]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
fd6ce8f6 | 2 | * virtual page mapping and translated block handling |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
19 | */ | |
67b915a5 | 20 | #include "config.h" |
d5a8f07c | 21 | #ifdef _WIN32 |
4fddf62a | 22 | #define WIN32_LEAN_AND_MEAN |
d5a8f07c FB |
23 | #include <windows.h> |
24 | #else | |
a98d49b1 | 25 | #include <sys/types.h> |
d5a8f07c FB |
26 | #include <sys/mman.h> |
27 | #endif | |
54936004 FB |
28 | #include <stdlib.h> |
29 | #include <stdio.h> | |
30 | #include <stdarg.h> | |
31 | #include <string.h> | |
32 | #include <errno.h> | |
33 | #include <unistd.h> | |
34 | #include <inttypes.h> | |
35 | ||
6180a181 FB |
36 | #include "cpu.h" |
37 | #include "exec-all.h" | |
ca10f867 | 38 | #include "qemu-common.h" |
b67d9a52 | 39 | #include "tcg.h" |
b3c7724c | 40 | #include "hw/hw.h" |
74576198 | 41 | #include "osdep.h" |
7ba1e619 | 42 | #include "kvm.h" |
53a5960a PB |
43 | #if defined(CONFIG_USER_ONLY) |
44 | #include <qemu.h> | |
45 | #endif | |
54936004 | 46 | |
fd6ce8f6 | 47 | //#define DEBUG_TB_INVALIDATE |
66e85a21 | 48 | //#define DEBUG_FLUSH |
9fa3e853 | 49 | //#define DEBUG_TLB |
67d3b957 | 50 | //#define DEBUG_UNASSIGNED |
fd6ce8f6 FB |
51 | |
52 | /* make various TB consistency checks */ | |
5fafdf24 TS |
53 | //#define DEBUG_TB_CHECK |
54 | //#define DEBUG_TLB_CHECK | |
fd6ce8f6 | 55 | |
1196be37 | 56 | //#define DEBUG_IOPORT |
db7b5426 | 57 | //#define DEBUG_SUBPAGE |
1196be37 | 58 | |
99773bd4 PB |
59 | #if !defined(CONFIG_USER_ONLY) |
60 | /* TB consistency checks only implemented for usermode emulation. */ | |
61 | #undef DEBUG_TB_CHECK | |
62 | #endif | |
63 | ||
9fa3e853 FB |
64 | #define SMC_BITMAP_USE_THRESHOLD 10 |
65 | ||
66 | #define MMAP_AREA_START 0x00000000 | |
67 | #define MMAP_AREA_END 0xa8000000 | |
fd6ce8f6 | 68 | |
108c49b8 FB |
69 | #if defined(TARGET_SPARC64) |
70 | #define TARGET_PHYS_ADDR_SPACE_BITS 41 | |
5dcb6b91 BS |
71 | #elif defined(TARGET_SPARC) |
72 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
bedb69ea JM |
73 | #elif defined(TARGET_ALPHA) |
74 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
75 | #define TARGET_VIRT_ADDR_SPACE_BITS 42 | |
108c49b8 FB |
76 | #elif defined(TARGET_PPC64) |
77 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
00f82b8a AJ |
78 | #elif defined(TARGET_X86_64) && !defined(USE_KQEMU) |
79 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
80 | #elif defined(TARGET_I386) && !defined(USE_KQEMU) | |
81 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
108c49b8 FB |
82 | #else |
83 | /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */ | |
84 | #define TARGET_PHYS_ADDR_SPACE_BITS 32 | |
85 | #endif | |
86 | ||
bdaf78e0 | 87 | static TranslationBlock *tbs; |
26a5f13b | 88 | int code_gen_max_blocks; |
9fa3e853 | 89 | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; |
bdaf78e0 | 90 | static int nb_tbs; |
eb51d102 FB |
91 | /* any access to the tbs or the page table must use this lock */ |
92 | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED; | |
fd6ce8f6 | 93 | |
141ac468 BS |
94 | #if defined(__arm__) || defined(__sparc_v9__) |
95 | /* The prologue must be reachable with a direct jump. ARM and Sparc64 | |
96 | have limited branch ranges (possibly also PPC) so place it in a | |
d03d860b BS |
97 | section close to code segment. */ |
98 | #define code_gen_section \ | |
99 | __attribute__((__section__(".gen_code"))) \ | |
100 | __attribute__((aligned (32))) | |
101 | #else | |
102 | #define code_gen_section \ | |
103 | __attribute__((aligned (32))) | |
104 | #endif | |
105 | ||
106 | uint8_t code_gen_prologue[1024] code_gen_section; | |
bdaf78e0 BS |
107 | static uint8_t *code_gen_buffer; |
108 | static unsigned long code_gen_buffer_size; | |
26a5f13b | 109 | /* threshold to flush the translated code buffer */ |
bdaf78e0 | 110 | static unsigned long code_gen_buffer_max_size; |
fd6ce8f6 FB |
111 | uint8_t *code_gen_ptr; |
112 | ||
e2eef170 | 113 | #if !defined(CONFIG_USER_ONLY) |
00f82b8a | 114 | ram_addr_t phys_ram_size; |
9fa3e853 FB |
115 | int phys_ram_fd; |
116 | uint8_t *phys_ram_base; | |
1ccde1cb | 117 | uint8_t *phys_ram_dirty; |
74576198 | 118 | static int in_migration; |
e9a1ab19 | 119 | static ram_addr_t phys_ram_alloc_offset = 0; |
e2eef170 | 120 | #endif |
9fa3e853 | 121 | |
6a00d601 FB |
122 | CPUState *first_cpu; |
123 | /* current CPU in the current thread. It is only valid inside | |
124 | cpu_exec() */ | |
5fafdf24 | 125 | CPUState *cpu_single_env; |
2e70f6ef | 126 | /* 0 = Do not count executed instructions. |
bf20dc07 | 127 | 1 = Precise instruction counting. |
2e70f6ef PB |
128 | 2 = Adaptive rate instruction counting. */ |
129 | int use_icount = 0; | |
130 | /* Current instruction counter. While executing translated code this may | |
131 | include some instructions that have not yet been executed. */ | |
132 | int64_t qemu_icount; | |
6a00d601 | 133 | |
54936004 | 134 | typedef struct PageDesc { |
92e873b9 | 135 | /* list of TBs intersecting this ram page */ |
fd6ce8f6 | 136 | TranslationBlock *first_tb; |
9fa3e853 FB |
137 | /* in order to optimize self modifying code, we count the number |
138 | of lookups we do to a given page to use a bitmap */ | |
139 | unsigned int code_write_count; | |
140 | uint8_t *code_bitmap; | |
141 | #if defined(CONFIG_USER_ONLY) | |
142 | unsigned long flags; | |
143 | #endif | |
54936004 FB |
144 | } PageDesc; |
145 | ||
92e873b9 | 146 | typedef struct PhysPageDesc { |
0f459d16 | 147 | /* offset in host memory of the page + io_index in the low bits */ |
00f82b8a | 148 | ram_addr_t phys_offset; |
92e873b9 FB |
149 | } PhysPageDesc; |
150 | ||
54936004 | 151 | #define L2_BITS 10 |
bedb69ea JM |
152 | #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS) |
153 | /* XXX: this is a temporary hack for alpha target. | |
154 | * In the future, this is to be replaced by a multi-level table | |
155 | * to actually be able to handle the complete 64 bits address space. | |
156 | */ | |
157 | #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS) | |
158 | #else | |
03875444 | 159 | #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS) |
bedb69ea | 160 | #endif |
54936004 FB |
161 | |
162 | #define L1_SIZE (1 << L1_BITS) | |
163 | #define L2_SIZE (1 << L2_BITS) | |
164 | ||
83fb7adf FB |
165 | unsigned long qemu_real_host_page_size; |
166 | unsigned long qemu_host_page_bits; | |
167 | unsigned long qemu_host_page_size; | |
168 | unsigned long qemu_host_page_mask; | |
54936004 | 169 | |
92e873b9 | 170 | /* XXX: for system emulation, it could just be an array */ |
54936004 | 171 | static PageDesc *l1_map[L1_SIZE]; |
bdaf78e0 | 172 | static PhysPageDesc **l1_phys_map; |
54936004 | 173 | |
e2eef170 PB |
174 | #if !defined(CONFIG_USER_ONLY) |
175 | static void io_mem_init(void); | |
176 | ||
33417e70 | 177 | /* io memory support */ |
33417e70 FB |
178 | CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; |
179 | CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; | |
a4193c8a | 180 | void *io_mem_opaque[IO_MEM_NB_ENTRIES]; |
33417e70 | 181 | static int io_mem_nb; |
6658ffb8 PB |
182 | static int io_mem_watch; |
183 | #endif | |
33417e70 | 184 | |
34865134 | 185 | /* log support */ |
d9b630fd | 186 | static const char *logfilename = "/tmp/qemu.log"; |
34865134 FB |
187 | FILE *logfile; |
188 | int loglevel; | |
e735b91c | 189 | static int log_append = 0; |
34865134 | 190 | |
e3db7226 FB |
191 | /* statistics */ |
192 | static int tlb_flush_count; | |
193 | static int tb_flush_count; | |
194 | static int tb_phys_invalidate_count; | |
195 | ||
db7b5426 BS |
196 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
197 | typedef struct subpage_t { | |
198 | target_phys_addr_t base; | |
3ee89922 BS |
199 | CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4]; |
200 | CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4]; | |
201 | void *opaque[TARGET_PAGE_SIZE][2][4]; | |
db7b5426 BS |
202 | } subpage_t; |
203 | ||
7cb69cae FB |
204 | #ifdef _WIN32 |
205 | static void map_exec(void *addr, long size) | |
206 | { | |
207 | DWORD old_protect; | |
208 | VirtualProtect(addr, size, | |
209 | PAGE_EXECUTE_READWRITE, &old_protect); | |
210 | ||
211 | } | |
212 | #else | |
213 | static void map_exec(void *addr, long size) | |
214 | { | |
4369415f | 215 | unsigned long start, end, page_size; |
7cb69cae | 216 | |
4369415f | 217 | page_size = getpagesize(); |
7cb69cae | 218 | start = (unsigned long)addr; |
4369415f | 219 | start &= ~(page_size - 1); |
7cb69cae FB |
220 | |
221 | end = (unsigned long)addr + size; | |
4369415f FB |
222 | end += page_size - 1; |
223 | end &= ~(page_size - 1); | |
7cb69cae FB |
224 | |
225 | mprotect((void *)start, end - start, | |
226 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
227 | } | |
228 | #endif | |
229 | ||
b346ff46 | 230 | static void page_init(void) |
54936004 | 231 | { |
83fb7adf | 232 | /* NOTE: we can always suppose that qemu_host_page_size >= |
54936004 | 233 | TARGET_PAGE_SIZE */ |
c2b48b69 AL |
234 | #ifdef _WIN32 |
235 | { | |
236 | SYSTEM_INFO system_info; | |
237 | ||
238 | GetSystemInfo(&system_info); | |
239 | qemu_real_host_page_size = system_info.dwPageSize; | |
240 | } | |
241 | #else | |
242 | qemu_real_host_page_size = getpagesize(); | |
243 | #endif | |
83fb7adf FB |
244 | if (qemu_host_page_size == 0) |
245 | qemu_host_page_size = qemu_real_host_page_size; | |
246 | if (qemu_host_page_size < TARGET_PAGE_SIZE) | |
247 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
248 | qemu_host_page_bits = 0; | |
249 | while ((1 << qemu_host_page_bits) < qemu_host_page_size) | |
250 | qemu_host_page_bits++; | |
251 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |
108c49b8 FB |
252 | l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *)); |
253 | memset(l1_phys_map, 0, L1_SIZE * sizeof(void *)); | |
50a9569b AZ |
254 | |
255 | #if !defined(_WIN32) && defined(CONFIG_USER_ONLY) | |
256 | { | |
257 | long long startaddr, endaddr; | |
258 | FILE *f; | |
259 | int n; | |
260 | ||
c8a706fe | 261 | mmap_lock(); |
0776590d | 262 | last_brk = (unsigned long)sbrk(0); |
50a9569b AZ |
263 | f = fopen("/proc/self/maps", "r"); |
264 | if (f) { | |
265 | do { | |
266 | n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr); | |
267 | if (n == 2) { | |
e0b8d65a BS |
268 | startaddr = MIN(startaddr, |
269 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
270 | endaddr = MIN(endaddr, | |
271 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
b5fc909e | 272 | page_set_flags(startaddr & TARGET_PAGE_MASK, |
50a9569b AZ |
273 | TARGET_PAGE_ALIGN(endaddr), |
274 | PAGE_RESERVED); | |
275 | } | |
276 | } while (!feof(f)); | |
277 | fclose(f); | |
278 | } | |
c8a706fe | 279 | mmap_unlock(); |
50a9569b AZ |
280 | } |
281 | #endif | |
54936004 FB |
282 | } |
283 | ||
434929bf | 284 | static inline PageDesc **page_l1_map(target_ulong index) |
54936004 | 285 | { |
17e2377a PB |
286 | #if TARGET_LONG_BITS > 32 |
287 | /* Host memory outside guest VM. For 32-bit targets we have already | |
288 | excluded high addresses. */ | |
d8173e0f | 289 | if (index > ((target_ulong)L2_SIZE * L1_SIZE)) |
17e2377a PB |
290 | return NULL; |
291 | #endif | |
434929bf AL |
292 | return &l1_map[index >> L2_BITS]; |
293 | } | |
294 | ||
295 | static inline PageDesc *page_find_alloc(target_ulong index) | |
296 | { | |
297 | PageDesc **lp, *p; | |
298 | lp = page_l1_map(index); | |
299 | if (!lp) | |
300 | return NULL; | |
301 | ||
54936004 FB |
302 | p = *lp; |
303 | if (!p) { | |
304 | /* allocate if not found */ | |
17e2377a PB |
305 | #if defined(CONFIG_USER_ONLY) |
306 | unsigned long addr; | |
307 | size_t len = sizeof(PageDesc) * L2_SIZE; | |
308 | /* Don't use qemu_malloc because it may recurse. */ | |
309 | p = mmap(0, len, PROT_READ | PROT_WRITE, | |
310 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
54936004 | 311 | *lp = p; |
17e2377a PB |
312 | addr = h2g(p); |
313 | if (addr == (target_ulong)addr) { | |
314 | page_set_flags(addr & TARGET_PAGE_MASK, | |
315 | TARGET_PAGE_ALIGN(addr + len), | |
316 | PAGE_RESERVED); | |
317 | } | |
318 | #else | |
319 | p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE); | |
320 | *lp = p; | |
321 | #endif | |
54936004 FB |
322 | } |
323 | return p + (index & (L2_SIZE - 1)); | |
324 | } | |
325 | ||
00f82b8a | 326 | static inline PageDesc *page_find(target_ulong index) |
54936004 | 327 | { |
434929bf AL |
328 | PageDesc **lp, *p; |
329 | lp = page_l1_map(index); | |
330 | if (!lp) | |
331 | return NULL; | |
54936004 | 332 | |
434929bf | 333 | p = *lp; |
54936004 FB |
334 | if (!p) |
335 | return 0; | |
fd6ce8f6 FB |
336 | return p + (index & (L2_SIZE - 1)); |
337 | } | |
338 | ||
108c49b8 | 339 | static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc) |
92e873b9 | 340 | { |
108c49b8 | 341 | void **lp, **p; |
e3f4e2a4 | 342 | PhysPageDesc *pd; |
92e873b9 | 343 | |
108c49b8 FB |
344 | p = (void **)l1_phys_map; |
345 | #if TARGET_PHYS_ADDR_SPACE_BITS > 32 | |
346 | ||
347 | #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS) | |
348 | #error unsupported TARGET_PHYS_ADDR_SPACE_BITS | |
349 | #endif | |
350 | lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1)); | |
92e873b9 FB |
351 | p = *lp; |
352 | if (!p) { | |
353 | /* allocate if not found */ | |
108c49b8 FB |
354 | if (!alloc) |
355 | return NULL; | |
356 | p = qemu_vmalloc(sizeof(void *) * L1_SIZE); | |
357 | memset(p, 0, sizeof(void *) * L1_SIZE); | |
358 | *lp = p; | |
359 | } | |
360 | #endif | |
361 | lp = p + ((index >> L2_BITS) & (L1_SIZE - 1)); | |
e3f4e2a4 PB |
362 | pd = *lp; |
363 | if (!pd) { | |
364 | int i; | |
108c49b8 FB |
365 | /* allocate if not found */ |
366 | if (!alloc) | |
367 | return NULL; | |
e3f4e2a4 PB |
368 | pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE); |
369 | *lp = pd; | |
370 | for (i = 0; i < L2_SIZE; i++) | |
371 | pd[i].phys_offset = IO_MEM_UNASSIGNED; | |
92e873b9 | 372 | } |
e3f4e2a4 | 373 | return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1)); |
92e873b9 FB |
374 | } |
375 | ||
108c49b8 | 376 | static inline PhysPageDesc *phys_page_find(target_phys_addr_t index) |
92e873b9 | 377 | { |
108c49b8 | 378 | return phys_page_find_alloc(index, 0); |
92e873b9 FB |
379 | } |
380 | ||
9fa3e853 | 381 | #if !defined(CONFIG_USER_ONLY) |
6a00d601 | 382 | static void tlb_protect_code(ram_addr_t ram_addr); |
5fafdf24 | 383 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 384 | target_ulong vaddr); |
c8a706fe PB |
385 | #define mmap_lock() do { } while(0) |
386 | #define mmap_unlock() do { } while(0) | |
9fa3e853 | 387 | #endif |
fd6ce8f6 | 388 | |
4369415f FB |
389 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024) |
390 | ||
391 | #if defined(CONFIG_USER_ONLY) | |
392 | /* Currently it is not recommanded to allocate big chunks of data in | |
393 | user mode. It will change when a dedicated libc will be used */ | |
394 | #define USE_STATIC_CODE_GEN_BUFFER | |
395 | #endif | |
396 | ||
397 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
398 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]; | |
399 | #endif | |
400 | ||
8fcd3692 | 401 | static void code_gen_alloc(unsigned long tb_size) |
26a5f13b | 402 | { |
4369415f FB |
403 | #ifdef USE_STATIC_CODE_GEN_BUFFER |
404 | code_gen_buffer = static_code_gen_buffer; | |
405 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
406 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
407 | #else | |
26a5f13b FB |
408 | code_gen_buffer_size = tb_size; |
409 | if (code_gen_buffer_size == 0) { | |
4369415f FB |
410 | #if defined(CONFIG_USER_ONLY) |
411 | /* in user mode, phys_ram_size is not meaningful */ | |
412 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
413 | #else | |
26a5f13b | 414 | /* XXX: needs ajustments */ |
174a9a1f | 415 | code_gen_buffer_size = (unsigned long)(phys_ram_size / 4); |
4369415f | 416 | #endif |
26a5f13b FB |
417 | } |
418 | if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE) | |
419 | code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE; | |
420 | /* The code gen buffer location may have constraints depending on | |
421 | the host cpu and OS */ | |
422 | #if defined(__linux__) | |
423 | { | |
424 | int flags; | |
141ac468 BS |
425 | void *start = NULL; |
426 | ||
26a5f13b FB |
427 | flags = MAP_PRIVATE | MAP_ANONYMOUS; |
428 | #if defined(__x86_64__) | |
429 | flags |= MAP_32BIT; | |
430 | /* Cannot map more than that */ | |
431 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
432 | code_gen_buffer_size = (800 * 1024 * 1024); | |
141ac468 BS |
433 | #elif defined(__sparc_v9__) |
434 | // Map the buffer below 2G, so we can use direct calls and branches | |
435 | flags |= MAP_FIXED; | |
436 | start = (void *) 0x60000000UL; | |
437 | if (code_gen_buffer_size > (512 * 1024 * 1024)) | |
438 | code_gen_buffer_size = (512 * 1024 * 1024); | |
26a5f13b | 439 | #endif |
141ac468 BS |
440 | code_gen_buffer = mmap(start, code_gen_buffer_size, |
441 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
26a5f13b FB |
442 | flags, -1, 0); |
443 | if (code_gen_buffer == MAP_FAILED) { | |
444 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
445 | exit(1); | |
446 | } | |
447 | } | |
06e67a82 AL |
448 | #elif defined(__FreeBSD__) |
449 | { | |
450 | int flags; | |
451 | void *addr = NULL; | |
452 | flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
453 | #if defined(__x86_64__) | |
454 | /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume | |
455 | * 0x40000000 is free */ | |
456 | flags |= MAP_FIXED; | |
457 | addr = (void *)0x40000000; | |
458 | /* Cannot map more than that */ | |
459 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
460 | code_gen_buffer_size = (800 * 1024 * 1024); | |
461 | #endif | |
462 | code_gen_buffer = mmap(addr, code_gen_buffer_size, | |
463 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
464 | flags, -1, 0); | |
465 | if (code_gen_buffer == MAP_FAILED) { | |
466 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
467 | exit(1); | |
468 | } | |
469 | } | |
26a5f13b FB |
470 | #else |
471 | code_gen_buffer = qemu_malloc(code_gen_buffer_size); | |
472 | if (!code_gen_buffer) { | |
473 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
474 | exit(1); | |
475 | } | |
476 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
477 | #endif | |
4369415f | 478 | #endif /* !USE_STATIC_CODE_GEN_BUFFER */ |
26a5f13b FB |
479 | map_exec(code_gen_prologue, sizeof(code_gen_prologue)); |
480 | code_gen_buffer_max_size = code_gen_buffer_size - | |
481 | code_gen_max_block_size(); | |
482 | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; | |
483 | tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock)); | |
484 | } | |
485 | ||
486 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
487 | (in bytes) allocated to the translation buffer. Zero means default | |
488 | size. */ | |
489 | void cpu_exec_init_all(unsigned long tb_size) | |
490 | { | |
26a5f13b FB |
491 | cpu_gen_init(); |
492 | code_gen_alloc(tb_size); | |
493 | code_gen_ptr = code_gen_buffer; | |
4369415f | 494 | page_init(); |
e2eef170 | 495 | #if !defined(CONFIG_USER_ONLY) |
26a5f13b | 496 | io_mem_init(); |
e2eef170 | 497 | #endif |
26a5f13b FB |
498 | } |
499 | ||
9656f324 PB |
500 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
501 | ||
502 | #define CPU_COMMON_SAVE_VERSION 1 | |
503 | ||
504 | static void cpu_common_save(QEMUFile *f, void *opaque) | |
505 | { | |
506 | CPUState *env = opaque; | |
507 | ||
508 | qemu_put_be32s(f, &env->halted); | |
509 | qemu_put_be32s(f, &env->interrupt_request); | |
510 | } | |
511 | ||
512 | static int cpu_common_load(QEMUFile *f, void *opaque, int version_id) | |
513 | { | |
514 | CPUState *env = opaque; | |
515 | ||
516 | if (version_id != CPU_COMMON_SAVE_VERSION) | |
517 | return -EINVAL; | |
518 | ||
519 | qemu_get_be32s(f, &env->halted); | |
75f482ae | 520 | qemu_get_be32s(f, &env->interrupt_request); |
9656f324 PB |
521 | tlb_flush(env, 1); |
522 | ||
523 | return 0; | |
524 | } | |
525 | #endif | |
526 | ||
6a00d601 | 527 | void cpu_exec_init(CPUState *env) |
fd6ce8f6 | 528 | { |
6a00d601 FB |
529 | CPUState **penv; |
530 | int cpu_index; | |
531 | ||
6a00d601 FB |
532 | env->next_cpu = NULL; |
533 | penv = &first_cpu; | |
534 | cpu_index = 0; | |
535 | while (*penv != NULL) { | |
536 | penv = (CPUState **)&(*penv)->next_cpu; | |
537 | cpu_index++; | |
538 | } | |
539 | env->cpu_index = cpu_index; | |
c0ce998e AL |
540 | TAILQ_INIT(&env->breakpoints); |
541 | TAILQ_INIT(&env->watchpoints); | |
6a00d601 | 542 | *penv = env; |
b3c7724c | 543 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
9656f324 PB |
544 | register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION, |
545 | cpu_common_save, cpu_common_load, env); | |
b3c7724c PB |
546 | register_savevm("cpu", cpu_index, CPU_SAVE_VERSION, |
547 | cpu_save, cpu_load, env); | |
548 | #endif | |
fd6ce8f6 FB |
549 | } |
550 | ||
9fa3e853 FB |
551 | static inline void invalidate_page_bitmap(PageDesc *p) |
552 | { | |
553 | if (p->code_bitmap) { | |
59817ccb | 554 | qemu_free(p->code_bitmap); |
9fa3e853 FB |
555 | p->code_bitmap = NULL; |
556 | } | |
557 | p->code_write_count = 0; | |
558 | } | |
559 | ||
fd6ce8f6 FB |
560 | /* set to NULL all the 'first_tb' fields in all PageDescs */ |
561 | static void page_flush_tb(void) | |
562 | { | |
563 | int i, j; | |
564 | PageDesc *p; | |
565 | ||
566 | for(i = 0; i < L1_SIZE; i++) { | |
567 | p = l1_map[i]; | |
568 | if (p) { | |
9fa3e853 FB |
569 | for(j = 0; j < L2_SIZE; j++) { |
570 | p->first_tb = NULL; | |
571 | invalidate_page_bitmap(p); | |
572 | p++; | |
573 | } | |
fd6ce8f6 FB |
574 | } |
575 | } | |
576 | } | |
577 | ||
578 | /* flush all the translation blocks */ | |
d4e8164f | 579 | /* XXX: tb_flush is currently not thread safe */ |
6a00d601 | 580 | void tb_flush(CPUState *env1) |
fd6ce8f6 | 581 | { |
6a00d601 | 582 | CPUState *env; |
0124311e | 583 | #if defined(DEBUG_FLUSH) |
ab3d1727 BS |
584 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", |
585 | (unsigned long)(code_gen_ptr - code_gen_buffer), | |
586 | nb_tbs, nb_tbs > 0 ? | |
587 | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0); | |
fd6ce8f6 | 588 | #endif |
26a5f13b | 589 | if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size) |
a208e54a PB |
590 | cpu_abort(env1, "Internal error: code buffer overflow\n"); |
591 | ||
fd6ce8f6 | 592 | nb_tbs = 0; |
3b46e624 | 593 | |
6a00d601 FB |
594 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
595 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
596 | } | |
9fa3e853 | 597 | |
8a8a608f | 598 | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); |
fd6ce8f6 | 599 | page_flush_tb(); |
9fa3e853 | 600 | |
fd6ce8f6 | 601 | code_gen_ptr = code_gen_buffer; |
d4e8164f FB |
602 | /* XXX: flush processor icache at this point if cache flush is |
603 | expensive */ | |
e3db7226 | 604 | tb_flush_count++; |
fd6ce8f6 FB |
605 | } |
606 | ||
607 | #ifdef DEBUG_TB_CHECK | |
608 | ||
bc98a7ef | 609 | static void tb_invalidate_check(target_ulong address) |
fd6ce8f6 FB |
610 | { |
611 | TranslationBlock *tb; | |
612 | int i; | |
613 | address &= TARGET_PAGE_MASK; | |
99773bd4 PB |
614 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
615 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
616 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || |
617 | address >= tb->pc + tb->size)) { | |
618 | printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n", | |
99773bd4 | 619 | address, (long)tb->pc, tb->size); |
fd6ce8f6 FB |
620 | } |
621 | } | |
622 | } | |
623 | } | |
624 | ||
625 | /* verify that all the pages have correct rights for code */ | |
626 | static void tb_page_check(void) | |
627 | { | |
628 | TranslationBlock *tb; | |
629 | int i, flags1, flags2; | |
3b46e624 | 630 | |
99773bd4 PB |
631 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
632 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
633 | flags1 = page_get_flags(tb->pc); |
634 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
635 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
636 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
99773bd4 | 637 | (long)tb->pc, tb->size, flags1, flags2); |
fd6ce8f6 FB |
638 | } |
639 | } | |
640 | } | |
641 | } | |
642 | ||
bdaf78e0 | 643 | static void tb_jmp_check(TranslationBlock *tb) |
d4e8164f FB |
644 | { |
645 | TranslationBlock *tb1; | |
646 | unsigned int n1; | |
647 | ||
648 | /* suppress any remaining jumps to this TB */ | |
649 | tb1 = tb->jmp_first; | |
650 | for(;;) { | |
651 | n1 = (long)tb1 & 3; | |
652 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
653 | if (n1 == 2) | |
654 | break; | |
655 | tb1 = tb1->jmp_next[n1]; | |
656 | } | |
657 | /* check end of list */ | |
658 | if (tb1 != tb) { | |
659 | printf("ERROR: jmp_list from 0x%08lx\n", (long)tb); | |
660 | } | |
661 | } | |
662 | ||
fd6ce8f6 FB |
663 | #endif |
664 | ||
665 | /* invalidate one TB */ | |
666 | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb, | |
667 | int next_offset) | |
668 | { | |
669 | TranslationBlock *tb1; | |
670 | for(;;) { | |
671 | tb1 = *ptb; | |
672 | if (tb1 == tb) { | |
673 | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset); | |
674 | break; | |
675 | } | |
676 | ptb = (TranslationBlock **)((char *)tb1 + next_offset); | |
677 | } | |
678 | } | |
679 | ||
9fa3e853 FB |
680 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) |
681 | { | |
682 | TranslationBlock *tb1; | |
683 | unsigned int n1; | |
684 | ||
685 | for(;;) { | |
686 | tb1 = *ptb; | |
687 | n1 = (long)tb1 & 3; | |
688 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
689 | if (tb1 == tb) { | |
690 | *ptb = tb1->page_next[n1]; | |
691 | break; | |
692 | } | |
693 | ptb = &tb1->page_next[n1]; | |
694 | } | |
695 | } | |
696 | ||
d4e8164f FB |
697 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) |
698 | { | |
699 | TranslationBlock *tb1, **ptb; | |
700 | unsigned int n1; | |
701 | ||
702 | ptb = &tb->jmp_next[n]; | |
703 | tb1 = *ptb; | |
704 | if (tb1) { | |
705 | /* find tb(n) in circular list */ | |
706 | for(;;) { | |
707 | tb1 = *ptb; | |
708 | n1 = (long)tb1 & 3; | |
709 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
710 | if (n1 == n && tb1 == tb) | |
711 | break; | |
712 | if (n1 == 2) { | |
713 | ptb = &tb1->jmp_first; | |
714 | } else { | |
715 | ptb = &tb1->jmp_next[n1]; | |
716 | } | |
717 | } | |
718 | /* now we can suppress tb(n) from the list */ | |
719 | *ptb = tb->jmp_next[n]; | |
720 | ||
721 | tb->jmp_next[n] = NULL; | |
722 | } | |
723 | } | |
724 | ||
725 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
726 | another TB */ | |
727 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
728 | { | |
729 | tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n])); | |
730 | } | |
731 | ||
2e70f6ef | 732 | void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr) |
fd6ce8f6 | 733 | { |
6a00d601 | 734 | CPUState *env; |
8a40a180 | 735 | PageDesc *p; |
d4e8164f | 736 | unsigned int h, n1; |
00f82b8a | 737 | target_phys_addr_t phys_pc; |
8a40a180 | 738 | TranslationBlock *tb1, *tb2; |
3b46e624 | 739 | |
8a40a180 FB |
740 | /* remove the TB from the hash list */ |
741 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
742 | h = tb_phys_hash_func(phys_pc); | |
5fafdf24 | 743 | tb_remove(&tb_phys_hash[h], tb, |
8a40a180 FB |
744 | offsetof(TranslationBlock, phys_hash_next)); |
745 | ||
746 | /* remove the TB from the page list */ | |
747 | if (tb->page_addr[0] != page_addr) { | |
748 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
749 | tb_page_remove(&p->first_tb, tb); | |
750 | invalidate_page_bitmap(p); | |
751 | } | |
752 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
753 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
754 | tb_page_remove(&p->first_tb, tb); | |
755 | invalidate_page_bitmap(p); | |
756 | } | |
757 | ||
36bdbe54 | 758 | tb_invalidated_flag = 1; |
59817ccb | 759 | |
fd6ce8f6 | 760 | /* remove the TB from the hash list */ |
8a40a180 | 761 | h = tb_jmp_cache_hash_func(tb->pc); |
6a00d601 FB |
762 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
763 | if (env->tb_jmp_cache[h] == tb) | |
764 | env->tb_jmp_cache[h] = NULL; | |
765 | } | |
d4e8164f FB |
766 | |
767 | /* suppress this TB from the two jump lists */ | |
768 | tb_jmp_remove(tb, 0); | |
769 | tb_jmp_remove(tb, 1); | |
770 | ||
771 | /* suppress any remaining jumps to this TB */ | |
772 | tb1 = tb->jmp_first; | |
773 | for(;;) { | |
774 | n1 = (long)tb1 & 3; | |
775 | if (n1 == 2) | |
776 | break; | |
777 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
778 | tb2 = tb1->jmp_next[n1]; | |
779 | tb_reset_jump(tb1, n1); | |
780 | tb1->jmp_next[n1] = NULL; | |
781 | tb1 = tb2; | |
782 | } | |
783 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */ | |
9fa3e853 | 784 | |
e3db7226 | 785 | tb_phys_invalidate_count++; |
9fa3e853 FB |
786 | } |
787 | ||
788 | static inline void set_bits(uint8_t *tab, int start, int len) | |
789 | { | |
790 | int end, mask, end1; | |
791 | ||
792 | end = start + len; | |
793 | tab += start >> 3; | |
794 | mask = 0xff << (start & 7); | |
795 | if ((start & ~7) == (end & ~7)) { | |
796 | if (start < end) { | |
797 | mask &= ~(0xff << (end & 7)); | |
798 | *tab |= mask; | |
799 | } | |
800 | } else { | |
801 | *tab++ |= mask; | |
802 | start = (start + 8) & ~7; | |
803 | end1 = end & ~7; | |
804 | while (start < end1) { | |
805 | *tab++ = 0xff; | |
806 | start += 8; | |
807 | } | |
808 | if (start < end) { | |
809 | mask = ~(0xff << (end & 7)); | |
810 | *tab |= mask; | |
811 | } | |
812 | } | |
813 | } | |
814 | ||
815 | static void build_page_bitmap(PageDesc *p) | |
816 | { | |
817 | int n, tb_start, tb_end; | |
818 | TranslationBlock *tb; | |
3b46e624 | 819 | |
b2a7081a | 820 | p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8); |
9fa3e853 FB |
821 | if (!p->code_bitmap) |
822 | return; | |
9fa3e853 FB |
823 | |
824 | tb = p->first_tb; | |
825 | while (tb != NULL) { | |
826 | n = (long)tb & 3; | |
827 | tb = (TranslationBlock *)((long)tb & ~3); | |
828 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
829 | if (n == 0) { | |
830 | /* NOTE: tb_end may be after the end of the page, but | |
831 | it is not a problem */ | |
832 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
833 | tb_end = tb_start + tb->size; | |
834 | if (tb_end > TARGET_PAGE_SIZE) | |
835 | tb_end = TARGET_PAGE_SIZE; | |
836 | } else { | |
837 | tb_start = 0; | |
838 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
839 | } | |
840 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |
841 | tb = tb->page_next[n]; | |
842 | } | |
843 | } | |
844 | ||
2e70f6ef PB |
845 | TranslationBlock *tb_gen_code(CPUState *env, |
846 | target_ulong pc, target_ulong cs_base, | |
847 | int flags, int cflags) | |
d720b93d FB |
848 | { |
849 | TranslationBlock *tb; | |
850 | uint8_t *tc_ptr; | |
851 | target_ulong phys_pc, phys_page2, virt_page2; | |
852 | int code_gen_size; | |
853 | ||
c27004ec FB |
854 | phys_pc = get_phys_addr_code(env, pc); |
855 | tb = tb_alloc(pc); | |
d720b93d FB |
856 | if (!tb) { |
857 | /* flush must be done */ | |
858 | tb_flush(env); | |
859 | /* cannot fail at this point */ | |
c27004ec | 860 | tb = tb_alloc(pc); |
2e70f6ef PB |
861 | /* Don't forget to invalidate previous TB info. */ |
862 | tb_invalidated_flag = 1; | |
d720b93d FB |
863 | } |
864 | tc_ptr = code_gen_ptr; | |
865 | tb->tc_ptr = tc_ptr; | |
866 | tb->cs_base = cs_base; | |
867 | tb->flags = flags; | |
868 | tb->cflags = cflags; | |
d07bde88 | 869 | cpu_gen_code(env, tb, &code_gen_size); |
d720b93d | 870 | code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); |
3b46e624 | 871 | |
d720b93d | 872 | /* check next page if needed */ |
c27004ec | 873 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; |
d720b93d | 874 | phys_page2 = -1; |
c27004ec | 875 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { |
d720b93d FB |
876 | phys_page2 = get_phys_addr_code(env, virt_page2); |
877 | } | |
878 | tb_link_phys(tb, phys_pc, phys_page2); | |
2e70f6ef | 879 | return tb; |
d720b93d | 880 | } |
3b46e624 | 881 | |
9fa3e853 FB |
882 | /* invalidate all TBs which intersect with the target physical page |
883 | starting in range [start;end[. NOTE: start and end must refer to | |
d720b93d FB |
884 | the same physical page. 'is_cpu_write_access' should be true if called |
885 | from a real cpu write access: the virtual CPU will exit the current | |
886 | TB if code is modified inside this TB. */ | |
00f82b8a | 887 | void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, |
d720b93d FB |
888 | int is_cpu_write_access) |
889 | { | |
6b917547 | 890 | TranslationBlock *tb, *tb_next, *saved_tb; |
d720b93d | 891 | CPUState *env = cpu_single_env; |
9fa3e853 | 892 | target_ulong tb_start, tb_end; |
6b917547 AL |
893 | PageDesc *p; |
894 | int n; | |
895 | #ifdef TARGET_HAS_PRECISE_SMC | |
896 | int current_tb_not_found = is_cpu_write_access; | |
897 | TranslationBlock *current_tb = NULL; | |
898 | int current_tb_modified = 0; | |
899 | target_ulong current_pc = 0; | |
900 | target_ulong current_cs_base = 0; | |
901 | int current_flags = 0; | |
902 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
903 | |
904 | p = page_find(start >> TARGET_PAGE_BITS); | |
5fafdf24 | 905 | if (!p) |
9fa3e853 | 906 | return; |
5fafdf24 | 907 | if (!p->code_bitmap && |
d720b93d FB |
908 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && |
909 | is_cpu_write_access) { | |
9fa3e853 FB |
910 | /* build code bitmap */ |
911 | build_page_bitmap(p); | |
912 | } | |
913 | ||
914 | /* we remove all the TBs in the range [start, end[ */ | |
915 | /* XXX: see if in some cases it could be faster to invalidate all the code */ | |
916 | tb = p->first_tb; | |
917 | while (tb != NULL) { | |
918 | n = (long)tb & 3; | |
919 | tb = (TranslationBlock *)((long)tb & ~3); | |
920 | tb_next = tb->page_next[n]; | |
921 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
922 | if (n == 0) { | |
923 | /* NOTE: tb_end may be after the end of the page, but | |
924 | it is not a problem */ | |
925 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
926 | tb_end = tb_start + tb->size; | |
927 | } else { | |
928 | tb_start = tb->page_addr[1]; | |
929 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
930 | } | |
931 | if (!(tb_end <= start || tb_start >= end)) { | |
d720b93d FB |
932 | #ifdef TARGET_HAS_PRECISE_SMC |
933 | if (current_tb_not_found) { | |
934 | current_tb_not_found = 0; | |
935 | current_tb = NULL; | |
2e70f6ef | 936 | if (env->mem_io_pc) { |
d720b93d | 937 | /* now we have a real cpu fault */ |
2e70f6ef | 938 | current_tb = tb_find_pc(env->mem_io_pc); |
d720b93d FB |
939 | } |
940 | } | |
941 | if (current_tb == tb && | |
2e70f6ef | 942 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
943 | /* If we are modifying the current TB, we must stop |
944 | its execution. We could be more precise by checking | |
945 | that the modification is after the current PC, but it | |
946 | would require a specialized function to partially | |
947 | restore the CPU state */ | |
3b46e624 | 948 | |
d720b93d | 949 | current_tb_modified = 1; |
5fafdf24 | 950 | cpu_restore_state(current_tb, env, |
2e70f6ef | 951 | env->mem_io_pc, NULL); |
6b917547 AL |
952 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
953 | ¤t_flags); | |
d720b93d FB |
954 | } |
955 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
6f5a9f7e FB |
956 | /* we need to do that to handle the case where a signal |
957 | occurs while doing tb_phys_invalidate() */ | |
958 | saved_tb = NULL; | |
959 | if (env) { | |
960 | saved_tb = env->current_tb; | |
961 | env->current_tb = NULL; | |
962 | } | |
9fa3e853 | 963 | tb_phys_invalidate(tb, -1); |
6f5a9f7e FB |
964 | if (env) { |
965 | env->current_tb = saved_tb; | |
966 | if (env->interrupt_request && env->current_tb) | |
967 | cpu_interrupt(env, env->interrupt_request); | |
968 | } | |
9fa3e853 FB |
969 | } |
970 | tb = tb_next; | |
971 | } | |
972 | #if !defined(CONFIG_USER_ONLY) | |
973 | /* if no code remaining, no need to continue to use slow writes */ | |
974 | if (!p->first_tb) { | |
975 | invalidate_page_bitmap(p); | |
d720b93d | 976 | if (is_cpu_write_access) { |
2e70f6ef | 977 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); |
d720b93d FB |
978 | } |
979 | } | |
980 | #endif | |
981 | #ifdef TARGET_HAS_PRECISE_SMC | |
982 | if (current_tb_modified) { | |
983 | /* we generate a block containing just the instruction | |
984 | modifying the memory. It will ensure that it cannot modify | |
985 | itself */ | |
ea1c1802 | 986 | env->current_tb = NULL; |
2e70f6ef | 987 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d | 988 | cpu_resume_from_signal(env, NULL); |
9fa3e853 | 989 | } |
fd6ce8f6 | 990 | #endif |
9fa3e853 | 991 | } |
fd6ce8f6 | 992 | |
9fa3e853 | 993 | /* len must be <= 8 and start must be a multiple of len */ |
00f82b8a | 994 | static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len) |
9fa3e853 FB |
995 | { |
996 | PageDesc *p; | |
997 | int offset, b; | |
59817ccb | 998 | #if 0 |
a4193c8a FB |
999 | if (1) { |
1000 | if (loglevel) { | |
5fafdf24 | 1001 | fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n", |
2e70f6ef | 1002 | cpu_single_env->mem_io_vaddr, len, |
5fafdf24 | 1003 | cpu_single_env->eip, |
a4193c8a FB |
1004 | cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base); |
1005 | } | |
59817ccb FB |
1006 | } |
1007 | #endif | |
9fa3e853 | 1008 | p = page_find(start >> TARGET_PAGE_BITS); |
5fafdf24 | 1009 | if (!p) |
9fa3e853 FB |
1010 | return; |
1011 | if (p->code_bitmap) { | |
1012 | offset = start & ~TARGET_PAGE_MASK; | |
1013 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |
1014 | if (b & ((1 << len) - 1)) | |
1015 | goto do_invalidate; | |
1016 | } else { | |
1017 | do_invalidate: | |
d720b93d | 1018 | tb_invalidate_phys_page_range(start, start + len, 1); |
9fa3e853 FB |
1019 | } |
1020 | } | |
1021 | ||
9fa3e853 | 1022 | #if !defined(CONFIG_SOFTMMU) |
00f82b8a | 1023 | static void tb_invalidate_phys_page(target_phys_addr_t addr, |
d720b93d | 1024 | unsigned long pc, void *puc) |
9fa3e853 | 1025 | { |
6b917547 | 1026 | TranslationBlock *tb; |
9fa3e853 | 1027 | PageDesc *p; |
6b917547 | 1028 | int n; |
d720b93d | 1029 | #ifdef TARGET_HAS_PRECISE_SMC |
6b917547 | 1030 | TranslationBlock *current_tb = NULL; |
d720b93d | 1031 | CPUState *env = cpu_single_env; |
6b917547 AL |
1032 | int current_tb_modified = 0; |
1033 | target_ulong current_pc = 0; | |
1034 | target_ulong current_cs_base = 0; | |
1035 | int current_flags = 0; | |
d720b93d | 1036 | #endif |
9fa3e853 FB |
1037 | |
1038 | addr &= TARGET_PAGE_MASK; | |
1039 | p = page_find(addr >> TARGET_PAGE_BITS); | |
5fafdf24 | 1040 | if (!p) |
9fa3e853 FB |
1041 | return; |
1042 | tb = p->first_tb; | |
d720b93d FB |
1043 | #ifdef TARGET_HAS_PRECISE_SMC |
1044 | if (tb && pc != 0) { | |
1045 | current_tb = tb_find_pc(pc); | |
1046 | } | |
1047 | #endif | |
9fa3e853 FB |
1048 | while (tb != NULL) { |
1049 | n = (long)tb & 3; | |
1050 | tb = (TranslationBlock *)((long)tb & ~3); | |
d720b93d FB |
1051 | #ifdef TARGET_HAS_PRECISE_SMC |
1052 | if (current_tb == tb && | |
2e70f6ef | 1053 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
1054 | /* If we are modifying the current TB, we must stop |
1055 | its execution. We could be more precise by checking | |
1056 | that the modification is after the current PC, but it | |
1057 | would require a specialized function to partially | |
1058 | restore the CPU state */ | |
3b46e624 | 1059 | |
d720b93d FB |
1060 | current_tb_modified = 1; |
1061 | cpu_restore_state(current_tb, env, pc, puc); | |
6b917547 AL |
1062 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1063 | ¤t_flags); | |
d720b93d FB |
1064 | } |
1065 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
1066 | tb_phys_invalidate(tb, addr); |
1067 | tb = tb->page_next[n]; | |
1068 | } | |
fd6ce8f6 | 1069 | p->first_tb = NULL; |
d720b93d FB |
1070 | #ifdef TARGET_HAS_PRECISE_SMC |
1071 | if (current_tb_modified) { | |
1072 | /* we generate a block containing just the instruction | |
1073 | modifying the memory. It will ensure that it cannot modify | |
1074 | itself */ | |
ea1c1802 | 1075 | env->current_tb = NULL; |
2e70f6ef | 1076 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d FB |
1077 | cpu_resume_from_signal(env, puc); |
1078 | } | |
1079 | #endif | |
fd6ce8f6 | 1080 | } |
9fa3e853 | 1081 | #endif |
fd6ce8f6 FB |
1082 | |
1083 | /* add the tb in the target page and protect it if necessary */ | |
5fafdf24 | 1084 | static inline void tb_alloc_page(TranslationBlock *tb, |
53a5960a | 1085 | unsigned int n, target_ulong page_addr) |
fd6ce8f6 FB |
1086 | { |
1087 | PageDesc *p; | |
9fa3e853 FB |
1088 | TranslationBlock *last_first_tb; |
1089 | ||
1090 | tb->page_addr[n] = page_addr; | |
3a7d929e | 1091 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1092 | tb->page_next[n] = p->first_tb; |
1093 | last_first_tb = p->first_tb; | |
1094 | p->first_tb = (TranslationBlock *)((long)tb | n); | |
1095 | invalidate_page_bitmap(p); | |
fd6ce8f6 | 1096 | |
107db443 | 1097 | #if defined(TARGET_HAS_SMC) || 1 |
d720b93d | 1098 | |
9fa3e853 | 1099 | #if defined(CONFIG_USER_ONLY) |
fd6ce8f6 | 1100 | if (p->flags & PAGE_WRITE) { |
53a5960a PB |
1101 | target_ulong addr; |
1102 | PageDesc *p2; | |
9fa3e853 FB |
1103 | int prot; |
1104 | ||
fd6ce8f6 FB |
1105 | /* force the host page as non writable (writes will have a |
1106 | page fault + mprotect overhead) */ | |
53a5960a | 1107 | page_addr &= qemu_host_page_mask; |
fd6ce8f6 | 1108 | prot = 0; |
53a5960a PB |
1109 | for(addr = page_addr; addr < page_addr + qemu_host_page_size; |
1110 | addr += TARGET_PAGE_SIZE) { | |
1111 | ||
1112 | p2 = page_find (addr >> TARGET_PAGE_BITS); | |
1113 | if (!p2) | |
1114 | continue; | |
1115 | prot |= p2->flags; | |
1116 | p2->flags &= ~PAGE_WRITE; | |
1117 | page_get_flags(addr); | |
1118 | } | |
5fafdf24 | 1119 | mprotect(g2h(page_addr), qemu_host_page_size, |
fd6ce8f6 FB |
1120 | (prot & PAGE_BITS) & ~PAGE_WRITE); |
1121 | #ifdef DEBUG_TB_INVALIDATE | |
ab3d1727 | 1122 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", |
53a5960a | 1123 | page_addr); |
fd6ce8f6 | 1124 | #endif |
fd6ce8f6 | 1125 | } |
9fa3e853 FB |
1126 | #else |
1127 | /* if some code is already present, then the pages are already | |
1128 | protected. So we handle the case where only the first TB is | |
1129 | allocated in a physical page */ | |
1130 | if (!last_first_tb) { | |
6a00d601 | 1131 | tlb_protect_code(page_addr); |
9fa3e853 FB |
1132 | } |
1133 | #endif | |
d720b93d FB |
1134 | |
1135 | #endif /* TARGET_HAS_SMC */ | |
fd6ce8f6 FB |
1136 | } |
1137 | ||
1138 | /* Allocate a new translation block. Flush the translation buffer if | |
1139 | too many translation blocks or too much generated code. */ | |
c27004ec | 1140 | TranslationBlock *tb_alloc(target_ulong pc) |
fd6ce8f6 FB |
1141 | { |
1142 | TranslationBlock *tb; | |
fd6ce8f6 | 1143 | |
26a5f13b FB |
1144 | if (nb_tbs >= code_gen_max_blocks || |
1145 | (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size) | |
d4e8164f | 1146 | return NULL; |
fd6ce8f6 FB |
1147 | tb = &tbs[nb_tbs++]; |
1148 | tb->pc = pc; | |
b448f2f3 | 1149 | tb->cflags = 0; |
d4e8164f FB |
1150 | return tb; |
1151 | } | |
1152 | ||
2e70f6ef PB |
1153 | void tb_free(TranslationBlock *tb) |
1154 | { | |
bf20dc07 | 1155 | /* In practice this is mostly used for single use temporary TB |
2e70f6ef PB |
1156 | Ignore the hard cases and just back up if this TB happens to |
1157 | be the last one generated. */ | |
1158 | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) { | |
1159 | code_gen_ptr = tb->tc_ptr; | |
1160 | nb_tbs--; | |
1161 | } | |
1162 | } | |
1163 | ||
9fa3e853 FB |
1164 | /* add a new TB and link it to the physical page tables. phys_page2 is |
1165 | (-1) to indicate that only one page contains the TB. */ | |
5fafdf24 | 1166 | void tb_link_phys(TranslationBlock *tb, |
9fa3e853 | 1167 | target_ulong phys_pc, target_ulong phys_page2) |
d4e8164f | 1168 | { |
9fa3e853 FB |
1169 | unsigned int h; |
1170 | TranslationBlock **ptb; | |
1171 | ||
c8a706fe PB |
1172 | /* Grab the mmap lock to stop another thread invalidating this TB |
1173 | before we are done. */ | |
1174 | mmap_lock(); | |
9fa3e853 FB |
1175 | /* add in the physical hash table */ |
1176 | h = tb_phys_hash_func(phys_pc); | |
1177 | ptb = &tb_phys_hash[h]; | |
1178 | tb->phys_hash_next = *ptb; | |
1179 | *ptb = tb; | |
fd6ce8f6 FB |
1180 | |
1181 | /* add in the page list */ | |
9fa3e853 FB |
1182 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); |
1183 | if (phys_page2 != -1) | |
1184 | tb_alloc_page(tb, 1, phys_page2); | |
1185 | else | |
1186 | tb->page_addr[1] = -1; | |
9fa3e853 | 1187 | |
d4e8164f FB |
1188 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); |
1189 | tb->jmp_next[0] = NULL; | |
1190 | tb->jmp_next[1] = NULL; | |
1191 | ||
1192 | /* init original jump addresses */ | |
1193 | if (tb->tb_next_offset[0] != 0xffff) | |
1194 | tb_reset_jump(tb, 0); | |
1195 | if (tb->tb_next_offset[1] != 0xffff) | |
1196 | tb_reset_jump(tb, 1); | |
8a40a180 FB |
1197 | |
1198 | #ifdef DEBUG_TB_CHECK | |
1199 | tb_page_check(); | |
1200 | #endif | |
c8a706fe | 1201 | mmap_unlock(); |
fd6ce8f6 FB |
1202 | } |
1203 | ||
9fa3e853 FB |
1204 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < |
1205 | tb[1].tc_ptr. Return NULL if not found */ | |
1206 | TranslationBlock *tb_find_pc(unsigned long tc_ptr) | |
fd6ce8f6 | 1207 | { |
9fa3e853 FB |
1208 | int m_min, m_max, m; |
1209 | unsigned long v; | |
1210 | TranslationBlock *tb; | |
a513fe19 FB |
1211 | |
1212 | if (nb_tbs <= 0) | |
1213 | return NULL; | |
1214 | if (tc_ptr < (unsigned long)code_gen_buffer || | |
1215 | tc_ptr >= (unsigned long)code_gen_ptr) | |
1216 | return NULL; | |
1217 | /* binary search (cf Knuth) */ | |
1218 | m_min = 0; | |
1219 | m_max = nb_tbs - 1; | |
1220 | while (m_min <= m_max) { | |
1221 | m = (m_min + m_max) >> 1; | |
1222 | tb = &tbs[m]; | |
1223 | v = (unsigned long)tb->tc_ptr; | |
1224 | if (v == tc_ptr) | |
1225 | return tb; | |
1226 | else if (tc_ptr < v) { | |
1227 | m_max = m - 1; | |
1228 | } else { | |
1229 | m_min = m + 1; | |
1230 | } | |
5fafdf24 | 1231 | } |
a513fe19 FB |
1232 | return &tbs[m_max]; |
1233 | } | |
7501267e | 1234 | |
ea041c0e FB |
1235 | static void tb_reset_jump_recursive(TranslationBlock *tb); |
1236 | ||
1237 | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) | |
1238 | { | |
1239 | TranslationBlock *tb1, *tb_next, **ptb; | |
1240 | unsigned int n1; | |
1241 | ||
1242 | tb1 = tb->jmp_next[n]; | |
1243 | if (tb1 != NULL) { | |
1244 | /* find head of list */ | |
1245 | for(;;) { | |
1246 | n1 = (long)tb1 & 3; | |
1247 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1248 | if (n1 == 2) | |
1249 | break; | |
1250 | tb1 = tb1->jmp_next[n1]; | |
1251 | } | |
1252 | /* we are now sure now that tb jumps to tb1 */ | |
1253 | tb_next = tb1; | |
1254 | ||
1255 | /* remove tb from the jmp_first list */ | |
1256 | ptb = &tb_next->jmp_first; | |
1257 | for(;;) { | |
1258 | tb1 = *ptb; | |
1259 | n1 = (long)tb1 & 3; | |
1260 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1261 | if (n1 == n && tb1 == tb) | |
1262 | break; | |
1263 | ptb = &tb1->jmp_next[n1]; | |
1264 | } | |
1265 | *ptb = tb->jmp_next[n]; | |
1266 | tb->jmp_next[n] = NULL; | |
3b46e624 | 1267 | |
ea041c0e FB |
1268 | /* suppress the jump to next tb in generated code */ |
1269 | tb_reset_jump(tb, n); | |
1270 | ||
0124311e | 1271 | /* suppress jumps in the tb on which we could have jumped */ |
ea041c0e FB |
1272 | tb_reset_jump_recursive(tb_next); |
1273 | } | |
1274 | } | |
1275 | ||
1276 | static void tb_reset_jump_recursive(TranslationBlock *tb) | |
1277 | { | |
1278 | tb_reset_jump_recursive2(tb, 0); | |
1279 | tb_reset_jump_recursive2(tb, 1); | |
1280 | } | |
1281 | ||
1fddef4b | 1282 | #if defined(TARGET_HAS_ICE) |
d720b93d FB |
1283 | static void breakpoint_invalidate(CPUState *env, target_ulong pc) |
1284 | { | |
9b3c35e0 JM |
1285 | target_phys_addr_t addr; |
1286 | target_ulong pd; | |
c2f07f81 PB |
1287 | ram_addr_t ram_addr; |
1288 | PhysPageDesc *p; | |
d720b93d | 1289 | |
c2f07f81 PB |
1290 | addr = cpu_get_phys_page_debug(env, pc); |
1291 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
1292 | if (!p) { | |
1293 | pd = IO_MEM_UNASSIGNED; | |
1294 | } else { | |
1295 | pd = p->phys_offset; | |
1296 | } | |
1297 | ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK); | |
706cd4b5 | 1298 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
d720b93d | 1299 | } |
c27004ec | 1300 | #endif |
d720b93d | 1301 | |
6658ffb8 | 1302 | /* Add a watchpoint. */ |
a1d1bb31 AL |
1303 | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, |
1304 | int flags, CPUWatchpoint **watchpoint) | |
6658ffb8 | 1305 | { |
b4051334 | 1306 | target_ulong len_mask = ~(len - 1); |
c0ce998e | 1307 | CPUWatchpoint *wp; |
6658ffb8 | 1308 | |
b4051334 AL |
1309 | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ |
1310 | if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) { | |
1311 | fprintf(stderr, "qemu: tried to set invalid watchpoint at " | |
1312 | TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len); | |
1313 | return -EINVAL; | |
1314 | } | |
a1d1bb31 AL |
1315 | wp = qemu_malloc(sizeof(*wp)); |
1316 | if (!wp) | |
426cd5d6 | 1317 | return -ENOMEM; |
a1d1bb31 AL |
1318 | |
1319 | wp->vaddr = addr; | |
b4051334 | 1320 | wp->len_mask = len_mask; |
a1d1bb31 AL |
1321 | wp->flags = flags; |
1322 | ||
2dc9f411 | 1323 | /* keep all GDB-injected watchpoints in front */ |
c0ce998e AL |
1324 | if (flags & BP_GDB) |
1325 | TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry); | |
1326 | else | |
1327 | TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry); | |
6658ffb8 | 1328 | |
6658ffb8 | 1329 | tlb_flush_page(env, addr); |
a1d1bb31 AL |
1330 | |
1331 | if (watchpoint) | |
1332 | *watchpoint = wp; | |
1333 | return 0; | |
6658ffb8 PB |
1334 | } |
1335 | ||
a1d1bb31 AL |
1336 | /* Remove a specific watchpoint. */ |
1337 | int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len, | |
1338 | int flags) | |
6658ffb8 | 1339 | { |
b4051334 | 1340 | target_ulong len_mask = ~(len - 1); |
a1d1bb31 | 1341 | CPUWatchpoint *wp; |
6658ffb8 | 1342 | |
c0ce998e | 1343 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
b4051334 | 1344 | if (addr == wp->vaddr && len_mask == wp->len_mask |
6e140f28 | 1345 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
a1d1bb31 | 1346 | cpu_watchpoint_remove_by_ref(env, wp); |
6658ffb8 PB |
1347 | return 0; |
1348 | } | |
1349 | } | |
a1d1bb31 | 1350 | return -ENOENT; |
6658ffb8 PB |
1351 | } |
1352 | ||
a1d1bb31 AL |
1353 | /* Remove a specific watchpoint by reference. */ |
1354 | void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint) | |
1355 | { | |
c0ce998e | 1356 | TAILQ_REMOVE(&env->watchpoints, watchpoint, entry); |
7d03f82f | 1357 | |
a1d1bb31 AL |
1358 | tlb_flush_page(env, watchpoint->vaddr); |
1359 | ||
1360 | qemu_free(watchpoint); | |
1361 | } | |
1362 | ||
1363 | /* Remove all matching watchpoints. */ | |
1364 | void cpu_watchpoint_remove_all(CPUState *env, int mask) | |
1365 | { | |
c0ce998e | 1366 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 1367 | |
c0ce998e | 1368 | TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) { |
a1d1bb31 AL |
1369 | if (wp->flags & mask) |
1370 | cpu_watchpoint_remove_by_ref(env, wp); | |
c0ce998e | 1371 | } |
7d03f82f EI |
1372 | } |
1373 | ||
a1d1bb31 AL |
1374 | /* Add a breakpoint. */ |
1375 | int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags, | |
1376 | CPUBreakpoint **breakpoint) | |
4c3a88a2 | 1377 | { |
1fddef4b | 1378 | #if defined(TARGET_HAS_ICE) |
c0ce998e | 1379 | CPUBreakpoint *bp; |
3b46e624 | 1380 | |
a1d1bb31 AL |
1381 | bp = qemu_malloc(sizeof(*bp)); |
1382 | if (!bp) | |
426cd5d6 | 1383 | return -ENOMEM; |
4c3a88a2 | 1384 | |
a1d1bb31 AL |
1385 | bp->pc = pc; |
1386 | bp->flags = flags; | |
1387 | ||
2dc9f411 | 1388 | /* keep all GDB-injected breakpoints in front */ |
c0ce998e AL |
1389 | if (flags & BP_GDB) |
1390 | TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry); | |
1391 | else | |
1392 | TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry); | |
3b46e624 | 1393 | |
d720b93d | 1394 | breakpoint_invalidate(env, pc); |
a1d1bb31 AL |
1395 | |
1396 | if (breakpoint) | |
1397 | *breakpoint = bp; | |
4c3a88a2 FB |
1398 | return 0; |
1399 | #else | |
a1d1bb31 | 1400 | return -ENOSYS; |
4c3a88a2 FB |
1401 | #endif |
1402 | } | |
1403 | ||
a1d1bb31 AL |
1404 | /* Remove a specific breakpoint. */ |
1405 | int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags) | |
1406 | { | |
7d03f82f | 1407 | #if defined(TARGET_HAS_ICE) |
a1d1bb31 AL |
1408 | CPUBreakpoint *bp; |
1409 | ||
c0ce998e | 1410 | TAILQ_FOREACH(bp, &env->breakpoints, entry) { |
a1d1bb31 AL |
1411 | if (bp->pc == pc && bp->flags == flags) { |
1412 | cpu_breakpoint_remove_by_ref(env, bp); | |
1413 | return 0; | |
1414 | } | |
7d03f82f | 1415 | } |
a1d1bb31 AL |
1416 | return -ENOENT; |
1417 | #else | |
1418 | return -ENOSYS; | |
7d03f82f EI |
1419 | #endif |
1420 | } | |
1421 | ||
a1d1bb31 AL |
1422 | /* Remove a specific breakpoint by reference. */ |
1423 | void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint) | |
4c3a88a2 | 1424 | { |
1fddef4b | 1425 | #if defined(TARGET_HAS_ICE) |
c0ce998e | 1426 | TAILQ_REMOVE(&env->breakpoints, breakpoint, entry); |
d720b93d | 1427 | |
a1d1bb31 AL |
1428 | breakpoint_invalidate(env, breakpoint->pc); |
1429 | ||
1430 | qemu_free(breakpoint); | |
1431 | #endif | |
1432 | } | |
1433 | ||
1434 | /* Remove all matching breakpoints. */ | |
1435 | void cpu_breakpoint_remove_all(CPUState *env, int mask) | |
1436 | { | |
1437 | #if defined(TARGET_HAS_ICE) | |
c0ce998e | 1438 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 1439 | |
c0ce998e | 1440 | TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) { |
a1d1bb31 AL |
1441 | if (bp->flags & mask) |
1442 | cpu_breakpoint_remove_by_ref(env, bp); | |
c0ce998e | 1443 | } |
4c3a88a2 FB |
1444 | #endif |
1445 | } | |
1446 | ||
c33a346e FB |
1447 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
1448 | CPU loop after each instruction */ | |
1449 | void cpu_single_step(CPUState *env, int enabled) | |
1450 | { | |
1fddef4b | 1451 | #if defined(TARGET_HAS_ICE) |
c33a346e FB |
1452 | if (env->singlestep_enabled != enabled) { |
1453 | env->singlestep_enabled = enabled; | |
1454 | /* must flush all the translated code to avoid inconsistancies */ | |
9fa3e853 | 1455 | /* XXX: only flush what is necessary */ |
0124311e | 1456 | tb_flush(env); |
c33a346e FB |
1457 | } |
1458 | #endif | |
1459 | } | |
1460 | ||
34865134 FB |
1461 | /* enable or disable low levels log */ |
1462 | void cpu_set_log(int log_flags) | |
1463 | { | |
1464 | loglevel = log_flags; | |
1465 | if (loglevel && !logfile) { | |
11fcfab4 | 1466 | logfile = fopen(logfilename, log_append ? "a" : "w"); |
34865134 FB |
1467 | if (!logfile) { |
1468 | perror(logfilename); | |
1469 | _exit(1); | |
1470 | } | |
9fa3e853 FB |
1471 | #if !defined(CONFIG_SOFTMMU) |
1472 | /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ | |
1473 | { | |
b55266b5 | 1474 | static char logfile_buf[4096]; |
9fa3e853 FB |
1475 | setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); |
1476 | } | |
1477 | #else | |
34865134 | 1478 | setvbuf(logfile, NULL, _IOLBF, 0); |
9fa3e853 | 1479 | #endif |
e735b91c PB |
1480 | log_append = 1; |
1481 | } | |
1482 | if (!loglevel && logfile) { | |
1483 | fclose(logfile); | |
1484 | logfile = NULL; | |
34865134 FB |
1485 | } |
1486 | } | |
1487 | ||
1488 | void cpu_set_log_filename(const char *filename) | |
1489 | { | |
1490 | logfilename = strdup(filename); | |
e735b91c PB |
1491 | if (logfile) { |
1492 | fclose(logfile); | |
1493 | logfile = NULL; | |
1494 | } | |
1495 | cpu_set_log(loglevel); | |
34865134 | 1496 | } |
c33a346e | 1497 | |
0124311e | 1498 | /* mask must never be zero, except for A20 change call */ |
68a79315 | 1499 | void cpu_interrupt(CPUState *env, int mask) |
ea041c0e | 1500 | { |
d5975363 | 1501 | #if !defined(USE_NPTL) |
ea041c0e | 1502 | TranslationBlock *tb; |
15a51156 | 1503 | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; |
d5975363 | 1504 | #endif |
2e70f6ef | 1505 | int old_mask; |
59817ccb | 1506 | |
2e70f6ef | 1507 | old_mask = env->interrupt_request; |
d5975363 | 1508 | /* FIXME: This is probably not threadsafe. A different thread could |
bf20dc07 | 1509 | be in the middle of a read-modify-write operation. */ |
68a79315 | 1510 | env->interrupt_request |= mask; |
d5975363 PB |
1511 | #if defined(USE_NPTL) |
1512 | /* FIXME: TB unchaining isn't SMP safe. For now just ignore the | |
1513 | problem and hope the cpu will stop of its own accord. For userspace | |
1514 | emulation this often isn't actually as bad as it sounds. Often | |
1515 | signals are used primarily to interrupt blocking syscalls. */ | |
1516 | #else | |
2e70f6ef | 1517 | if (use_icount) { |
266910c4 | 1518 | env->icount_decr.u16.high = 0xffff; |
2e70f6ef PB |
1519 | #ifndef CONFIG_USER_ONLY |
1520 | /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means | |
1521 | an async event happened and we need to process it. */ | |
1522 | if (!can_do_io(env) | |
1523 | && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) { | |
1524 | cpu_abort(env, "Raised interrupt while not in I/O function"); | |
1525 | } | |
1526 | #endif | |
1527 | } else { | |
1528 | tb = env->current_tb; | |
1529 | /* if the cpu is currently executing code, we must unlink it and | |
1530 | all the potentially executing TB */ | |
1531 | if (tb && !testandset(&interrupt_lock)) { | |
1532 | env->current_tb = NULL; | |
1533 | tb_reset_jump_recursive(tb); | |
1534 | resetlock(&interrupt_lock); | |
1535 | } | |
ea041c0e | 1536 | } |
d5975363 | 1537 | #endif |
ea041c0e FB |
1538 | } |
1539 | ||
b54ad049 FB |
1540 | void cpu_reset_interrupt(CPUState *env, int mask) |
1541 | { | |
1542 | env->interrupt_request &= ~mask; | |
1543 | } | |
1544 | ||
c7cd6a37 | 1545 | const CPULogItem cpu_log_items[] = { |
5fafdf24 | 1546 | { CPU_LOG_TB_OUT_ASM, "out_asm", |
f193c797 FB |
1547 | "show generated host assembly code for each compiled TB" }, |
1548 | { CPU_LOG_TB_IN_ASM, "in_asm", | |
1549 | "show target assembly code for each compiled TB" }, | |
5fafdf24 | 1550 | { CPU_LOG_TB_OP, "op", |
57fec1fe | 1551 | "show micro ops for each compiled TB" }, |
f193c797 | 1552 | { CPU_LOG_TB_OP_OPT, "op_opt", |
e01a1157 BS |
1553 | "show micro ops " |
1554 | #ifdef TARGET_I386 | |
1555 | "before eflags optimization and " | |
f193c797 | 1556 | #endif |
e01a1157 | 1557 | "after liveness analysis" }, |
f193c797 FB |
1558 | { CPU_LOG_INT, "int", |
1559 | "show interrupts/exceptions in short format" }, | |
1560 | { CPU_LOG_EXEC, "exec", | |
1561 | "show trace before each executed TB (lots of logs)" }, | |
9fddaa0c | 1562 | { CPU_LOG_TB_CPU, "cpu", |
e91c8a77 | 1563 | "show CPU state before block translation" }, |
f193c797 FB |
1564 | #ifdef TARGET_I386 |
1565 | { CPU_LOG_PCALL, "pcall", | |
1566 | "show protected mode far calls/returns/exceptions" }, | |
1567 | #endif | |
8e3a9fd2 | 1568 | #ifdef DEBUG_IOPORT |
fd872598 FB |
1569 | { CPU_LOG_IOPORT, "ioport", |
1570 | "show all i/o ports accesses" }, | |
8e3a9fd2 | 1571 | #endif |
f193c797 FB |
1572 | { 0, NULL, NULL }, |
1573 | }; | |
1574 | ||
1575 | static int cmp1(const char *s1, int n, const char *s2) | |
1576 | { | |
1577 | if (strlen(s2) != n) | |
1578 | return 0; | |
1579 | return memcmp(s1, s2, n) == 0; | |
1580 | } | |
3b46e624 | 1581 | |
f193c797 FB |
1582 | /* takes a comma separated list of log masks. Return 0 if error. */ |
1583 | int cpu_str_to_log_mask(const char *str) | |
1584 | { | |
c7cd6a37 | 1585 | const CPULogItem *item; |
f193c797 FB |
1586 | int mask; |
1587 | const char *p, *p1; | |
1588 | ||
1589 | p = str; | |
1590 | mask = 0; | |
1591 | for(;;) { | |
1592 | p1 = strchr(p, ','); | |
1593 | if (!p1) | |
1594 | p1 = p + strlen(p); | |
8e3a9fd2 FB |
1595 | if(cmp1(p,p1-p,"all")) { |
1596 | for(item = cpu_log_items; item->mask != 0; item++) { | |
1597 | mask |= item->mask; | |
1598 | } | |
1599 | } else { | |
f193c797 FB |
1600 | for(item = cpu_log_items; item->mask != 0; item++) { |
1601 | if (cmp1(p, p1 - p, item->name)) | |
1602 | goto found; | |
1603 | } | |
1604 | return 0; | |
8e3a9fd2 | 1605 | } |
f193c797 FB |
1606 | found: |
1607 | mask |= item->mask; | |
1608 | if (*p1 != ',') | |
1609 | break; | |
1610 | p = p1 + 1; | |
1611 | } | |
1612 | return mask; | |
1613 | } | |
ea041c0e | 1614 | |
7501267e FB |
1615 | void cpu_abort(CPUState *env, const char *fmt, ...) |
1616 | { | |
1617 | va_list ap; | |
493ae1f0 | 1618 | va_list ap2; |
7501267e FB |
1619 | |
1620 | va_start(ap, fmt); | |
493ae1f0 | 1621 | va_copy(ap2, ap); |
7501267e FB |
1622 | fprintf(stderr, "qemu: fatal: "); |
1623 | vfprintf(stderr, fmt, ap); | |
1624 | fprintf(stderr, "\n"); | |
1625 | #ifdef TARGET_I386 | |
7fe48483 FB |
1626 | cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); |
1627 | #else | |
1628 | cpu_dump_state(env, stderr, fprintf, 0); | |
7501267e | 1629 | #endif |
924edcae | 1630 | if (logfile) { |
f9373291 | 1631 | fprintf(logfile, "qemu: fatal: "); |
493ae1f0 | 1632 | vfprintf(logfile, fmt, ap2); |
f9373291 JM |
1633 | fprintf(logfile, "\n"); |
1634 | #ifdef TARGET_I386 | |
1635 | cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); | |
1636 | #else | |
1637 | cpu_dump_state(env, logfile, fprintf, 0); | |
1638 | #endif | |
924edcae AZ |
1639 | fflush(logfile); |
1640 | fclose(logfile); | |
1641 | } | |
493ae1f0 | 1642 | va_end(ap2); |
f9373291 | 1643 | va_end(ap); |
7501267e FB |
1644 | abort(); |
1645 | } | |
1646 | ||
c5be9f08 TS |
1647 | CPUState *cpu_copy(CPUState *env) |
1648 | { | |
01ba9816 | 1649 | CPUState *new_env = cpu_init(env->cpu_model_str); |
c5be9f08 TS |
1650 | /* preserve chaining and index */ |
1651 | CPUState *next_cpu = new_env->next_cpu; | |
1652 | int cpu_index = new_env->cpu_index; | |
1653 | memcpy(new_env, env, sizeof(CPUState)); | |
1654 | new_env->next_cpu = next_cpu; | |
1655 | new_env->cpu_index = cpu_index; | |
1656 | return new_env; | |
1657 | } | |
1658 | ||
0124311e FB |
1659 | #if !defined(CONFIG_USER_ONLY) |
1660 | ||
5c751e99 EI |
1661 | static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr) |
1662 | { | |
1663 | unsigned int i; | |
1664 | ||
1665 | /* Discard jump cache entries for any tb which might potentially | |
1666 | overlap the flushed page. */ | |
1667 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
1668 | memset (&env->tb_jmp_cache[i], 0, | |
1669 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1670 | ||
1671 | i = tb_jmp_cache_hash_page(addr); | |
1672 | memset (&env->tb_jmp_cache[i], 0, | |
1673 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1674 | } | |
1675 | ||
ee8b7021 FB |
1676 | /* NOTE: if flush_global is true, also flush global entries (not |
1677 | implemented yet) */ | |
1678 | void tlb_flush(CPUState *env, int flush_global) | |
33417e70 | 1679 | { |
33417e70 | 1680 | int i; |
0124311e | 1681 | |
9fa3e853 FB |
1682 | #if defined(DEBUG_TLB) |
1683 | printf("tlb_flush:\n"); | |
1684 | #endif | |
0124311e FB |
1685 | /* must reset current TB so that interrupts cannot modify the |
1686 | links while we are modifying them */ | |
1687 | env->current_tb = NULL; | |
1688 | ||
33417e70 | 1689 | for(i = 0; i < CPU_TLB_SIZE; i++) { |
84b7b8e7 FB |
1690 | env->tlb_table[0][i].addr_read = -1; |
1691 | env->tlb_table[0][i].addr_write = -1; | |
1692 | env->tlb_table[0][i].addr_code = -1; | |
1693 | env->tlb_table[1][i].addr_read = -1; | |
1694 | env->tlb_table[1][i].addr_write = -1; | |
1695 | env->tlb_table[1][i].addr_code = -1; | |
6fa4cea9 JM |
1696 | #if (NB_MMU_MODES >= 3) |
1697 | env->tlb_table[2][i].addr_read = -1; | |
1698 | env->tlb_table[2][i].addr_write = -1; | |
1699 | env->tlb_table[2][i].addr_code = -1; | |
1700 | #if (NB_MMU_MODES == 4) | |
1701 | env->tlb_table[3][i].addr_read = -1; | |
1702 | env->tlb_table[3][i].addr_write = -1; | |
1703 | env->tlb_table[3][i].addr_code = -1; | |
1704 | #endif | |
1705 | #endif | |
33417e70 | 1706 | } |
9fa3e853 | 1707 | |
8a40a180 | 1708 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); |
9fa3e853 | 1709 | |
0a962c02 FB |
1710 | #ifdef USE_KQEMU |
1711 | if (env->kqemu_enabled) { | |
1712 | kqemu_flush(env, flush_global); | |
1713 | } | |
9fa3e853 | 1714 | #endif |
e3db7226 | 1715 | tlb_flush_count++; |
33417e70 FB |
1716 | } |
1717 | ||
274da6b2 | 1718 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) |
61382a50 | 1719 | { |
5fafdf24 | 1720 | if (addr == (tlb_entry->addr_read & |
84b7b8e7 | 1721 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1722 | addr == (tlb_entry->addr_write & |
84b7b8e7 | 1723 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1724 | addr == (tlb_entry->addr_code & |
84b7b8e7 FB |
1725 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
1726 | tlb_entry->addr_read = -1; | |
1727 | tlb_entry->addr_write = -1; | |
1728 | tlb_entry->addr_code = -1; | |
1729 | } | |
61382a50 FB |
1730 | } |
1731 | ||
2e12669a | 1732 | void tlb_flush_page(CPUState *env, target_ulong addr) |
33417e70 | 1733 | { |
8a40a180 | 1734 | int i; |
0124311e | 1735 | |
9fa3e853 | 1736 | #if defined(DEBUG_TLB) |
108c49b8 | 1737 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); |
9fa3e853 | 1738 | #endif |
0124311e FB |
1739 | /* must reset current TB so that interrupts cannot modify the |
1740 | links while we are modifying them */ | |
1741 | env->current_tb = NULL; | |
61382a50 FB |
1742 | |
1743 | addr &= TARGET_PAGE_MASK; | |
1744 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
84b7b8e7 FB |
1745 | tlb_flush_entry(&env->tlb_table[0][i], addr); |
1746 | tlb_flush_entry(&env->tlb_table[1][i], addr); | |
6fa4cea9 JM |
1747 | #if (NB_MMU_MODES >= 3) |
1748 | tlb_flush_entry(&env->tlb_table[2][i], addr); | |
1749 | #if (NB_MMU_MODES == 4) | |
1750 | tlb_flush_entry(&env->tlb_table[3][i], addr); | |
1751 | #endif | |
1752 | #endif | |
0124311e | 1753 | |
5c751e99 | 1754 | tlb_flush_jmp_cache(env, addr); |
9fa3e853 | 1755 | |
0a962c02 FB |
1756 | #ifdef USE_KQEMU |
1757 | if (env->kqemu_enabled) { | |
1758 | kqemu_flush_page(env, addr); | |
1759 | } | |
1760 | #endif | |
9fa3e853 FB |
1761 | } |
1762 | ||
9fa3e853 FB |
1763 | /* update the TLBs so that writes to code in the virtual page 'addr' |
1764 | can be detected */ | |
6a00d601 | 1765 | static void tlb_protect_code(ram_addr_t ram_addr) |
9fa3e853 | 1766 | { |
5fafdf24 | 1767 | cpu_physical_memory_reset_dirty(ram_addr, |
6a00d601 FB |
1768 | ram_addr + TARGET_PAGE_SIZE, |
1769 | CODE_DIRTY_FLAG); | |
9fa3e853 FB |
1770 | } |
1771 | ||
9fa3e853 | 1772 | /* update the TLB so that writes in physical page 'phys_addr' are no longer |
3a7d929e | 1773 | tested for self modifying code */ |
5fafdf24 | 1774 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 1775 | target_ulong vaddr) |
9fa3e853 | 1776 | { |
3a7d929e | 1777 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG; |
1ccde1cb FB |
1778 | } |
1779 | ||
5fafdf24 | 1780 | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, |
1ccde1cb FB |
1781 | unsigned long start, unsigned long length) |
1782 | { | |
1783 | unsigned long addr; | |
84b7b8e7 FB |
1784 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
1785 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | |
1ccde1cb | 1786 | if ((addr - start) < length) { |
0f459d16 | 1787 | tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY; |
1ccde1cb FB |
1788 | } |
1789 | } | |
1790 | } | |
1791 | ||
3a7d929e | 1792 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, |
0a962c02 | 1793 | int dirty_flags) |
1ccde1cb FB |
1794 | { |
1795 | CPUState *env; | |
4f2ac237 | 1796 | unsigned long length, start1; |
0a962c02 FB |
1797 | int i, mask, len; |
1798 | uint8_t *p; | |
1ccde1cb FB |
1799 | |
1800 | start &= TARGET_PAGE_MASK; | |
1801 | end = TARGET_PAGE_ALIGN(end); | |
1802 | ||
1803 | length = end - start; | |
1804 | if (length == 0) | |
1805 | return; | |
0a962c02 | 1806 | len = length >> TARGET_PAGE_BITS; |
3a7d929e | 1807 | #ifdef USE_KQEMU |
6a00d601 FB |
1808 | /* XXX: should not depend on cpu context */ |
1809 | env = first_cpu; | |
3a7d929e | 1810 | if (env->kqemu_enabled) { |
f23db169 FB |
1811 | ram_addr_t addr; |
1812 | addr = start; | |
1813 | for(i = 0; i < len; i++) { | |
1814 | kqemu_set_notdirty(env, addr); | |
1815 | addr += TARGET_PAGE_SIZE; | |
1816 | } | |
3a7d929e FB |
1817 | } |
1818 | #endif | |
f23db169 FB |
1819 | mask = ~dirty_flags; |
1820 | p = phys_ram_dirty + (start >> TARGET_PAGE_BITS); | |
1821 | for(i = 0; i < len; i++) | |
1822 | p[i] &= mask; | |
1823 | ||
1ccde1cb FB |
1824 | /* we modify the TLB cache so that the dirty bit will be set again |
1825 | when accessing the range */ | |
59817ccb | 1826 | start1 = start + (unsigned long)phys_ram_base; |
6a00d601 FB |
1827 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
1828 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
84b7b8e7 | 1829 | tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length); |
6a00d601 | 1830 | for(i = 0; i < CPU_TLB_SIZE; i++) |
84b7b8e7 | 1831 | tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length); |
6fa4cea9 JM |
1832 | #if (NB_MMU_MODES >= 3) |
1833 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1834 | tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length); | |
1835 | #if (NB_MMU_MODES == 4) | |
1836 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1837 | tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length); | |
1838 | #endif | |
1839 | #endif | |
6a00d601 | 1840 | } |
1ccde1cb FB |
1841 | } |
1842 | ||
74576198 AL |
1843 | int cpu_physical_memory_set_dirty_tracking(int enable) |
1844 | { | |
1845 | in_migration = enable; | |
1846 | return 0; | |
1847 | } | |
1848 | ||
1849 | int cpu_physical_memory_get_dirty_tracking(void) | |
1850 | { | |
1851 | return in_migration; | |
1852 | } | |
1853 | ||
2bec46dc AL |
1854 | void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr) |
1855 | { | |
1856 | if (kvm_enabled()) | |
1857 | kvm_physical_sync_dirty_bitmap(start_addr, end_addr); | |
1858 | } | |
1859 | ||
3a7d929e FB |
1860 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) |
1861 | { | |
1862 | ram_addr_t ram_addr; | |
1863 | ||
84b7b8e7 | 1864 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
5fafdf24 | 1865 | ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + |
3a7d929e FB |
1866 | tlb_entry->addend - (unsigned long)phys_ram_base; |
1867 | if (!cpu_physical_memory_is_dirty(ram_addr)) { | |
0f459d16 | 1868 | tlb_entry->addr_write |= TLB_NOTDIRTY; |
3a7d929e FB |
1869 | } |
1870 | } | |
1871 | } | |
1872 | ||
1873 | /* update the TLB according to the current state of the dirty bits */ | |
1874 | void cpu_tlb_update_dirty(CPUState *env) | |
1875 | { | |
1876 | int i; | |
1877 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
84b7b8e7 | 1878 | tlb_update_dirty(&env->tlb_table[0][i]); |
3a7d929e | 1879 | for(i = 0; i < CPU_TLB_SIZE; i++) |
84b7b8e7 | 1880 | tlb_update_dirty(&env->tlb_table[1][i]); |
6fa4cea9 JM |
1881 | #if (NB_MMU_MODES >= 3) |
1882 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1883 | tlb_update_dirty(&env->tlb_table[2][i]); | |
1884 | #if (NB_MMU_MODES == 4) | |
1885 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1886 | tlb_update_dirty(&env->tlb_table[3][i]); | |
1887 | #endif | |
1888 | #endif | |
3a7d929e FB |
1889 | } |
1890 | ||
0f459d16 | 1891 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) |
1ccde1cb | 1892 | { |
0f459d16 PB |
1893 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) |
1894 | tlb_entry->addr_write = vaddr; | |
1ccde1cb FB |
1895 | } |
1896 | ||
0f459d16 PB |
1897 | /* update the TLB corresponding to virtual page vaddr |
1898 | so that it is no longer dirty */ | |
1899 | static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr) | |
1ccde1cb | 1900 | { |
1ccde1cb FB |
1901 | int i; |
1902 | ||
0f459d16 | 1903 | vaddr &= TARGET_PAGE_MASK; |
1ccde1cb | 1904 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
0f459d16 PB |
1905 | tlb_set_dirty1(&env->tlb_table[0][i], vaddr); |
1906 | tlb_set_dirty1(&env->tlb_table[1][i], vaddr); | |
6fa4cea9 | 1907 | #if (NB_MMU_MODES >= 3) |
0f459d16 | 1908 | tlb_set_dirty1(&env->tlb_table[2][i], vaddr); |
6fa4cea9 | 1909 | #if (NB_MMU_MODES == 4) |
0f459d16 | 1910 | tlb_set_dirty1(&env->tlb_table[3][i], vaddr); |
6fa4cea9 JM |
1911 | #endif |
1912 | #endif | |
9fa3e853 FB |
1913 | } |
1914 | ||
59817ccb FB |
1915 | /* add a new TLB entry. At most one entry for a given virtual address |
1916 | is permitted. Return 0 if OK or 2 if the page could not be mapped | |
1917 | (can only happen in non SOFTMMU mode for I/O pages or pages | |
1918 | conflicting with the host address space). */ | |
5fafdf24 TS |
1919 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
1920 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 1921 | int mmu_idx, int is_softmmu) |
9fa3e853 | 1922 | { |
92e873b9 | 1923 | PhysPageDesc *p; |
4f2ac237 | 1924 | unsigned long pd; |
9fa3e853 | 1925 | unsigned int index; |
4f2ac237 | 1926 | target_ulong address; |
0f459d16 | 1927 | target_ulong code_address; |
108c49b8 | 1928 | target_phys_addr_t addend; |
9fa3e853 | 1929 | int ret; |
84b7b8e7 | 1930 | CPUTLBEntry *te; |
a1d1bb31 | 1931 | CPUWatchpoint *wp; |
0f459d16 | 1932 | target_phys_addr_t iotlb; |
9fa3e853 | 1933 | |
92e873b9 | 1934 | p = phys_page_find(paddr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1935 | if (!p) { |
1936 | pd = IO_MEM_UNASSIGNED; | |
9fa3e853 FB |
1937 | } else { |
1938 | pd = p->phys_offset; | |
9fa3e853 FB |
1939 | } |
1940 | #if defined(DEBUG_TLB) | |
6ebbf390 JM |
1941 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n", |
1942 | vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd); | |
9fa3e853 FB |
1943 | #endif |
1944 | ||
1945 | ret = 0; | |
0f459d16 PB |
1946 | address = vaddr; |
1947 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { | |
1948 | /* IO memory case (romd handled later) */ | |
1949 | address |= TLB_MMIO; | |
1950 | } | |
1951 | addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK); | |
1952 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) { | |
1953 | /* Normal RAM. */ | |
1954 | iotlb = pd & TARGET_PAGE_MASK; | |
1955 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM) | |
1956 | iotlb |= IO_MEM_NOTDIRTY; | |
1957 | else | |
1958 | iotlb |= IO_MEM_ROM; | |
1959 | } else { | |
1960 | /* IO handlers are currently passed a phsical address. | |
1961 | It would be nice to pass an offset from the base address | |
1962 | of that region. This would avoid having to special case RAM, | |
1963 | and avoid full address decoding in every device. | |
1964 | We can't use the high bits of pd for this because | |
1965 | IO_MEM_ROMD uses these as a ram address. */ | |
1966 | iotlb = (pd & ~TARGET_PAGE_MASK) + paddr; | |
1967 | } | |
1968 | ||
1969 | code_address = address; | |
1970 | /* Make accesses to pages with watchpoints go via the | |
1971 | watchpoint trap routines. */ | |
c0ce998e | 1972 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
a1d1bb31 | 1973 | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) { |
0f459d16 PB |
1974 | iotlb = io_mem_watch + paddr; |
1975 | /* TODO: The memory case can be optimized by not trapping | |
1976 | reads of pages with a write breakpoint. */ | |
1977 | address |= TLB_MMIO; | |
6658ffb8 | 1978 | } |
0f459d16 | 1979 | } |
d79acba4 | 1980 | |
0f459d16 PB |
1981 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
1982 | env->iotlb[mmu_idx][index] = iotlb - vaddr; | |
1983 | te = &env->tlb_table[mmu_idx][index]; | |
1984 | te->addend = addend - vaddr; | |
1985 | if (prot & PAGE_READ) { | |
1986 | te->addr_read = address; | |
1987 | } else { | |
1988 | te->addr_read = -1; | |
1989 | } | |
5c751e99 | 1990 | |
0f459d16 PB |
1991 | if (prot & PAGE_EXEC) { |
1992 | te->addr_code = code_address; | |
1993 | } else { | |
1994 | te->addr_code = -1; | |
1995 | } | |
1996 | if (prot & PAGE_WRITE) { | |
1997 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || | |
1998 | (pd & IO_MEM_ROMD)) { | |
1999 | /* Write access calls the I/O callback. */ | |
2000 | te->addr_write = address | TLB_MMIO; | |
2001 | } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && | |
2002 | !cpu_physical_memory_is_dirty(pd)) { | |
2003 | te->addr_write = address | TLB_NOTDIRTY; | |
9fa3e853 | 2004 | } else { |
0f459d16 | 2005 | te->addr_write = address; |
9fa3e853 | 2006 | } |
0f459d16 PB |
2007 | } else { |
2008 | te->addr_write = -1; | |
9fa3e853 | 2009 | } |
9fa3e853 FB |
2010 | return ret; |
2011 | } | |
2012 | ||
0124311e FB |
2013 | #else |
2014 | ||
ee8b7021 | 2015 | void tlb_flush(CPUState *env, int flush_global) |
0124311e FB |
2016 | { |
2017 | } | |
2018 | ||
2e12669a | 2019 | void tlb_flush_page(CPUState *env, target_ulong addr) |
0124311e FB |
2020 | { |
2021 | } | |
2022 | ||
5fafdf24 TS |
2023 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
2024 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 2025 | int mmu_idx, int is_softmmu) |
9fa3e853 FB |
2026 | { |
2027 | return 0; | |
2028 | } | |
0124311e | 2029 | |
9fa3e853 FB |
2030 | /* dump memory mappings */ |
2031 | void page_dump(FILE *f) | |
33417e70 | 2032 | { |
9fa3e853 FB |
2033 | unsigned long start, end; |
2034 | int i, j, prot, prot1; | |
2035 | PageDesc *p; | |
33417e70 | 2036 | |
9fa3e853 FB |
2037 | fprintf(f, "%-8s %-8s %-8s %s\n", |
2038 | "start", "end", "size", "prot"); | |
2039 | start = -1; | |
2040 | end = -1; | |
2041 | prot = 0; | |
2042 | for(i = 0; i <= L1_SIZE; i++) { | |
2043 | if (i < L1_SIZE) | |
2044 | p = l1_map[i]; | |
2045 | else | |
2046 | p = NULL; | |
2047 | for(j = 0;j < L2_SIZE; j++) { | |
2048 | if (!p) | |
2049 | prot1 = 0; | |
2050 | else | |
2051 | prot1 = p[j].flags; | |
2052 | if (prot1 != prot) { | |
2053 | end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS); | |
2054 | if (start != -1) { | |
2055 | fprintf(f, "%08lx-%08lx %08lx %c%c%c\n", | |
5fafdf24 | 2056 | start, end, end - start, |
9fa3e853 FB |
2057 | prot & PAGE_READ ? 'r' : '-', |
2058 | prot & PAGE_WRITE ? 'w' : '-', | |
2059 | prot & PAGE_EXEC ? 'x' : '-'); | |
2060 | } | |
2061 | if (prot1 != 0) | |
2062 | start = end; | |
2063 | else | |
2064 | start = -1; | |
2065 | prot = prot1; | |
2066 | } | |
2067 | if (!p) | |
2068 | break; | |
2069 | } | |
33417e70 | 2070 | } |
33417e70 FB |
2071 | } |
2072 | ||
53a5960a | 2073 | int page_get_flags(target_ulong address) |
33417e70 | 2074 | { |
9fa3e853 FB |
2075 | PageDesc *p; |
2076 | ||
2077 | p = page_find(address >> TARGET_PAGE_BITS); | |
33417e70 | 2078 | if (!p) |
9fa3e853 FB |
2079 | return 0; |
2080 | return p->flags; | |
2081 | } | |
2082 | ||
2083 | /* modify the flags of a page and invalidate the code if | |
2084 | necessary. The flag PAGE_WRITE_ORG is positionned automatically | |
2085 | depending on PAGE_WRITE */ | |
53a5960a | 2086 | void page_set_flags(target_ulong start, target_ulong end, int flags) |
9fa3e853 FB |
2087 | { |
2088 | PageDesc *p; | |
53a5960a | 2089 | target_ulong addr; |
9fa3e853 | 2090 | |
c8a706fe | 2091 | /* mmap_lock should already be held. */ |
9fa3e853 FB |
2092 | start = start & TARGET_PAGE_MASK; |
2093 | end = TARGET_PAGE_ALIGN(end); | |
2094 | if (flags & PAGE_WRITE) | |
2095 | flags |= PAGE_WRITE_ORG; | |
9fa3e853 FB |
2096 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2097 | p = page_find_alloc(addr >> TARGET_PAGE_BITS); | |
17e2377a PB |
2098 | /* We may be called for host regions that are outside guest |
2099 | address space. */ | |
2100 | if (!p) | |
2101 | return; | |
9fa3e853 FB |
2102 | /* if the write protection is set, then we invalidate the code |
2103 | inside */ | |
5fafdf24 | 2104 | if (!(p->flags & PAGE_WRITE) && |
9fa3e853 FB |
2105 | (flags & PAGE_WRITE) && |
2106 | p->first_tb) { | |
d720b93d | 2107 | tb_invalidate_phys_page(addr, 0, NULL); |
9fa3e853 FB |
2108 | } |
2109 | p->flags = flags; | |
2110 | } | |
33417e70 FB |
2111 | } |
2112 | ||
3d97b40b TS |
2113 | int page_check_range(target_ulong start, target_ulong len, int flags) |
2114 | { | |
2115 | PageDesc *p; | |
2116 | target_ulong end; | |
2117 | target_ulong addr; | |
2118 | ||
55f280c9 AZ |
2119 | if (start + len < start) |
2120 | /* we've wrapped around */ | |
2121 | return -1; | |
2122 | ||
3d97b40b TS |
2123 | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */ |
2124 | start = start & TARGET_PAGE_MASK; | |
2125 | ||
3d97b40b TS |
2126 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2127 | p = page_find(addr >> TARGET_PAGE_BITS); | |
2128 | if( !p ) | |
2129 | return -1; | |
2130 | if( !(p->flags & PAGE_VALID) ) | |
2131 | return -1; | |
2132 | ||
dae3270c | 2133 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) |
3d97b40b | 2134 | return -1; |
dae3270c FB |
2135 | if (flags & PAGE_WRITE) { |
2136 | if (!(p->flags & PAGE_WRITE_ORG)) | |
2137 | return -1; | |
2138 | /* unprotect the page if it was put read-only because it | |
2139 | contains translated code */ | |
2140 | if (!(p->flags & PAGE_WRITE)) { | |
2141 | if (!page_unprotect(addr, 0, NULL)) | |
2142 | return -1; | |
2143 | } | |
2144 | return 0; | |
2145 | } | |
3d97b40b TS |
2146 | } |
2147 | return 0; | |
2148 | } | |
2149 | ||
9fa3e853 FB |
2150 | /* called from signal handler: invalidate the code and unprotect the |
2151 | page. Return TRUE if the fault was succesfully handled. */ | |
53a5960a | 2152 | int page_unprotect(target_ulong address, unsigned long pc, void *puc) |
9fa3e853 FB |
2153 | { |
2154 | unsigned int page_index, prot, pindex; | |
2155 | PageDesc *p, *p1; | |
53a5960a | 2156 | target_ulong host_start, host_end, addr; |
9fa3e853 | 2157 | |
c8a706fe PB |
2158 | /* Technically this isn't safe inside a signal handler. However we |
2159 | know this only ever happens in a synchronous SEGV handler, so in | |
2160 | practice it seems to be ok. */ | |
2161 | mmap_lock(); | |
2162 | ||
83fb7adf | 2163 | host_start = address & qemu_host_page_mask; |
9fa3e853 FB |
2164 | page_index = host_start >> TARGET_PAGE_BITS; |
2165 | p1 = page_find(page_index); | |
c8a706fe PB |
2166 | if (!p1) { |
2167 | mmap_unlock(); | |
9fa3e853 | 2168 | return 0; |
c8a706fe | 2169 | } |
83fb7adf | 2170 | host_end = host_start + qemu_host_page_size; |
9fa3e853 FB |
2171 | p = p1; |
2172 | prot = 0; | |
2173 | for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) { | |
2174 | prot |= p->flags; | |
2175 | p++; | |
2176 | } | |
2177 | /* if the page was really writable, then we change its | |
2178 | protection back to writable */ | |
2179 | if (prot & PAGE_WRITE_ORG) { | |
2180 | pindex = (address - host_start) >> TARGET_PAGE_BITS; | |
2181 | if (!(p1[pindex].flags & PAGE_WRITE)) { | |
5fafdf24 | 2182 | mprotect((void *)g2h(host_start), qemu_host_page_size, |
9fa3e853 FB |
2183 | (prot & PAGE_BITS) | PAGE_WRITE); |
2184 | p1[pindex].flags |= PAGE_WRITE; | |
2185 | /* and since the content will be modified, we must invalidate | |
2186 | the corresponding translated code. */ | |
d720b93d | 2187 | tb_invalidate_phys_page(address, pc, puc); |
9fa3e853 FB |
2188 | #ifdef DEBUG_TB_CHECK |
2189 | tb_invalidate_check(address); | |
2190 | #endif | |
c8a706fe | 2191 | mmap_unlock(); |
9fa3e853 FB |
2192 | return 1; |
2193 | } | |
2194 | } | |
c8a706fe | 2195 | mmap_unlock(); |
9fa3e853 FB |
2196 | return 0; |
2197 | } | |
2198 | ||
6a00d601 FB |
2199 | static inline void tlb_set_dirty(CPUState *env, |
2200 | unsigned long addr, target_ulong vaddr) | |
1ccde1cb FB |
2201 | { |
2202 | } | |
9fa3e853 FB |
2203 | #endif /* defined(CONFIG_USER_ONLY) */ |
2204 | ||
e2eef170 | 2205 | #if !defined(CONFIG_USER_ONLY) |
db7b5426 | 2206 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
00f82b8a AJ |
2207 | ram_addr_t memory); |
2208 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, | |
2209 | ram_addr_t orig_memory); | |
db7b5426 BS |
2210 | #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \ |
2211 | need_subpage) \ | |
2212 | do { \ | |
2213 | if (addr > start_addr) \ | |
2214 | start_addr2 = 0; \ | |
2215 | else { \ | |
2216 | start_addr2 = start_addr & ~TARGET_PAGE_MASK; \ | |
2217 | if (start_addr2 > 0) \ | |
2218 | need_subpage = 1; \ | |
2219 | } \ | |
2220 | \ | |
49e9fba2 | 2221 | if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \ |
db7b5426 BS |
2222 | end_addr2 = TARGET_PAGE_SIZE - 1; \ |
2223 | else { \ | |
2224 | end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \ | |
2225 | if (end_addr2 < TARGET_PAGE_SIZE - 1) \ | |
2226 | need_subpage = 1; \ | |
2227 | } \ | |
2228 | } while (0) | |
2229 | ||
33417e70 FB |
2230 | /* register physical memory. 'size' must be a multiple of the target |
2231 | page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an | |
2232 | io memory page */ | |
5fafdf24 | 2233 | void cpu_register_physical_memory(target_phys_addr_t start_addr, |
00f82b8a AJ |
2234 | ram_addr_t size, |
2235 | ram_addr_t phys_offset) | |
33417e70 | 2236 | { |
108c49b8 | 2237 | target_phys_addr_t addr, end_addr; |
92e873b9 | 2238 | PhysPageDesc *p; |
9d42037b | 2239 | CPUState *env; |
00f82b8a | 2240 | ram_addr_t orig_size = size; |
db7b5426 | 2241 | void *subpage; |
33417e70 | 2242 | |
da260249 FB |
2243 | #ifdef USE_KQEMU |
2244 | /* XXX: should not depend on cpu context */ | |
2245 | env = first_cpu; | |
2246 | if (env->kqemu_enabled) { | |
2247 | kqemu_set_phys_mem(start_addr, size, phys_offset); | |
2248 | } | |
2249 | #endif | |
7ba1e619 AL |
2250 | if (kvm_enabled()) |
2251 | kvm_set_phys_mem(start_addr, size, phys_offset); | |
2252 | ||
5fd386f6 | 2253 | size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK; |
49e9fba2 BS |
2254 | end_addr = start_addr + (target_phys_addr_t)size; |
2255 | for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) { | |
db7b5426 BS |
2256 | p = phys_page_find(addr >> TARGET_PAGE_BITS); |
2257 | if (p && p->phys_offset != IO_MEM_UNASSIGNED) { | |
00f82b8a | 2258 | ram_addr_t orig_memory = p->phys_offset; |
db7b5426 BS |
2259 | target_phys_addr_t start_addr2, end_addr2; |
2260 | int need_subpage = 0; | |
2261 | ||
2262 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, | |
2263 | need_subpage); | |
4254fab8 | 2264 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 BS |
2265 | if (!(orig_memory & IO_MEM_SUBPAGE)) { |
2266 | subpage = subpage_init((addr & TARGET_PAGE_MASK), | |
2267 | &p->phys_offset, orig_memory); | |
2268 | } else { | |
2269 | subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK) | |
2270 | >> IO_MEM_SHIFT]; | |
2271 | } | |
2272 | subpage_register(subpage, start_addr2, end_addr2, phys_offset); | |
2273 | } else { | |
2274 | p->phys_offset = phys_offset; | |
2275 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2276 | (phys_offset & IO_MEM_ROMD)) | |
2277 | phys_offset += TARGET_PAGE_SIZE; | |
2278 | } | |
2279 | } else { | |
2280 | p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
2281 | p->phys_offset = phys_offset; | |
2282 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2283 | (phys_offset & IO_MEM_ROMD)) | |
2284 | phys_offset += TARGET_PAGE_SIZE; | |
2285 | else { | |
2286 | target_phys_addr_t start_addr2, end_addr2; | |
2287 | int need_subpage = 0; | |
2288 | ||
2289 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, | |
2290 | end_addr2, need_subpage); | |
2291 | ||
4254fab8 | 2292 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 BS |
2293 | subpage = subpage_init((addr & TARGET_PAGE_MASK), |
2294 | &p->phys_offset, IO_MEM_UNASSIGNED); | |
2295 | subpage_register(subpage, start_addr2, end_addr2, | |
2296 | phys_offset); | |
2297 | } | |
2298 | } | |
2299 | } | |
33417e70 | 2300 | } |
3b46e624 | 2301 | |
9d42037b FB |
2302 | /* since each CPU stores ram addresses in its TLB cache, we must |
2303 | reset the modified entries */ | |
2304 | /* XXX: slow ! */ | |
2305 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
2306 | tlb_flush(env, 1); | |
2307 | } | |
33417e70 FB |
2308 | } |
2309 | ||
ba863458 | 2310 | /* XXX: temporary until new memory mapping API */ |
00f82b8a | 2311 | ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr) |
ba863458 FB |
2312 | { |
2313 | PhysPageDesc *p; | |
2314 | ||
2315 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2316 | if (!p) | |
2317 | return IO_MEM_UNASSIGNED; | |
2318 | return p->phys_offset; | |
2319 | } | |
2320 | ||
e9a1ab19 | 2321 | /* XXX: better than nothing */ |
00f82b8a | 2322 | ram_addr_t qemu_ram_alloc(ram_addr_t size) |
e9a1ab19 FB |
2323 | { |
2324 | ram_addr_t addr; | |
7fb4fdcf | 2325 | if ((phys_ram_alloc_offset + size) > phys_ram_size) { |
012a7045 | 2326 | fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n", |
ed441467 | 2327 | (uint64_t)size, (uint64_t)phys_ram_size); |
e9a1ab19 FB |
2328 | abort(); |
2329 | } | |
2330 | addr = phys_ram_alloc_offset; | |
2331 | phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size); | |
2332 | return addr; | |
2333 | } | |
2334 | ||
2335 | void qemu_ram_free(ram_addr_t addr) | |
2336 | { | |
2337 | } | |
2338 | ||
a4193c8a | 2339 | static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr) |
33417e70 | 2340 | { |
67d3b957 | 2341 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2342 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); |
b4f0a316 | 2343 | #endif |
e18231a3 BS |
2344 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) |
2345 | do_unassigned_access(addr, 0, 0, 0, 1); | |
2346 | #endif | |
2347 | return 0; | |
2348 | } | |
2349 | ||
2350 | static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr) | |
2351 | { | |
2352 | #ifdef DEBUG_UNASSIGNED | |
2353 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2354 | #endif | |
2355 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) | |
2356 | do_unassigned_access(addr, 0, 0, 0, 2); | |
2357 | #endif | |
2358 | return 0; | |
2359 | } | |
2360 | ||
2361 | static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr) | |
2362 | { | |
2363 | #ifdef DEBUG_UNASSIGNED | |
2364 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2365 | #endif | |
2366 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) | |
2367 | do_unassigned_access(addr, 0, 0, 0, 4); | |
67d3b957 | 2368 | #endif |
33417e70 FB |
2369 | return 0; |
2370 | } | |
2371 | ||
a4193c8a | 2372 | static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) |
33417e70 | 2373 | { |
67d3b957 | 2374 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2375 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); |
67d3b957 | 2376 | #endif |
e18231a3 BS |
2377 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) |
2378 | do_unassigned_access(addr, 1, 0, 0, 1); | |
2379 | #endif | |
2380 | } | |
2381 | ||
2382 | static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2383 | { | |
2384 | #ifdef DEBUG_UNASSIGNED | |
2385 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2386 | #endif | |
2387 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) | |
2388 | do_unassigned_access(addr, 1, 0, 0, 2); | |
2389 | #endif | |
2390 | } | |
2391 | ||
2392 | static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2393 | { | |
2394 | #ifdef DEBUG_UNASSIGNED | |
2395 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2396 | #endif | |
2397 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) | |
2398 | do_unassigned_access(addr, 1, 0, 0, 4); | |
b4f0a316 | 2399 | #endif |
33417e70 FB |
2400 | } |
2401 | ||
2402 | static CPUReadMemoryFunc *unassigned_mem_read[3] = { | |
2403 | unassigned_mem_readb, | |
e18231a3 BS |
2404 | unassigned_mem_readw, |
2405 | unassigned_mem_readl, | |
33417e70 FB |
2406 | }; |
2407 | ||
2408 | static CPUWriteMemoryFunc *unassigned_mem_write[3] = { | |
2409 | unassigned_mem_writeb, | |
e18231a3 BS |
2410 | unassigned_mem_writew, |
2411 | unassigned_mem_writel, | |
33417e70 FB |
2412 | }; |
2413 | ||
0f459d16 PB |
2414 | static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr, |
2415 | uint32_t val) | |
9fa3e853 | 2416 | { |
3a7d929e | 2417 | int dirty_flags; |
3a7d929e FB |
2418 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2419 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2420 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2421 | tb_invalidate_phys_page_fast(ram_addr, 1); |
2422 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2423 | #endif |
3a7d929e | 2424 | } |
0f459d16 | 2425 | stb_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2426 | #ifdef USE_KQEMU |
2427 | if (cpu_single_env->kqemu_enabled && | |
2428 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2429 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2430 | #endif | |
f23db169 FB |
2431 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2432 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2433 | /* we remove the notdirty callback only if the code has been | |
2434 | flushed */ | |
2435 | if (dirty_flags == 0xff) | |
2e70f6ef | 2436 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2437 | } |
2438 | ||
0f459d16 PB |
2439 | static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr, |
2440 | uint32_t val) | |
9fa3e853 | 2441 | { |
3a7d929e | 2442 | int dirty_flags; |
3a7d929e FB |
2443 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2444 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2445 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2446 | tb_invalidate_phys_page_fast(ram_addr, 2); |
2447 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2448 | #endif |
3a7d929e | 2449 | } |
0f459d16 | 2450 | stw_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2451 | #ifdef USE_KQEMU |
2452 | if (cpu_single_env->kqemu_enabled && | |
2453 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2454 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2455 | #endif | |
f23db169 FB |
2456 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2457 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2458 | /* we remove the notdirty callback only if the code has been | |
2459 | flushed */ | |
2460 | if (dirty_flags == 0xff) | |
2e70f6ef | 2461 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2462 | } |
2463 | ||
0f459d16 PB |
2464 | static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr, |
2465 | uint32_t val) | |
9fa3e853 | 2466 | { |
3a7d929e | 2467 | int dirty_flags; |
3a7d929e FB |
2468 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2469 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2470 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2471 | tb_invalidate_phys_page_fast(ram_addr, 4); |
2472 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2473 | #endif |
3a7d929e | 2474 | } |
0f459d16 | 2475 | stl_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2476 | #ifdef USE_KQEMU |
2477 | if (cpu_single_env->kqemu_enabled && | |
2478 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2479 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2480 | #endif | |
f23db169 FB |
2481 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2482 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2483 | /* we remove the notdirty callback only if the code has been | |
2484 | flushed */ | |
2485 | if (dirty_flags == 0xff) | |
2e70f6ef | 2486 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2487 | } |
2488 | ||
3a7d929e | 2489 | static CPUReadMemoryFunc *error_mem_read[3] = { |
9fa3e853 FB |
2490 | NULL, /* never used */ |
2491 | NULL, /* never used */ | |
2492 | NULL, /* never used */ | |
2493 | }; | |
2494 | ||
1ccde1cb FB |
2495 | static CPUWriteMemoryFunc *notdirty_mem_write[3] = { |
2496 | notdirty_mem_writeb, | |
2497 | notdirty_mem_writew, | |
2498 | notdirty_mem_writel, | |
2499 | }; | |
2500 | ||
0f459d16 | 2501 | /* Generate a debug exception if a watchpoint has been hit. */ |
b4051334 | 2502 | static void check_watchpoint(int offset, int len_mask, int flags) |
0f459d16 PB |
2503 | { |
2504 | CPUState *env = cpu_single_env; | |
06d55cc1 AL |
2505 | target_ulong pc, cs_base; |
2506 | TranslationBlock *tb; | |
0f459d16 | 2507 | target_ulong vaddr; |
a1d1bb31 | 2508 | CPUWatchpoint *wp; |
06d55cc1 | 2509 | int cpu_flags; |
0f459d16 | 2510 | |
06d55cc1 AL |
2511 | if (env->watchpoint_hit) { |
2512 | /* We re-entered the check after replacing the TB. Now raise | |
2513 | * the debug interrupt so that is will trigger after the | |
2514 | * current instruction. */ | |
2515 | cpu_interrupt(env, CPU_INTERRUPT_DEBUG); | |
2516 | return; | |
2517 | } | |
2e70f6ef | 2518 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
c0ce998e | 2519 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
b4051334 AL |
2520 | if ((vaddr == (wp->vaddr & len_mask) || |
2521 | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { | |
6e140f28 AL |
2522 | wp->flags |= BP_WATCHPOINT_HIT; |
2523 | if (!env->watchpoint_hit) { | |
2524 | env->watchpoint_hit = wp; | |
2525 | tb = tb_find_pc(env->mem_io_pc); | |
2526 | if (!tb) { | |
2527 | cpu_abort(env, "check_watchpoint: could not find TB for " | |
2528 | "pc=%p", (void *)env->mem_io_pc); | |
2529 | } | |
2530 | cpu_restore_state(tb, env, env->mem_io_pc, NULL); | |
2531 | tb_phys_invalidate(tb, -1); | |
2532 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
2533 | env->exception_index = EXCP_DEBUG; | |
2534 | } else { | |
2535 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
2536 | tb_gen_code(env, pc, cs_base, cpu_flags, 1); | |
2537 | } | |
2538 | cpu_resume_from_signal(env, NULL); | |
06d55cc1 | 2539 | } |
6e140f28 AL |
2540 | } else { |
2541 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2542 | } |
2543 | } | |
2544 | } | |
2545 | ||
6658ffb8 PB |
2546 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2547 | so these check for a hit then pass through to the normal out-of-line | |
2548 | phys routines. */ | |
2549 | static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr) | |
2550 | { | |
b4051334 | 2551 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ); |
6658ffb8 PB |
2552 | return ldub_phys(addr); |
2553 | } | |
2554 | ||
2555 | static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr) | |
2556 | { | |
b4051334 | 2557 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ); |
6658ffb8 PB |
2558 | return lduw_phys(addr); |
2559 | } | |
2560 | ||
2561 | static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr) | |
2562 | { | |
b4051334 | 2563 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ); |
6658ffb8 PB |
2564 | return ldl_phys(addr); |
2565 | } | |
2566 | ||
6658ffb8 PB |
2567 | static void watch_mem_writeb(void *opaque, target_phys_addr_t addr, |
2568 | uint32_t val) | |
2569 | { | |
b4051334 | 2570 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE); |
6658ffb8 PB |
2571 | stb_phys(addr, val); |
2572 | } | |
2573 | ||
2574 | static void watch_mem_writew(void *opaque, target_phys_addr_t addr, | |
2575 | uint32_t val) | |
2576 | { | |
b4051334 | 2577 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE); |
6658ffb8 PB |
2578 | stw_phys(addr, val); |
2579 | } | |
2580 | ||
2581 | static void watch_mem_writel(void *opaque, target_phys_addr_t addr, | |
2582 | uint32_t val) | |
2583 | { | |
b4051334 | 2584 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE); |
6658ffb8 PB |
2585 | stl_phys(addr, val); |
2586 | } | |
2587 | ||
2588 | static CPUReadMemoryFunc *watch_mem_read[3] = { | |
2589 | watch_mem_readb, | |
2590 | watch_mem_readw, | |
2591 | watch_mem_readl, | |
2592 | }; | |
2593 | ||
2594 | static CPUWriteMemoryFunc *watch_mem_write[3] = { | |
2595 | watch_mem_writeb, | |
2596 | watch_mem_writew, | |
2597 | watch_mem_writel, | |
2598 | }; | |
6658ffb8 | 2599 | |
db7b5426 BS |
2600 | static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr, |
2601 | unsigned int len) | |
2602 | { | |
db7b5426 BS |
2603 | uint32_t ret; |
2604 | unsigned int idx; | |
2605 | ||
2606 | idx = SUBPAGE_IDX(addr - mmio->base); | |
2607 | #if defined(DEBUG_SUBPAGE) | |
2608 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, | |
2609 | mmio, len, addr, idx); | |
2610 | #endif | |
3ee89922 | 2611 | ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr); |
db7b5426 BS |
2612 | |
2613 | return ret; | |
2614 | } | |
2615 | ||
2616 | static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr, | |
2617 | uint32_t value, unsigned int len) | |
2618 | { | |
db7b5426 BS |
2619 | unsigned int idx; |
2620 | ||
2621 | idx = SUBPAGE_IDX(addr - mmio->base); | |
2622 | #if defined(DEBUG_SUBPAGE) | |
2623 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__, | |
2624 | mmio, len, addr, idx, value); | |
2625 | #endif | |
3ee89922 | 2626 | (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value); |
db7b5426 BS |
2627 | } |
2628 | ||
2629 | static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr) | |
2630 | { | |
2631 | #if defined(DEBUG_SUBPAGE) | |
2632 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2633 | #endif | |
2634 | ||
2635 | return subpage_readlen(opaque, addr, 0); | |
2636 | } | |
2637 | ||
2638 | static void subpage_writeb (void *opaque, target_phys_addr_t addr, | |
2639 | uint32_t value) | |
2640 | { | |
2641 | #if defined(DEBUG_SUBPAGE) | |
2642 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2643 | #endif | |
2644 | subpage_writelen(opaque, addr, value, 0); | |
2645 | } | |
2646 | ||
2647 | static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr) | |
2648 | { | |
2649 | #if defined(DEBUG_SUBPAGE) | |
2650 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2651 | #endif | |
2652 | ||
2653 | return subpage_readlen(opaque, addr, 1); | |
2654 | } | |
2655 | ||
2656 | static void subpage_writew (void *opaque, target_phys_addr_t addr, | |
2657 | uint32_t value) | |
2658 | { | |
2659 | #if defined(DEBUG_SUBPAGE) | |
2660 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2661 | #endif | |
2662 | subpage_writelen(opaque, addr, value, 1); | |
2663 | } | |
2664 | ||
2665 | static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr) | |
2666 | { | |
2667 | #if defined(DEBUG_SUBPAGE) | |
2668 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2669 | #endif | |
2670 | ||
2671 | return subpage_readlen(opaque, addr, 2); | |
2672 | } | |
2673 | ||
2674 | static void subpage_writel (void *opaque, | |
2675 | target_phys_addr_t addr, uint32_t value) | |
2676 | { | |
2677 | #if defined(DEBUG_SUBPAGE) | |
2678 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2679 | #endif | |
2680 | subpage_writelen(opaque, addr, value, 2); | |
2681 | } | |
2682 | ||
2683 | static CPUReadMemoryFunc *subpage_read[] = { | |
2684 | &subpage_readb, | |
2685 | &subpage_readw, | |
2686 | &subpage_readl, | |
2687 | }; | |
2688 | ||
2689 | static CPUWriteMemoryFunc *subpage_write[] = { | |
2690 | &subpage_writeb, | |
2691 | &subpage_writew, | |
2692 | &subpage_writel, | |
2693 | }; | |
2694 | ||
2695 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
00f82b8a | 2696 | ram_addr_t memory) |
db7b5426 BS |
2697 | { |
2698 | int idx, eidx; | |
4254fab8 | 2699 | unsigned int i; |
db7b5426 BS |
2700 | |
2701 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2702 | return -1; | |
2703 | idx = SUBPAGE_IDX(start); | |
2704 | eidx = SUBPAGE_IDX(end); | |
2705 | #if defined(DEBUG_SUBPAGE) | |
2706 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__, | |
2707 | mmio, start, end, idx, eidx, memory); | |
2708 | #endif | |
2709 | memory >>= IO_MEM_SHIFT; | |
2710 | for (; idx <= eidx; idx++) { | |
4254fab8 | 2711 | for (i = 0; i < 4; i++) { |
3ee89922 BS |
2712 | if (io_mem_read[memory][i]) { |
2713 | mmio->mem_read[idx][i] = &io_mem_read[memory][i]; | |
2714 | mmio->opaque[idx][0][i] = io_mem_opaque[memory]; | |
2715 | } | |
2716 | if (io_mem_write[memory][i]) { | |
2717 | mmio->mem_write[idx][i] = &io_mem_write[memory][i]; | |
2718 | mmio->opaque[idx][1][i] = io_mem_opaque[memory]; | |
2719 | } | |
4254fab8 | 2720 | } |
db7b5426 BS |
2721 | } |
2722 | ||
2723 | return 0; | |
2724 | } | |
2725 | ||
00f82b8a AJ |
2726 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
2727 | ram_addr_t orig_memory) | |
db7b5426 BS |
2728 | { |
2729 | subpage_t *mmio; | |
2730 | int subpage_memory; | |
2731 | ||
2732 | mmio = qemu_mallocz(sizeof(subpage_t)); | |
2733 | if (mmio != NULL) { | |
2734 | mmio->base = base; | |
2735 | subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio); | |
2736 | #if defined(DEBUG_SUBPAGE) | |
2737 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, | |
2738 | mmio, base, TARGET_PAGE_SIZE, subpage_memory); | |
2739 | #endif | |
2740 | *phys = subpage_memory | IO_MEM_SUBPAGE; | |
2741 | subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory); | |
2742 | } | |
2743 | ||
2744 | return mmio; | |
2745 | } | |
2746 | ||
33417e70 FB |
2747 | static void io_mem_init(void) |
2748 | { | |
3a7d929e | 2749 | cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL); |
a4193c8a | 2750 | cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL); |
3a7d929e | 2751 | cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL); |
1ccde1cb FB |
2752 | io_mem_nb = 5; |
2753 | ||
0f459d16 | 2754 | io_mem_watch = cpu_register_io_memory(0, watch_mem_read, |
6658ffb8 | 2755 | watch_mem_write, NULL); |
1ccde1cb | 2756 | /* alloc dirty bits array */ |
0a962c02 | 2757 | phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS); |
3a7d929e | 2758 | memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS); |
33417e70 FB |
2759 | } |
2760 | ||
2761 | /* mem_read and mem_write are arrays of functions containing the | |
2762 | function to access byte (index 0), word (index 1) and dword (index | |
3ee89922 BS |
2763 | 2). Functions can be omitted with a NULL function pointer. The |
2764 | registered functions may be modified dynamically later. | |
2765 | If io_index is non zero, the corresponding io zone is | |
4254fab8 BS |
2766 | modified. If it is zero, a new io zone is allocated. The return |
2767 | value can be used with cpu_register_physical_memory(). (-1) is | |
2768 | returned if error. */ | |
33417e70 FB |
2769 | int cpu_register_io_memory(int io_index, |
2770 | CPUReadMemoryFunc **mem_read, | |
a4193c8a FB |
2771 | CPUWriteMemoryFunc **mem_write, |
2772 | void *opaque) | |
33417e70 | 2773 | { |
4254fab8 | 2774 | int i, subwidth = 0; |
33417e70 FB |
2775 | |
2776 | if (io_index <= 0) { | |
b5ff1b31 | 2777 | if (io_mem_nb >= IO_MEM_NB_ENTRIES) |
33417e70 FB |
2778 | return -1; |
2779 | io_index = io_mem_nb++; | |
2780 | } else { | |
2781 | if (io_index >= IO_MEM_NB_ENTRIES) | |
2782 | return -1; | |
2783 | } | |
b5ff1b31 | 2784 | |
33417e70 | 2785 | for(i = 0;i < 3; i++) { |
4254fab8 BS |
2786 | if (!mem_read[i] || !mem_write[i]) |
2787 | subwidth = IO_MEM_SUBWIDTH; | |
33417e70 FB |
2788 | io_mem_read[io_index][i] = mem_read[i]; |
2789 | io_mem_write[io_index][i] = mem_write[i]; | |
2790 | } | |
a4193c8a | 2791 | io_mem_opaque[io_index] = opaque; |
4254fab8 | 2792 | return (io_index << IO_MEM_SHIFT) | subwidth; |
33417e70 | 2793 | } |
61382a50 | 2794 | |
8926b517 FB |
2795 | CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index) |
2796 | { | |
2797 | return io_mem_write[io_index >> IO_MEM_SHIFT]; | |
2798 | } | |
2799 | ||
2800 | CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index) | |
2801 | { | |
2802 | return io_mem_read[io_index >> IO_MEM_SHIFT]; | |
2803 | } | |
2804 | ||
e2eef170 PB |
2805 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2806 | ||
13eb76e0 FB |
2807 | /* physical memory access (slow version, mainly for debug) */ |
2808 | #if defined(CONFIG_USER_ONLY) | |
5fafdf24 | 2809 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
2810 | int len, int is_write) |
2811 | { | |
2812 | int l, flags; | |
2813 | target_ulong page; | |
53a5960a | 2814 | void * p; |
13eb76e0 FB |
2815 | |
2816 | while (len > 0) { | |
2817 | page = addr & TARGET_PAGE_MASK; | |
2818 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2819 | if (l > len) | |
2820 | l = len; | |
2821 | flags = page_get_flags(page); | |
2822 | if (!(flags & PAGE_VALID)) | |
2823 | return; | |
2824 | if (is_write) { | |
2825 | if (!(flags & PAGE_WRITE)) | |
2826 | return; | |
579a97f7 | 2827 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2828 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
579a97f7 FB |
2829 | /* FIXME - should this return an error rather than just fail? */ |
2830 | return; | |
72fb7daa AJ |
2831 | memcpy(p, buf, l); |
2832 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2833 | } else { |
2834 | if (!(flags & PAGE_READ)) | |
2835 | return; | |
579a97f7 | 2836 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2837 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
579a97f7 FB |
2838 | /* FIXME - should this return an error rather than just fail? */ |
2839 | return; | |
72fb7daa | 2840 | memcpy(buf, p, l); |
5b257578 | 2841 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2842 | } |
2843 | len -= l; | |
2844 | buf += l; | |
2845 | addr += l; | |
2846 | } | |
2847 | } | |
8df1cd07 | 2848 | |
13eb76e0 | 2849 | #else |
5fafdf24 | 2850 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
2851 | int len, int is_write) |
2852 | { | |
2853 | int l, io_index; | |
2854 | uint8_t *ptr; | |
2855 | uint32_t val; | |
2e12669a FB |
2856 | target_phys_addr_t page; |
2857 | unsigned long pd; | |
92e873b9 | 2858 | PhysPageDesc *p; |
3b46e624 | 2859 | |
13eb76e0 FB |
2860 | while (len > 0) { |
2861 | page = addr & TARGET_PAGE_MASK; | |
2862 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2863 | if (l > len) | |
2864 | l = len; | |
92e873b9 | 2865 | p = phys_page_find(page >> TARGET_PAGE_BITS); |
13eb76e0 FB |
2866 | if (!p) { |
2867 | pd = IO_MEM_UNASSIGNED; | |
2868 | } else { | |
2869 | pd = p->phys_offset; | |
2870 | } | |
3b46e624 | 2871 | |
13eb76e0 | 2872 | if (is_write) { |
3a7d929e | 2873 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
13eb76e0 | 2874 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
6a00d601 FB |
2875 | /* XXX: could force cpu_single_env to NULL to avoid |
2876 | potential bugs */ | |
13eb76e0 | 2877 | if (l >= 4 && ((addr & 3) == 0)) { |
1c213d19 | 2878 | /* 32 bit write access */ |
c27004ec | 2879 | val = ldl_p(buf); |
a4193c8a | 2880 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
13eb76e0 FB |
2881 | l = 4; |
2882 | } else if (l >= 2 && ((addr & 1) == 0)) { | |
1c213d19 | 2883 | /* 16 bit write access */ |
c27004ec | 2884 | val = lduw_p(buf); |
a4193c8a | 2885 | io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val); |
13eb76e0 FB |
2886 | l = 2; |
2887 | } else { | |
1c213d19 | 2888 | /* 8 bit write access */ |
c27004ec | 2889 | val = ldub_p(buf); |
a4193c8a | 2890 | io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val); |
13eb76e0 FB |
2891 | l = 1; |
2892 | } | |
2893 | } else { | |
b448f2f3 FB |
2894 | unsigned long addr1; |
2895 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
13eb76e0 | 2896 | /* RAM case */ |
b448f2f3 | 2897 | ptr = phys_ram_base + addr1; |
13eb76e0 | 2898 | memcpy(ptr, buf, l); |
3a7d929e FB |
2899 | if (!cpu_physical_memory_is_dirty(addr1)) { |
2900 | /* invalidate code */ | |
2901 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
2902 | /* set dirty bit */ | |
5fafdf24 | 2903 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
f23db169 | 2904 | (0xff & ~CODE_DIRTY_FLAG); |
3a7d929e | 2905 | } |
13eb76e0 FB |
2906 | } |
2907 | } else { | |
5fafdf24 | 2908 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 2909 | !(pd & IO_MEM_ROMD)) { |
13eb76e0 FB |
2910 | /* I/O case */ |
2911 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
2912 | if (l >= 4 && ((addr & 3) == 0)) { | |
2913 | /* 32 bit read access */ | |
a4193c8a | 2914 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); |
c27004ec | 2915 | stl_p(buf, val); |
13eb76e0 FB |
2916 | l = 4; |
2917 | } else if (l >= 2 && ((addr & 1) == 0)) { | |
2918 | /* 16 bit read access */ | |
a4193c8a | 2919 | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr); |
c27004ec | 2920 | stw_p(buf, val); |
13eb76e0 FB |
2921 | l = 2; |
2922 | } else { | |
1c213d19 | 2923 | /* 8 bit read access */ |
a4193c8a | 2924 | val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr); |
c27004ec | 2925 | stb_p(buf, val); |
13eb76e0 FB |
2926 | l = 1; |
2927 | } | |
2928 | } else { | |
2929 | /* RAM case */ | |
5fafdf24 | 2930 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
13eb76e0 FB |
2931 | (addr & ~TARGET_PAGE_MASK); |
2932 | memcpy(buf, ptr, l); | |
2933 | } | |
2934 | } | |
2935 | len -= l; | |
2936 | buf += l; | |
2937 | addr += l; | |
2938 | } | |
2939 | } | |
8df1cd07 | 2940 | |
d0ecd2aa | 2941 | /* used for ROM loading : can write in RAM and ROM */ |
5fafdf24 | 2942 | void cpu_physical_memory_write_rom(target_phys_addr_t addr, |
d0ecd2aa FB |
2943 | const uint8_t *buf, int len) |
2944 | { | |
2945 | int l; | |
2946 | uint8_t *ptr; | |
2947 | target_phys_addr_t page; | |
2948 | unsigned long pd; | |
2949 | PhysPageDesc *p; | |
3b46e624 | 2950 | |
d0ecd2aa FB |
2951 | while (len > 0) { |
2952 | page = addr & TARGET_PAGE_MASK; | |
2953 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2954 | if (l > len) | |
2955 | l = len; | |
2956 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
2957 | if (!p) { | |
2958 | pd = IO_MEM_UNASSIGNED; | |
2959 | } else { | |
2960 | pd = p->phys_offset; | |
2961 | } | |
3b46e624 | 2962 | |
d0ecd2aa | 2963 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM && |
2a4188a3 FB |
2964 | (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM && |
2965 | !(pd & IO_MEM_ROMD)) { | |
d0ecd2aa FB |
2966 | /* do nothing */ |
2967 | } else { | |
2968 | unsigned long addr1; | |
2969 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
2970 | /* ROM/RAM case */ | |
2971 | ptr = phys_ram_base + addr1; | |
2972 | memcpy(ptr, buf, l); | |
2973 | } | |
2974 | len -= l; | |
2975 | buf += l; | |
2976 | addr += l; | |
2977 | } | |
2978 | } | |
2979 | ||
2980 | ||
8df1cd07 FB |
2981 | /* warning: addr must be aligned */ |
2982 | uint32_t ldl_phys(target_phys_addr_t addr) | |
2983 | { | |
2984 | int io_index; | |
2985 | uint8_t *ptr; | |
2986 | uint32_t val; | |
2987 | unsigned long pd; | |
2988 | PhysPageDesc *p; | |
2989 | ||
2990 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2991 | if (!p) { | |
2992 | pd = IO_MEM_UNASSIGNED; | |
2993 | } else { | |
2994 | pd = p->phys_offset; | |
2995 | } | |
3b46e624 | 2996 | |
5fafdf24 | 2997 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 2998 | !(pd & IO_MEM_ROMD)) { |
8df1cd07 FB |
2999 | /* I/O case */ |
3000 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
3001 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
3002 | } else { | |
3003 | /* RAM case */ | |
5fafdf24 | 3004 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
8df1cd07 FB |
3005 | (addr & ~TARGET_PAGE_MASK); |
3006 | val = ldl_p(ptr); | |
3007 | } | |
3008 | return val; | |
3009 | } | |
3010 | ||
84b7b8e7 FB |
3011 | /* warning: addr must be aligned */ |
3012 | uint64_t ldq_phys(target_phys_addr_t addr) | |
3013 | { | |
3014 | int io_index; | |
3015 | uint8_t *ptr; | |
3016 | uint64_t val; | |
3017 | unsigned long pd; | |
3018 | PhysPageDesc *p; | |
3019 | ||
3020 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3021 | if (!p) { | |
3022 | pd = IO_MEM_UNASSIGNED; | |
3023 | } else { | |
3024 | pd = p->phys_offset; | |
3025 | } | |
3b46e624 | 3026 | |
2a4188a3 FB |
3027 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
3028 | !(pd & IO_MEM_ROMD)) { | |
84b7b8e7 FB |
3029 | /* I/O case */ |
3030 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
3031 | #ifdef TARGET_WORDS_BIGENDIAN | |
3032 | val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32; | |
3033 | val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4); | |
3034 | #else | |
3035 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
3036 | val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32; | |
3037 | #endif | |
3038 | } else { | |
3039 | /* RAM case */ | |
5fafdf24 | 3040 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
84b7b8e7 FB |
3041 | (addr & ~TARGET_PAGE_MASK); |
3042 | val = ldq_p(ptr); | |
3043 | } | |
3044 | return val; | |
3045 | } | |
3046 | ||
aab33094 FB |
3047 | /* XXX: optimize */ |
3048 | uint32_t ldub_phys(target_phys_addr_t addr) | |
3049 | { | |
3050 | uint8_t val; | |
3051 | cpu_physical_memory_read(addr, &val, 1); | |
3052 | return val; | |
3053 | } | |
3054 | ||
3055 | /* XXX: optimize */ | |
3056 | uint32_t lduw_phys(target_phys_addr_t addr) | |
3057 | { | |
3058 | uint16_t val; | |
3059 | cpu_physical_memory_read(addr, (uint8_t *)&val, 2); | |
3060 | return tswap16(val); | |
3061 | } | |
3062 | ||
8df1cd07 FB |
3063 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3064 | and the code inside is not invalidated. It is useful if the dirty | |
3065 | bits are used to track modified PTEs */ | |
3066 | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val) | |
3067 | { | |
3068 | int io_index; | |
3069 | uint8_t *ptr; | |
3070 | unsigned long pd; | |
3071 | PhysPageDesc *p; | |
3072 | ||
3073 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3074 | if (!p) { | |
3075 | pd = IO_MEM_UNASSIGNED; | |
3076 | } else { | |
3077 | pd = p->phys_offset; | |
3078 | } | |
3b46e624 | 3079 | |
3a7d929e | 3080 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 FB |
3081 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
3082 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3083 | } else { | |
74576198 AL |
3084 | unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
3085 | ptr = phys_ram_base + addr1; | |
8df1cd07 | 3086 | stl_p(ptr, val); |
74576198 AL |
3087 | |
3088 | if (unlikely(in_migration)) { | |
3089 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3090 | /* invalidate code */ | |
3091 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3092 | /* set dirty bit */ | |
3093 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3094 | (0xff & ~CODE_DIRTY_FLAG); | |
3095 | } | |
3096 | } | |
8df1cd07 FB |
3097 | } |
3098 | } | |
3099 | ||
bc98a7ef JM |
3100 | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val) |
3101 | { | |
3102 | int io_index; | |
3103 | uint8_t *ptr; | |
3104 | unsigned long pd; | |
3105 | PhysPageDesc *p; | |
3106 | ||
3107 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3108 | if (!p) { | |
3109 | pd = IO_MEM_UNASSIGNED; | |
3110 | } else { | |
3111 | pd = p->phys_offset; | |
3112 | } | |
3b46e624 | 3113 | |
bc98a7ef JM |
3114 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
3115 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
3116 | #ifdef TARGET_WORDS_BIGENDIAN | |
3117 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32); | |
3118 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val); | |
3119 | #else | |
3120 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3121 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32); | |
3122 | #endif | |
3123 | } else { | |
5fafdf24 | 3124 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
bc98a7ef JM |
3125 | (addr & ~TARGET_PAGE_MASK); |
3126 | stq_p(ptr, val); | |
3127 | } | |
3128 | } | |
3129 | ||
8df1cd07 | 3130 | /* warning: addr must be aligned */ |
8df1cd07 FB |
3131 | void stl_phys(target_phys_addr_t addr, uint32_t val) |
3132 | { | |
3133 | int io_index; | |
3134 | uint8_t *ptr; | |
3135 | unsigned long pd; | |
3136 | PhysPageDesc *p; | |
3137 | ||
3138 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3139 | if (!p) { | |
3140 | pd = IO_MEM_UNASSIGNED; | |
3141 | } else { | |
3142 | pd = p->phys_offset; | |
3143 | } | |
3b46e624 | 3144 | |
3a7d929e | 3145 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 FB |
3146 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
3147 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3148 | } else { | |
3149 | unsigned long addr1; | |
3150 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3151 | /* RAM case */ | |
3152 | ptr = phys_ram_base + addr1; | |
3153 | stl_p(ptr, val); | |
3a7d929e FB |
3154 | if (!cpu_physical_memory_is_dirty(addr1)) { |
3155 | /* invalidate code */ | |
3156 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3157 | /* set dirty bit */ | |
f23db169 FB |
3158 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
3159 | (0xff & ~CODE_DIRTY_FLAG); | |
3a7d929e | 3160 | } |
8df1cd07 FB |
3161 | } |
3162 | } | |
3163 | ||
aab33094 FB |
3164 | /* XXX: optimize */ |
3165 | void stb_phys(target_phys_addr_t addr, uint32_t val) | |
3166 | { | |
3167 | uint8_t v = val; | |
3168 | cpu_physical_memory_write(addr, &v, 1); | |
3169 | } | |
3170 | ||
3171 | /* XXX: optimize */ | |
3172 | void stw_phys(target_phys_addr_t addr, uint32_t val) | |
3173 | { | |
3174 | uint16_t v = tswap16(val); | |
3175 | cpu_physical_memory_write(addr, (const uint8_t *)&v, 2); | |
3176 | } | |
3177 | ||
3178 | /* XXX: optimize */ | |
3179 | void stq_phys(target_phys_addr_t addr, uint64_t val) | |
3180 | { | |
3181 | val = tswap64(val); | |
3182 | cpu_physical_memory_write(addr, (const uint8_t *)&val, 8); | |
3183 | } | |
3184 | ||
13eb76e0 FB |
3185 | #endif |
3186 | ||
3187 | /* virtual memory access for debug */ | |
5fafdf24 | 3188 | int cpu_memory_rw_debug(CPUState *env, target_ulong addr, |
b448f2f3 | 3189 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3190 | { |
3191 | int l; | |
9b3c35e0 JM |
3192 | target_phys_addr_t phys_addr; |
3193 | target_ulong page; | |
13eb76e0 FB |
3194 | |
3195 | while (len > 0) { | |
3196 | page = addr & TARGET_PAGE_MASK; | |
3197 | phys_addr = cpu_get_phys_page_debug(env, page); | |
3198 | /* if no physical page mapped, return an error */ | |
3199 | if (phys_addr == -1) | |
3200 | return -1; | |
3201 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3202 | if (l > len) | |
3203 | l = len; | |
5fafdf24 | 3204 | cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK), |
b448f2f3 | 3205 | buf, l, is_write); |
13eb76e0 FB |
3206 | len -= l; |
3207 | buf += l; | |
3208 | addr += l; | |
3209 | } | |
3210 | return 0; | |
3211 | } | |
3212 | ||
2e70f6ef PB |
3213 | /* in deterministic execution mode, instructions doing device I/Os |
3214 | must be at the end of the TB */ | |
3215 | void cpu_io_recompile(CPUState *env, void *retaddr) | |
3216 | { | |
3217 | TranslationBlock *tb; | |
3218 | uint32_t n, cflags; | |
3219 | target_ulong pc, cs_base; | |
3220 | uint64_t flags; | |
3221 | ||
3222 | tb = tb_find_pc((unsigned long)retaddr); | |
3223 | if (!tb) { | |
3224 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | |
3225 | retaddr); | |
3226 | } | |
3227 | n = env->icount_decr.u16.low + tb->icount; | |
3228 | cpu_restore_state(tb, env, (unsigned long)retaddr, NULL); | |
3229 | /* Calculate how many instructions had been executed before the fault | |
bf20dc07 | 3230 | occurred. */ |
2e70f6ef PB |
3231 | n = n - env->icount_decr.u16.low; |
3232 | /* Generate a new TB ending on the I/O insn. */ | |
3233 | n++; | |
3234 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
3235 | they were already the first instruction in the TB. If this is not | |
bf20dc07 | 3236 | the first instruction in a TB then re-execute the preceding |
2e70f6ef PB |
3237 | branch. */ |
3238 | #if defined(TARGET_MIPS) | |
3239 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
3240 | env->active_tc.PC -= 4; | |
3241 | env->icount_decr.u16.low++; | |
3242 | env->hflags &= ~MIPS_HFLAG_BMASK; | |
3243 | } | |
3244 | #elif defined(TARGET_SH4) | |
3245 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
3246 | && n > 1) { | |
3247 | env->pc -= 2; | |
3248 | env->icount_decr.u16.low++; | |
3249 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | |
3250 | } | |
3251 | #endif | |
3252 | /* This should never happen. */ | |
3253 | if (n > CF_COUNT_MASK) | |
3254 | cpu_abort(env, "TB too big during recompile"); | |
3255 | ||
3256 | cflags = n | CF_LAST_IO; | |
3257 | pc = tb->pc; | |
3258 | cs_base = tb->cs_base; | |
3259 | flags = tb->flags; | |
3260 | tb_phys_invalidate(tb, -1); | |
3261 | /* FIXME: In theory this could raise an exception. In practice | |
3262 | we have already translated the block once so it's probably ok. */ | |
3263 | tb_gen_code(env, pc, cs_base, flags, cflags); | |
bf20dc07 | 3264 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not |
2e70f6ef PB |
3265 | the first in the TB) then we end up generating a whole new TB and |
3266 | repeating the fault, which is horribly inefficient. | |
3267 | Better would be to execute just this insn uncached, or generate a | |
3268 | second new TB. */ | |
3269 | cpu_resume_from_signal(env, NULL); | |
3270 | } | |
3271 | ||
e3db7226 FB |
3272 | void dump_exec_info(FILE *f, |
3273 | int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) | |
3274 | { | |
3275 | int i, target_code_size, max_target_code_size; | |
3276 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
3277 | TranslationBlock *tb; | |
3b46e624 | 3278 | |
e3db7226 FB |
3279 | target_code_size = 0; |
3280 | max_target_code_size = 0; | |
3281 | cross_page = 0; | |
3282 | direct_jmp_count = 0; | |
3283 | direct_jmp2_count = 0; | |
3284 | for(i = 0; i < nb_tbs; i++) { | |
3285 | tb = &tbs[i]; | |
3286 | target_code_size += tb->size; | |
3287 | if (tb->size > max_target_code_size) | |
3288 | max_target_code_size = tb->size; | |
3289 | if (tb->page_addr[1] != -1) | |
3290 | cross_page++; | |
3291 | if (tb->tb_next_offset[0] != 0xffff) { | |
3292 | direct_jmp_count++; | |
3293 | if (tb->tb_next_offset[1] != 0xffff) { | |
3294 | direct_jmp2_count++; | |
3295 | } | |
3296 | } | |
3297 | } | |
3298 | /* XXX: avoid using doubles ? */ | |
57fec1fe | 3299 | cpu_fprintf(f, "Translation buffer state:\n"); |
26a5f13b FB |
3300 | cpu_fprintf(f, "gen code size %ld/%ld\n", |
3301 | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size); | |
3302 | cpu_fprintf(f, "TB count %d/%d\n", | |
3303 | nb_tbs, code_gen_max_blocks); | |
5fafdf24 | 3304 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", |
e3db7226 FB |
3305 | nb_tbs ? target_code_size / nb_tbs : 0, |
3306 | max_target_code_size); | |
5fafdf24 | 3307 | cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n", |
e3db7226 FB |
3308 | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0, |
3309 | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0); | |
5fafdf24 TS |
3310 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", |
3311 | cross_page, | |
e3db7226 FB |
3312 | nb_tbs ? (cross_page * 100) / nb_tbs : 0); |
3313 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", | |
5fafdf24 | 3314 | direct_jmp_count, |
e3db7226 FB |
3315 | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0, |
3316 | direct_jmp2_count, | |
3317 | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0); | |
57fec1fe | 3318 | cpu_fprintf(f, "\nStatistics:\n"); |
e3db7226 FB |
3319 | cpu_fprintf(f, "TB flush count %d\n", tb_flush_count); |
3320 | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count); | |
3321 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); | |
b67d9a52 | 3322 | tcg_dump_info(f, cpu_fprintf); |
e3db7226 FB |
3323 | } |
3324 | ||
5fafdf24 | 3325 | #if !defined(CONFIG_USER_ONLY) |
61382a50 FB |
3326 | |
3327 | #define MMUSUFFIX _cmmu | |
3328 | #define GETPC() NULL | |
3329 | #define env cpu_single_env | |
b769d8fe | 3330 | #define SOFTMMU_CODE_ACCESS |
61382a50 FB |
3331 | |
3332 | #define SHIFT 0 | |
3333 | #include "softmmu_template.h" | |
3334 | ||
3335 | #define SHIFT 1 | |
3336 | #include "softmmu_template.h" | |
3337 | ||
3338 | #define SHIFT 2 | |
3339 | #include "softmmu_template.h" | |
3340 | ||
3341 | #define SHIFT 3 | |
3342 | #include "softmmu_template.h" | |
3343 | ||
3344 | #undef env | |
3345 | ||
3346 | #endif |