define ELF_HWCAP get_elf_hwcap() | |
130 | ||
131 | static uint32_t get_elf_hwcap(void) | |
132 | { | |
d97ef72e | 133 | return thread_env->cpuid_features; |
15338fd7 FB |
134 | } |
135 | ||
84409ddb JM |
136 | #ifdef TARGET_X86_64 |
137 | #define ELF_START_MMAP 0x2aaaaab000ULL | |
138 | #define elf_check_arch(x) ( ((x) == ELF_ARCH) ) | |
139 | ||
140 | #define ELF_CLASS ELFCLASS64 | |
84409ddb JM |
141 | #define ELF_ARCH EM_X86_64 |
142 | ||
143 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
144 | { | |
145 | regs->rax = 0; | |
146 | regs->rsp = infop->start_stack; | |
147 | regs->rip = infop->entry; | |
148 | } | |
149 | ||
9edc5d79 | 150 | #define ELF_NREG 27 |
c227f099 | 151 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
9edc5d79 MW |
152 | |
153 | /* | |
154 | * Note that ELF_NREG should be 29 as there should be place for | |
155 | * TRAPNO and ERR "registers" as well but linux doesn't dump | |
156 | * those. | |
157 | * | |
158 | * See linux kernel: arch/x86/include/asm/elf.h | |
159 | */ | |
c227f099 | 160 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) |
9edc5d79 MW |
161 | { |
162 | (*regs)[0] = env->regs[15]; | |
163 | (*regs)[1] = env->regs[14]; | |
164 | (*regs)[2] = env->regs[13]; | |
165 | (*regs)[3] = env->regs[12]; | |
166 | (*regs)[4] = env->regs[R_EBP]; | |
167 | (*regs)[5] = env->regs[R_EBX]; | |
168 | (*regs)[6] = env->regs[11]; | |
169 | (*regs)[7] = env->regs[10]; | |
170 | (*regs)[8] = env->regs[9]; | |
171 | (*regs)[9] = env->regs[8]; | |
172 | (*regs)[10] = env->regs[R_EAX]; | |
173 | (*regs)[11] = env->regs[R_ECX]; | |
174 | (*regs)[12] = env->regs[R_EDX]; | |
175 | (*regs)[13] = env->regs[R_ESI]; | |
176 | (*regs)[14] = env->regs[R_EDI]; | |
177 | (*regs)[15] = env->regs[R_EAX]; /* XXX */ | |
178 | (*regs)[16] = env->eip; | |
179 | (*regs)[17] = env->segs[R_CS].selector & 0xffff; | |
180 | (*regs)[18] = env->eflags; | |
181 | (*regs)[19] = env->regs[R_ESP]; | |
182 | (*regs)[20] = env->segs[R_SS].selector & 0xffff; | |
183 | (*regs)[21] = env->segs[R_FS].selector & 0xffff; | |
184 | (*regs)[22] = env->segs[R_GS].selector & 0xffff; | |
185 | (*regs)[23] = env->segs[R_DS].selector & 0xffff; | |
186 | (*regs)[24] = env->segs[R_ES].selector & 0xffff; | |
187 | (*regs)[25] = env->segs[R_FS].selector & 0xffff; | |
188 | (*regs)[26] = env->segs[R_GS].selector & 0xffff; | |
189 | } | |
190 | ||
84409ddb JM |
191 | #else |
192 | ||
30ac07d4 FB |
193 | #define ELF_START_MMAP 0x80000000 |
194 | ||
30ac07d4 FB |
195 | /* |
196 | * This is used to ensure we don't load something for the wrong architecture. | |
197 | */ | |
198 | #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) | |
199 | ||
200 | /* | |
201 | * These are used to set parameters in the core dumps. | |
202 | */ | |
d97ef72e | 203 | #define ELF_CLASS ELFCLASS32 |
d97ef72e | 204 | #define ELF_ARCH EM_386 |
30ac07d4 | 205 | |
d97ef72e RH |
206 | static inline void init_thread(struct target_pt_regs *regs, |
207 | struct image_info *infop) | |
b346ff46 FB |
208 | { |
209 | regs->esp = infop->start_stack; | |
210 | regs->eip = infop->entry; | |
e5fe0c52 PB |
211 | |
212 | /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program | |
213 | starts %edx contains a pointer to a function which might be | |
214 | registered using `atexit'. This provides a mean for the | |
215 | dynamic linker to call DT_FINI functions for shared libraries | |
216 | that have been loaded before the code runs. | |
217 | ||
218 | A value of 0 tells we have no such handler. */ | |
219 | regs->edx = 0; | |
b346ff46 | 220 | } |
9edc5d79 | 221 | |
9edc5d79 | 222 | #define ELF_NREG 17 |
c227f099 | 223 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
9edc5d79 MW |
224 | |
225 | /* | |
226 | * Note that ELF_NREG should be 19 as there should be place for | |
227 | * TRAPNO and ERR "registers" as well but linux doesn't dump | |
228 | * those. | |
229 | * | |
230 | * See linux kernel: arch/x86/include/asm/elf.h | |
231 | */ | |
c227f099 | 232 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) |
9edc5d79 MW |
233 | { |
234 | (*regs)[0] = env->regs[R_EBX]; | |
235 | (*regs)[1] = env->regs[R_ECX]; | |
236 | (*regs)[2] = env->regs[R_EDX]; | |
237 | (*regs)[3] = env->regs[R_ESI]; | |
238 | (*regs)[4] = env->regs[R_EDI]; | |
239 | (*regs)[5] = env->regs[R_EBP]; | |
240 | (*regs)[6] = env->regs[R_EAX]; | |
241 | (*regs)[7] = env->segs[R_DS].selector & 0xffff; | |
242 | (*regs)[8] = env->segs[R_ES].selector & 0xffff; | |
243 | (*regs)[9] = env->segs[R_FS].selector & 0xffff; | |
244 | (*regs)[10] = env->segs[R_GS].selector & 0xffff; | |
245 | (*regs)[11] = env->regs[R_EAX]; /* XXX */ | |
246 | (*regs)[12] = env->eip; | |
247 | (*regs)[13] = env->segs[R_CS].selector & 0xffff; | |
248 | (*regs)[14] = env->eflags; | |
249 | (*regs)[15] = env->regs[R_ESP]; | |
250 | (*regs)[16] = env->segs[R_SS].selector & 0xffff; | |
251 | } | |
84409ddb | 252 | #endif |
b346ff46 | 253 | |
9edc5d79 | 254 | #define USE_ELF_CORE_DUMP |
d97ef72e | 255 | #define ELF_EXEC_PAGESIZE 4096 |
b346ff46 FB |
256 | |
257 | #endif | |
258 | ||
259 | #ifdef TARGET_ARM | |
260 | ||
261 | #define ELF_START_MMAP 0x80000000 | |
262 | ||
263 | #define elf_check_arch(x) ( (x) == EM_ARM ) | |
264 | ||
d97ef72e | 265 | #define ELF_CLASS ELFCLASS32 |
d97ef72e | 266 | #define ELF_ARCH EM_ARM |
b346ff46 | 267 | |
d97ef72e RH |
268 | static inline void init_thread(struct target_pt_regs *regs, |
269 | struct image_info *infop) | |
b346ff46 | 270 | { |
992f48a0 | 271 | abi_long stack = infop->start_stack; |
b346ff46 FB |
272 | memset(regs, 0, sizeof(*regs)); |
273 | regs->ARM_cpsr = 0x10; | |
0240ded8 | 274 | if (infop->entry & 1) |
d97ef72e | 275 | regs->ARM_cpsr |= CPSR_T; |
0240ded8 | 276 | regs->ARM_pc = infop->entry & 0xfffffffe; |
b346ff46 | 277 | regs->ARM_sp = infop->start_stack; |
2f619698 FB |
278 | /* FIXME - what to for failure of get_user()? */ |
279 | get_user_ual(regs->ARM_r2, stack + 8); /* envp */ | |
280 | get_user_ual(regs->ARM_r1, stack + 4); /* envp */ | |
a1516e92 | 281 | /* XXX: it seems that r0 is zeroed after ! */ |
e5fe0c52 PB |
282 | regs->ARM_r0 = 0; |
283 | /* For uClinux PIC binaries. */ | |
863cf0b7 | 284 | /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ |
e5fe0c52 | 285 | regs->ARM_r10 = infop->start_data; |
b346ff46 FB |
286 | } |
287 | ||
edf8e2af | 288 | #define ELF_NREG 18 |
c227f099 | 289 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
edf8e2af | 290 | |
c227f099 | 291 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) |
edf8e2af | 292 | { |
d049e626 NF |
293 | (*regs)[0] = tswapl(env->regs[0]); |
294 | (*regs)[1] = tswapl(env->regs[1]); | |
295 | (*regs)[2] = tswapl(env->regs[2]); | |
296 | (*regs)[3] = tswapl(env->regs[3]); | |
297 | (*regs)[4] = tswapl(env->regs[4]); | |
298 | (*regs)[5] = tswapl(env->regs[5]); | |
299 | (*regs)[6] = tswapl(env->regs[6]); | |
300 | (*regs)[7] = tswapl(env->regs[7]); | |
301 | (*regs)[8] = tswapl(env->regs[8]); | |
302 | (*regs)[9] = tswapl(env->regs[9]); | |
303 | (*regs)[10] = tswapl(env->regs[10]); | |
304 | (*regs)[11] = tswapl(env->regs[11]); | |
305 | (*regs)[12] = tswapl(env->regs[12]); | |
306 | (*regs)[13] = tswapl(env->regs[13]); | |
307 | (*regs)[14] = tswapl(env->regs[14]); | |
308 | (*regs)[15] = tswapl(env->regs[15]); | |
309 | ||
310 | (*regs)[16] = tswapl(cpsr_read((CPUState *)env)); | |
311 | (*regs)[17] = tswapl(env->regs[0]); /* XXX */ | |
edf8e2af MW |
312 | } |
313 | ||
30ac07d4 | 314 | #define USE_ELF_CORE_DUMP |
d97ef72e | 315 | #define ELF_EXEC_PAGESIZE 4096 |
30ac07d4 | 316 | |
afce2927 FB |
317 | enum |
318 | { | |
d97ef72e RH |
319 | ARM_HWCAP_ARM_SWP = 1 << 0, |
320 | ARM_HWCAP_ARM_HALF = 1 << 1, | |
321 | ARM_HWCAP_ARM_THUMB = 1 << 2, | |
322 | ARM_HWCAP_ARM_26BIT = 1 << 3, | |
323 | ARM_HWCAP_ARM_FAST_MULT = 1 << 4, | |
324 | ARM_HWCAP_ARM_FPA = 1 << 5, | |
325 | ARM_HWCAP_ARM_VFP = 1 << 6, | |
326 | ARM_HWCAP_ARM_EDSP = 1 << 7, | |
327 | ARM_HWCAP_ARM_JAVA = 1 << 8, | |
328 | ARM_HWCAP_ARM_IWMMXT = 1 << 9, | |
329 | ARM_HWCAP_ARM_THUMBEE = 1 << 10, | |
330 | ARM_HWCAP_ARM_NEON = 1 << 11, | |
331 | ARM_HWCAP_ARM_VFPv3 = 1 << 12, | |
332 | ARM_HWCAP_ARM_VFPv3D16 = 1 << 13, | |
afce2927 FB |
333 | }; |
334 | ||
d97ef72e RH |
335 | #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \ |
336 | | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \ | |
337 | | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \ | |
338 | | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 ) | |
afce2927 | 339 | |
30ac07d4 FB |
340 | #endif |
341 | ||
d2fbca94 GX |
342 | #ifdef TARGET_UNICORE32 |
343 | ||
344 | #define ELF_START_MMAP 0x80000000 | |
345 | ||
346 | #define elf_check_arch(x) ((x) == EM_UNICORE32) | |
347 | ||
348 | #define ELF_CLASS ELFCLASS32 | |
349 | #define ELF_DATA ELFDATA2LSB | |
350 | #define ELF_ARCH EM_UNICORE32 | |
351 | ||
352 | static inline void init_thread(struct target_pt_regs *regs, | |
353 | struct image_info *infop) | |
354 | { | |
355 | abi_long stack = infop->start_stack; | |
356 | memset(regs, 0, sizeof(*regs)); | |
357 | regs->UC32_REG_asr = 0x10; | |
358 | regs->UC32_REG_pc = infop->entry & 0xfffffffe; | |
359 | regs->UC32_REG_sp = infop->start_stack; | |
360 | /* FIXME - what to for failure of get_user()? */ | |
361 | get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ | |
362 | get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ | |
363 | /* XXX: it seems that r0 is zeroed after ! */ | |
364 | regs->UC32_REG_00 = 0; | |
365 | } | |
366 | ||
367 | #define ELF_NREG 34 | |
368 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
369 | ||
370 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) | |
371 | { | |
372 | (*regs)[0] = env->regs[0]; | |
373 | (*regs)[1] = env->regs[1]; | |
374 | (*regs)[2] = env->regs[2]; | |
375 | (*regs)[3] = env->regs[3]; | |
376 | (*regs)[4] = env->regs[4]; | |
377 | (*regs)[5] = env->regs[5]; | |
378 | (*regs)[6] = env->regs[6]; | |
379 | (*regs)[7] = env->regs[7]; | |
380 | (*regs)[8] = env->regs[8]; | |
381 | (*regs)[9] = env->regs[9]; | |
382 | (*regs)[10] = env->regs[10]; | |
383 | (*regs)[11] = env->regs[11]; | |
384 | (*regs)[12] = env->regs[12]; | |
385 | (*regs)[13] = env->regs[13]; | |
386 | (*regs)[14] = env->regs[14]; | |
387 | (*regs)[15] = env->regs[15]; | |
388 | (*regs)[16] = env->regs[16]; | |
389 | (*regs)[17] = env->regs[17]; | |
390 | (*regs)[18] = env->regs[18]; | |
391 | (*regs)[19] = env->regs[19]; | |
392 | (*regs)[20] = env->regs[20]; | |
393 | (*regs)[21] = env->regs[21]; | |
394 | (*regs)[22] = env->regs[22]; | |
395 | (*regs)[23] = env->regs[23]; | |
396 | (*regs)[24] = env->regs[24]; | |
397 | (*regs)[25] = env->regs[25]; | |
398 | (*regs)[26] = env->regs[26]; | |
399 | (*regs)[27] = env->regs[27]; | |
400 | (*regs)[28] = env->regs[28]; | |
401 | (*regs)[29] = env->regs[29]; | |
402 | (*regs)[30] = env->regs[30]; | |
403 | (*regs)[31] = env->regs[31]; | |
404 | ||
405 | (*regs)[32] = cpu_asr_read((CPUState *)env); | |
406 | (*regs)[33] = env->regs[0]; /* XXX */ | |
407 | } | |
408 | ||
409 | #define USE_ELF_CORE_DUMP | |
410 | #define ELF_EXEC_PAGESIZE 4096 | |
411 | ||
412 | #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) | |
413 | ||
414 | #endif | |
415 | ||
853d6f7a | 416 | #ifdef TARGET_SPARC |
a315a145 | 417 | #ifdef TARGET_SPARC64 |
853d6f7a FB |
418 | |
419 | #define ELF_START_MMAP 0x80000000 | |
420 | ||
992f48a0 | 421 | #ifndef TARGET_ABI32 |
cb33da57 | 422 | #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) |
992f48a0 BS |
423 | #else |
424 | #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) | |
425 | #endif | |
853d6f7a | 426 | |
a315a145 | 427 | #define ELF_CLASS ELFCLASS64 |
5ef54116 FB |
428 | #define ELF_ARCH EM_SPARCV9 |
429 | ||
d97ef72e | 430 | #define STACK_BIAS 2047 |
a315a145 | 431 | |
d97ef72e RH |
432 | static inline void init_thread(struct target_pt_regs *regs, |
433 | struct image_info *infop) | |
a315a145 | 434 | { |
992f48a0 | 435 | #ifndef TARGET_ABI32 |
a315a145 | 436 | regs->tstate = 0; |
992f48a0 | 437 | #endif |
a315a145 FB |
438 | regs->pc = infop->entry; |
439 | regs->npc = regs->pc + 4; | |
440 | regs->y = 0; | |
992f48a0 BS |
441 | #ifdef TARGET_ABI32 |
442 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
443 | #else | |
cb33da57 BS |
444 | if (personality(infop->personality) == PER_LINUX32) |
445 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
446 | else | |
447 | regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; | |
992f48a0 | 448 | #endif |
a315a145 FB |
449 | } |
450 | ||
451 | #else | |
452 | #define ELF_START_MMAP 0x80000000 | |
453 | ||
454 | #define elf_check_arch(x) ( (x) == EM_SPARC ) | |
455 | ||
853d6f7a | 456 | #define ELF_CLASS ELFCLASS32 |
853d6f7a FB |
457 | #define ELF_ARCH EM_SPARC |
458 | ||
d97ef72e RH |
459 | static inline void init_thread(struct target_pt_regs *regs, |
460 | struct image_info *infop) | |
853d6f7a | 461 | { |
f5155289 FB |
462 | regs->psr = 0; |
463 | regs->pc = infop->entry; | |
464 | regs->npc = regs->pc + 4; | |
465 | regs->y = 0; | |
466 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
853d6f7a FB |
467 | } |
468 | ||
a315a145 | 469 | #endif |
853d6f7a FB |
470 | #endif |
471 | ||
67867308 FB |
472 | #ifdef TARGET_PPC |
473 | ||
474 | #define ELF_START_MMAP 0x80000000 | |
475 | ||
e85e7c6e | 476 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
84409ddb JM |
477 | |
478 | #define elf_check_arch(x) ( (x) == EM_PPC64 ) | |
479 | ||
d97ef72e | 480 | #define ELF_CLASS ELFCLASS64 |
84409ddb JM |
481 | |
482 | #else | |
483 | ||
67867308 FB |
484 | #define elf_check_arch(x) ( (x) == EM_PPC ) |
485 | ||
d97ef72e | 486 | #define ELF_CLASS ELFCLASS32 |
84409ddb JM |
487 | |
488 | #endif | |
489 | ||
d97ef72e | 490 | #define ELF_ARCH EM_PPC |
67867308 | 491 | |
df84e4f3 NF |
492 | /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). |
493 | See arch/powerpc/include/asm/cputable.h. */ | |
494 | enum { | |
3efa9a67 | 495 | QEMU_PPC_FEATURE_32 = 0x80000000, |
496 | QEMU_PPC_FEATURE_64 = 0x40000000, | |
497 | QEMU_PPC_FEATURE_601_INSTR = 0x20000000, | |
498 | QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, | |
499 | QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, | |
500 | QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, | |
501 | QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, | |
502 | QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, | |
503 | QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, | |
504 | QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, | |
505 | QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, | |
506 | QEMU_PPC_FEATURE_NO_TB = 0x00100000, | |
507 | QEMU_PPC_FEATURE_POWER4 = 0x00080000, | |
508 | QEMU_PPC_FEATURE_POWER5 = 0x00040000, | |
509 | QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, | |
510 | QEMU_PPC_FEATURE_CELL = 0x00010000, | |
511 | QEMU_PPC_FEATURE_BOOKE = 0x00008000, | |
512 | QEMU_PPC_FEATURE_SMT = 0x00004000, | |
513 | QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, | |
514 | QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, | |
515 | QEMU_PPC_FEATURE_PA6T = 0x00000800, | |
516 | QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, | |
517 | QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, | |
518 | QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, | |
519 | QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, | |
520 | QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, | |
521 | ||
522 | QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, | |
523 | QEMU_PPC_FEATURE_PPC_LE = 0x00000001, | |
df84e4f3 NF |
524 | }; |
525 | ||
526 | #define ELF_HWCAP get_elf_hwcap() | |
527 | ||
528 | static uint32_t get_elf_hwcap(void) | |
529 | { | |
530 | CPUState *e = thread_env; | |
531 | uint32_t features = 0; | |
532 | ||
533 | /* We don't have to be terribly complete here; the high points are | |
534 | Altivec/FP/SPE support. Anything else is just a bonus. */ | |
d97ef72e | 535 | #define GET_FEATURE(flag, feature) \ |
df84e4f3 | 536 | do {if (e->insns_flags & flag) features |= feature; } while(0) |
3efa9a67 | 537 | GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); |
538 | GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); | |
539 | GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); | |
540 | GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); | |
541 | GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); | |
542 | GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); | |
543 | GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); | |
544 | GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); | |
df84e4f3 NF |
545 | #undef GET_FEATURE |
546 | ||
547 | return features; | |
548 | } | |
549 | ||
f5155289 FB |
550 | /* |
551 | * The requirements here are: | |
552 | * - keep the final alignment of sp (sp & 0xf) | |
553 | * - make sure the 32-bit value at the first 16 byte aligned position of | |
554 | * AUXV is greater than 16 for glibc compatibility. | |
555 | * AT_IGNOREPPC is used for that. | |
556 | * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, | |
557 | * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. | |
558 | */ | |
0bccf03d | 559 | #define DLINFO_ARCH_ITEMS 5 |
d97ef72e RH |
560 | #define ARCH_DLINFO \ |
561 | do { \ | |
562 | NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \ | |
563 | NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \ | |
564 | NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ | |
565 | /* \ | |
566 | * Now handle glibc compatibility. \ | |
567 | */ \ | |
568 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ | |
569 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ | |
570 | } while (0) | |
f5155289 | 571 | |
67867308 FB |
572 | static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) |
573 | { | |
67867308 | 574 | _regs->gpr[1] = infop->start_stack; |
e85e7c6e | 575 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
7983f435 RL |
576 | _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_addr; |
577 | infop->entry = ldq_raw(infop->entry) + infop->load_addr; | |
84409ddb | 578 | #endif |
67867308 FB |
579 | _regs->nip = infop->entry; |
580 | } | |
581 | ||
e2f3e741 NF |
582 | /* See linux kernel: arch/powerpc/include/asm/elf.h. */ |
583 | #define ELF_NREG 48 | |
584 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
585 | ||
586 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) | |
587 | { | |
588 | int i; | |
589 | target_ulong ccr = 0; | |
590 | ||
591 | for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { | |
592 | (*regs)[i] = tswapl(env->gpr[i]); | |
593 | } | |
594 | ||
595 | (*regs)[32] = tswapl(env->nip); | |
596 | (*regs)[33] = tswapl(env->msr); | |
597 | (*regs)[35] = tswapl(env->ctr); | |
598 | (*regs)[36] = tswapl(env->lr); | |
599 | (*regs)[37] = tswapl(env->xer); | |
600 | ||
601 | for (i = 0; i < ARRAY_SIZE(env->crf); i++) { | |
602 | ccr |= env->crf[i] << (32 - ((i + 1) * 4)); | |
603 | } | |
604 | (*regs)[38] = tswapl(ccr); | |
605 | } | |
606 | ||
607 | #define USE_ELF_CORE_DUMP | |
d97ef72e | 608 | #define ELF_EXEC_PAGESIZE 4096 |
67867308 FB |
609 | |
610 | #endif | |
611 | ||
048f6b4d FB |
612 | #ifdef TARGET_MIPS |
613 | ||
614 | #define ELF_START_MMAP 0x80000000 | |
615 | ||
616 | #define elf_check_arch(x) ( (x) == EM_MIPS ) | |
617 | ||
388bb21a TS |
618 | #ifdef TARGET_MIPS64 |
619 | #define ELF_CLASS ELFCLASS64 | |
620 | #else | |
048f6b4d | 621 | #define ELF_CLASS ELFCLASS32 |
388bb21a | 622 | #endif |
048f6b4d FB |
623 | #define ELF_ARCH EM_MIPS |
624 | ||
d97ef72e RH |
625 | static inline void init_thread(struct target_pt_regs *regs, |
626 | struct image_info *infop) | |
048f6b4d | 627 | { |
623a930e | 628 | regs->cp0_status = 2 << CP0St_KSU; |
048f6b4d FB |
629 | regs->cp0_epc = infop->entry; |
630 | regs->regs[29] = infop->start_stack; | |
631 | } | |
632 | ||
51e52606 NF |
633 | /* See linux kernel: arch/mips/include/asm/elf.h. */ |
634 | #define ELF_NREG 45 | |
635 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
636 | ||
637 | /* See linux kernel: arch/mips/include/asm/reg.h. */ | |
638 | enum { | |
639 | #ifdef TARGET_MIPS64 | |
640 | TARGET_EF_R0 = 0, | |
641 | #else | |
642 | TARGET_EF_R0 = 6, | |
643 | #endif | |
644 | TARGET_EF_R26 = TARGET_EF_R0 + 26, | |
645 | TARGET_EF_R27 = TARGET_EF_R0 + 27, | |
646 | TARGET_EF_LO = TARGET_EF_R0 + 32, | |
647 | TARGET_EF_HI = TARGET_EF_R0 + 33, | |
648 | TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, | |
649 | TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, | |
650 | TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, | |
651 | TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 | |
652 | }; | |
653 | ||
654 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
655 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) | |
656 | { | |
657 | int i; | |
658 | ||
659 | for (i = 0; i < TARGET_EF_R0; i++) { | |
660 | (*regs)[i] = 0; | |
661 | } | |
662 | (*regs)[TARGET_EF_R0] = 0; | |
663 | ||
664 | for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { | |
665 | (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]); | |
666 | } | |
667 | ||
668 | (*regs)[TARGET_EF_R26] = 0; | |
669 | (*regs)[TARGET_EF_R27] = 0; | |
670 | (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]); | |
671 | (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]); | |
672 | (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC); | |
673 | (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr); | |
674 | (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status); | |
675 | (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause); | |
676 | } | |
677 | ||
678 | #define USE_ELF_CORE_DUMP | |
388bb21a TS |
679 | #define ELF_EXEC_PAGESIZE 4096 |
680 | ||
048f6b4d FB |
681 | #endif /* TARGET_MIPS */ |
682 | ||
b779e29e EI |
683 | #ifdef TARGET_MICROBLAZE |
684 | ||
685 | #define ELF_START_MMAP 0x80000000 | |
686 | ||
0d5d4699 | 687 | #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) |
b779e29e EI |
688 | |
689 | #define ELF_CLASS ELFCLASS32 | |
0d5d4699 | 690 | #define ELF_ARCH EM_MICROBLAZE |
b779e29e | 691 | |
d97ef72e RH |
692 | static inline void init_thread(struct target_pt_regs *regs, |
693 | struct image_info *infop) | |
b779e29e EI |
694 | { |
695 | regs->pc = infop->entry; | |
696 | regs->r1 = infop->start_stack; | |
697 | ||
698 | } | |
699 | ||
b779e29e EI |
700 | #define ELF_EXEC_PAGESIZE 4096 |
701 | ||
e4cbd44d EI |
702 | #define USE_ELF_CORE_DUMP |
703 | #define ELF_NREG 38 | |
704 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
705 | ||
706 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
707 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) | |
708 | { | |
709 | int i, pos = 0; | |
710 | ||
711 | for (i = 0; i < 32; i++) { | |
712 | (*regs)[pos++] = tswapl(env->regs[i]); | |
713 | } | |
714 | ||
715 | for (i = 0; i < 6; i++) { | |
716 | (*regs)[pos++] = tswapl(env->sregs[i]); | |
717 | } | |
718 | } | |
719 | ||
b779e29e EI |
720 | #endif /* TARGET_MICROBLAZE */ |
721 | ||
fdf9b3e8 FB |
722 | #ifdef TARGET_SH4 |
723 | ||
724 | #define ELF_START_MMAP 0x80000000 | |
725 | ||
726 | #define elf_check_arch(x) ( (x) == EM_SH ) | |
727 | ||
728 | #define ELF_CLASS ELFCLASS32 | |
fdf9b3e8 FB |
729 | #define ELF_ARCH EM_SH |
730 | ||
d97ef72e RH |
731 | static inline void init_thread(struct target_pt_regs *regs, |
732 | struct image_info *infop) | |
fdf9b3e8 | 733 | { |
d97ef72e RH |
734 | /* Check other registers XXXXX */ |
735 | regs->pc = infop->entry; | |
736 | regs->regs[15] = infop->start_stack; | |
fdf9b3e8 FB |
737 | } |
738 | ||
7631c97e NF |
739 | /* See linux kernel: arch/sh/include/asm/elf.h. */ |
740 | #define ELF_NREG 23 | |
741 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
742 | ||
743 | /* See linux kernel: arch/sh/include/asm/ptrace.h. */ | |
744 | enum { | |
745 | TARGET_REG_PC = 16, | |
746 | TARGET_REG_PR = 17, | |
747 | TARGET_REG_SR = 18, | |
748 | TARGET_REG_GBR = 19, | |
749 | TARGET_REG_MACH = 20, | |
750 | TARGET_REG_MACL = 21, | |
751 | TARGET_REG_SYSCALL = 22 | |
752 | }; | |
753 | ||
d97ef72e RH |
754 | static inline void elf_core_copy_regs(target_elf_gregset_t *regs, |
755 | const CPUState *env) | |
7631c97e NF |
756 | { |
757 | int i; | |
758 | ||
759 | for (i = 0; i < 16; i++) { | |
760 | (*regs[i]) = tswapl(env->gregs[i]); | |
761 | } | |
762 | ||
763 | (*regs)[TARGET_REG_PC] = tswapl(env->pc); | |
764 | (*regs)[TARGET_REG_PR] = tswapl(env->pr); | |
765 | (*regs)[TARGET_REG_SR] = tswapl(env->sr); | |
766 | (*regs)[TARGET_REG_GBR] = tswapl(env->gbr); | |
767 | (*regs)[TARGET_REG_MACH] = tswapl(env->mach); | |
768 | (*regs)[TARGET_REG_MACL] = tswapl(env->macl); | |
769 | (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ | |
770 | } | |
771 | ||
772 | #define USE_ELF_CORE_DUMP | |
fdf9b3e8 FB |
773 | #define ELF_EXEC_PAGESIZE 4096 |
774 | ||
775 | #endif | |
776 | ||
48733d19 TS |
777 | #ifdef TARGET_CRIS |
778 | ||
779 | #define ELF_START_MMAP 0x80000000 | |
780 | ||
781 | #define elf_check_arch(x) ( (x) == EM_CRIS ) | |
782 | ||
783 | #define ELF_CLASS ELFCLASS32 | |
48733d19 TS |
784 | #define ELF_ARCH EM_CRIS |
785 | ||
d97ef72e RH |
786 | static inline void init_thread(struct target_pt_regs *regs, |
787 | struct image_info *infop) | |
48733d19 | 788 | { |
d97ef72e | 789 | regs->erp = infop->entry; |
48733d19 TS |
790 | } |
791 | ||
48733d19 TS |
792 | #define ELF_EXEC_PAGESIZE 8192 |
793 | ||
794 | #endif | |
795 | ||
e6e5906b PB |
796 | #ifdef TARGET_M68K |
797 | ||
798 | #define ELF_START_MMAP 0x80000000 | |
799 | ||
800 | #define elf_check_arch(x) ( (x) == EM_68K ) | |
801 | ||
d97ef72e | 802 | #define ELF_CLASS ELFCLASS32 |
d97ef72e | 803 | #define ELF_ARCH EM_68K |
e6e5906b PB |
804 | |
805 | /* ??? Does this need to do anything? | |
d97ef72e | 806 | #define ELF_PLAT_INIT(_r) */ |
e6e5906b | 807 | |
d97ef72e RH |
808 | static inline void init_thread(struct target_pt_regs *regs, |
809 | struct image_info *infop) | |
e6e5906b PB |
810 | { |
811 | regs->usp = infop->start_stack; | |
812 | regs->sr = 0; | |
813 | regs->pc = infop->entry; | |
814 | } | |
815 | ||
7a93cc55 NF |
816 | /* See linux kernel: arch/m68k/include/asm/elf.h. */ |
817 | #define ELF_NREG 20 | |
818 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
819 | ||
820 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) | |
821 | { | |
822 | (*regs)[0] = tswapl(env->dregs[1]); | |
823 | (*regs)[1] = tswapl(env->dregs[2]); | |
824 | (*regs)[2] = tswapl(env->dregs[3]); | |
825 | (*regs)[3] = tswapl(env->dregs[4]); | |
826 | (*regs)[4] = tswapl(env->dregs[5]); | |
827 | (*regs)[5] = tswapl(env->dregs[6]); | |
828 | (*regs)[6] = tswapl(env->dregs[7]); | |
829 | (*regs)[7] = tswapl(env->aregs[0]); | |
830 | (*regs)[8] = tswapl(env->aregs[1]); | |
831 | (*regs)[9] = tswapl(env->aregs[2]); | |
832 | (*regs)[10] = tswapl(env->aregs[3]); | |
833 | (*regs)[11] = tswapl(env->aregs[4]); | |
834 | (*regs)[12] = tswapl(env->aregs[5]); | |
835 | (*regs)[13] = tswapl(env->aregs[6]); | |
836 | (*regs)[14] = tswapl(env->dregs[0]); | |
837 | (*regs)[15] = tswapl(env->aregs[7]); | |
838 | (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */ | |
839 | (*regs)[17] = tswapl(env->sr); | |
840 | (*regs)[18] = tswapl(env->pc); | |
841 | (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ | |
842 | } | |
843 | ||
844 | #define USE_ELF_CORE_DUMP | |
d97ef72e | 845 | #define ELF_EXEC_PAGESIZE 8192 |
e6e5906b PB |
846 | |
847 | #endif | |
848 | ||
7a3148a9 JM |
849 | #ifdef TARGET_ALPHA |
850 | ||
851 | #define ELF_START_MMAP (0x30000000000ULL) | |
852 | ||
853 | #define elf_check_arch(x) ( (x) == ELF_ARCH ) | |
854 | ||
855 | #define ELF_CLASS ELFCLASS64 | |
7a3148a9 JM |
856 | #define ELF_ARCH EM_ALPHA |
857 | ||
d97ef72e RH |
858 | static inline void init_thread(struct target_pt_regs *regs, |
859 | struct image_info *infop) | |
7a3148a9 JM |
860 | { |
861 | regs->pc = infop->entry; | |
862 | regs->ps = 8; | |
863 | regs->usp = infop->start_stack; | |
7a3148a9 JM |
864 | } |
865 | ||
7a3148a9 JM |
866 | #define ELF_EXEC_PAGESIZE 8192 |
867 | ||
868 | #endif /* TARGET_ALPHA */ | |
869 | ||
a4c075f1 UH |
870 | #ifdef TARGET_S390X |
871 | ||
872 | #define ELF_START_MMAP (0x20000000000ULL) | |
873 | ||
874 | #define elf_check_arch(x) ( (x) == ELF_ARCH ) | |
875 | ||
876 | #define ELF_CLASS ELFCLASS64 | |
877 | #define ELF_DATA ELFDATA2MSB | |
878 | #define ELF_ARCH EM_S390 | |
879 | ||
880 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
881 | { | |
882 | regs->psw.addr = infop->entry; | |
883 | regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; | |
884 | regs->gprs[15] = infop->start_stack; | |
885 | } | |
886 | ||
887 | #endif /* TARGET_S390X */ | |
888 | ||
15338fd7 FB |
889 | #ifndef ELF_PLATFORM |
890 | #define ELF_PLATFORM (NULL) | |
891 | #endif | |
892 | ||
893 | #ifndef ELF_HWCAP | |
894 | #define ELF_HWCAP 0 | |
895 | #endif | |
896 | ||
992f48a0 | 897 | #ifdef TARGET_ABI32 |
cb33da57 | 898 | #undef ELF_CLASS |
992f48a0 | 899 | #define ELF_CLASS ELFCLASS32 |
cb33da57 BS |
900 | #undef bswaptls |
901 | #define bswaptls(ptr) bswap32s(ptr) | |
902 | #endif | |
903 | ||
31e31b8a | 904 | #include "elf.h" |
09bfb054 | 905 | |
09bfb054 FB |
906 | struct exec |
907 | { | |
d97ef72e RH |
908 | unsigned int a_info; /* Use macros N_MAGIC, etc for access */ |
909 | unsigned int a_text; /* length of text, in bytes */ | |
910 | unsigned int a_data; /* length of data, in bytes */ | |
911 | unsigned int a_bss; /* length of uninitialized data area, in bytes */ | |
912 | unsigned int a_syms; /* length of symbol table data in file, in bytes */ | |
913 | unsigned int a_entry; /* start address */ | |
914 | unsigned int a_trsize; /* length of relocation info for text, in bytes */ | |
915 | unsigned int a_drsize; /* length of relocation info for data, in bytes */ | |
09bfb054 FB |
916 | }; |
917 | ||
918 | ||
919 | #define N_MAGIC(exec) ((exec).a_info & 0xffff) | |
920 | #define OMAGIC 0407 | |
921 | #define NMAGIC 0410 | |
922 | #define ZMAGIC 0413 | |
923 | #define QMAGIC 0314 | |
924 | ||
31e31b8a | 925 | /* Necessary parameters */ |
54936004 FB |
926 | #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE |
927 | #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1)) | |
928 | #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) | |
31e31b8a | 929 | |
15338fd7 | 930 | #define DLINFO_ITEMS 12 |
31e31b8a | 931 | |
09bfb054 FB |
932 | static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) |
933 | { | |
d97ef72e | 934 | memcpy(to, from, n); |
09bfb054 | 935 | } |
d691f669 | 936 | |
31e31b8a | 937 | #ifdef BSWAP_NEEDED |
92a31b1f | 938 | static void bswap_ehdr(struct elfhdr *ehdr) |
31e31b8a | 939 | { |
d97ef72e RH |
940 | bswap16s(&ehdr->e_type); /* Object file type */ |
941 | bswap16s(&ehdr->e_machine); /* Architecture */ | |
942 | bswap32s(&ehdr->e_version); /* Object file version */ | |
943 | bswaptls(&ehdr->e_entry); /* Entry point virtual address */ | |
944 | bswaptls(&ehdr->e_phoff); /* Program header table file offset */ | |
945 | bswaptls(&ehdr->e_shoff); /* Section header table file offset */ | |
946 | bswap32s(&ehdr->e_flags); /* Processor-specific flags */ | |
947 | bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ | |
948 | bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ | |
949 | bswap16s(&ehdr->e_phnum); /* Program header table entry count */ | |
950 | bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ | |
951 | bswap16s(&ehdr->e_shnum); /* Section header table entry count */ | |
952 | bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ | |
31e31b8a FB |
953 | } |
954 | ||
991f8f0c | 955 | static void bswap_phdr(struct elf_phdr *phdr, int phnum) |
31e31b8a | 956 | { |
991f8f0c RH |
957 | int i; |
958 | for (i = 0; i < phnum; ++i, ++phdr) { | |
959 | bswap32s(&phdr->p_type); /* Segment type */ | |
960 | bswap32s(&phdr->p_flags); /* Segment flags */ | |
961 | bswaptls(&phdr->p_offset); /* Segment file offset */ | |
962 | bswaptls(&phdr->p_vaddr); /* Segment virtual address */ | |
963 | bswaptls(&phdr->p_paddr); /* Segment physical address */ | |
964 | bswaptls(&phdr->p_filesz); /* Segment size in file */ | |
965 | bswaptls(&phdr->p_memsz); /* Segment size in memory */ | |
966 | bswaptls(&phdr->p_align); /* Segment alignment */ | |
967 | } | |
31e31b8a | 968 | } |
689f936f | 969 | |
991f8f0c | 970 | static void bswap_shdr(struct elf_shdr *shdr, int shnum) |
689f936f | 971 | { |
991f8f0c RH |
972 | int i; |
973 | for (i = 0; i < shnum; ++i, ++shdr) { | |
974 | bswap32s(&shdr->sh_name); | |
975 | bswap32s(&shdr->sh_type); | |
976 | bswaptls(&shdr->sh_flags); | |
977 | bswaptls(&shdr->sh_addr); | |
978 | bswaptls(&shdr->sh_offset); | |
979 | bswaptls(&shdr->sh_size); | |
980 | bswap32s(&shdr->sh_link); | |
981 | bswap32s(&shdr->sh_info); | |
982 | bswaptls(&shdr->sh_addralign); | |
983 | bswaptls(&shdr->sh_entsize); | |
984 | } | |
689f936f FB |
985 | } |
986 | ||
7a3148a9 | 987 | static void bswap_sym(struct elf_sym *sym) |
689f936f FB |
988 | { |
989 | bswap32s(&sym->st_name); | |
7a3148a9 JM |
990 | bswaptls(&sym->st_value); |
991 | bswaptls(&sym->st_size); | |
689f936f FB |
992 | bswap16s(&sym->st_shndx); |
993 | } | |
991f8f0c RH |
994 | #else |
995 | static inline void bswap_ehdr(struct elfhdr *ehdr) { } | |
996 | static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } | |
997 | static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } | |
998 | static inline void bswap_sym(struct elf_sym *sym) { } | |
31e31b8a FB |
999 | #endif |
1000 | ||
edf8e2af MW |
1001 | #ifdef USE_ELF_CORE_DUMP |
1002 | static int elf_core_dump(int, const CPUState *); | |
edf8e2af | 1003 | #endif /* USE_ELF_CORE_DUMP */ |
682674b8 | 1004 | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); |
edf8e2af | 1005 | |
9058abdd RH |
1006 | /* Verify the portions of EHDR within E_IDENT for the target. |
1007 | This can be performed before bswapping the entire header. */ | |
1008 | static bool elf_check_ident(struct elfhdr *ehdr) | |
1009 | { | |
1010 | return (ehdr->e_ident[EI_MAG0] == ELFMAG0 | |
1011 | && ehdr->e_ident[EI_MAG1] == ELFMAG1 | |
1012 | && ehdr->e_ident[EI_MAG2] == ELFMAG2 | |
1013 | && ehdr->e_ident[EI_MAG3] == ELFMAG3 | |
1014 | && ehdr->e_ident[EI_CLASS] == ELF_CLASS | |
1015 | && ehdr->e_ident[EI_DATA] == ELF_DATA | |
1016 | && ehdr->e_ident[EI_VERSION] == EV_CURRENT); | |
1017 | } | |
1018 | ||
1019 | /* Verify the portions of EHDR outside of E_IDENT for the target. | |
1020 | This has to wait until after bswapping the header. */ | |
1021 | static bool elf_check_ehdr(struct elfhdr *ehdr) | |
1022 | { | |
1023 | return (elf_check_arch(ehdr->e_machine) | |
1024 | && ehdr->e_ehsize == sizeof(struct elfhdr) | |
1025 | && ehdr->e_phentsize == sizeof(struct elf_phdr) | |
1026 | && ehdr->e_shentsize == sizeof(struct elf_shdr) | |
1027 | && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); | |
1028 | } | |
1029 | ||
31e31b8a | 1030 | /* |
e5fe0c52 | 1031 | * 'copy_elf_strings()' copies argument/envelope strings from user |
31e31b8a FB |
1032 | * memory to free pages in kernel mem. These are in a format ready |
1033 | * to be put directly into the top of new user memory. | |
1034 | * | |
1035 | */ | |
992f48a0 BS |
1036 | static abi_ulong copy_elf_strings(int argc,char ** argv, void **page, |
1037 | abi_ulong p) | |
31e31b8a FB |
1038 | { |
1039 | char *tmp, *tmp1, *pag = NULL; | |
1040 | int len, offset = 0; | |
1041 | ||
1042 | if (!p) { | |
d97ef72e | 1043 | return 0; /* bullet-proofing */ |
31e31b8a FB |
1044 | } |
1045 | while (argc-- > 0) { | |
edf779ff FB |
1046 | tmp = argv[argc]; |
1047 | if (!tmp) { | |
d97ef72e RH |
1048 | fprintf(stderr, "VFS: argc is wrong"); |
1049 | exit(-1); | |
1050 | } | |
edf779ff | 1051 | tmp1 = tmp; |
d97ef72e RH |
1052 | while (*tmp++); |
1053 | len = tmp - tmp1; | |
1054 | if (p < len) { /* this shouldn't happen - 128kB */ | |
1055 | return 0; | |
1056 | } | |
1057 | while (len) { | |
1058 | --p; --tmp; --len; | |
1059 | if (--offset < 0) { | |
1060 | offset = p % TARGET_PAGE_SIZE; | |
53a5960a | 1061 | pag = (char *)page[p/TARGET_PAGE_SIZE]; |
44a91cae | 1062 | if (!pag) { |
53a5960a | 1063 | pag = (char *)malloc(TARGET_PAGE_SIZE); |
4118a970 | 1064 | memset(pag, 0, TARGET_PAGE_SIZE); |
53a5960a | 1065 | page[p/TARGET_PAGE_SIZE] = pag; |
44a91cae FB |
1066 | if (!pag) |
1067 | return 0; | |
d97ef72e RH |
1068 | } |
1069 | } | |
1070 | if (len == 0 || offset == 0) { | |
1071 | *(pag + offset) = *tmp; | |
1072 | } | |
1073 | else { | |
1074 | int bytes_to_copy = (len > offset) ? offset : len; | |
1075 | tmp -= bytes_to_copy; | |
1076 | p -= bytes_to_copy; | |
1077 | offset -= bytes_to_copy; | |
1078 | len -= bytes_to_copy; | |
1079 | memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); | |
1080 | } | |
1081 | } | |
31e31b8a FB |
1082 | } |
1083 | return p; | |
1084 | } | |
1085 | ||
992f48a0 BS |
1086 | static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm, |
1087 | struct image_info *info) | |
53a5960a | 1088 | { |
60dcbcb5 | 1089 | abi_ulong stack_base, size, error, guard; |
31e31b8a | 1090 | int i; |
31e31b8a | 1091 | |
09bfb054 | 1092 | /* Create enough stack to hold everything. If we don't use |
60dcbcb5 | 1093 | it for args, we'll use it for something else. */ |
703e0e89 | 1094 | size = guest_stack_size; |
60dcbcb5 | 1095 | if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) { |
54936004 | 1096 | size = MAX_ARG_PAGES*TARGET_PAGE_SIZE; |
60dcbcb5 RH |
1097 | } |
1098 | guard = TARGET_PAGE_SIZE; | |
1099 | if (guard < qemu_real_host_page_size) { | |
1100 | guard = qemu_real_host_page_size; | |
1101 | } | |
1102 | ||
1103 | error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, | |
1104 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
09bfb054 | 1105 | if (error == -1) { |
60dcbcb5 | 1106 | perror("mmap stack"); |
09bfb054 FB |
1107 | exit(-1); |
1108 | } | |
31e31b8a | 1109 | |
60dcbcb5 RH |
1110 | /* We reserve one extra page at the top of the stack as guard. */ |
1111 | target_mprotect(error, guard, PROT_NONE); | |
1112 | ||
1113 | info->stack_limit = error + guard; | |
1114 | stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE; | |
31e31b8a | 1115 | p += stack_base; |
09bfb054 | 1116 | |
31e31b8a | 1117 | for (i = 0 ; i < MAX_ARG_PAGES ; i++) { |
d97ef72e RH |
1118 | if (bprm->page[i]) { |
1119 | info->rss++; | |
579a97f7 | 1120 | /* FIXME - check return value of memcpy_to_target() for failure */ |
d97ef72e RH |
1121 | memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE); |
1122 | free(bprm->page[i]); | |
1123 | } | |
53a5960a | 1124 | stack_base += TARGET_PAGE_SIZE; |
31e31b8a FB |
1125 | } |
1126 | return p; | |
1127 | } | |
1128 | ||
cf129f3a RH |
1129 | /* Map and zero the bss. We need to explicitly zero any fractional pages |
1130 | after the data section (i.e. bss). */ | |
1131 | static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) | |
31e31b8a | 1132 | { |
cf129f3a RH |
1133 | uintptr_t host_start, host_map_start, host_end; |
1134 | ||
1135 | last_bss = TARGET_PAGE_ALIGN(last_bss); | |
1136 | ||
1137 | /* ??? There is confusion between qemu_real_host_page_size and | |
1138 | qemu_host_page_size here and elsewhere in target_mmap, which | |
1139 | may lead to the end of the data section mapping from the file | |
1140 | not being mapped. At least there was an explicit test and | |
1141 | comment for that here, suggesting that "the file size must | |
1142 | be known". The comment probably pre-dates the introduction | |
1143 | of the fstat system call in target_mmap which does in fact | |
1144 | find out the size. What isn't clear is if the workaround | |
1145 | here is still actually needed. For now, continue with it, | |
1146 | but merge it with the "normal" mmap that would allocate the bss. */ | |
1147 | ||
1148 | host_start = (uintptr_t) g2h(elf_bss); | |
1149 | host_end = (uintptr_t) g2h(last_bss); | |
1150 | host_map_start = (host_start + qemu_real_host_page_size - 1); | |
1151 | host_map_start &= -qemu_real_host_page_size; | |
1152 | ||
1153 | if (host_map_start < host_end) { | |
1154 | void *p = mmap((void *)host_map_start, host_end - host_map_start, | |
1155 | prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
1156 | if (p == MAP_FAILED) { | |
1157 | perror("cannot mmap brk"); | |
1158 | exit(-1); | |
853d6f7a FB |
1159 | } |
1160 | ||
cf129f3a RH |
1161 | /* Since we didn't use target_mmap, make sure to record |
1162 | the validity of the pages with qemu. */ | |
1163 | page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID); | |
1164 | } | |
31e31b8a | 1165 | |
cf129f3a RH |
1166 | if (host_start < host_map_start) { |
1167 | memset((void *)host_start, 0, host_map_start - host_start); | |
1168 | } | |
1169 | } | |
53a5960a | 1170 | |
1af02e83 MF |
1171 | #ifdef CONFIG_USE_FDPIC |
1172 | static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) | |
1173 | { | |
1174 | uint16_t n; | |
1175 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; | |
1176 | ||
1177 | /* elf32_fdpic_loadseg */ | |
1178 | n = info->nsegs; | |
1179 | while (n--) { | |
1180 | sp -= 12; | |
1181 | put_user_u32(loadsegs[n].addr, sp+0); | |
1182 | put_user_u32(loadsegs[n].p_vaddr, sp+4); | |
1183 | put_user_u32(loadsegs[n].p_memsz, sp+8); | |
1184 | } | |
1185 | ||
1186 | /* elf32_fdpic_loadmap */ | |
1187 | sp -= 4; | |
1188 | put_user_u16(0, sp+0); /* version */ | |
1189 | put_user_u16(info->nsegs, sp+2); /* nsegs */ | |
1190 | ||
1191 | info->personality = PER_LINUX_FDPIC; | |
1192 | info->loadmap_addr = sp; | |
1193 | ||
1194 | return sp; | |
1195 | } | |
1196 | #endif | |
1197 | ||
992f48a0 | 1198 | static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, |
8e62a717 RH |
1199 | struct elfhdr *exec, |
1200 | struct image_info *info, | |
1201 | struct image_info *interp_info) | |
31e31b8a | 1202 | { |
d97ef72e RH |
1203 | abi_ulong sp; |
1204 | int size; | |
1205 | abi_ulong u_platform; | |
1206 | const char *k_platform; | |
1207 | const int n = sizeof(elf_addr_t); | |
1208 | ||
1209 | sp = p; | |
1af02e83 MF |
1210 | |
1211 | #ifdef CONFIG_USE_FDPIC | |
1212 | /* Needs to be before we load the env/argc/... */ | |
1213 | if (elf_is_fdpic(exec)) { | |
1214 | /* Need 4 byte alignment for these structs */ | |
1215 | sp &= ~3; | |
1216 | sp = loader_build_fdpic_loadmap(info, sp); | |
1217 | info->other_info = interp_info; | |
1218 | if (interp_info) { | |
1219 | interp_info->other_info = info; | |
1220 | sp = loader_build_fdpic_loadmap(interp_info, sp); | |
1221 | } | |
1222 | } | |
1223 | #endif | |
1224 | ||
d97ef72e RH |
1225 | u_platform = 0; |
1226 | k_platform = ELF_PLATFORM; | |
1227 | if (k_platform) { | |
1228 | size_t len = strlen(k_platform) + 1; | |
1229 | sp -= (len + n - 1) & ~(n - 1); | |
1230 | u_platform = sp; | |
1231 | /* FIXME - check return value of memcpy_to_target() for failure */ | |
1232 | memcpy_to_target(sp, k_platform, len); | |
1233 | } | |
1234 | /* | |
1235 | * Force 16 byte _final_ alignment here for generality. | |
1236 | */ | |
1237 | sp = sp &~ (abi_ulong)15; | |
1238 | size = (DLINFO_ITEMS + 1) * 2; | |
1239 | if (k_platform) | |
1240 | size += 2; | |
f5155289 | 1241 | #ifdef DLINFO_ARCH_ITEMS |
d97ef72e | 1242 | size += DLINFO_ARCH_ITEMS * 2; |
f5155289 | 1243 | #endif |
d97ef72e | 1244 | size += envc + argc + 2; |
b9329d4b | 1245 | size += 1; /* argc itself */ |
d97ef72e RH |
1246 | size *= n; |
1247 | if (size & 15) | |
1248 | sp -= 16 - (size & 15); | |
1249 | ||
1250 | /* This is correct because Linux defines | |
1251 | * elf_addr_t as Elf32_Off / Elf64_Off | |
1252 | */ | |
1253 | #define NEW_AUX_ENT(id, val) do { \ | |
1254 | sp -= n; put_user_ual(val, sp); \ | |
1255 | sp -= n; put_user_ual(id, sp); \ | |
1256 | } while(0) | |
1257 | ||
1258 | NEW_AUX_ENT (AT_NULL, 0); | |
1259 | ||
1260 | /* There must be exactly DLINFO_ITEMS entries here. */ | |
8e62a717 | 1261 | NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); |
d97ef72e RH |
1262 | NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); |
1263 | NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); | |
1264 | NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); | |
8e62a717 | 1265 | NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); |
d97ef72e | 1266 | NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); |
8e62a717 | 1267 | NEW_AUX_ENT(AT_ENTRY, info->entry); |
d97ef72e RH |
1268 | NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); |
1269 | NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); | |
1270 | NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); | |
1271 | NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); | |
1272 | NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); | |
1273 | NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); | |
1274 | if (k_platform) | |
1275 | NEW_AUX_ENT(AT_PLATFORM, u_platform); | |
f5155289 | 1276 | #ifdef ARCH_DLINFO |
d97ef72e RH |
1277 | /* |
1278 | * ARCH_DLINFO must come last so platform specific code can enforce | |
1279 | * special alignment requirements on the AUXV if necessary (eg. PPC). | |
1280 | */ | |
1281 | ARCH_DLINFO; | |
f5155289 FB |
1282 | #endif |
1283 | #undef NEW_AUX_ENT | |
1284 | ||
d97ef72e | 1285 | info->saved_auxv = sp; |
edf8e2af | 1286 | |
b9329d4b | 1287 | sp = loader_build_argptr(envc, argc, sp, p, 0); |
d97ef72e | 1288 | return sp; |
31e31b8a FB |
1289 | } |
1290 | ||
8e62a717 | 1291 | /* Load an ELF image into the address space. |
31e31b8a | 1292 | |
8e62a717 RH |
1293 | IMAGE_NAME is the filename of the image, to use in error messages. |
1294 | IMAGE_FD is the open file descriptor for the image. | |
1295 | ||
1296 | BPRM_BUF is a copy of the beginning of the file; this of course | |
1297 | contains the elf file header at offset 0. It is assumed that this | |
1298 | buffer is sufficiently aligned to present no problems to the host | |
1299 | in accessing data at aligned offsets within the buffer. | |
1300 | ||
1301 | On return: INFO values will be filled in, as necessary or available. */ | |
1302 | ||
1303 | static void load_elf_image(const char *image_name, int image_fd, | |
bf858897 | 1304 | struct image_info *info, char **pinterp_name, |
8e62a717 | 1305 | char bprm_buf[BPRM_BUF_SIZE]) |
31e31b8a | 1306 | { |
8e62a717 RH |
1307 | struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; |
1308 | struct elf_phdr *phdr; | |
1309 | abi_ulong load_addr, load_bias, loaddr, hiaddr, error; | |
1310 | int i, retval; | |
1311 | const char *errmsg; | |
5fafdf24 | 1312 | |
8e62a717 RH |
1313 | /* First of all, some simple consistency checks */ |
1314 | errmsg = "Invalid ELF image for this architecture"; | |
1315 | if (!elf_check_ident(ehdr)) { | |
1316 | goto exit_errmsg; | |
1317 | } | |
1318 | bswap_ehdr(ehdr); | |
1319 | if (!elf_check_ehdr(ehdr)) { | |
1320 | goto exit_errmsg; | |
d97ef72e | 1321 | } |
5fafdf24 | 1322 | |
8e62a717 RH |
1323 | i = ehdr->e_phnum * sizeof(struct elf_phdr); |
1324 | if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { | |
1325 | phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); | |
9955ffac | 1326 | } else { |
8e62a717 RH |
1327 | phdr = (struct elf_phdr *) alloca(i); |
1328 | retval = pread(image_fd, phdr, i, ehdr->e_phoff); | |
9955ffac | 1329 | if (retval != i) { |
8e62a717 | 1330 | goto exit_read; |
9955ffac | 1331 | } |
d97ef72e | 1332 | } |
8e62a717 | 1333 | bswap_phdr(phdr, ehdr->e_phnum); |
09bfb054 | 1334 | |
1af02e83 MF |
1335 | #ifdef CONFIG_USE_FDPIC |
1336 | info->nsegs = 0; | |
1337 | info->pt_dynamic_addr = 0; | |
1338 | #endif | |
1339 | ||
682674b8 RH |
1340 | /* Find the maximum size of the image and allocate an appropriate |
1341 | amount of memory to handle that. */ | |
1342 | loaddr = -1, hiaddr = 0; | |
8e62a717 RH |
1343 | for (i = 0; i < ehdr->e_phnum; ++i) { |
1344 | if (phdr[i].p_type == PT_LOAD) { | |
1345 | abi_ulong a = phdr[i].p_vaddr; | |
682674b8 RH |
1346 | if (a < loaddr) { |
1347 | loaddr = a; | |
1348 | } | |
8e62a717 | 1349 | a += phdr[i].p_memsz; |
682674b8 RH |
1350 | if (a > hiaddr) { |
1351 | hiaddr = a; | |
1352 | } | |
1af02e83 MF |
1353 | #ifdef CONFIG_USE_FDPIC |
1354 | ++info->nsegs; | |
1355 | #endif | |
682674b8 RH |
1356 | } |
1357 | } | |
1358 | ||
1359 | load_addr = loaddr; | |
8e62a717 | 1360 | if (ehdr->e_type == ET_DYN) { |
682674b8 RH |
1361 | /* The image indicates that it can be loaded anywhere. Find a |
1362 | location that can hold the memory space required. If the | |
1363 | image is pre-linked, LOADDR will be non-zero. Since we do | |
1364 | not supply MAP_FIXED here we'll use that address if and | |
1365 | only if it remains available. */ | |
1366 | load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, | |
1367 | MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, | |
1368 | -1, 0); | |
1369 | if (load_addr == -1) { | |
8e62a717 | 1370 | goto exit_perror; |
d97ef72e | 1371 | } |
bf858897 RH |
1372 | } else if (pinterp_name != NULL) { |
1373 | /* This is the main executable. Make sure that the low | |
1374 | address does not conflict with MMAP_MIN_ADDR or the | |
1375 | QEMU application itself. */ | |
1376 | #if defined(CONFIG_USE_GUEST_BASE) | |
1377 | /* | |
1378 | * In case where user has not explicitly set the guest_base, we | |
1379 | * probe here that should we set it automatically. | |
1380 | */ | |
1381 | if (!have_guest_base && !reserved_va) { | |
1382 | unsigned long host_start, real_start, host_size; | |
1383 | ||
1384 | /* Round addresses to page boundaries. */ | |
1385 | loaddr &= qemu_host_page_mask; | |
1386 | hiaddr = HOST_PAGE_ALIGN(hiaddr); | |
1387 | ||
1388 | if (loaddr < mmap_min_addr) { | |
1389 | host_start = HOST_PAGE_ALIGN(mmap_min_addr); | |
1390 | } else { | |
1391 | host_start = loaddr; | |
1392 | if (host_start != loaddr) { | |
1393 | errmsg = "Address overflow loading ELF binary"; | |
1394 | goto exit_errmsg; | |
1395 | } | |
1396 | } | |
1397 | host_size = hiaddr - loaddr; | |
1398 | while (1) { | |
1399 | /* Do not use mmap_find_vma here because that is limited to the | |
1400 | guest address space. We are going to make the | |
1401 | guest address space fit whatever we're given. */ | |
1402 | real_start = (unsigned long) | |
1403 | mmap((void *)host_start, host_size, PROT_NONE, | |
1404 | MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0); | |
1405 | if (real_start == (unsigned long)-1) { | |
1406 | goto exit_perror; | |
1407 | } | |
1408 | if (real_start == host_start) { | |
1409 | break; | |
1410 | } | |
1411 | /* That address didn't work. Unmap and try a different one. | |
1412 | The address the host picked because is typically right at | |
1413 | the top of the host address space and leaves the guest with | |
1414 | no usable address space. Resort to a linear search. We | |
1415 | already compensated for mmap_min_addr, so this should not | |
1416 | happen often. Probably means we got unlucky and host | |
1417 | address space randomization put a shared library somewhere | |
1418 | inconvenient. */ | |
1419 | munmap((void *)real_start, host_size); | |
1420 | host_start += qemu_host_page_size; | |
1421 | if (host_start == loaddr) { | |
1422 | /* Theoretically possible if host doesn't have any suitably | |
1423 | aligned areas. Normally the first mmap will fail. */ | |
1424 | errmsg = "Unable to find space for application"; | |
1425 | goto exit_errmsg; | |
1426 | } | |
1427 | } | |
1428 | qemu_log("Relocating guest address space from 0x" | |
1429 | TARGET_ABI_FMT_lx " to 0x%lx\n", loaddr, real_start); | |
1430 | guest_base = real_start - loaddr; | |
1431 | } | |
1432 | #endif | |
d97ef72e | 1433 | } |
682674b8 | 1434 | load_bias = load_addr - loaddr; |
d97ef72e | 1435 | |
1af02e83 MF |
1436 | #ifdef CONFIG_USE_FDPIC |
1437 | { | |
1438 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = | |
1439 | qemu_malloc(sizeof(*loadsegs) * info->nsegs); | |
1440 | ||
1441 | for (i = 0; i < ehdr->e_phnum; ++i) { | |
1442 | switch (phdr[i].p_type) { | |
1443 | case PT_DYNAMIC: | |
1444 | info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; | |
1445 | break; | |
1446 | case PT_LOAD: | |
1447 | loadsegs->addr = phdr[i].p_vaddr + load_bias; | |
1448 | loadsegs->p_vaddr = phdr[i].p_vaddr; | |
1449 | loadsegs->p_memsz = phdr[i].p_memsz; | |
1450 | ++loadsegs; | |
1451 | break; | |
1452 | } | |
1453 | } | |
1454 | } | |
1455 | #endif | |
1456 | ||
8e62a717 RH |
1457 | info->load_bias = load_bias; |
1458 | info->load_addr = load_addr; | |
1459 | info->entry = ehdr->e_entry + load_bias; | |
1460 | info->start_code = -1; | |
1461 | info->end_code = 0; | |
1462 | info->start_data = -1; | |
1463 | info->end_data = 0; | |
1464 | info->brk = 0; | |
1465 | ||
1466 | for (i = 0; i < ehdr->e_phnum; i++) { | |
1467 | struct elf_phdr *eppnt = phdr + i; | |
d97ef72e | 1468 | if (eppnt->p_type == PT_LOAD) { |
682674b8 | 1469 | abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; |
d97ef72e | 1470 | int elf_prot = 0; |
d97ef72e RH |
1471 | |
1472 | if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; | |
1473 | if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; | |
1474 | if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; | |
d97ef72e | 1475 | |
682674b8 RH |
1476 | vaddr = load_bias + eppnt->p_vaddr; |
1477 | vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); | |
1478 | vaddr_ps = TARGET_ELF_PAGESTART(vaddr); | |
1479 | ||
1480 | error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, | |
1481 | elf_prot, MAP_PRIVATE | MAP_FIXED, | |
8e62a717 | 1482 | image_fd, eppnt->p_offset - vaddr_po); |
09bfb054 | 1483 | if (error == -1) { |
8e62a717 | 1484 | goto exit_perror; |
09bfb054 | 1485 | } |
09bfb054 | 1486 | |
682674b8 RH |
1487 | vaddr_ef = vaddr + eppnt->p_filesz; |
1488 | vaddr_em = vaddr + eppnt->p_memsz; | |
31e31b8a | 1489 | |
cf129f3a | 1490 | /* If the load segment requests extra zeros (e.g. bss), map it. */ |
682674b8 RH |
1491 | if (vaddr_ef < vaddr_em) { |
1492 | zero_bss(vaddr_ef, vaddr_em, elf_prot); | |
cf129f3a | 1493 | } |
8e62a717 RH |
1494 | |
1495 | /* Find the full program boundaries. */ | |
1496 | if (elf_prot & PROT_EXEC) { | |
1497 | if (vaddr < info->start_code) { | |
1498 | info->start_code = vaddr; | |
1499 | } | |
1500 | if (vaddr_ef > info->end_code) { | |
1501 | info->end_code = vaddr_ef; | |
1502 | } | |
1503 | } | |
1504 | if (elf_prot & PROT_WRITE) { | |
1505 | if (vaddr < info->start_data) { | |
1506 | info->start_data = vaddr; | |
1507 | } | |
1508 | if (vaddr_ef > info->end_data) { | |
1509 | info->end_data = vaddr_ef; | |
1510 | } | |
1511 | if (vaddr_em > info->brk) { | |
1512 | info->brk = vaddr_em; | |
1513 | } | |
1514 | } | |
bf858897 RH |
1515 | } else if (eppnt->p_type == PT_INTERP && pinterp_name) { |
1516 | char *interp_name; | |
1517 | ||
1518 | if (*pinterp_name) { | |
1519 | errmsg = "Multiple PT_INTERP entries"; | |
1520 | goto exit_errmsg; | |
1521 | } | |
1522 | interp_name = malloc(eppnt->p_filesz); | |
1523 | if (!interp_name) { | |
1524 | goto exit_perror; | |
1525 | } | |
1526 | ||
1527 | if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { | |
1528 | memcpy(interp_name, bprm_buf + eppnt->p_offset, | |
1529 | eppnt->p_filesz); | |
1530 | } else { | |
1531 | retval = pread(image_fd, interp_name, eppnt->p_filesz, | |
1532 | eppnt->p_offset); | |
1533 | if (retval != eppnt->p_filesz) { | |
1534 | goto exit_perror; | |
1535 | } | |
1536 | } | |
1537 | if (interp_name[eppnt->p_filesz - 1] != 0) { | |
1538 | errmsg = "Invalid PT_INTERP entry"; | |
1539 | goto exit_errmsg; | |
1540 | } | |
1541 | *pinterp_name = interp_name; | |
d97ef72e | 1542 | } |
682674b8 | 1543 | } |
5fafdf24 | 1544 | |
8e62a717 RH |
1545 | if (info->end_data == 0) { |
1546 | info->start_data = info->end_code; | |
1547 | info->end_data = info->end_code; | |
1548 | info->brk = info->end_code; | |
1549 | } | |
1550 | ||
682674b8 | 1551 | if (qemu_log_enabled()) { |
8e62a717 | 1552 | load_symbols(ehdr, image_fd, load_bias); |
682674b8 | 1553 | } |
31e31b8a | 1554 | |
8e62a717 RH |
1555 | close(image_fd); |
1556 | return; | |
1557 | ||
1558 | exit_read: | |
1559 | if (retval >= 0) { | |
1560 | errmsg = "Incomplete read of file header"; | |
1561 | goto exit_errmsg; | |
1562 | } | |
1563 | exit_perror: | |
1564 | errmsg = strerror(errno); | |
1565 | exit_errmsg: | |
1566 | fprintf(stderr, "%s: %s\n", image_name, errmsg); | |
1567 | exit(-1); | |
1568 | } | |
1569 | ||
1570 | static void load_elf_interp(const char *filename, struct image_info *info, | |
1571 | char bprm_buf[BPRM_BUF_SIZE]) | |
1572 | { | |
1573 | int fd, retval; | |
1574 | ||
1575 | fd = open(path(filename), O_RDONLY); | |
1576 | if (fd < 0) { | |
1577 | goto exit_perror; | |
1578 | } | |
31e31b8a | 1579 | |
8e62a717 RH |
1580 | retval = read(fd, bprm_buf, BPRM_BUF_SIZE); |
1581 | if (retval < 0) { | |
1582 | goto exit_perror; | |
1583 | } | |
1584 | if (retval < BPRM_BUF_SIZE) { | |
1585 | memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); | |
1586 | } | |
1587 | ||
bf858897 | 1588 | load_elf_image(filename, fd, info, NULL, bprm_buf); |
8e62a717 RH |
1589 | return; |
1590 | ||
1591 | exit_perror: | |
1592 | fprintf(stderr, "%s: %s\n", filename, strerror(errno)); | |
1593 | exit(-1); | |
31e31b8a FB |
1594 | } |
1595 | ||
49918a75 PB |
1596 | static int symfind(const void *s0, const void *s1) |
1597 | { | |
1598 | struct elf_sym *key = (struct elf_sym *)s0; | |
1599 | struct elf_sym *sym = (struct elf_sym *)s1; | |
1600 | int result = 0; | |
1601 | if (key->st_value < sym->st_value) { | |
1602 | result = -1; | |
ec822001 | 1603 | } else if (key->st_value >= sym->st_value + sym->st_size) { |
49918a75 PB |
1604 | result = 1; |
1605 | } | |
1606 | return result; | |
1607 | } | |
1608 | ||
1609 | static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) | |
1610 | { | |
1611 | #if ELF_CLASS == ELFCLASS32 | |
1612 | struct elf_sym *syms = s->disas_symtab.elf32; | |
1613 | #else | |
1614 | struct elf_sym *syms = s->disas_symtab.elf64; | |
1615 | #endif | |
1616 | ||
1617 | // binary search | |
1618 | struct elf_sym key; | |
1619 | struct elf_sym *sym; | |
1620 | ||
1621 | key.st_value = orig_addr; | |
1622 | ||
1623 | sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind); | |
7cba04f6 | 1624 | if (sym != NULL) { |
49918a75 PB |
1625 | return s->disas_strtab + sym->st_name; |
1626 | } | |
1627 | ||
1628 | return ""; | |
1629 | } | |
1630 | ||
1631 | /* FIXME: This should use elf_ops.h */ | |
1632 | static int symcmp(const void *s0, const void *s1) | |
1633 | { | |
1634 | struct elf_sym *sym0 = (struct elf_sym *)s0; | |
1635 | struct elf_sym *sym1 = (struct elf_sym *)s1; | |
1636 | return (sym0->st_value < sym1->st_value) | |
1637 | ? -1 | |
1638 | : ((sym0->st_value > sym1->st_value) ? 1 : 0); | |
1639 | } | |
1640 | ||
689f936f | 1641 | /* Best attempt to load symbols from this ELF object. */ |
682674b8 | 1642 | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) |
689f936f | 1643 | { |
682674b8 RH |
1644 | int i, shnum, nsyms, sym_idx = 0, str_idx = 0; |
1645 | struct elf_shdr *shdr; | |
689f936f | 1646 | char *strings; |
e80cfcfc | 1647 | struct syminfo *s; |
8d79de6e | 1648 | struct elf_sym *syms, *new_syms; |
689f936f | 1649 | |
682674b8 RH |
1650 | shnum = hdr->e_shnum; |
1651 | i = shnum * sizeof(struct elf_shdr); | |
1652 | shdr = (struct elf_shdr *)alloca(i); | |
1653 | if (pread(fd, shdr, i, hdr->e_shoff) != i) { | |
1654 | return; | |
1655 | } | |
1656 | ||
1657 | bswap_shdr(shdr, shnum); | |
1658 | for (i = 0; i < shnum; ++i) { | |
1659 | if (shdr[i].sh_type == SHT_SYMTAB) { | |
1660 | sym_idx = i; | |
1661 | str_idx = shdr[i].sh_link; | |
49918a75 PB |
1662 | goto found; |
1663 | } | |
689f936f | 1664 | } |
682674b8 RH |
1665 | |
1666 | /* There will be no symbol table if the file was stripped. */ | |
1667 | return; | |
689f936f FB |
1668 | |
1669 | found: | |
682674b8 | 1670 | /* Now know where the strtab and symtab are. Snarf them. */ |
e80cfcfc | 1671 | s = malloc(sizeof(*s)); |
682674b8 | 1672 | if (!s) { |
49918a75 | 1673 | return; |
682674b8 | 1674 | } |
5fafdf24 | 1675 | |
682674b8 RH |
1676 | i = shdr[str_idx].sh_size; |
1677 | s->disas_strtab = strings = malloc(i); | |
1678 | if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { | |
1679 | free(s); | |
1680 | free(strings); | |
49918a75 | 1681 | return; |
682674b8 | 1682 | } |
49918a75 | 1683 | |
682674b8 RH |
1684 | i = shdr[sym_idx].sh_size; |
1685 | syms = malloc(i); | |
1686 | if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { | |
1687 | free(s); | |
1688 | free(strings); | |
1689 | free(syms); | |
1690 | return; | |
1691 | } | |
31e31b8a | 1692 | |
682674b8 RH |
1693 | nsyms = i / sizeof(struct elf_sym); |
1694 | for (i = 0; i < nsyms; ) { | |
49918a75 | 1695 | bswap_sym(syms + i); |
682674b8 RH |
1696 | /* Throw away entries which we do not need. */ |
1697 | if (syms[i].st_shndx == SHN_UNDEF | |
1698 | || syms[i].st_shndx >= SHN_LORESERVE | |
1699 | || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { | |
1700 | if (i < --nsyms) { | |
49918a75 PB |
1701 | syms[i] = syms[nsyms]; |
1702 | } | |
682674b8 | 1703 | } else { |
49918a75 | 1704 | #if defined(TARGET_ARM) || defined (TARGET_MIPS) |
682674b8 RH |
1705 | /* The bottom address bit marks a Thumb or MIPS16 symbol. */ |
1706 | syms[i].st_value &= ~(target_ulong)1; | |
0774bed1 | 1707 | #endif |
682674b8 RH |
1708 | syms[i].st_value += load_bias; |
1709 | i++; | |
1710 | } | |
0774bed1 | 1711 | } |
49918a75 | 1712 | |
5d5c9930 RH |
1713 | /* Attempt to free the storage associated with the local symbols |
1714 | that we threw away. Whether or not this has any effect on the | |
1715 | memory allocation depends on the malloc implementation and how | |
1716 | many symbols we managed to discard. */ | |
8d79de6e SW |
1717 | new_syms = realloc(syms, nsyms * sizeof(*syms)); |
1718 | if (new_syms == NULL) { | |
5d5c9930 | 1719 | free(s); |
8d79de6e | 1720 | free(syms); |
5d5c9930 RH |
1721 | free(strings); |
1722 | return; | |
1723 | } | |
8d79de6e | 1724 | syms = new_syms; |
5d5c9930 | 1725 | |
49918a75 | 1726 | qsort(syms, nsyms, sizeof(*syms), symcmp); |
689f936f | 1727 | |
49918a75 PB |
1728 | s->disas_num_syms = nsyms; |
1729 | #if ELF_CLASS == ELFCLASS32 | |
1730 | s->disas_symtab.elf32 = syms; | |
49918a75 PB |
1731 | #else |
1732 | s->disas_symtab.elf64 = syms; | |
49918a75 | 1733 | #endif |
682674b8 | 1734 | s->lookup_symbol = lookup_symbolxx; |
e80cfcfc FB |
1735 | s->next = syminfos; |
1736 | syminfos = s; | |
689f936f | 1737 | } |
31e31b8a | 1738 | |
e5fe0c52 PB |
1739 | int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, |
1740 | struct image_info * info) | |
31e31b8a | 1741 | { |
8e62a717 | 1742 | struct image_info interp_info; |
31e31b8a | 1743 | struct elfhdr elf_ex; |
8e62a717 | 1744 | char *elf_interpreter = NULL; |
31e31b8a | 1745 | |
bf858897 RH |
1746 | info->start_mmap = (abi_ulong)ELF_START_MMAP; |
1747 | info->mmap = 0; | |
1748 | info->rss = 0; | |
1749 | ||
1750 | load_elf_image(bprm->filename, bprm->fd, info, | |
1751 | &elf_interpreter, bprm->buf); | |
31e31b8a | 1752 | |
bf858897 RH |
1753 | /* ??? We need a copy of the elf header for passing to create_elf_tables. |
1754 | If we do nothing, we'll have overwritten this when we re-use bprm->buf | |
1755 | when we load the interpreter. */ | |
1756 | elf_ex = *(struct elfhdr *)bprm->buf; | |
31e31b8a | 1757 | |
e5fe0c52 PB |
1758 | bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); |
1759 | bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p); | |
1760 | bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p); | |
1761 | if (!bprm->p) { | |
bf858897 RH |
1762 | fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); |
1763 | exit(-1); | |
379f6698 | 1764 | } |
379f6698 | 1765 | |
31e31b8a FB |
1766 | /* Do this so that we can load the interpreter, if need be. We will |
1767 | change some of these later */ | |
31e31b8a | 1768 | bprm->p = setup_arg_pages(bprm->p, bprm, info); |
31e31b8a | 1769 | |
8e62a717 RH |
1770 | if (elf_interpreter) { |
1771 | load_elf_interp(elf_interpreter, &interp_info, bprm->buf); | |
31e31b8a | 1772 | |
8e62a717 RH |
1773 | /* If the program interpreter is one of these two, then assume |
1774 | an iBCS2 image. Otherwise assume a native linux image. */ | |
1775 | ||
1776 | if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 | |
1777 | || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { | |
1778 | info->personality = PER_SVR4; | |
31e31b8a | 1779 | |
8e62a717 RH |
1780 | /* Why this, you ask??? Well SVr4 maps page 0 as read-only, |
1781 | and some applications "depend" upon this behavior. Since | |
1782 | we do not have the power to recompile these, we emulate | |
1783 | the SVr4 behavior. Sigh. */ | |
1784 | target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, | |
1785 | MAP_FIXED | MAP_PRIVATE, -1, 0); | |
1786 | } | |
31e31b8a FB |
1787 | } |
1788 | ||
8e62a717 RH |
1789 | bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, |
1790 | info, (elf_interpreter ? &interp_info : NULL)); | |
1791 | info->start_stack = bprm->p; | |
1792 | ||
1793 | /* If we have an interpreter, set that as the program's entry point. | |
1794 | Copy the load_addr as well, to help PPC64 interpret the entry | |
1795 | point as a function descriptor. Do this after creating elf tables | |
1796 | so that we copy the original program entry point into the AUXV. */ | |
1797 | if (elf_interpreter) { | |
1798 | info->load_addr = interp_info.load_addr; | |
1799 | info->entry = interp_info.entry; | |
bf858897 | 1800 | free(elf_interpreter); |
8e62a717 | 1801 | } |
31e31b8a | 1802 | |
edf8e2af MW |
1803 | #ifdef USE_ELF_CORE_DUMP |
1804 | bprm->core_dump = &elf_core_dump; | |
1805 | #endif | |
1806 | ||
31e31b8a FB |
1807 | return 0; |
1808 | } | |
1809 | ||
edf8e2af | 1810 | #ifdef USE_ELF_CORE_DUMP |
edf8e2af MW |
1811 | /* |
1812 | * Definitions to generate Intel SVR4-like core files. | |
a2547a13 | 1813 | * These mostly have the same names as the SVR4 types with "target_elf_" |
edf8e2af MW |
1814 | * tacked on the front to prevent clashes with linux definitions, |
1815 | * and the typedef forms have been avoided. This is mostly like | |
1816 | * the SVR4 structure, but more Linuxy, with things that Linux does | |
1817 | * not support and which gdb doesn't really use excluded. | |
1818 | * | |
1819 | * Fields we don't dump (their contents is zero) in linux-user qemu | |
1820 | * are marked with XXX. | |
1821 | * | |
1822 | * Core dump code is copied from linux kernel (fs/binfmt_elf.c). | |
1823 | * | |
1824 | * Porting ELF coredump for target is (quite) simple process. First you | |
dd0a3651 | 1825 | * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for |
edf8e2af MW |
1826 | * the target resides): |
1827 | * | |
1828 | * #define USE_ELF_CORE_DUMP | |
1829 | * | |
1830 | * Next you define type of register set used for dumping. ELF specification | |
1831 | * says that it needs to be array of elf_greg_t that has size of ELF_NREG. | |
1832 | * | |
c227f099 | 1833 | * typedef <target_regtype> target_elf_greg_t; |
edf8e2af | 1834 | * #define ELF_NREG <number of registers> |
c227f099 | 1835 | * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
edf8e2af | 1836 | * |
edf8e2af MW |
1837 | * Last step is to implement target specific function that copies registers |
1838 | * from given cpu into just specified register set. Prototype is: | |
1839 | * | |
c227f099 | 1840 | * static void elf_core_copy_regs(taret_elf_gregset_t *regs, |
a2547a13 | 1841 | * const CPUState *env); |
edf8e2af MW |
1842 | * |
1843 | * Parameters: | |
1844 | * regs - copy register values into here (allocated and zeroed by caller) | |
1845 | * env - copy registers from here | |
1846 | * | |
1847 | * Example for ARM target is provided in this file. | |
1848 | */ | |
1849 | ||
1850 | /* An ELF note in memory */ | |
1851 | struct memelfnote { | |
1852 | const char *name; | |
1853 | size_t namesz; | |
1854 | size_t namesz_rounded; | |
1855 | int type; | |
1856 | size_t datasz; | |
80f5ce75 | 1857 | size_t datasz_rounded; |
edf8e2af MW |
1858 | void *data; |
1859 | size_t notesz; | |
1860 | }; | |
1861 | ||
a2547a13 | 1862 | struct target_elf_siginfo { |
80f5ce75 LV |
1863 | target_int si_signo; /* signal number */ |
1864 | target_int si_code; /* extra code */ | |
1865 | target_int si_errno; /* errno */ | |
edf8e2af MW |
1866 | }; |
1867 | ||
a2547a13 LD |
1868 | struct target_elf_prstatus { |
1869 | struct target_elf_siginfo pr_info; /* Info associated with signal */ | |
80f5ce75 | 1870 | target_short pr_cursig; /* Current signal */ |
edf8e2af MW |
1871 | target_ulong pr_sigpend; /* XXX */ |
1872 | target_ulong pr_sighold; /* XXX */ | |
c227f099 AL |
1873 | target_pid_t pr_pid; |
1874 | target_pid_t pr_ppid; | |
1875 | target_pid_t pr_pgrp; | |
1876 | target_pid_t pr_sid; | |
edf8e2af MW |
1877 | struct target_timeval pr_utime; /* XXX User time */ |
1878 | struct target_timeval pr_stime; /* XXX System time */ | |
1879 | struct target_timeval pr_cutime; /* XXX Cumulative user time */ | |
1880 | struct target_timeval pr_cstime; /* XXX Cumulative system time */ | |
c227f099 | 1881 | target_elf_gregset_t pr_reg; /* GP registers */ |
80f5ce75 | 1882 | target_int pr_fpvalid; /* XXX */ |
edf8e2af MW |
1883 | }; |
1884 | ||
1885 | #define ELF_PRARGSZ (80) /* Number of chars for args */ | |
1886 | ||
a2547a13 | 1887 | struct target_elf_prpsinfo { |
edf8e2af MW |
1888 | char pr_state; /* numeric process state */ |
1889 | char pr_sname; /* char for pr_state */ | |
1890 | char pr_zomb; /* zombie */ | |
1891 | char pr_nice; /* nice val */ | |
1892 | target_ulong pr_flag; /* flags */ | |
c227f099 AL |
1893 | target_uid_t pr_uid; |
1894 | target_gid_t pr_gid; | |
1895 | target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; | |
edf8e2af MW |
1896 | /* Lots missing */ |
1897 | char pr_fname[16]; /* filename of executable */ | |
1898 | char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ | |
1899 | }; | |
1900 | ||
1901 | /* Here is the structure in which status of each thread is captured. */ | |
1902 | struct elf_thread_status { | |
72cf2d4f | 1903 | QTAILQ_ENTRY(elf_thread_status) ets_link; |
a2547a13 | 1904 | struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ |
edf8e2af MW |
1905 | #if 0 |
1906 | elf_fpregset_t fpu; /* NT_PRFPREG */ | |
1907 | struct task_struct *thread; | |
1908 | elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ | |
1909 | #endif | |
1910 | struct memelfnote notes[1]; | |
1911 | int num_notes; | |
1912 | }; | |
1913 | ||
1914 | struct elf_note_info { | |
1915 | struct memelfnote *notes; | |
a2547a13 LD |
1916 | struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ |
1917 | struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ | |
edf8e2af | 1918 | |
72cf2d4f | 1919 | QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; |
edf8e2af MW |
1920 | #if 0 |
1921 | /* | |
1922 | * Current version of ELF coredump doesn't support | |
1923 | * dumping fp regs etc. | |
1924 | */ | |
1925 | elf_fpregset_t *fpu; | |
1926 | elf_fpxregset_t *xfpu; | |
1927 | int thread_status_size; | |
1928 | #endif | |
1929 | int notes_size; | |
1930 | int numnote; | |
1931 | }; | |
1932 | ||
1933 | struct vm_area_struct { | |
1934 | abi_ulong vma_start; /* start vaddr of memory region */ | |
1935 | abi_ulong vma_end; /* end vaddr of memory region */ | |
1936 | abi_ulong vma_flags; /* protection etc. flags for the region */ | |
72cf2d4f | 1937 | QTAILQ_ENTRY(vm_area_struct) vma_link; |
edf8e2af MW |
1938 | }; |
1939 | ||
1940 | struct mm_struct { | |
72cf2d4f | 1941 | QTAILQ_HEAD(, vm_area_struct) mm_mmap; |
edf8e2af MW |
1942 | int mm_count; /* number of mappings */ |
1943 | }; | |
1944 | ||
1945 | static struct mm_struct *vma_init(void); | |
1946 | static void vma_delete(struct mm_struct *); | |
1947 | static int vma_add_mapping(struct mm_struct *, abi_ulong, | |
d97ef72e | 1948 | abi_ulong, abi_ulong); |
edf8e2af MW |
1949 | static int vma_get_mapping_count(const struct mm_struct *); |
1950 | static struct vm_area_struct *vma_first(const struct mm_struct *); | |
1951 | static struct vm_area_struct *vma_next(struct vm_area_struct *); | |
1952 | static abi_ulong vma_dump_size(const struct vm_area_struct *); | |
b480d9b7 | 1953 | static int vma_walker(void *priv, abi_ulong start, abi_ulong end, |
d97ef72e | 1954 | unsigned long flags); |
edf8e2af MW |
1955 | |
1956 | static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); | |
1957 | static void fill_note(struct memelfnote *, const char *, int, | |
d97ef72e | 1958 | unsigned int, void *); |
a2547a13 LD |
1959 | static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); |
1960 | static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); | |
edf8e2af MW |
1961 | static void fill_auxv_note(struct memelfnote *, const TaskState *); |
1962 | static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); | |
1963 | static size_t note_size(const struct memelfnote *); | |
1964 | static void free_note_info(struct elf_note_info *); | |
1965 | static int fill_note_info(struct elf_note_info *, long, const CPUState *); | |
1966 | static void fill_thread_info(struct elf_note_info *, const CPUState *); | |
1967 | static int core_dump_filename(const TaskState *, char *, size_t); | |
1968 | ||
1969 | static int dump_write(int, const void *, size_t); | |
1970 | static int write_note(struct memelfnote *, int); | |
1971 | static int write_note_info(struct elf_note_info *, int); | |
1972 | ||
1973 | #ifdef BSWAP_NEEDED | |
a2547a13 | 1974 | static void bswap_prstatus(struct target_elf_prstatus *prstatus) |
edf8e2af MW |
1975 | { |
1976 | prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo); | |
1977 | prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code); | |
1978 | prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno); | |
1979 | prstatus->pr_cursig = tswap16(prstatus->pr_cursig); | |
1980 | prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend); | |
1981 | prstatus->pr_sighold = tswapl(prstatus->pr_sighold); | |
1982 | prstatus->pr_pid = tswap32(prstatus->pr_pid); | |
1983 | prstatus->pr_ppid = tswap32(prstatus->pr_ppid); | |
1984 | prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); | |
1985 | prstatus->pr_sid = tswap32(prstatus->pr_sid); | |
1986 | /* cpu times are not filled, so we skip them */ | |
1987 | /* regs should be in correct format already */ | |
1988 | prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); | |
1989 | } | |
1990 | ||
a2547a13 | 1991 | static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) |
edf8e2af MW |
1992 | { |
1993 | psinfo->pr_flag = tswapl(psinfo->pr_flag); | |
1994 | psinfo->pr_uid = tswap16(psinfo->pr_uid); | |
1995 | psinfo->pr_gid = tswap16(psinfo->pr_gid); | |
1996 | psinfo->pr_pid = tswap32(psinfo->pr_pid); | |
1997 | psinfo->pr_ppid = tswap32(psinfo->pr_ppid); | |
1998 | psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); | |
1999 | psinfo->pr_sid = tswap32(psinfo->pr_sid); | |
2000 | } | |
991f8f0c RH |
2001 | |
2002 | static void bswap_note(struct elf_note *en) | |
2003 | { | |
2004 | bswap32s(&en->n_namesz); | |
2005 | bswap32s(&en->n_descsz); | |
2006 | bswap32s(&en->n_type); | |
2007 | } | |
2008 | #else | |
2009 | static inline void bswap_prstatus(struct target_elf_prstatus *p) { } | |
2010 | static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} | |
2011 | static inline void bswap_note(struct elf_note *en) { } | |
edf8e2af MW |
2012 | #endif /* BSWAP_NEEDED */ |
2013 | ||
2014 | /* | |
2015 | * Minimal support for linux memory regions. These are needed | |
2016 | * when we are finding out what memory exactly belongs to | |
2017 | * emulated process. No locks needed here, as long as | |
2018 | * thread that received the signal is stopped. | |
2019 | */ | |
2020 | ||
2021 | static struct mm_struct *vma_init(void) | |
2022 | { | |
2023 | struct mm_struct *mm; | |
2024 | ||
2025 | if ((mm = qemu_malloc(sizeof (*mm))) == NULL) | |
2026 | return (NULL); | |
2027 | ||
2028 | mm->mm_count = 0; | |
72cf2d4f | 2029 | QTAILQ_INIT(&mm->mm_mmap); |
edf8e2af MW |
2030 | |
2031 | return (mm); | |
2032 | } | |
2033 | ||
2034 | static void vma_delete(struct mm_struct *mm) | |
2035 | { | |
2036 | struct vm_area_struct *vma; | |
2037 | ||
2038 | while ((vma = vma_first(mm)) != NULL) { | |
72cf2d4f | 2039 | QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); |
edf8e2af MW |
2040 | qemu_free(vma); |
2041 | } | |
2042 | qemu_free(mm); | |
2043 | } | |
2044 | ||
2045 | static int vma_add_mapping(struct mm_struct *mm, abi_ulong start, | |
d97ef72e | 2046 | abi_ulong end, abi_ulong flags) |
edf8e2af MW |
2047 | { |
2048 | struct vm_area_struct *vma; | |
2049 | ||
2050 | if ((vma = qemu_mallocz(sizeof (*vma))) == NULL) | |
2051 | return (-1); | |
2052 | ||
2053 | vma->vma_start = start; | |
2054 | vma->vma_end = end; | |
2055 | vma->vma_flags = flags; | |
2056 | ||
72cf2d4f | 2057 | QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); |
edf8e2af MW |
2058 | mm->mm_count++; |
2059 | ||
2060 | return (0); | |
2061 | } | |
2062 | ||
2063 | static struct vm_area_struct *vma_first(const struct mm_struct *mm) | |
2064 | { | |
72cf2d4f | 2065 | return (QTAILQ_FIRST(&mm->mm_mmap)); |
edf8e2af MW |
2066 | } |
2067 | ||
2068 | static struct vm_area_struct *vma_next(struct vm_area_struct *vma) | |
2069 | { | |
72cf2d4f | 2070 | return (QTAILQ_NEXT(vma, vma_link)); |
edf8e2af MW |
2071 | } |
2072 | ||
2073 | static int vma_get_mapping_count(const struct mm_struct *mm) | |
2074 | { | |
2075 | return (mm->mm_count); | |
2076 | } | |
2077 | ||
2078 | /* | |
2079 | * Calculate file (dump) size of given memory region. | |
2080 | */ | |
2081 | static abi_ulong vma_dump_size(const struct vm_area_struct *vma) | |
2082 | { | |
2083 | /* if we cannot even read the first page, skip it */ | |
2084 | if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) | |
2085 | return (0); | |
2086 | ||
2087 | /* | |
2088 | * Usually we don't dump executable pages as they contain | |
2089 | * non-writable code that debugger can read directly from | |
2090 | * target library etc. However, thread stacks are marked | |
2091 | * also executable so we read in first page of given region | |
2092 | * and check whether it contains elf header. If there is | |
2093 | * no elf header, we dump it. | |
2094 | */ | |
2095 | if (vma->vma_flags & PROT_EXEC) { | |
2096 | char page[TARGET_PAGE_SIZE]; | |
2097 | ||
2098 | copy_from_user(page, vma->vma_start, sizeof (page)); | |
2099 | if ((page[EI_MAG0] == ELFMAG0) && | |
2100 | (page[EI_MAG1] == ELFMAG1) && | |
2101 | (page[EI_MAG2] == ELFMAG2) && | |
2102 | (page[EI_MAG3] == ELFMAG3)) { | |
2103 | /* | |
2104 | * Mappings are possibly from ELF binary. Don't dump | |
2105 | * them. | |
2106 | */ | |
2107 | return (0); | |
2108 | } | |
2109 | } | |
2110 | ||
2111 | return (vma->vma_end - vma->vma_start); | |
2112 | } | |
2113 | ||
b480d9b7 | 2114 | static int vma_walker(void *priv, abi_ulong start, abi_ulong end, |
d97ef72e | 2115 | unsigned long flags) |
edf8e2af MW |
2116 | { |
2117 | struct mm_struct *mm = (struct mm_struct *)priv; | |
2118 | ||
edf8e2af MW |
2119 | vma_add_mapping(mm, start, end, flags); |
2120 | return (0); | |
2121 | } | |
2122 | ||
2123 | static void fill_note(struct memelfnote *note, const char *name, int type, | |
d97ef72e | 2124 | unsigned int sz, void *data) |
edf8e2af MW |
2125 | { |
2126 | unsigned int namesz; | |
2127 | ||
2128 | namesz = strlen(name) + 1; | |
2129 | note->name = name; | |
2130 | note->namesz = namesz; | |
2131 | note->namesz_rounded = roundup(namesz, sizeof (int32_t)); | |
2132 | note->type = type; | |
80f5ce75 LV |
2133 | note->datasz = sz; |
2134 | note->datasz_rounded = roundup(sz, sizeof (int32_t)); | |
2135 | ||
edf8e2af MW |
2136 | note->data = data; |
2137 | ||
2138 | /* | |
2139 | * We calculate rounded up note size here as specified by | |
2140 | * ELF document. | |
2141 | */ | |
2142 | note->notesz = sizeof (struct elf_note) + | |
80f5ce75 | 2143 | note->namesz_rounded + note->datasz_rounded; |
edf8e2af MW |
2144 | } |
2145 | ||
2146 | static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, | |
d97ef72e | 2147 | uint32_t flags) |
edf8e2af MW |
2148 | { |
2149 | (void) memset(elf, 0, sizeof(*elf)); | |
2150 | ||
2151 | (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); | |
2152 | elf->e_ident[EI_CLASS] = ELF_CLASS; | |
2153 | elf->e_ident[EI_DATA] = ELF_DATA; | |
2154 | elf->e_ident[EI_VERSION] = EV_CURRENT; | |
2155 | elf->e_ident[EI_OSABI] = ELF_OSABI; | |
2156 | ||
2157 | elf->e_type = ET_CORE; | |
2158 | elf->e_machine = machine; | |
2159 | elf->e_version = EV_CURRENT; | |
2160 | elf->e_phoff = sizeof(struct elfhdr); | |
2161 | elf->e_flags = flags; | |
2162 | elf->e_ehsize = sizeof(struct elfhdr); | |
2163 | elf->e_phentsize = sizeof(struct elf_phdr); | |
2164 | elf->e_phnum = segs; | |
2165 | ||
edf8e2af | 2166 | bswap_ehdr(elf); |
edf8e2af MW |
2167 | } |
2168 | ||
2169 | static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) | |
2170 | { | |
2171 | phdr->p_type = PT_NOTE; | |
2172 | phdr->p_offset = offset; | |
2173 | phdr->p_vaddr = 0; | |
2174 | phdr->p_paddr = 0; | |
2175 | phdr->p_filesz = sz; | |
2176 | phdr->p_memsz = 0; | |
2177 | phdr->p_flags = 0; | |
2178 | phdr->p_align = 0; | |
2179 | ||
991f8f0c | 2180 | bswap_phdr(phdr, 1); |
edf8e2af MW |
2181 | } |
2182 | ||
2183 | static size_t note_size(const struct memelfnote *note) | |
2184 | { | |
2185 | return (note->notesz); | |
2186 | } | |
2187 | ||
a2547a13 | 2188 | static void fill_prstatus(struct target_elf_prstatus *prstatus, |
d97ef72e | 2189 | const TaskState *ts, int signr) |
edf8e2af MW |
2190 | { |
2191 | (void) memset(prstatus, 0, sizeof (*prstatus)); | |
2192 | prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; | |
2193 | prstatus->pr_pid = ts->ts_tid; | |
2194 | prstatus->pr_ppid = getppid(); | |
2195 | prstatus->pr_pgrp = getpgrp(); | |
2196 | prstatus->pr_sid = getsid(0); | |
2197 | ||
edf8e2af | 2198 | bswap_prstatus(prstatus); |
edf8e2af MW |
2199 | } |
2200 | ||
a2547a13 | 2201 | static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) |
edf8e2af MW |
2202 | { |
2203 | char *filename, *base_filename; | |
2204 | unsigned int i, len; | |
2205 | ||
2206 | (void) memset(psinfo, 0, sizeof (*psinfo)); | |
2207 | ||
2208 | len = ts->info->arg_end - ts->info->arg_start; | |
2209 | if (len >= ELF_PRARGSZ) | |
2210 | len = ELF_PRARGSZ - 1; | |
2211 | if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) | |
2212 | return -EFAULT; | |
2213 | for (i = 0; i < len; i++) | |
2214 | if (psinfo->pr_psargs[i] == 0) | |
2215 | psinfo->pr_psargs[i] = ' '; | |
2216 | psinfo->pr_psargs[len] = 0; | |
2217 | ||
2218 | psinfo->pr_pid = getpid(); | |
2219 | psinfo->pr_ppid = getppid(); | |
2220 | psinfo->pr_pgrp = getpgrp(); | |
2221 | psinfo->pr_sid = getsid(0); | |
2222 | psinfo->pr_uid = getuid(); | |
2223 | psinfo->pr_gid = getgid(); | |
2224 | ||
2225 | filename = strdup(ts->bprm->filename); | |
2226 | base_filename = strdup(basename(filename)); | |
2227 | (void) strncpy(psinfo->pr_fname, base_filename, | |
d97ef72e | 2228 | sizeof(psinfo->pr_fname)); |
edf8e2af MW |
2229 | free(base_filename); |
2230 | free(filename); | |
2231 | ||
edf8e2af | 2232 | bswap_psinfo(psinfo); |
edf8e2af MW |
2233 | return (0); |
2234 | } | |
2235 | ||
2236 | static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) | |
2237 | { | |
2238 | elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; | |
2239 | elf_addr_t orig_auxv = auxv; | |
2240 | abi_ulong val; | |
2241 | void *ptr; | |
2242 | int i, len; | |
2243 | ||
2244 | /* | |
2245 | * Auxiliary vector is stored in target process stack. It contains | |
2246 | * {type, value} pairs that we need to dump into note. This is not | |
2247 | * strictly necessary but we do it here for sake of completeness. | |
2248 | */ | |
2249 | ||
2250 | /* find out lenght of the vector, AT_NULL is terminator */ | |
2251 | i = len = 0; | |
2252 | do { | |
2253 | get_user_ual(val, auxv); | |
2254 | i += 2; | |
2255 | auxv += 2 * sizeof (elf_addr_t); | |
2256 | } while (val != AT_NULL); | |
2257 | len = i * sizeof (elf_addr_t); | |
2258 | ||
2259 | /* read in whole auxv vector and copy it to memelfnote */ | |
2260 | ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); | |
2261 | if (ptr != NULL) { | |
2262 | fill_note(note, "CORE", NT_AUXV, len, ptr); | |
2263 | unlock_user(ptr, auxv, len); | |
2264 | } | |
2265 | } | |
2266 | ||
2267 | /* | |
2268 | * Constructs name of coredump file. We have following convention | |
2269 | * for the name: | |
2270 | * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core | |
2271 | * | |
2272 | * Returns 0 in case of success, -1 otherwise (errno is set). | |
2273 | */ | |
2274 | static int core_dump_filename(const TaskState *ts, char *buf, | |
d97ef72e | 2275 | size_t bufsize) |
edf8e2af MW |
2276 | { |
2277 | char timestamp[64]; | |
2278 | char *filename = NULL; | |
2279 | char *base_filename = NULL; | |
2280 | struct timeval tv; | |
2281 | struct tm tm; | |
2282 | ||
2283 | assert(bufsize >= PATH_MAX); | |
2284 | ||
2285 | if (gettimeofday(&tv, NULL) < 0) { | |
2286 | (void) fprintf(stderr, "unable to get current timestamp: %s", | |
d97ef72e | 2287 | strerror(errno)); |
edf8e2af MW |
2288 | return (-1); |
2289 | } | |
2290 | ||
2291 | filename = strdup(ts->bprm->filename); | |
2292 | base_filename = strdup(basename(filename)); | |
2293 | (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", | |
d97ef72e | 2294 | localtime_r(&tv.tv_sec, &tm)); |
edf8e2af | 2295 | (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", |
d97ef72e | 2296 | base_filename, timestamp, (int)getpid()); |
edf8e2af MW |
2297 | free(base_filename); |
2298 | free(filename); | |
2299 | ||
2300 | return (0); | |
2301 | } | |
2302 | ||
2303 | static int dump_write(int fd, const void *ptr, size_t size) | |
2304 | { | |
2305 | const char *bufp = (const char *)ptr; | |
2306 | ssize_t bytes_written, bytes_left; | |
2307 | struct rlimit dumpsize; | |
2308 | off_t pos; | |
2309 | ||
2310 | bytes_written = 0; | |
2311 | getrlimit(RLIMIT_CORE, &dumpsize); | |
2312 | if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { | |
2313 | if (errno == ESPIPE) { /* not a seekable stream */ | |
2314 | bytes_left = size; | |
2315 | } else { | |
2316 | return pos; | |
2317 | } | |
2318 | } else { | |
2319 | if (dumpsize.rlim_cur <= pos) { | |
2320 | return -1; | |
2321 | } else if (dumpsize.rlim_cur == RLIM_INFINITY) { | |
2322 | bytes_left = size; | |
2323 | } else { | |
2324 | size_t limit_left=dumpsize.rlim_cur - pos; | |
2325 | bytes_left = limit_left >= size ? size : limit_left ; | |
2326 | } | |
2327 | } | |
2328 | ||
2329 | /* | |
2330 | * In normal conditions, single write(2) should do but | |
2331 | * in case of socket etc. this mechanism is more portable. | |
2332 | */ | |
2333 | do { | |
2334 | bytes_written = write(fd, bufp, bytes_left); | |
2335 | if (bytes_written < 0) { | |
2336 | if (errno == EINTR) | |
2337 | continue; | |
2338 | return (-1); | |
2339 | } else if (bytes_written == 0) { /* eof */ | |
2340 | return (-1); | |
2341 | } | |
2342 | bufp += bytes_written; | |
2343 | bytes_left -= bytes_written; | |
2344 | } while (bytes_left > 0); | |
2345 | ||
2346 | return (0); | |
2347 | } | |
2348 | ||
2349 | static int write_note(struct memelfnote *men, int fd) | |
2350 | { | |
2351 | struct elf_note en; | |
2352 | ||
2353 | en.n_namesz = men->namesz; | |
2354 | en.n_type = men->type; | |
2355 | en.n_descsz = men->datasz; | |
2356 | ||
edf8e2af | 2357 | bswap_note(&en); |
edf8e2af MW |
2358 | |
2359 | if (dump_write(fd, &en, sizeof(en)) != 0) | |
2360 | return (-1); | |
2361 | if (dump_write(fd, men->name, men->namesz_rounded) != 0) | |
2362 | return (-1); | |
80f5ce75 | 2363 | if (dump_write(fd, men->data, men->datasz_rounded) != 0) |
edf8e2af MW |
2364 | return (-1); |
2365 | ||
2366 | return (0); | |
2367 | } | |
2368 | ||
2369 | static void fill_thread_info(struct elf_note_info *info, const CPUState *env) | |
2370 | { | |
2371 | TaskState *ts = (TaskState *)env->opaque; | |
2372 | struct elf_thread_status *ets; | |
2373 | ||
2374 | ets = qemu_mallocz(sizeof (*ets)); | |
2375 | ets->num_notes = 1; /* only prstatus is dumped */ | |
2376 | fill_prstatus(&ets->prstatus, ts, 0); | |
2377 | elf_core_copy_regs(&ets->prstatus.pr_reg, env); | |
2378 | fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), | |
d97ef72e | 2379 | &ets->prstatus); |
edf8e2af | 2380 | |
72cf2d4f | 2381 | QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); |
edf8e2af MW |
2382 | |
2383 | info->notes_size += note_size(&ets->notes[0]); | |
2384 | } | |
2385 | ||
2386 | static int fill_note_info(struct elf_note_info *info, | |
d97ef72e | 2387 | long signr, const CPUState *env) |
edf8e2af MW |
2388 | { |
2389 | #define NUMNOTES 3 | |
2390 | CPUState *cpu = NULL; | |
2391 | TaskState *ts = (TaskState *)env->opaque; | |
2392 | int i; | |
2393 | ||
2394 | (void) memset(info, 0, sizeof (*info)); | |
2395 | ||
72cf2d4f | 2396 | QTAILQ_INIT(&info->thread_list); |
edf8e2af MW |
2397 | |
2398 | info->notes = qemu_mallocz(NUMNOTES * sizeof (struct memelfnote)); | |
2399 | if (info->notes == NULL) | |
2400 | return (-ENOMEM); | |
2401 | info->prstatus = qemu_mallocz(sizeof (*info->prstatus)); | |
2402 | if (info->prstatus == NULL) | |
2403 | return (-ENOMEM); | |
2404 | info->psinfo = qemu_mallocz(sizeof (*info->psinfo)); | |
2405 | if (info->prstatus == NULL) | |
2406 | return (-ENOMEM); | |
2407 | ||
2408 | /* | |
2409 | * First fill in status (and registers) of current thread | |
2410 | * including process info & aux vector. | |
2411 | */ | |
2412 | fill_prstatus(info->prstatus, ts, signr); | |
2413 | elf_core_copy_regs(&info->prstatus->pr_reg, env); | |
2414 | fill_note(&info->notes[0], "CORE", NT_PRSTATUS, | |
d97ef72e | 2415 | sizeof (*info->prstatus), info->prstatus); |
edf8e2af MW |
2416 | fill_psinfo(info->psinfo, ts); |
2417 | fill_note(&info->notes[1], "CORE", NT_PRPSINFO, | |
d97ef72e | 2418 | sizeof (*info->psinfo), info->psinfo); |
edf8e2af MW |
2419 | fill_auxv_note(&info->notes[2], ts); |
2420 | info->numnote = 3; | |
2421 | ||
2422 | info->notes_size = 0; | |
2423 | for (i = 0; i < info->numnote; i++) | |
2424 | info->notes_size += note_size(&info->notes[i]); | |
2425 | ||
2426 | /* read and fill status of all threads */ | |
2427 | cpu_list_lock(); | |
2428 | for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) { | |
2429 | if (cpu == thread_env) | |
2430 | continue; | |
2431 | fill_thread_info(info, cpu); | |
2432 | } | |
2433 | cpu_list_unlock(); | |
2434 | ||
2435 | return (0); | |
2436 | } | |
2437 | ||
2438 | static void free_note_info(struct elf_note_info *info) | |
2439 | { | |
2440 | struct elf_thread_status *ets; | |
2441 | ||
72cf2d4f BS |
2442 | while (!QTAILQ_EMPTY(&info->thread_list)) { |
2443 | ets = QTAILQ_FIRST(&info->thread_list); | |
2444 | QTAILQ_REMOVE(&info->thread_list, ets, ets_link); | |
edf8e2af MW |
2445 | qemu_free(ets); |
2446 | } | |
2447 | ||
2448 | qemu_free(info->prstatus); | |
2449 | qemu_free(info->psinfo); | |
2450 | qemu_free(info->notes); | |
2451 | } | |
2452 | ||
2453 | static int write_note_info(struct elf_note_info *info, int fd) | |
2454 | { | |
2455 | struct elf_thread_status *ets; | |
2456 | int i, error = 0; | |
2457 | ||
2458 | /* write prstatus, psinfo and auxv for current thread */ | |
2459 | for (i = 0; i < info->numnote; i++) | |
2460 | if ((error = write_note(&info->notes[i], fd)) != 0) | |
2461 | return (error); | |
2462 | ||
2463 | /* write prstatus for each thread */ | |
2464 | for (ets = info->thread_list.tqh_first; ets != NULL; | |
d97ef72e | 2465 | ets = ets->ets_link.tqe_next) { |
edf8e2af MW |
2466 | if ((error = write_note(&ets->notes[0], fd)) != 0) |
2467 | return (error); | |
2468 | } | |
2469 | ||
2470 | return (0); | |
2471 | } | |
2472 | ||
2473 | /* | |
2474 | * Write out ELF coredump. | |
2475 | * | |
2476 | * See documentation of ELF object file format in: | |
2477 | * http://www.caldera.com/developers/devspecs/gabi41.pdf | |
2478 | * | |
2479 | * Coredump format in linux is following: | |
2480 | * | |
2481 | * 0 +----------------------+ \ | |
2482 | * | ELF header | ET_CORE | | |
2483 | * +----------------------+ | | |
2484 | * | ELF program headers | |--- headers | |
2485 | * | - NOTE section | | | |
2486 | * | - PT_LOAD sections | | | |
2487 | * +----------------------+ / | |
2488 | * | NOTEs: | | |
2489 | * | - NT_PRSTATUS | | |
2490 | * | - NT_PRSINFO | | |
2491 | * | - NT_AUXV | | |
2492 | * +----------------------+ <-- aligned to target page | |
2493 | * | Process memory dump | | |
2494 | * : : | |
2495 | * . . | |
2496 | * : : | |
2497 | * | | | |
2498 | * +----------------------+ | |
2499 | * | |
2500 | * NT_PRSTATUS -> struct elf_prstatus (per thread) | |
2501 | * NT_PRSINFO -> struct elf_prpsinfo | |
2502 | * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). | |
2503 | * | |
2504 | * Format follows System V format as close as possible. Current | |
2505 | * version limitations are as follows: | |
2506 | * - no floating point registers are dumped | |
2507 | * | |
2508 | * Function returns 0 in case of success, negative errno otherwise. | |
2509 | * | |
2510 | * TODO: make this work also during runtime: it should be | |
2511 | * possible to force coredump from running process and then | |
2512 | * continue processing. For example qemu could set up SIGUSR2 | |
2513 | * handler (provided that target process haven't registered | |
2514 | * handler for that) that does the dump when signal is received. | |
2515 | */ | |
2516 | static int elf_core_dump(int signr, const CPUState *env) | |
2517 | { | |
2518 | const TaskState *ts = (const TaskState *)env->opaque; | |
2519 | struct vm_area_struct *vma = NULL; | |
2520 | char corefile[PATH_MAX]; | |
2521 | struct elf_note_info info; | |
2522 | struct elfhdr elf; | |
2523 | struct elf_phdr phdr; | |
2524 | struct rlimit dumpsize; | |
2525 | struct mm_struct *mm = NULL; | |
2526 | off_t offset = 0, data_offset = 0; | |
2527 | int segs = 0; | |
2528 | int fd = -1; | |
2529 | ||
2530 | errno = 0; | |
2531 | getrlimit(RLIMIT_CORE, &dumpsize); | |
2532 | if (dumpsize.rlim_cur == 0) | |
d97ef72e | 2533 | return 0; |
edf8e2af MW |
2534 | |
2535 | if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) | |
2536 | return (-errno); | |
2537 | ||
2538 | if ((fd = open(corefile, O_WRONLY | O_CREAT, | |
d97ef72e | 2539 | S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) |
edf8e2af MW |
2540 | return (-errno); |
2541 | ||
2542 | /* | |
2543 | * Walk through target process memory mappings and | |
2544 | * set up structure containing this information. After | |
2545 | * this point vma_xxx functions can be used. | |
2546 | */ | |
2547 | if ((mm = vma_init()) == NULL) | |
2548 | goto out; | |
2549 | ||
2550 | walk_memory_regions(mm, vma_walker); | |
2551 | segs = vma_get_mapping_count(mm); | |
2552 | ||
2553 | /* | |
2554 | * Construct valid coredump ELF header. We also | |
2555 | * add one more segment for notes. | |
2556 | */ | |
2557 | fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); | |
2558 | if (dump_write(fd, &elf, sizeof (elf)) != 0) | |
2559 | goto out; | |
2560 | ||
2561 | /* fill in in-memory version of notes */ | |
2562 | if (fill_note_info(&info, signr, env) < 0) | |
2563 | goto out; | |
2564 | ||
2565 | offset += sizeof (elf); /* elf header */ | |
2566 | offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ | |
2567 | ||
2568 | /* write out notes program header */ | |
2569 | fill_elf_note_phdr(&phdr, info.notes_size, offset); | |
2570 | ||
2571 | offset += info.notes_size; | |
2572 | if (dump_write(fd, &phdr, sizeof (phdr)) != 0) | |
2573 | goto out; | |
2574 | ||
2575 | /* | |
2576 | * ELF specification wants data to start at page boundary so | |
2577 | * we align it here. | |
2578 | */ | |
80f5ce75 | 2579 | data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); |
edf8e2af MW |
2580 | |
2581 | /* | |
2582 | * Write program headers for memory regions mapped in | |
2583 | * the target process. | |
2584 | */ | |
2585 | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { | |
2586 | (void) memset(&phdr, 0, sizeof (phdr)); | |
2587 | ||
2588 | phdr.p_type = PT_LOAD; | |
2589 | phdr.p_offset = offset; | |
2590 | phdr.p_vaddr = vma->vma_start; | |
2591 | phdr.p_paddr = 0; | |
2592 | phdr.p_filesz = vma_dump_size(vma); | |
2593 | offset += phdr.p_filesz; | |
2594 | phdr.p_memsz = vma->vma_end - vma->vma_start; | |
2595 | phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; | |
2596 | if (vma->vma_flags & PROT_WRITE) | |
2597 | phdr.p_flags |= PF_W; | |
2598 | if (vma->vma_flags & PROT_EXEC) | |
2599 | phdr.p_flags |= PF_X; | |
2600 | phdr.p_align = ELF_EXEC_PAGESIZE; | |
2601 | ||
80f5ce75 | 2602 | bswap_phdr(&phdr, 1); |
edf8e2af MW |
2603 | dump_write(fd, &phdr, sizeof (phdr)); |
2604 | } | |
2605 | ||
2606 | /* | |
2607 | * Next we write notes just after program headers. No | |
2608 | * alignment needed here. | |
2609 | */ | |
2610 | if (write_note_info(&info, fd) < 0) | |
2611 | goto out; | |
2612 | ||
2613 | /* align data to page boundary */ | |
edf8e2af MW |
2614 | if (lseek(fd, data_offset, SEEK_SET) != data_offset) |
2615 | goto out; | |
2616 | ||
2617 | /* | |
2618 | * Finally we can dump process memory into corefile as well. | |
2619 | */ | |
2620 | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { | |
2621 | abi_ulong addr; | |
2622 | abi_ulong end; | |
2623 | ||
2624 | end = vma->vma_start + vma_dump_size(vma); | |
2625 | ||
2626 | for (addr = vma->vma_start; addr < end; | |
d97ef72e | 2627 | addr += TARGET_PAGE_SIZE) { |
edf8e2af MW |
2628 | char page[TARGET_PAGE_SIZE]; |
2629 | int error; | |
2630 | ||
2631 | /* | |
2632 | * Read in page from target process memory and | |
2633 | * write it to coredump file. | |
2634 | */ | |
2635 | error = copy_from_user(page, addr, sizeof (page)); | |
2636 | if (error != 0) { | |
49995e17 | 2637 | (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", |
d97ef72e | 2638 | addr); |
edf8e2af MW |
2639 | errno = -error; |
2640 | goto out; | |
2641 | } | |
2642 | if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) | |
2643 | goto out; | |
2644 | } | |
2645 | } | |
2646 | ||
d97ef72e | 2647 | out: |
edf8e2af MW |
2648 | free_note_info(&info); |
2649 | if (mm != NULL) | |
2650 | vma_delete(mm); | |
2651 | (void) close(fd); | |
2652 | ||
2653 | if (errno != 0) | |
2654 | return (-errno); | |
2655 | return (0); | |
2656 | } | |
edf8e2af MW |
2657 | #endif /* USE_ELF_CORE_DUMP */ |
2658 | ||
e5fe0c52 PB |
2659 | void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) |
2660 | { | |
2661 | init_thread(regs, infop); | |
2662 | } |