]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
fd6ce8f6 | 2 | * virtual page mapping and translated block handling |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
19 | */ | |
67b915a5 | 20 | #include "config.h" |
d5a8f07c | 21 | #ifdef _WIN32 |
4fddf62a | 22 | #define WIN32_LEAN_AND_MEAN |
d5a8f07c FB |
23 | #include <windows.h> |
24 | #else | |
a98d49b1 | 25 | #include <sys/types.h> |
d5a8f07c FB |
26 | #include <sys/mman.h> |
27 | #endif | |
54936004 FB |
28 | #include <stdlib.h> |
29 | #include <stdio.h> | |
30 | #include <stdarg.h> | |
31 | #include <string.h> | |
32 | #include <errno.h> | |
33 | #include <unistd.h> | |
34 | #include <inttypes.h> | |
35 | ||
6180a181 FB |
36 | #include "cpu.h" |
37 | #include "exec-all.h" | |
ca10f867 | 38 | #include "qemu-common.h" |
b67d9a52 | 39 | #include "tcg.h" |
b3c7724c | 40 | #include "hw/hw.h" |
53a5960a PB |
41 | #if defined(CONFIG_USER_ONLY) |
42 | #include <qemu.h> | |
43 | #endif | |
54936004 | 44 | |
fd6ce8f6 | 45 | //#define DEBUG_TB_INVALIDATE |
66e85a21 | 46 | //#define DEBUG_FLUSH |
9fa3e853 | 47 | //#define DEBUG_TLB |
67d3b957 | 48 | //#define DEBUG_UNASSIGNED |
fd6ce8f6 FB |
49 | |
50 | /* make various TB consistency checks */ | |
5fafdf24 TS |
51 | //#define DEBUG_TB_CHECK |
52 | //#define DEBUG_TLB_CHECK | |
fd6ce8f6 | 53 | |
1196be37 | 54 | //#define DEBUG_IOPORT |
db7b5426 | 55 | //#define DEBUG_SUBPAGE |
1196be37 | 56 | |
99773bd4 PB |
57 | #if !defined(CONFIG_USER_ONLY) |
58 | /* TB consistency checks only implemented for usermode emulation. */ | |
59 | #undef DEBUG_TB_CHECK | |
60 | #endif | |
61 | ||
9fa3e853 FB |
62 | #define SMC_BITMAP_USE_THRESHOLD 10 |
63 | ||
64 | #define MMAP_AREA_START 0x00000000 | |
65 | #define MMAP_AREA_END 0xa8000000 | |
fd6ce8f6 | 66 | |
108c49b8 FB |
67 | #if defined(TARGET_SPARC64) |
68 | #define TARGET_PHYS_ADDR_SPACE_BITS 41 | |
5dcb6b91 BS |
69 | #elif defined(TARGET_SPARC) |
70 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
bedb69ea JM |
71 | #elif defined(TARGET_ALPHA) |
72 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
73 | #define TARGET_VIRT_ADDR_SPACE_BITS 42 | |
108c49b8 FB |
74 | #elif defined(TARGET_PPC64) |
75 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
00f82b8a AJ |
76 | #elif defined(TARGET_X86_64) && !defined(USE_KQEMU) |
77 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
78 | #elif defined(TARGET_I386) && !defined(USE_KQEMU) | |
79 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
108c49b8 FB |
80 | #else |
81 | /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */ | |
82 | #define TARGET_PHYS_ADDR_SPACE_BITS 32 | |
83 | #endif | |
84 | ||
fab94c0e | 85 | TranslationBlock *tbs; |
26a5f13b | 86 | int code_gen_max_blocks; |
9fa3e853 | 87 | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; |
fd6ce8f6 | 88 | int nb_tbs; |
eb51d102 FB |
89 | /* any access to the tbs or the page table must use this lock */ |
90 | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED; | |
fd6ce8f6 | 91 | |
141ac468 BS |
92 | #if defined(__arm__) || defined(__sparc_v9__) |
93 | /* The prologue must be reachable with a direct jump. ARM and Sparc64 | |
94 | have limited branch ranges (possibly also PPC) so place it in a | |
d03d860b BS |
95 | section close to code segment. */ |
96 | #define code_gen_section \ | |
97 | __attribute__((__section__(".gen_code"))) \ | |
98 | __attribute__((aligned (32))) | |
99 | #else | |
100 | #define code_gen_section \ | |
101 | __attribute__((aligned (32))) | |
102 | #endif | |
103 | ||
104 | uint8_t code_gen_prologue[1024] code_gen_section; | |
26a5f13b FB |
105 | uint8_t *code_gen_buffer; |
106 | unsigned long code_gen_buffer_size; | |
107 | /* threshold to flush the translated code buffer */ | |
108 | unsigned long code_gen_buffer_max_size; | |
fd6ce8f6 FB |
109 | uint8_t *code_gen_ptr; |
110 | ||
e2eef170 | 111 | #if !defined(CONFIG_USER_ONLY) |
00f82b8a | 112 | ram_addr_t phys_ram_size; |
9fa3e853 FB |
113 | int phys_ram_fd; |
114 | uint8_t *phys_ram_base; | |
1ccde1cb | 115 | uint8_t *phys_ram_dirty; |
e9a1ab19 | 116 | static ram_addr_t phys_ram_alloc_offset = 0; |
e2eef170 | 117 | #endif |
9fa3e853 | 118 | |
6a00d601 FB |
119 | CPUState *first_cpu; |
120 | /* current CPU in the current thread. It is only valid inside | |
121 | cpu_exec() */ | |
5fafdf24 | 122 | CPUState *cpu_single_env; |
2e70f6ef | 123 | /* 0 = Do not count executed instructions. |
bf20dc07 | 124 | 1 = Precise instruction counting. |
2e70f6ef PB |
125 | 2 = Adaptive rate instruction counting. */ |
126 | int use_icount = 0; | |
127 | /* Current instruction counter. While executing translated code this may | |
128 | include some instructions that have not yet been executed. */ | |
129 | int64_t qemu_icount; | |
6a00d601 | 130 | |
54936004 | 131 | typedef struct PageDesc { |
92e873b9 | 132 | /* list of TBs intersecting this ram page */ |
fd6ce8f6 | 133 | TranslationBlock *first_tb; |
9fa3e853 FB |
134 | /* in order to optimize self modifying code, we count the number |
135 | of lookups we do to a given page to use a bitmap */ | |
136 | unsigned int code_write_count; | |
137 | uint8_t *code_bitmap; | |
138 | #if defined(CONFIG_USER_ONLY) | |
139 | unsigned long flags; | |
140 | #endif | |
54936004 FB |
141 | } PageDesc; |
142 | ||
92e873b9 | 143 | typedef struct PhysPageDesc { |
0f459d16 | 144 | /* offset in host memory of the page + io_index in the low bits */ |
00f82b8a | 145 | ram_addr_t phys_offset; |
92e873b9 FB |
146 | } PhysPageDesc; |
147 | ||
54936004 | 148 | #define L2_BITS 10 |
bedb69ea JM |
149 | #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS) |
150 | /* XXX: this is a temporary hack for alpha target. | |
151 | * In the future, this is to be replaced by a multi-level table | |
152 | * to actually be able to handle the complete 64 bits address space. | |
153 | */ | |
154 | #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS) | |
155 | #else | |
03875444 | 156 | #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS) |
bedb69ea | 157 | #endif |
54936004 FB |
158 | |
159 | #define L1_SIZE (1 << L1_BITS) | |
160 | #define L2_SIZE (1 << L2_BITS) | |
161 | ||
83fb7adf FB |
162 | unsigned long qemu_real_host_page_size; |
163 | unsigned long qemu_host_page_bits; | |
164 | unsigned long qemu_host_page_size; | |
165 | unsigned long qemu_host_page_mask; | |
54936004 | 166 | |
92e873b9 | 167 | /* XXX: for system emulation, it could just be an array */ |
54936004 | 168 | static PageDesc *l1_map[L1_SIZE]; |
0a962c02 | 169 | PhysPageDesc **l1_phys_map; |
54936004 | 170 | |
e2eef170 PB |
171 | #if !defined(CONFIG_USER_ONLY) |
172 | static void io_mem_init(void); | |
173 | ||
33417e70 | 174 | /* io memory support */ |
33417e70 FB |
175 | CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; |
176 | CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; | |
a4193c8a | 177 | void *io_mem_opaque[IO_MEM_NB_ENTRIES]; |
33417e70 | 178 | static int io_mem_nb; |
6658ffb8 PB |
179 | static int io_mem_watch; |
180 | #endif | |
33417e70 | 181 | |
34865134 | 182 | /* log support */ |
7ccfb2eb | 183 | const char *logfilename = "/tmp/qemu.log"; |
34865134 FB |
184 | FILE *logfile; |
185 | int loglevel; | |
e735b91c | 186 | static int log_append = 0; |
34865134 | 187 | |
e3db7226 FB |
188 | /* statistics */ |
189 | static int tlb_flush_count; | |
190 | static int tb_flush_count; | |
191 | static int tb_phys_invalidate_count; | |
192 | ||
db7b5426 BS |
193 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
194 | typedef struct subpage_t { | |
195 | target_phys_addr_t base; | |
3ee89922 BS |
196 | CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4]; |
197 | CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4]; | |
198 | void *opaque[TARGET_PAGE_SIZE][2][4]; | |
db7b5426 BS |
199 | } subpage_t; |
200 | ||
7cb69cae FB |
201 | #ifdef _WIN32 |
202 | static void map_exec(void *addr, long size) | |
203 | { | |
204 | DWORD old_protect; | |
205 | VirtualProtect(addr, size, | |
206 | PAGE_EXECUTE_READWRITE, &old_protect); | |
207 | ||
208 | } | |
209 | #else | |
210 | static void map_exec(void *addr, long size) | |
211 | { | |
4369415f | 212 | unsigned long start, end, page_size; |
7cb69cae | 213 | |
4369415f | 214 | page_size = getpagesize(); |
7cb69cae | 215 | start = (unsigned long)addr; |
4369415f | 216 | start &= ~(page_size - 1); |
7cb69cae FB |
217 | |
218 | end = (unsigned long)addr + size; | |
4369415f FB |
219 | end += page_size - 1; |
220 | end &= ~(page_size - 1); | |
7cb69cae FB |
221 | |
222 | mprotect((void *)start, end - start, | |
223 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
224 | } | |
225 | #endif | |
226 | ||
b346ff46 | 227 | static void page_init(void) |
54936004 | 228 | { |
83fb7adf | 229 | /* NOTE: we can always suppose that qemu_host_page_size >= |
54936004 | 230 | TARGET_PAGE_SIZE */ |
67b915a5 | 231 | #ifdef _WIN32 |
d5a8f07c FB |
232 | { |
233 | SYSTEM_INFO system_info; | |
234 | DWORD old_protect; | |
3b46e624 | 235 | |
d5a8f07c FB |
236 | GetSystemInfo(&system_info); |
237 | qemu_real_host_page_size = system_info.dwPageSize; | |
d5a8f07c | 238 | } |
67b915a5 | 239 | #else |
83fb7adf | 240 | qemu_real_host_page_size = getpagesize(); |
67b915a5 | 241 | #endif |
83fb7adf FB |
242 | if (qemu_host_page_size == 0) |
243 | qemu_host_page_size = qemu_real_host_page_size; | |
244 | if (qemu_host_page_size < TARGET_PAGE_SIZE) | |
245 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
246 | qemu_host_page_bits = 0; | |
247 | while ((1 << qemu_host_page_bits) < qemu_host_page_size) | |
248 | qemu_host_page_bits++; | |
249 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |
108c49b8 FB |
250 | l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *)); |
251 | memset(l1_phys_map, 0, L1_SIZE * sizeof(void *)); | |
50a9569b AZ |
252 | |
253 | #if !defined(_WIN32) && defined(CONFIG_USER_ONLY) | |
254 | { | |
255 | long long startaddr, endaddr; | |
256 | FILE *f; | |
257 | int n; | |
258 | ||
c8a706fe | 259 | mmap_lock(); |
0776590d | 260 | last_brk = (unsigned long)sbrk(0); |
50a9569b AZ |
261 | f = fopen("/proc/self/maps", "r"); |
262 | if (f) { | |
263 | do { | |
264 | n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr); | |
265 | if (n == 2) { | |
e0b8d65a BS |
266 | startaddr = MIN(startaddr, |
267 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
268 | endaddr = MIN(endaddr, | |
269 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
b5fc909e | 270 | page_set_flags(startaddr & TARGET_PAGE_MASK, |
50a9569b AZ |
271 | TARGET_PAGE_ALIGN(endaddr), |
272 | PAGE_RESERVED); | |
273 | } | |
274 | } while (!feof(f)); | |
275 | fclose(f); | |
276 | } | |
c8a706fe | 277 | mmap_unlock(); |
50a9569b AZ |
278 | } |
279 | #endif | |
54936004 FB |
280 | } |
281 | ||
434929bf | 282 | static inline PageDesc **page_l1_map(target_ulong index) |
54936004 | 283 | { |
17e2377a PB |
284 | #if TARGET_LONG_BITS > 32 |
285 | /* Host memory outside guest VM. For 32-bit targets we have already | |
286 | excluded high addresses. */ | |
d8173e0f | 287 | if (index > ((target_ulong)L2_SIZE * L1_SIZE)) |
17e2377a PB |
288 | return NULL; |
289 | #endif | |
434929bf AL |
290 | return &l1_map[index >> L2_BITS]; |
291 | } | |
292 | ||
293 | static inline PageDesc *page_find_alloc(target_ulong index) | |
294 | { | |
295 | PageDesc **lp, *p; | |
296 | lp = page_l1_map(index); | |
297 | if (!lp) | |
298 | return NULL; | |
299 | ||
54936004 FB |
300 | p = *lp; |
301 | if (!p) { | |
302 | /* allocate if not found */ | |
17e2377a PB |
303 | #if defined(CONFIG_USER_ONLY) |
304 | unsigned long addr; | |
305 | size_t len = sizeof(PageDesc) * L2_SIZE; | |
306 | /* Don't use qemu_malloc because it may recurse. */ | |
307 | p = mmap(0, len, PROT_READ | PROT_WRITE, | |
308 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
54936004 | 309 | *lp = p; |
17e2377a PB |
310 | addr = h2g(p); |
311 | if (addr == (target_ulong)addr) { | |
312 | page_set_flags(addr & TARGET_PAGE_MASK, | |
313 | TARGET_PAGE_ALIGN(addr + len), | |
314 | PAGE_RESERVED); | |
315 | } | |
316 | #else | |
317 | p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE); | |
318 | *lp = p; | |
319 | #endif | |
54936004 FB |
320 | } |
321 | return p + (index & (L2_SIZE - 1)); | |
322 | } | |
323 | ||
00f82b8a | 324 | static inline PageDesc *page_find(target_ulong index) |
54936004 | 325 | { |
434929bf AL |
326 | PageDesc **lp, *p; |
327 | lp = page_l1_map(index); | |
328 | if (!lp) | |
329 | return NULL; | |
54936004 | 330 | |
434929bf | 331 | p = *lp; |
54936004 FB |
332 | if (!p) |
333 | return 0; | |
fd6ce8f6 FB |
334 | return p + (index & (L2_SIZE - 1)); |
335 | } | |
336 | ||
108c49b8 | 337 | static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc) |
92e873b9 | 338 | { |
108c49b8 | 339 | void **lp, **p; |
e3f4e2a4 | 340 | PhysPageDesc *pd; |
92e873b9 | 341 | |
108c49b8 FB |
342 | p = (void **)l1_phys_map; |
343 | #if TARGET_PHYS_ADDR_SPACE_BITS > 32 | |
344 | ||
345 | #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS) | |
346 | #error unsupported TARGET_PHYS_ADDR_SPACE_BITS | |
347 | #endif | |
348 | lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1)); | |
92e873b9 FB |
349 | p = *lp; |
350 | if (!p) { | |
351 | /* allocate if not found */ | |
108c49b8 FB |
352 | if (!alloc) |
353 | return NULL; | |
354 | p = qemu_vmalloc(sizeof(void *) * L1_SIZE); | |
355 | memset(p, 0, sizeof(void *) * L1_SIZE); | |
356 | *lp = p; | |
357 | } | |
358 | #endif | |
359 | lp = p + ((index >> L2_BITS) & (L1_SIZE - 1)); | |
e3f4e2a4 PB |
360 | pd = *lp; |
361 | if (!pd) { | |
362 | int i; | |
108c49b8 FB |
363 | /* allocate if not found */ |
364 | if (!alloc) | |
365 | return NULL; | |
e3f4e2a4 PB |
366 | pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE); |
367 | *lp = pd; | |
368 | for (i = 0; i < L2_SIZE; i++) | |
369 | pd[i].phys_offset = IO_MEM_UNASSIGNED; | |
92e873b9 | 370 | } |
e3f4e2a4 | 371 | return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1)); |
92e873b9 FB |
372 | } |
373 | ||
108c49b8 | 374 | static inline PhysPageDesc *phys_page_find(target_phys_addr_t index) |
92e873b9 | 375 | { |
108c49b8 | 376 | return phys_page_find_alloc(index, 0); |
92e873b9 FB |
377 | } |
378 | ||
9fa3e853 | 379 | #if !defined(CONFIG_USER_ONLY) |
6a00d601 | 380 | static void tlb_protect_code(ram_addr_t ram_addr); |
5fafdf24 | 381 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 382 | target_ulong vaddr); |
c8a706fe PB |
383 | #define mmap_lock() do { } while(0) |
384 | #define mmap_unlock() do { } while(0) | |
9fa3e853 | 385 | #endif |
fd6ce8f6 | 386 | |
4369415f FB |
387 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024) |
388 | ||
389 | #if defined(CONFIG_USER_ONLY) | |
390 | /* Currently it is not recommanded to allocate big chunks of data in | |
391 | user mode. It will change when a dedicated libc will be used */ | |
392 | #define USE_STATIC_CODE_GEN_BUFFER | |
393 | #endif | |
394 | ||
395 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
396 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]; | |
397 | #endif | |
398 | ||
8fcd3692 | 399 | static void code_gen_alloc(unsigned long tb_size) |
26a5f13b | 400 | { |
4369415f FB |
401 | #ifdef USE_STATIC_CODE_GEN_BUFFER |
402 | code_gen_buffer = static_code_gen_buffer; | |
403 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
404 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
405 | #else | |
26a5f13b FB |
406 | code_gen_buffer_size = tb_size; |
407 | if (code_gen_buffer_size == 0) { | |
4369415f FB |
408 | #if defined(CONFIG_USER_ONLY) |
409 | /* in user mode, phys_ram_size is not meaningful */ | |
410 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
411 | #else | |
26a5f13b | 412 | /* XXX: needs ajustments */ |
174a9a1f | 413 | code_gen_buffer_size = (unsigned long)(phys_ram_size / 4); |
4369415f | 414 | #endif |
26a5f13b FB |
415 | } |
416 | if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE) | |
417 | code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE; | |
418 | /* The code gen buffer location may have constraints depending on | |
419 | the host cpu and OS */ | |
420 | #if defined(__linux__) | |
421 | { | |
422 | int flags; | |
141ac468 BS |
423 | void *start = NULL; |
424 | ||
26a5f13b FB |
425 | flags = MAP_PRIVATE | MAP_ANONYMOUS; |
426 | #if defined(__x86_64__) | |
427 | flags |= MAP_32BIT; | |
428 | /* Cannot map more than that */ | |
429 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
430 | code_gen_buffer_size = (800 * 1024 * 1024); | |
141ac468 BS |
431 | #elif defined(__sparc_v9__) |
432 | // Map the buffer below 2G, so we can use direct calls and branches | |
433 | flags |= MAP_FIXED; | |
434 | start = (void *) 0x60000000UL; | |
435 | if (code_gen_buffer_size > (512 * 1024 * 1024)) | |
436 | code_gen_buffer_size = (512 * 1024 * 1024); | |
26a5f13b | 437 | #endif |
141ac468 BS |
438 | code_gen_buffer = mmap(start, code_gen_buffer_size, |
439 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
26a5f13b FB |
440 | flags, -1, 0); |
441 | if (code_gen_buffer == MAP_FAILED) { | |
442 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
443 | exit(1); | |
444 | } | |
445 | } | |
06e67a82 AL |
446 | #elif defined(__FreeBSD__) |
447 | { | |
448 | int flags; | |
449 | void *addr = NULL; | |
450 | flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
451 | #if defined(__x86_64__) | |
452 | /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume | |
453 | * 0x40000000 is free */ | |
454 | flags |= MAP_FIXED; | |
455 | addr = (void *)0x40000000; | |
456 | /* Cannot map more than that */ | |
457 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
458 | code_gen_buffer_size = (800 * 1024 * 1024); | |
459 | #endif | |
460 | code_gen_buffer = mmap(addr, code_gen_buffer_size, | |
461 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
462 | flags, -1, 0); | |
463 | if (code_gen_buffer == MAP_FAILED) { | |
464 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
465 | exit(1); | |
466 | } | |
467 | } | |
26a5f13b FB |
468 | #else |
469 | code_gen_buffer = qemu_malloc(code_gen_buffer_size); | |
470 | if (!code_gen_buffer) { | |
471 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
472 | exit(1); | |
473 | } | |
474 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
475 | #endif | |
4369415f | 476 | #endif /* !USE_STATIC_CODE_GEN_BUFFER */ |
26a5f13b FB |
477 | map_exec(code_gen_prologue, sizeof(code_gen_prologue)); |
478 | code_gen_buffer_max_size = code_gen_buffer_size - | |
479 | code_gen_max_block_size(); | |
480 | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; | |
481 | tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock)); | |
482 | } | |
483 | ||
484 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
485 | (in bytes) allocated to the translation buffer. Zero means default | |
486 | size. */ | |
487 | void cpu_exec_init_all(unsigned long tb_size) | |
488 | { | |
26a5f13b FB |
489 | cpu_gen_init(); |
490 | code_gen_alloc(tb_size); | |
491 | code_gen_ptr = code_gen_buffer; | |
4369415f | 492 | page_init(); |
e2eef170 | 493 | #if !defined(CONFIG_USER_ONLY) |
26a5f13b | 494 | io_mem_init(); |
e2eef170 | 495 | #endif |
26a5f13b FB |
496 | } |
497 | ||
9656f324 PB |
498 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
499 | ||
500 | #define CPU_COMMON_SAVE_VERSION 1 | |
501 | ||
502 | static void cpu_common_save(QEMUFile *f, void *opaque) | |
503 | { | |
504 | CPUState *env = opaque; | |
505 | ||
506 | qemu_put_be32s(f, &env->halted); | |
507 | qemu_put_be32s(f, &env->interrupt_request); | |
508 | } | |
509 | ||
510 | static int cpu_common_load(QEMUFile *f, void *opaque, int version_id) | |
511 | { | |
512 | CPUState *env = opaque; | |
513 | ||
514 | if (version_id != CPU_COMMON_SAVE_VERSION) | |
515 | return -EINVAL; | |
516 | ||
517 | qemu_get_be32s(f, &env->halted); | |
75f482ae | 518 | qemu_get_be32s(f, &env->interrupt_request); |
9656f324 PB |
519 | tlb_flush(env, 1); |
520 | ||
521 | return 0; | |
522 | } | |
523 | #endif | |
524 | ||
6a00d601 | 525 | void cpu_exec_init(CPUState *env) |
fd6ce8f6 | 526 | { |
6a00d601 FB |
527 | CPUState **penv; |
528 | int cpu_index; | |
529 | ||
6a00d601 FB |
530 | env->next_cpu = NULL; |
531 | penv = &first_cpu; | |
532 | cpu_index = 0; | |
533 | while (*penv != NULL) { | |
534 | penv = (CPUState **)&(*penv)->next_cpu; | |
535 | cpu_index++; | |
536 | } | |
537 | env->cpu_index = cpu_index; | |
6658ffb8 | 538 | env->nb_watchpoints = 0; |
6a00d601 | 539 | *penv = env; |
b3c7724c | 540 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
9656f324 PB |
541 | register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION, |
542 | cpu_common_save, cpu_common_load, env); | |
b3c7724c PB |
543 | register_savevm("cpu", cpu_index, CPU_SAVE_VERSION, |
544 | cpu_save, cpu_load, env); | |
545 | #endif | |
fd6ce8f6 FB |
546 | } |
547 | ||
9fa3e853 FB |
548 | static inline void invalidate_page_bitmap(PageDesc *p) |
549 | { | |
550 | if (p->code_bitmap) { | |
59817ccb | 551 | qemu_free(p->code_bitmap); |
9fa3e853 FB |
552 | p->code_bitmap = NULL; |
553 | } | |
554 | p->code_write_count = 0; | |
555 | } | |
556 | ||
fd6ce8f6 FB |
557 | /* set to NULL all the 'first_tb' fields in all PageDescs */ |
558 | static void page_flush_tb(void) | |
559 | { | |
560 | int i, j; | |
561 | PageDesc *p; | |
562 | ||
563 | for(i = 0; i < L1_SIZE; i++) { | |
564 | p = l1_map[i]; | |
565 | if (p) { | |
9fa3e853 FB |
566 | for(j = 0; j < L2_SIZE; j++) { |
567 | p->first_tb = NULL; | |
568 | invalidate_page_bitmap(p); | |
569 | p++; | |
570 | } | |
fd6ce8f6 FB |
571 | } |
572 | } | |
573 | } | |
574 | ||
575 | /* flush all the translation blocks */ | |
d4e8164f | 576 | /* XXX: tb_flush is currently not thread safe */ |
6a00d601 | 577 | void tb_flush(CPUState *env1) |
fd6ce8f6 | 578 | { |
6a00d601 | 579 | CPUState *env; |
0124311e | 580 | #if defined(DEBUG_FLUSH) |
ab3d1727 BS |
581 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", |
582 | (unsigned long)(code_gen_ptr - code_gen_buffer), | |
583 | nb_tbs, nb_tbs > 0 ? | |
584 | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0); | |
fd6ce8f6 | 585 | #endif |
26a5f13b | 586 | if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size) |
a208e54a PB |
587 | cpu_abort(env1, "Internal error: code buffer overflow\n"); |
588 | ||
fd6ce8f6 | 589 | nb_tbs = 0; |
3b46e624 | 590 | |
6a00d601 FB |
591 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
592 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
593 | } | |
9fa3e853 | 594 | |
8a8a608f | 595 | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); |
fd6ce8f6 | 596 | page_flush_tb(); |
9fa3e853 | 597 | |
fd6ce8f6 | 598 | code_gen_ptr = code_gen_buffer; |
d4e8164f FB |
599 | /* XXX: flush processor icache at this point if cache flush is |
600 | expensive */ | |
e3db7226 | 601 | tb_flush_count++; |
fd6ce8f6 FB |
602 | } |
603 | ||
604 | #ifdef DEBUG_TB_CHECK | |
605 | ||
bc98a7ef | 606 | static void tb_invalidate_check(target_ulong address) |
fd6ce8f6 FB |
607 | { |
608 | TranslationBlock *tb; | |
609 | int i; | |
610 | address &= TARGET_PAGE_MASK; | |
99773bd4 PB |
611 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
612 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
613 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || |
614 | address >= tb->pc + tb->size)) { | |
615 | printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n", | |
99773bd4 | 616 | address, (long)tb->pc, tb->size); |
fd6ce8f6 FB |
617 | } |
618 | } | |
619 | } | |
620 | } | |
621 | ||
622 | /* verify that all the pages have correct rights for code */ | |
623 | static void tb_page_check(void) | |
624 | { | |
625 | TranslationBlock *tb; | |
626 | int i, flags1, flags2; | |
3b46e624 | 627 | |
99773bd4 PB |
628 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
629 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
630 | flags1 = page_get_flags(tb->pc); |
631 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
632 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
633 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
99773bd4 | 634 | (long)tb->pc, tb->size, flags1, flags2); |
fd6ce8f6 FB |
635 | } |
636 | } | |
637 | } | |
638 | } | |
639 | ||
d4e8164f FB |
640 | void tb_jmp_check(TranslationBlock *tb) |
641 | { | |
642 | TranslationBlock *tb1; | |
643 | unsigned int n1; | |
644 | ||
645 | /* suppress any remaining jumps to this TB */ | |
646 | tb1 = tb->jmp_first; | |
647 | for(;;) { | |
648 | n1 = (long)tb1 & 3; | |
649 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
650 | if (n1 == 2) | |
651 | break; | |
652 | tb1 = tb1->jmp_next[n1]; | |
653 | } | |
654 | /* check end of list */ | |
655 | if (tb1 != tb) { | |
656 | printf("ERROR: jmp_list from 0x%08lx\n", (long)tb); | |
657 | } | |
658 | } | |
659 | ||
fd6ce8f6 FB |
660 | #endif |
661 | ||
662 | /* invalidate one TB */ | |
663 | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb, | |
664 | int next_offset) | |
665 | { | |
666 | TranslationBlock *tb1; | |
667 | for(;;) { | |
668 | tb1 = *ptb; | |
669 | if (tb1 == tb) { | |
670 | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset); | |
671 | break; | |
672 | } | |
673 | ptb = (TranslationBlock **)((char *)tb1 + next_offset); | |
674 | } | |
675 | } | |
676 | ||
9fa3e853 FB |
677 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) |
678 | { | |
679 | TranslationBlock *tb1; | |
680 | unsigned int n1; | |
681 | ||
682 | for(;;) { | |
683 | tb1 = *ptb; | |
684 | n1 = (long)tb1 & 3; | |
685 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
686 | if (tb1 == tb) { | |
687 | *ptb = tb1->page_next[n1]; | |
688 | break; | |
689 | } | |
690 | ptb = &tb1->page_next[n1]; | |
691 | } | |
692 | } | |
693 | ||
d4e8164f FB |
694 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) |
695 | { | |
696 | TranslationBlock *tb1, **ptb; | |
697 | unsigned int n1; | |
698 | ||
699 | ptb = &tb->jmp_next[n]; | |
700 | tb1 = *ptb; | |
701 | if (tb1) { | |
702 | /* find tb(n) in circular list */ | |
703 | for(;;) { | |
704 | tb1 = *ptb; | |
705 | n1 = (long)tb1 & 3; | |
706 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
707 | if (n1 == n && tb1 == tb) | |
708 | break; | |
709 | if (n1 == 2) { | |
710 | ptb = &tb1->jmp_first; | |
711 | } else { | |
712 | ptb = &tb1->jmp_next[n1]; | |
713 | } | |
714 | } | |
715 | /* now we can suppress tb(n) from the list */ | |
716 | *ptb = tb->jmp_next[n]; | |
717 | ||
718 | tb->jmp_next[n] = NULL; | |
719 | } | |
720 | } | |
721 | ||
722 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
723 | another TB */ | |
724 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
725 | { | |
726 | tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n])); | |
727 | } | |
728 | ||
2e70f6ef | 729 | void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr) |
fd6ce8f6 | 730 | { |
6a00d601 | 731 | CPUState *env; |
8a40a180 | 732 | PageDesc *p; |
d4e8164f | 733 | unsigned int h, n1; |
00f82b8a | 734 | target_phys_addr_t phys_pc; |
8a40a180 | 735 | TranslationBlock *tb1, *tb2; |
3b46e624 | 736 | |
8a40a180 FB |
737 | /* remove the TB from the hash list */ |
738 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
739 | h = tb_phys_hash_func(phys_pc); | |
5fafdf24 | 740 | tb_remove(&tb_phys_hash[h], tb, |
8a40a180 FB |
741 | offsetof(TranslationBlock, phys_hash_next)); |
742 | ||
743 | /* remove the TB from the page list */ | |
744 | if (tb->page_addr[0] != page_addr) { | |
745 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
746 | tb_page_remove(&p->first_tb, tb); | |
747 | invalidate_page_bitmap(p); | |
748 | } | |
749 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
750 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
751 | tb_page_remove(&p->first_tb, tb); | |
752 | invalidate_page_bitmap(p); | |
753 | } | |
754 | ||
36bdbe54 | 755 | tb_invalidated_flag = 1; |
59817ccb | 756 | |
fd6ce8f6 | 757 | /* remove the TB from the hash list */ |
8a40a180 | 758 | h = tb_jmp_cache_hash_func(tb->pc); |
6a00d601 FB |
759 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
760 | if (env->tb_jmp_cache[h] == tb) | |
761 | env->tb_jmp_cache[h] = NULL; | |
762 | } | |
d4e8164f FB |
763 | |
764 | /* suppress this TB from the two jump lists */ | |
765 | tb_jmp_remove(tb, 0); | |
766 | tb_jmp_remove(tb, 1); | |
767 | ||
768 | /* suppress any remaining jumps to this TB */ | |
769 | tb1 = tb->jmp_first; | |
770 | for(;;) { | |
771 | n1 = (long)tb1 & 3; | |
772 | if (n1 == 2) | |
773 | break; | |
774 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
775 | tb2 = tb1->jmp_next[n1]; | |
776 | tb_reset_jump(tb1, n1); | |
777 | tb1->jmp_next[n1] = NULL; | |
778 | tb1 = tb2; | |
779 | } | |
780 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */ | |
9fa3e853 | 781 | |
e3db7226 | 782 | tb_phys_invalidate_count++; |
9fa3e853 FB |
783 | } |
784 | ||
785 | static inline void set_bits(uint8_t *tab, int start, int len) | |
786 | { | |
787 | int end, mask, end1; | |
788 | ||
789 | end = start + len; | |
790 | tab += start >> 3; | |
791 | mask = 0xff << (start & 7); | |
792 | if ((start & ~7) == (end & ~7)) { | |
793 | if (start < end) { | |
794 | mask &= ~(0xff << (end & 7)); | |
795 | *tab |= mask; | |
796 | } | |
797 | } else { | |
798 | *tab++ |= mask; | |
799 | start = (start + 8) & ~7; | |
800 | end1 = end & ~7; | |
801 | while (start < end1) { | |
802 | *tab++ = 0xff; | |
803 | start += 8; | |
804 | } | |
805 | if (start < end) { | |
806 | mask = ~(0xff << (end & 7)); | |
807 | *tab |= mask; | |
808 | } | |
809 | } | |
810 | } | |
811 | ||
812 | static void build_page_bitmap(PageDesc *p) | |
813 | { | |
814 | int n, tb_start, tb_end; | |
815 | TranslationBlock *tb; | |
3b46e624 | 816 | |
b2a7081a | 817 | p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8); |
9fa3e853 FB |
818 | if (!p->code_bitmap) |
819 | return; | |
9fa3e853 FB |
820 | |
821 | tb = p->first_tb; | |
822 | while (tb != NULL) { | |
823 | n = (long)tb & 3; | |
824 | tb = (TranslationBlock *)((long)tb & ~3); | |
825 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
826 | if (n == 0) { | |
827 | /* NOTE: tb_end may be after the end of the page, but | |
828 | it is not a problem */ | |
829 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
830 | tb_end = tb_start + tb->size; | |
831 | if (tb_end > TARGET_PAGE_SIZE) | |
832 | tb_end = TARGET_PAGE_SIZE; | |
833 | } else { | |
834 | tb_start = 0; | |
835 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
836 | } | |
837 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |
838 | tb = tb->page_next[n]; | |
839 | } | |
840 | } | |
841 | ||
2e70f6ef PB |
842 | TranslationBlock *tb_gen_code(CPUState *env, |
843 | target_ulong pc, target_ulong cs_base, | |
844 | int flags, int cflags) | |
d720b93d FB |
845 | { |
846 | TranslationBlock *tb; | |
847 | uint8_t *tc_ptr; | |
848 | target_ulong phys_pc, phys_page2, virt_page2; | |
849 | int code_gen_size; | |
850 | ||
c27004ec FB |
851 | phys_pc = get_phys_addr_code(env, pc); |
852 | tb = tb_alloc(pc); | |
d720b93d FB |
853 | if (!tb) { |
854 | /* flush must be done */ | |
855 | tb_flush(env); | |
856 | /* cannot fail at this point */ | |
c27004ec | 857 | tb = tb_alloc(pc); |
2e70f6ef PB |
858 | /* Don't forget to invalidate previous TB info. */ |
859 | tb_invalidated_flag = 1; | |
d720b93d FB |
860 | } |
861 | tc_ptr = code_gen_ptr; | |
862 | tb->tc_ptr = tc_ptr; | |
863 | tb->cs_base = cs_base; | |
864 | tb->flags = flags; | |
865 | tb->cflags = cflags; | |
d07bde88 | 866 | cpu_gen_code(env, tb, &code_gen_size); |
d720b93d | 867 | code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); |
3b46e624 | 868 | |
d720b93d | 869 | /* check next page if needed */ |
c27004ec | 870 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; |
d720b93d | 871 | phys_page2 = -1; |
c27004ec | 872 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { |
d720b93d FB |
873 | phys_page2 = get_phys_addr_code(env, virt_page2); |
874 | } | |
875 | tb_link_phys(tb, phys_pc, phys_page2); | |
2e70f6ef | 876 | return tb; |
d720b93d | 877 | } |
3b46e624 | 878 | |
9fa3e853 FB |
879 | /* invalidate all TBs which intersect with the target physical page |
880 | starting in range [start;end[. NOTE: start and end must refer to | |
d720b93d FB |
881 | the same physical page. 'is_cpu_write_access' should be true if called |
882 | from a real cpu write access: the virtual CPU will exit the current | |
883 | TB if code is modified inside this TB. */ | |
00f82b8a | 884 | void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, |
d720b93d FB |
885 | int is_cpu_write_access) |
886 | { | |
887 | int n, current_tb_modified, current_tb_not_found, current_flags; | |
d720b93d | 888 | CPUState *env = cpu_single_env; |
9fa3e853 | 889 | PageDesc *p; |
ea1c1802 | 890 | TranslationBlock *tb, *tb_next, *current_tb, *saved_tb; |
9fa3e853 | 891 | target_ulong tb_start, tb_end; |
d720b93d | 892 | target_ulong current_pc, current_cs_base; |
9fa3e853 FB |
893 | |
894 | p = page_find(start >> TARGET_PAGE_BITS); | |
5fafdf24 | 895 | if (!p) |
9fa3e853 | 896 | return; |
5fafdf24 | 897 | if (!p->code_bitmap && |
d720b93d FB |
898 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && |
899 | is_cpu_write_access) { | |
9fa3e853 FB |
900 | /* build code bitmap */ |
901 | build_page_bitmap(p); | |
902 | } | |
903 | ||
904 | /* we remove all the TBs in the range [start, end[ */ | |
905 | /* XXX: see if in some cases it could be faster to invalidate all the code */ | |
d720b93d FB |
906 | current_tb_not_found = is_cpu_write_access; |
907 | current_tb_modified = 0; | |
908 | current_tb = NULL; /* avoid warning */ | |
909 | current_pc = 0; /* avoid warning */ | |
910 | current_cs_base = 0; /* avoid warning */ | |
911 | current_flags = 0; /* avoid warning */ | |
9fa3e853 FB |
912 | tb = p->first_tb; |
913 | while (tb != NULL) { | |
914 | n = (long)tb & 3; | |
915 | tb = (TranslationBlock *)((long)tb & ~3); | |
916 | tb_next = tb->page_next[n]; | |
917 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
918 | if (n == 0) { | |
919 | /* NOTE: tb_end may be after the end of the page, but | |
920 | it is not a problem */ | |
921 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
922 | tb_end = tb_start + tb->size; | |
923 | } else { | |
924 | tb_start = tb->page_addr[1]; | |
925 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
926 | } | |
927 | if (!(tb_end <= start || tb_start >= end)) { | |
d720b93d FB |
928 | #ifdef TARGET_HAS_PRECISE_SMC |
929 | if (current_tb_not_found) { | |
930 | current_tb_not_found = 0; | |
931 | current_tb = NULL; | |
2e70f6ef | 932 | if (env->mem_io_pc) { |
d720b93d | 933 | /* now we have a real cpu fault */ |
2e70f6ef | 934 | current_tb = tb_find_pc(env->mem_io_pc); |
d720b93d FB |
935 | } |
936 | } | |
937 | if (current_tb == tb && | |
2e70f6ef | 938 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
939 | /* If we are modifying the current TB, we must stop |
940 | its execution. We could be more precise by checking | |
941 | that the modification is after the current PC, but it | |
942 | would require a specialized function to partially | |
943 | restore the CPU state */ | |
3b46e624 | 944 | |
d720b93d | 945 | current_tb_modified = 1; |
5fafdf24 | 946 | cpu_restore_state(current_tb, env, |
2e70f6ef | 947 | env->mem_io_pc, NULL); |
d720b93d FB |
948 | #if defined(TARGET_I386) |
949 | current_flags = env->hflags; | |
950 | current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)); | |
951 | current_cs_base = (target_ulong)env->segs[R_CS].base; | |
952 | current_pc = current_cs_base + env->eip; | |
953 | #else | |
954 | #error unsupported CPU | |
955 | #endif | |
956 | } | |
957 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
6f5a9f7e FB |
958 | /* we need to do that to handle the case where a signal |
959 | occurs while doing tb_phys_invalidate() */ | |
960 | saved_tb = NULL; | |
961 | if (env) { | |
962 | saved_tb = env->current_tb; | |
963 | env->current_tb = NULL; | |
964 | } | |
9fa3e853 | 965 | tb_phys_invalidate(tb, -1); |
6f5a9f7e FB |
966 | if (env) { |
967 | env->current_tb = saved_tb; | |
968 | if (env->interrupt_request && env->current_tb) | |
969 | cpu_interrupt(env, env->interrupt_request); | |
970 | } | |
9fa3e853 FB |
971 | } |
972 | tb = tb_next; | |
973 | } | |
974 | #if !defined(CONFIG_USER_ONLY) | |
975 | /* if no code remaining, no need to continue to use slow writes */ | |
976 | if (!p->first_tb) { | |
977 | invalidate_page_bitmap(p); | |
d720b93d | 978 | if (is_cpu_write_access) { |
2e70f6ef | 979 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); |
d720b93d FB |
980 | } |
981 | } | |
982 | #endif | |
983 | #ifdef TARGET_HAS_PRECISE_SMC | |
984 | if (current_tb_modified) { | |
985 | /* we generate a block containing just the instruction | |
986 | modifying the memory. It will ensure that it cannot modify | |
987 | itself */ | |
ea1c1802 | 988 | env->current_tb = NULL; |
2e70f6ef | 989 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d | 990 | cpu_resume_from_signal(env, NULL); |
9fa3e853 | 991 | } |
fd6ce8f6 | 992 | #endif |
9fa3e853 | 993 | } |
fd6ce8f6 | 994 | |
9fa3e853 | 995 | /* len must be <= 8 and start must be a multiple of len */ |
00f82b8a | 996 | static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len) |
9fa3e853 FB |
997 | { |
998 | PageDesc *p; | |
999 | int offset, b; | |
59817ccb | 1000 | #if 0 |
a4193c8a FB |
1001 | if (1) { |
1002 | if (loglevel) { | |
5fafdf24 | 1003 | fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n", |
2e70f6ef | 1004 | cpu_single_env->mem_io_vaddr, len, |
5fafdf24 | 1005 | cpu_single_env->eip, |
a4193c8a FB |
1006 | cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base); |
1007 | } | |
59817ccb FB |
1008 | } |
1009 | #endif | |
9fa3e853 | 1010 | p = page_find(start >> TARGET_PAGE_BITS); |
5fafdf24 | 1011 | if (!p) |
9fa3e853 FB |
1012 | return; |
1013 | if (p->code_bitmap) { | |
1014 | offset = start & ~TARGET_PAGE_MASK; | |
1015 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |
1016 | if (b & ((1 << len) - 1)) | |
1017 | goto do_invalidate; | |
1018 | } else { | |
1019 | do_invalidate: | |
d720b93d | 1020 | tb_invalidate_phys_page_range(start, start + len, 1); |
9fa3e853 FB |
1021 | } |
1022 | } | |
1023 | ||
9fa3e853 | 1024 | #if !defined(CONFIG_SOFTMMU) |
00f82b8a | 1025 | static void tb_invalidate_phys_page(target_phys_addr_t addr, |
d720b93d | 1026 | unsigned long pc, void *puc) |
9fa3e853 | 1027 | { |
d720b93d FB |
1028 | int n, current_flags, current_tb_modified; |
1029 | target_ulong current_pc, current_cs_base; | |
9fa3e853 | 1030 | PageDesc *p; |
d720b93d FB |
1031 | TranslationBlock *tb, *current_tb; |
1032 | #ifdef TARGET_HAS_PRECISE_SMC | |
1033 | CPUState *env = cpu_single_env; | |
1034 | #endif | |
9fa3e853 FB |
1035 | |
1036 | addr &= TARGET_PAGE_MASK; | |
1037 | p = page_find(addr >> TARGET_PAGE_BITS); | |
5fafdf24 | 1038 | if (!p) |
9fa3e853 FB |
1039 | return; |
1040 | tb = p->first_tb; | |
d720b93d FB |
1041 | current_tb_modified = 0; |
1042 | current_tb = NULL; | |
1043 | current_pc = 0; /* avoid warning */ | |
1044 | current_cs_base = 0; /* avoid warning */ | |
1045 | current_flags = 0; /* avoid warning */ | |
1046 | #ifdef TARGET_HAS_PRECISE_SMC | |
1047 | if (tb && pc != 0) { | |
1048 | current_tb = tb_find_pc(pc); | |
1049 | } | |
1050 | #endif | |
9fa3e853 FB |
1051 | while (tb != NULL) { |
1052 | n = (long)tb & 3; | |
1053 | tb = (TranslationBlock *)((long)tb & ~3); | |
d720b93d FB |
1054 | #ifdef TARGET_HAS_PRECISE_SMC |
1055 | if (current_tb == tb && | |
2e70f6ef | 1056 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
1057 | /* If we are modifying the current TB, we must stop |
1058 | its execution. We could be more precise by checking | |
1059 | that the modification is after the current PC, but it | |
1060 | would require a specialized function to partially | |
1061 | restore the CPU state */ | |
3b46e624 | 1062 | |
d720b93d FB |
1063 | current_tb_modified = 1; |
1064 | cpu_restore_state(current_tb, env, pc, puc); | |
1065 | #if defined(TARGET_I386) | |
1066 | current_flags = env->hflags; | |
1067 | current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)); | |
1068 | current_cs_base = (target_ulong)env->segs[R_CS].base; | |
1069 | current_pc = current_cs_base + env->eip; | |
1070 | #else | |
1071 | #error unsupported CPU | |
1072 | #endif | |
1073 | } | |
1074 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
1075 | tb_phys_invalidate(tb, addr); |
1076 | tb = tb->page_next[n]; | |
1077 | } | |
fd6ce8f6 | 1078 | p->first_tb = NULL; |
d720b93d FB |
1079 | #ifdef TARGET_HAS_PRECISE_SMC |
1080 | if (current_tb_modified) { | |
1081 | /* we generate a block containing just the instruction | |
1082 | modifying the memory. It will ensure that it cannot modify | |
1083 | itself */ | |
ea1c1802 | 1084 | env->current_tb = NULL; |
2e70f6ef | 1085 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d FB |
1086 | cpu_resume_from_signal(env, puc); |
1087 | } | |
1088 | #endif | |
fd6ce8f6 | 1089 | } |
9fa3e853 | 1090 | #endif |
fd6ce8f6 FB |
1091 | |
1092 | /* add the tb in the target page and protect it if necessary */ | |
5fafdf24 | 1093 | static inline void tb_alloc_page(TranslationBlock *tb, |
53a5960a | 1094 | unsigned int n, target_ulong page_addr) |
fd6ce8f6 FB |
1095 | { |
1096 | PageDesc *p; | |
9fa3e853 FB |
1097 | TranslationBlock *last_first_tb; |
1098 | ||
1099 | tb->page_addr[n] = page_addr; | |
3a7d929e | 1100 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1101 | tb->page_next[n] = p->first_tb; |
1102 | last_first_tb = p->first_tb; | |
1103 | p->first_tb = (TranslationBlock *)((long)tb | n); | |
1104 | invalidate_page_bitmap(p); | |
fd6ce8f6 | 1105 | |
107db443 | 1106 | #if defined(TARGET_HAS_SMC) || 1 |
d720b93d | 1107 | |
9fa3e853 | 1108 | #if defined(CONFIG_USER_ONLY) |
fd6ce8f6 | 1109 | if (p->flags & PAGE_WRITE) { |
53a5960a PB |
1110 | target_ulong addr; |
1111 | PageDesc *p2; | |
9fa3e853 FB |
1112 | int prot; |
1113 | ||
fd6ce8f6 FB |
1114 | /* force the host page as non writable (writes will have a |
1115 | page fault + mprotect overhead) */ | |
53a5960a | 1116 | page_addr &= qemu_host_page_mask; |
fd6ce8f6 | 1117 | prot = 0; |
53a5960a PB |
1118 | for(addr = page_addr; addr < page_addr + qemu_host_page_size; |
1119 | addr += TARGET_PAGE_SIZE) { | |
1120 | ||
1121 | p2 = page_find (addr >> TARGET_PAGE_BITS); | |
1122 | if (!p2) | |
1123 | continue; | |
1124 | prot |= p2->flags; | |
1125 | p2->flags &= ~PAGE_WRITE; | |
1126 | page_get_flags(addr); | |
1127 | } | |
5fafdf24 | 1128 | mprotect(g2h(page_addr), qemu_host_page_size, |
fd6ce8f6 FB |
1129 | (prot & PAGE_BITS) & ~PAGE_WRITE); |
1130 | #ifdef DEBUG_TB_INVALIDATE | |
ab3d1727 | 1131 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", |
53a5960a | 1132 | page_addr); |
fd6ce8f6 | 1133 | #endif |
fd6ce8f6 | 1134 | } |
9fa3e853 FB |
1135 | #else |
1136 | /* if some code is already present, then the pages are already | |
1137 | protected. So we handle the case where only the first TB is | |
1138 | allocated in a physical page */ | |
1139 | if (!last_first_tb) { | |
6a00d601 | 1140 | tlb_protect_code(page_addr); |
9fa3e853 FB |
1141 | } |
1142 | #endif | |
d720b93d FB |
1143 | |
1144 | #endif /* TARGET_HAS_SMC */ | |
fd6ce8f6 FB |
1145 | } |
1146 | ||
1147 | /* Allocate a new translation block. Flush the translation buffer if | |
1148 | too many translation blocks or too much generated code. */ | |
c27004ec | 1149 | TranslationBlock *tb_alloc(target_ulong pc) |
fd6ce8f6 FB |
1150 | { |
1151 | TranslationBlock *tb; | |
fd6ce8f6 | 1152 | |
26a5f13b FB |
1153 | if (nb_tbs >= code_gen_max_blocks || |
1154 | (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size) | |
d4e8164f | 1155 | return NULL; |
fd6ce8f6 FB |
1156 | tb = &tbs[nb_tbs++]; |
1157 | tb->pc = pc; | |
b448f2f3 | 1158 | tb->cflags = 0; |
d4e8164f FB |
1159 | return tb; |
1160 | } | |
1161 | ||
2e70f6ef PB |
1162 | void tb_free(TranslationBlock *tb) |
1163 | { | |
bf20dc07 | 1164 | /* In practice this is mostly used for single use temporary TB |
2e70f6ef PB |
1165 | Ignore the hard cases and just back up if this TB happens to |
1166 | be the last one generated. */ | |
1167 | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) { | |
1168 | code_gen_ptr = tb->tc_ptr; | |
1169 | nb_tbs--; | |
1170 | } | |
1171 | } | |
1172 | ||
9fa3e853 FB |
1173 | /* add a new TB and link it to the physical page tables. phys_page2 is |
1174 | (-1) to indicate that only one page contains the TB. */ | |
5fafdf24 | 1175 | void tb_link_phys(TranslationBlock *tb, |
9fa3e853 | 1176 | target_ulong phys_pc, target_ulong phys_page2) |
d4e8164f | 1177 | { |
9fa3e853 FB |
1178 | unsigned int h; |
1179 | TranslationBlock **ptb; | |
1180 | ||
c8a706fe PB |
1181 | /* Grab the mmap lock to stop another thread invalidating this TB |
1182 | before we are done. */ | |
1183 | mmap_lock(); | |
9fa3e853 FB |
1184 | /* add in the physical hash table */ |
1185 | h = tb_phys_hash_func(phys_pc); | |
1186 | ptb = &tb_phys_hash[h]; | |
1187 | tb->phys_hash_next = *ptb; | |
1188 | *ptb = tb; | |
fd6ce8f6 FB |
1189 | |
1190 | /* add in the page list */ | |
9fa3e853 FB |
1191 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); |
1192 | if (phys_page2 != -1) | |
1193 | tb_alloc_page(tb, 1, phys_page2); | |
1194 | else | |
1195 | tb->page_addr[1] = -1; | |
9fa3e853 | 1196 | |
d4e8164f FB |
1197 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); |
1198 | tb->jmp_next[0] = NULL; | |
1199 | tb->jmp_next[1] = NULL; | |
1200 | ||
1201 | /* init original jump addresses */ | |
1202 | if (tb->tb_next_offset[0] != 0xffff) | |
1203 | tb_reset_jump(tb, 0); | |
1204 | if (tb->tb_next_offset[1] != 0xffff) | |
1205 | tb_reset_jump(tb, 1); | |
8a40a180 FB |
1206 | |
1207 | #ifdef DEBUG_TB_CHECK | |
1208 | tb_page_check(); | |
1209 | #endif | |
c8a706fe | 1210 | mmap_unlock(); |
fd6ce8f6 FB |
1211 | } |
1212 | ||
9fa3e853 FB |
1213 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < |
1214 | tb[1].tc_ptr. Return NULL if not found */ | |
1215 | TranslationBlock *tb_find_pc(unsigned long tc_ptr) | |
fd6ce8f6 | 1216 | { |
9fa3e853 FB |
1217 | int m_min, m_max, m; |
1218 | unsigned long v; | |
1219 | TranslationBlock *tb; | |
a513fe19 FB |
1220 | |
1221 | if (nb_tbs <= 0) | |
1222 | return NULL; | |
1223 | if (tc_ptr < (unsigned long)code_gen_buffer || | |
1224 | tc_ptr >= (unsigned long)code_gen_ptr) | |
1225 | return NULL; | |
1226 | /* binary search (cf Knuth) */ | |
1227 | m_min = 0; | |
1228 | m_max = nb_tbs - 1; | |
1229 | while (m_min <= m_max) { | |
1230 | m = (m_min + m_max) >> 1; | |
1231 | tb = &tbs[m]; | |
1232 | v = (unsigned long)tb->tc_ptr; | |
1233 | if (v == tc_ptr) | |
1234 | return tb; | |
1235 | else if (tc_ptr < v) { | |
1236 | m_max = m - 1; | |
1237 | } else { | |
1238 | m_min = m + 1; | |
1239 | } | |
5fafdf24 | 1240 | } |
a513fe19 FB |
1241 | return &tbs[m_max]; |
1242 | } | |
7501267e | 1243 | |
ea041c0e FB |
1244 | static void tb_reset_jump_recursive(TranslationBlock *tb); |
1245 | ||
1246 | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) | |
1247 | { | |
1248 | TranslationBlock *tb1, *tb_next, **ptb; | |
1249 | unsigned int n1; | |
1250 | ||
1251 | tb1 = tb->jmp_next[n]; | |
1252 | if (tb1 != NULL) { | |
1253 | /* find head of list */ | |
1254 | for(;;) { | |
1255 | n1 = (long)tb1 & 3; | |
1256 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1257 | if (n1 == 2) | |
1258 | break; | |
1259 | tb1 = tb1->jmp_next[n1]; | |
1260 | } | |
1261 | /* we are now sure now that tb jumps to tb1 */ | |
1262 | tb_next = tb1; | |
1263 | ||
1264 | /* remove tb from the jmp_first list */ | |
1265 | ptb = &tb_next->jmp_first; | |
1266 | for(;;) { | |
1267 | tb1 = *ptb; | |
1268 | n1 = (long)tb1 & 3; | |
1269 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1270 | if (n1 == n && tb1 == tb) | |
1271 | break; | |
1272 | ptb = &tb1->jmp_next[n1]; | |
1273 | } | |
1274 | *ptb = tb->jmp_next[n]; | |
1275 | tb->jmp_next[n] = NULL; | |
3b46e624 | 1276 | |
ea041c0e FB |
1277 | /* suppress the jump to next tb in generated code */ |
1278 | tb_reset_jump(tb, n); | |
1279 | ||
0124311e | 1280 | /* suppress jumps in the tb on which we could have jumped */ |
ea041c0e FB |
1281 | tb_reset_jump_recursive(tb_next); |
1282 | } | |
1283 | } | |
1284 | ||
1285 | static void tb_reset_jump_recursive(TranslationBlock *tb) | |
1286 | { | |
1287 | tb_reset_jump_recursive2(tb, 0); | |
1288 | tb_reset_jump_recursive2(tb, 1); | |
1289 | } | |
1290 | ||
1fddef4b | 1291 | #if defined(TARGET_HAS_ICE) |
d720b93d FB |
1292 | static void breakpoint_invalidate(CPUState *env, target_ulong pc) |
1293 | { | |
9b3c35e0 JM |
1294 | target_phys_addr_t addr; |
1295 | target_ulong pd; | |
c2f07f81 PB |
1296 | ram_addr_t ram_addr; |
1297 | PhysPageDesc *p; | |
d720b93d | 1298 | |
c2f07f81 PB |
1299 | addr = cpu_get_phys_page_debug(env, pc); |
1300 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
1301 | if (!p) { | |
1302 | pd = IO_MEM_UNASSIGNED; | |
1303 | } else { | |
1304 | pd = p->phys_offset; | |
1305 | } | |
1306 | ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK); | |
706cd4b5 | 1307 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
d720b93d | 1308 | } |
c27004ec | 1309 | #endif |
d720b93d | 1310 | |
6658ffb8 | 1311 | /* Add a watchpoint. */ |
0f459d16 | 1312 | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type) |
6658ffb8 PB |
1313 | { |
1314 | int i; | |
1315 | ||
1316 | for (i = 0; i < env->nb_watchpoints; i++) { | |
1317 | if (addr == env->watchpoint[i].vaddr) | |
1318 | return 0; | |
1319 | } | |
1320 | if (env->nb_watchpoints >= MAX_WATCHPOINTS) | |
1321 | return -1; | |
1322 | ||
1323 | i = env->nb_watchpoints++; | |
1324 | env->watchpoint[i].vaddr = addr; | |
0f459d16 | 1325 | env->watchpoint[i].type = type; |
6658ffb8 PB |
1326 | tlb_flush_page(env, addr); |
1327 | /* FIXME: This flush is needed because of the hack to make memory ops | |
1328 | terminate the TB. It can be removed once the proper IO trap and | |
1329 | re-execute bits are in. */ | |
1330 | tb_flush(env); | |
1331 | return i; | |
1332 | } | |
1333 | ||
1334 | /* Remove a watchpoint. */ | |
1335 | int cpu_watchpoint_remove(CPUState *env, target_ulong addr) | |
1336 | { | |
1337 | int i; | |
1338 | ||
1339 | for (i = 0; i < env->nb_watchpoints; i++) { | |
1340 | if (addr == env->watchpoint[i].vaddr) { | |
1341 | env->nb_watchpoints--; | |
1342 | env->watchpoint[i] = env->watchpoint[env->nb_watchpoints]; | |
1343 | tlb_flush_page(env, addr); | |
1344 | return 0; | |
1345 | } | |
1346 | } | |
1347 | return -1; | |
1348 | } | |
1349 | ||
7d03f82f EI |
1350 | /* Remove all watchpoints. */ |
1351 | void cpu_watchpoint_remove_all(CPUState *env) { | |
1352 | int i; | |
1353 | ||
1354 | for (i = 0; i < env->nb_watchpoints; i++) { | |
1355 | tlb_flush_page(env, env->watchpoint[i].vaddr); | |
1356 | } | |
1357 | env->nb_watchpoints = 0; | |
1358 | } | |
1359 | ||
c33a346e FB |
1360 | /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a |
1361 | breakpoint is reached */ | |
2e12669a | 1362 | int cpu_breakpoint_insert(CPUState *env, target_ulong pc) |
4c3a88a2 | 1363 | { |
1fddef4b | 1364 | #if defined(TARGET_HAS_ICE) |
4c3a88a2 | 1365 | int i; |
3b46e624 | 1366 | |
4c3a88a2 FB |
1367 | for(i = 0; i < env->nb_breakpoints; i++) { |
1368 | if (env->breakpoints[i] == pc) | |
1369 | return 0; | |
1370 | } | |
1371 | ||
1372 | if (env->nb_breakpoints >= MAX_BREAKPOINTS) | |
1373 | return -1; | |
1374 | env->breakpoints[env->nb_breakpoints++] = pc; | |
3b46e624 | 1375 | |
d720b93d | 1376 | breakpoint_invalidate(env, pc); |
4c3a88a2 FB |
1377 | return 0; |
1378 | #else | |
1379 | return -1; | |
1380 | #endif | |
1381 | } | |
1382 | ||
7d03f82f EI |
1383 | /* remove all breakpoints */ |
1384 | void cpu_breakpoint_remove_all(CPUState *env) { | |
1385 | #if defined(TARGET_HAS_ICE) | |
1386 | int i; | |
1387 | for(i = 0; i < env->nb_breakpoints; i++) { | |
1388 | breakpoint_invalidate(env, env->breakpoints[i]); | |
1389 | } | |
1390 | env->nb_breakpoints = 0; | |
1391 | #endif | |
1392 | } | |
1393 | ||
4c3a88a2 | 1394 | /* remove a breakpoint */ |
2e12669a | 1395 | int cpu_breakpoint_remove(CPUState *env, target_ulong pc) |
4c3a88a2 | 1396 | { |
1fddef4b | 1397 | #if defined(TARGET_HAS_ICE) |
4c3a88a2 FB |
1398 | int i; |
1399 | for(i = 0; i < env->nb_breakpoints; i++) { | |
1400 | if (env->breakpoints[i] == pc) | |
1401 | goto found; | |
1402 | } | |
1403 | return -1; | |
1404 | found: | |
4c3a88a2 | 1405 | env->nb_breakpoints--; |
1fddef4b FB |
1406 | if (i < env->nb_breakpoints) |
1407 | env->breakpoints[i] = env->breakpoints[env->nb_breakpoints]; | |
d720b93d FB |
1408 | |
1409 | breakpoint_invalidate(env, pc); | |
4c3a88a2 FB |
1410 | return 0; |
1411 | #else | |
1412 | return -1; | |
1413 | #endif | |
1414 | } | |
1415 | ||
c33a346e FB |
1416 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
1417 | CPU loop after each instruction */ | |
1418 | void cpu_single_step(CPUState *env, int enabled) | |
1419 | { | |
1fddef4b | 1420 | #if defined(TARGET_HAS_ICE) |
c33a346e FB |
1421 | if (env->singlestep_enabled != enabled) { |
1422 | env->singlestep_enabled = enabled; | |
1423 | /* must flush all the translated code to avoid inconsistancies */ | |
9fa3e853 | 1424 | /* XXX: only flush what is necessary */ |
0124311e | 1425 | tb_flush(env); |
c33a346e FB |
1426 | } |
1427 | #endif | |
1428 | } | |
1429 | ||
34865134 FB |
1430 | /* enable or disable low levels log */ |
1431 | void cpu_set_log(int log_flags) | |
1432 | { | |
1433 | loglevel = log_flags; | |
1434 | if (loglevel && !logfile) { | |
11fcfab4 | 1435 | logfile = fopen(logfilename, log_append ? "a" : "w"); |
34865134 FB |
1436 | if (!logfile) { |
1437 | perror(logfilename); | |
1438 | _exit(1); | |
1439 | } | |
9fa3e853 FB |
1440 | #if !defined(CONFIG_SOFTMMU) |
1441 | /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ | |
1442 | { | |
b55266b5 | 1443 | static char logfile_buf[4096]; |
9fa3e853 FB |
1444 | setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); |
1445 | } | |
1446 | #else | |
34865134 | 1447 | setvbuf(logfile, NULL, _IOLBF, 0); |
9fa3e853 | 1448 | #endif |
e735b91c PB |
1449 | log_append = 1; |
1450 | } | |
1451 | if (!loglevel && logfile) { | |
1452 | fclose(logfile); | |
1453 | logfile = NULL; | |
34865134 FB |
1454 | } |
1455 | } | |
1456 | ||
1457 | void cpu_set_log_filename(const char *filename) | |
1458 | { | |
1459 | logfilename = strdup(filename); | |
e735b91c PB |
1460 | if (logfile) { |
1461 | fclose(logfile); | |
1462 | logfile = NULL; | |
1463 | } | |
1464 | cpu_set_log(loglevel); | |
34865134 | 1465 | } |
c33a346e | 1466 | |
0124311e | 1467 | /* mask must never be zero, except for A20 change call */ |
68a79315 | 1468 | void cpu_interrupt(CPUState *env, int mask) |
ea041c0e | 1469 | { |
d5975363 | 1470 | #if !defined(USE_NPTL) |
ea041c0e | 1471 | TranslationBlock *tb; |
15a51156 | 1472 | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; |
d5975363 | 1473 | #endif |
2e70f6ef | 1474 | int old_mask; |
59817ccb | 1475 | |
2e70f6ef | 1476 | old_mask = env->interrupt_request; |
d5975363 | 1477 | /* FIXME: This is probably not threadsafe. A different thread could |
bf20dc07 | 1478 | be in the middle of a read-modify-write operation. */ |
68a79315 | 1479 | env->interrupt_request |= mask; |
d5975363 PB |
1480 | #if defined(USE_NPTL) |
1481 | /* FIXME: TB unchaining isn't SMP safe. For now just ignore the | |
1482 | problem and hope the cpu will stop of its own accord. For userspace | |
1483 | emulation this often isn't actually as bad as it sounds. Often | |
1484 | signals are used primarily to interrupt blocking syscalls. */ | |
1485 | #else | |
2e70f6ef | 1486 | if (use_icount) { |
266910c4 | 1487 | env->icount_decr.u16.high = 0xffff; |
2e70f6ef PB |
1488 | #ifndef CONFIG_USER_ONLY |
1489 | /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means | |
1490 | an async event happened and we need to process it. */ | |
1491 | if (!can_do_io(env) | |
1492 | && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) { | |
1493 | cpu_abort(env, "Raised interrupt while not in I/O function"); | |
1494 | } | |
1495 | #endif | |
1496 | } else { | |
1497 | tb = env->current_tb; | |
1498 | /* if the cpu is currently executing code, we must unlink it and | |
1499 | all the potentially executing TB */ | |
1500 | if (tb && !testandset(&interrupt_lock)) { | |
1501 | env->current_tb = NULL; | |
1502 | tb_reset_jump_recursive(tb); | |
1503 | resetlock(&interrupt_lock); | |
1504 | } | |
ea041c0e | 1505 | } |
d5975363 | 1506 | #endif |
ea041c0e FB |
1507 | } |
1508 | ||
b54ad049 FB |
1509 | void cpu_reset_interrupt(CPUState *env, int mask) |
1510 | { | |
1511 | env->interrupt_request &= ~mask; | |
1512 | } | |
1513 | ||
c7cd6a37 | 1514 | const CPULogItem cpu_log_items[] = { |
5fafdf24 | 1515 | { CPU_LOG_TB_OUT_ASM, "out_asm", |
f193c797 FB |
1516 | "show generated host assembly code for each compiled TB" }, |
1517 | { CPU_LOG_TB_IN_ASM, "in_asm", | |
1518 | "show target assembly code for each compiled TB" }, | |
5fafdf24 | 1519 | { CPU_LOG_TB_OP, "op", |
57fec1fe | 1520 | "show micro ops for each compiled TB" }, |
f193c797 | 1521 | { CPU_LOG_TB_OP_OPT, "op_opt", |
e01a1157 BS |
1522 | "show micro ops " |
1523 | #ifdef TARGET_I386 | |
1524 | "before eflags optimization and " | |
f193c797 | 1525 | #endif |
e01a1157 | 1526 | "after liveness analysis" }, |
f193c797 FB |
1527 | { CPU_LOG_INT, "int", |
1528 | "show interrupts/exceptions in short format" }, | |
1529 | { CPU_LOG_EXEC, "exec", | |
1530 | "show trace before each executed TB (lots of logs)" }, | |
9fddaa0c | 1531 | { CPU_LOG_TB_CPU, "cpu", |
e91c8a77 | 1532 | "show CPU state before block translation" }, |
f193c797 FB |
1533 | #ifdef TARGET_I386 |
1534 | { CPU_LOG_PCALL, "pcall", | |
1535 | "show protected mode far calls/returns/exceptions" }, | |
1536 | #endif | |
8e3a9fd2 | 1537 | #ifdef DEBUG_IOPORT |
fd872598 FB |
1538 | { CPU_LOG_IOPORT, "ioport", |
1539 | "show all i/o ports accesses" }, | |
8e3a9fd2 | 1540 | #endif |
f193c797 FB |
1541 | { 0, NULL, NULL }, |
1542 | }; | |
1543 | ||
1544 | static int cmp1(const char *s1, int n, const char *s2) | |
1545 | { | |
1546 | if (strlen(s2) != n) | |
1547 | return 0; | |
1548 | return memcmp(s1, s2, n) == 0; | |
1549 | } | |
3b46e624 | 1550 | |
f193c797 FB |
1551 | /* takes a comma separated list of log masks. Return 0 if error. */ |
1552 | int cpu_str_to_log_mask(const char *str) | |
1553 | { | |
c7cd6a37 | 1554 | const CPULogItem *item; |
f193c797 FB |
1555 | int mask; |
1556 | const char *p, *p1; | |
1557 | ||
1558 | p = str; | |
1559 | mask = 0; | |
1560 | for(;;) { | |
1561 | p1 = strchr(p, ','); | |
1562 | if (!p1) | |
1563 | p1 = p + strlen(p); | |
8e3a9fd2 FB |
1564 | if(cmp1(p,p1-p,"all")) { |
1565 | for(item = cpu_log_items; item->mask != 0; item++) { | |
1566 | mask |= item->mask; | |
1567 | } | |
1568 | } else { | |
f193c797 FB |
1569 | for(item = cpu_log_items; item->mask != 0; item++) { |
1570 | if (cmp1(p, p1 - p, item->name)) | |
1571 | goto found; | |
1572 | } | |
1573 | return 0; | |
8e3a9fd2 | 1574 | } |
f193c797 FB |
1575 | found: |
1576 | mask |= item->mask; | |
1577 | if (*p1 != ',') | |
1578 | break; | |
1579 | p = p1 + 1; | |
1580 | } | |
1581 | return mask; | |
1582 | } | |
ea041c0e | 1583 | |
7501267e FB |
1584 | void cpu_abort(CPUState *env, const char *fmt, ...) |
1585 | { | |
1586 | va_list ap; | |
493ae1f0 | 1587 | va_list ap2; |
7501267e FB |
1588 | |
1589 | va_start(ap, fmt); | |
493ae1f0 | 1590 | va_copy(ap2, ap); |
7501267e FB |
1591 | fprintf(stderr, "qemu: fatal: "); |
1592 | vfprintf(stderr, fmt, ap); | |
1593 | fprintf(stderr, "\n"); | |
1594 | #ifdef TARGET_I386 | |
7fe48483 FB |
1595 | cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); |
1596 | #else | |
1597 | cpu_dump_state(env, stderr, fprintf, 0); | |
7501267e | 1598 | #endif |
924edcae | 1599 | if (logfile) { |
f9373291 | 1600 | fprintf(logfile, "qemu: fatal: "); |
493ae1f0 | 1601 | vfprintf(logfile, fmt, ap2); |
f9373291 JM |
1602 | fprintf(logfile, "\n"); |
1603 | #ifdef TARGET_I386 | |
1604 | cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); | |
1605 | #else | |
1606 | cpu_dump_state(env, logfile, fprintf, 0); | |
1607 | #endif | |
924edcae AZ |
1608 | fflush(logfile); |
1609 | fclose(logfile); | |
1610 | } | |
493ae1f0 | 1611 | va_end(ap2); |
f9373291 | 1612 | va_end(ap); |
7501267e FB |
1613 | abort(); |
1614 | } | |
1615 | ||
c5be9f08 TS |
1616 | CPUState *cpu_copy(CPUState *env) |
1617 | { | |
01ba9816 | 1618 | CPUState *new_env = cpu_init(env->cpu_model_str); |
c5be9f08 TS |
1619 | /* preserve chaining and index */ |
1620 | CPUState *next_cpu = new_env->next_cpu; | |
1621 | int cpu_index = new_env->cpu_index; | |
1622 | memcpy(new_env, env, sizeof(CPUState)); | |
1623 | new_env->next_cpu = next_cpu; | |
1624 | new_env->cpu_index = cpu_index; | |
1625 | return new_env; | |
1626 | } | |
1627 | ||
0124311e FB |
1628 | #if !defined(CONFIG_USER_ONLY) |
1629 | ||
5c751e99 EI |
1630 | static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr) |
1631 | { | |
1632 | unsigned int i; | |
1633 | ||
1634 | /* Discard jump cache entries for any tb which might potentially | |
1635 | overlap the flushed page. */ | |
1636 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
1637 | memset (&env->tb_jmp_cache[i], 0, | |
1638 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1639 | ||
1640 | i = tb_jmp_cache_hash_page(addr); | |
1641 | memset (&env->tb_jmp_cache[i], 0, | |
1642 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1643 | } | |
1644 | ||
ee8b7021 FB |
1645 | /* NOTE: if flush_global is true, also flush global entries (not |
1646 | implemented yet) */ | |
1647 | void tlb_flush(CPUState *env, int flush_global) | |
33417e70 | 1648 | { |
33417e70 | 1649 | int i; |
0124311e | 1650 | |
9fa3e853 FB |
1651 | #if defined(DEBUG_TLB) |
1652 | printf("tlb_flush:\n"); | |
1653 | #endif | |
0124311e FB |
1654 | /* must reset current TB so that interrupts cannot modify the |
1655 | links while we are modifying them */ | |
1656 | env->current_tb = NULL; | |
1657 | ||
33417e70 | 1658 | for(i = 0; i < CPU_TLB_SIZE; i++) { |
84b7b8e7 FB |
1659 | env->tlb_table[0][i].addr_read = -1; |
1660 | env->tlb_table[0][i].addr_write = -1; | |
1661 | env->tlb_table[0][i].addr_code = -1; | |
1662 | env->tlb_table[1][i].addr_read = -1; | |
1663 | env->tlb_table[1][i].addr_write = -1; | |
1664 | env->tlb_table[1][i].addr_code = -1; | |
6fa4cea9 JM |
1665 | #if (NB_MMU_MODES >= 3) |
1666 | env->tlb_table[2][i].addr_read = -1; | |
1667 | env->tlb_table[2][i].addr_write = -1; | |
1668 | env->tlb_table[2][i].addr_code = -1; | |
1669 | #if (NB_MMU_MODES == 4) | |
1670 | env->tlb_table[3][i].addr_read = -1; | |
1671 | env->tlb_table[3][i].addr_write = -1; | |
1672 | env->tlb_table[3][i].addr_code = -1; | |
1673 | #endif | |
1674 | #endif | |
33417e70 | 1675 | } |
9fa3e853 | 1676 | |
8a40a180 | 1677 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); |
9fa3e853 | 1678 | |
0a962c02 FB |
1679 | #ifdef USE_KQEMU |
1680 | if (env->kqemu_enabled) { | |
1681 | kqemu_flush(env, flush_global); | |
1682 | } | |
9fa3e853 | 1683 | #endif |
e3db7226 | 1684 | tlb_flush_count++; |
33417e70 FB |
1685 | } |
1686 | ||
274da6b2 | 1687 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) |
61382a50 | 1688 | { |
5fafdf24 | 1689 | if (addr == (tlb_entry->addr_read & |
84b7b8e7 | 1690 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1691 | addr == (tlb_entry->addr_write & |
84b7b8e7 | 1692 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1693 | addr == (tlb_entry->addr_code & |
84b7b8e7 FB |
1694 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
1695 | tlb_entry->addr_read = -1; | |
1696 | tlb_entry->addr_write = -1; | |
1697 | tlb_entry->addr_code = -1; | |
1698 | } | |
61382a50 FB |
1699 | } |
1700 | ||
2e12669a | 1701 | void tlb_flush_page(CPUState *env, target_ulong addr) |
33417e70 | 1702 | { |
8a40a180 | 1703 | int i; |
0124311e | 1704 | |
9fa3e853 | 1705 | #if defined(DEBUG_TLB) |
108c49b8 | 1706 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); |
9fa3e853 | 1707 | #endif |
0124311e FB |
1708 | /* must reset current TB so that interrupts cannot modify the |
1709 | links while we are modifying them */ | |
1710 | env->current_tb = NULL; | |
61382a50 FB |
1711 | |
1712 | addr &= TARGET_PAGE_MASK; | |
1713 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
84b7b8e7 FB |
1714 | tlb_flush_entry(&env->tlb_table[0][i], addr); |
1715 | tlb_flush_entry(&env->tlb_table[1][i], addr); | |
6fa4cea9 JM |
1716 | #if (NB_MMU_MODES >= 3) |
1717 | tlb_flush_entry(&env->tlb_table[2][i], addr); | |
1718 | #if (NB_MMU_MODES == 4) | |
1719 | tlb_flush_entry(&env->tlb_table[3][i], addr); | |
1720 | #endif | |
1721 | #endif | |
0124311e | 1722 | |
5c751e99 | 1723 | tlb_flush_jmp_cache(env, addr); |
9fa3e853 | 1724 | |
0a962c02 FB |
1725 | #ifdef USE_KQEMU |
1726 | if (env->kqemu_enabled) { | |
1727 | kqemu_flush_page(env, addr); | |
1728 | } | |
1729 | #endif | |
9fa3e853 FB |
1730 | } |
1731 | ||
9fa3e853 FB |
1732 | /* update the TLBs so that writes to code in the virtual page 'addr' |
1733 | can be detected */ | |
6a00d601 | 1734 | static void tlb_protect_code(ram_addr_t ram_addr) |
9fa3e853 | 1735 | { |
5fafdf24 | 1736 | cpu_physical_memory_reset_dirty(ram_addr, |
6a00d601 FB |
1737 | ram_addr + TARGET_PAGE_SIZE, |
1738 | CODE_DIRTY_FLAG); | |
9fa3e853 FB |
1739 | } |
1740 | ||
9fa3e853 | 1741 | /* update the TLB so that writes in physical page 'phys_addr' are no longer |
3a7d929e | 1742 | tested for self modifying code */ |
5fafdf24 | 1743 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 1744 | target_ulong vaddr) |
9fa3e853 | 1745 | { |
3a7d929e | 1746 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG; |
1ccde1cb FB |
1747 | } |
1748 | ||
5fafdf24 | 1749 | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, |
1ccde1cb FB |
1750 | unsigned long start, unsigned long length) |
1751 | { | |
1752 | unsigned long addr; | |
84b7b8e7 FB |
1753 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
1754 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | |
1ccde1cb | 1755 | if ((addr - start) < length) { |
0f459d16 | 1756 | tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY; |
1ccde1cb FB |
1757 | } |
1758 | } | |
1759 | } | |
1760 | ||
3a7d929e | 1761 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, |
0a962c02 | 1762 | int dirty_flags) |
1ccde1cb FB |
1763 | { |
1764 | CPUState *env; | |
4f2ac237 | 1765 | unsigned long length, start1; |
0a962c02 FB |
1766 | int i, mask, len; |
1767 | uint8_t *p; | |
1ccde1cb FB |
1768 | |
1769 | start &= TARGET_PAGE_MASK; | |
1770 | end = TARGET_PAGE_ALIGN(end); | |
1771 | ||
1772 | length = end - start; | |
1773 | if (length == 0) | |
1774 | return; | |
0a962c02 | 1775 | len = length >> TARGET_PAGE_BITS; |
3a7d929e | 1776 | #ifdef USE_KQEMU |
6a00d601 FB |
1777 | /* XXX: should not depend on cpu context */ |
1778 | env = first_cpu; | |
3a7d929e | 1779 | if (env->kqemu_enabled) { |
f23db169 FB |
1780 | ram_addr_t addr; |
1781 | addr = start; | |
1782 | for(i = 0; i < len; i++) { | |
1783 | kqemu_set_notdirty(env, addr); | |
1784 | addr += TARGET_PAGE_SIZE; | |
1785 | } | |
3a7d929e FB |
1786 | } |
1787 | #endif | |
f23db169 FB |
1788 | mask = ~dirty_flags; |
1789 | p = phys_ram_dirty + (start >> TARGET_PAGE_BITS); | |
1790 | for(i = 0; i < len; i++) | |
1791 | p[i] &= mask; | |
1792 | ||
1ccde1cb FB |
1793 | /* we modify the TLB cache so that the dirty bit will be set again |
1794 | when accessing the range */ | |
59817ccb | 1795 | start1 = start + (unsigned long)phys_ram_base; |
6a00d601 FB |
1796 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
1797 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
84b7b8e7 | 1798 | tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length); |
6a00d601 | 1799 | for(i = 0; i < CPU_TLB_SIZE; i++) |
84b7b8e7 | 1800 | tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length); |
6fa4cea9 JM |
1801 | #if (NB_MMU_MODES >= 3) |
1802 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1803 | tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length); | |
1804 | #if (NB_MMU_MODES == 4) | |
1805 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1806 | tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length); | |
1807 | #endif | |
1808 | #endif | |
6a00d601 | 1809 | } |
1ccde1cb FB |
1810 | } |
1811 | ||
3a7d929e FB |
1812 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) |
1813 | { | |
1814 | ram_addr_t ram_addr; | |
1815 | ||
84b7b8e7 | 1816 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
5fafdf24 | 1817 | ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + |
3a7d929e FB |
1818 | tlb_entry->addend - (unsigned long)phys_ram_base; |
1819 | if (!cpu_physical_memory_is_dirty(ram_addr)) { | |
0f459d16 | 1820 | tlb_entry->addr_write |= TLB_NOTDIRTY; |
3a7d929e FB |
1821 | } |
1822 | } | |
1823 | } | |
1824 | ||
1825 | /* update the TLB according to the current state of the dirty bits */ | |
1826 | void cpu_tlb_update_dirty(CPUState *env) | |
1827 | { | |
1828 | int i; | |
1829 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
84b7b8e7 | 1830 | tlb_update_dirty(&env->tlb_table[0][i]); |
3a7d929e | 1831 | for(i = 0; i < CPU_TLB_SIZE; i++) |
84b7b8e7 | 1832 | tlb_update_dirty(&env->tlb_table[1][i]); |
6fa4cea9 JM |
1833 | #if (NB_MMU_MODES >= 3) |
1834 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1835 | tlb_update_dirty(&env->tlb_table[2][i]); | |
1836 | #if (NB_MMU_MODES == 4) | |
1837 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1838 | tlb_update_dirty(&env->tlb_table[3][i]); | |
1839 | #endif | |
1840 | #endif | |
3a7d929e FB |
1841 | } |
1842 | ||
0f459d16 | 1843 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) |
1ccde1cb | 1844 | { |
0f459d16 PB |
1845 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) |
1846 | tlb_entry->addr_write = vaddr; | |
1ccde1cb FB |
1847 | } |
1848 | ||
0f459d16 PB |
1849 | /* update the TLB corresponding to virtual page vaddr |
1850 | so that it is no longer dirty */ | |
1851 | static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr) | |
1ccde1cb | 1852 | { |
1ccde1cb FB |
1853 | int i; |
1854 | ||
0f459d16 | 1855 | vaddr &= TARGET_PAGE_MASK; |
1ccde1cb | 1856 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
0f459d16 PB |
1857 | tlb_set_dirty1(&env->tlb_table[0][i], vaddr); |
1858 | tlb_set_dirty1(&env->tlb_table[1][i], vaddr); | |
6fa4cea9 | 1859 | #if (NB_MMU_MODES >= 3) |
0f459d16 | 1860 | tlb_set_dirty1(&env->tlb_table[2][i], vaddr); |
6fa4cea9 | 1861 | #if (NB_MMU_MODES == 4) |
0f459d16 | 1862 | tlb_set_dirty1(&env->tlb_table[3][i], vaddr); |
6fa4cea9 JM |
1863 | #endif |
1864 | #endif | |
9fa3e853 FB |
1865 | } |
1866 | ||
59817ccb FB |
1867 | /* add a new TLB entry. At most one entry for a given virtual address |
1868 | is permitted. Return 0 if OK or 2 if the page could not be mapped | |
1869 | (can only happen in non SOFTMMU mode for I/O pages or pages | |
1870 | conflicting with the host address space). */ | |
5fafdf24 TS |
1871 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
1872 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 1873 | int mmu_idx, int is_softmmu) |
9fa3e853 | 1874 | { |
92e873b9 | 1875 | PhysPageDesc *p; |
4f2ac237 | 1876 | unsigned long pd; |
9fa3e853 | 1877 | unsigned int index; |
4f2ac237 | 1878 | target_ulong address; |
0f459d16 | 1879 | target_ulong code_address; |
108c49b8 | 1880 | target_phys_addr_t addend; |
9fa3e853 | 1881 | int ret; |
84b7b8e7 | 1882 | CPUTLBEntry *te; |
6658ffb8 | 1883 | int i; |
0f459d16 | 1884 | target_phys_addr_t iotlb; |
9fa3e853 | 1885 | |
92e873b9 | 1886 | p = phys_page_find(paddr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1887 | if (!p) { |
1888 | pd = IO_MEM_UNASSIGNED; | |
9fa3e853 FB |
1889 | } else { |
1890 | pd = p->phys_offset; | |
9fa3e853 FB |
1891 | } |
1892 | #if defined(DEBUG_TLB) | |
6ebbf390 JM |
1893 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n", |
1894 | vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd); | |
9fa3e853 FB |
1895 | #endif |
1896 | ||
1897 | ret = 0; | |
0f459d16 PB |
1898 | address = vaddr; |
1899 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { | |
1900 | /* IO memory case (romd handled later) */ | |
1901 | address |= TLB_MMIO; | |
1902 | } | |
1903 | addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK); | |
1904 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) { | |
1905 | /* Normal RAM. */ | |
1906 | iotlb = pd & TARGET_PAGE_MASK; | |
1907 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM) | |
1908 | iotlb |= IO_MEM_NOTDIRTY; | |
1909 | else | |
1910 | iotlb |= IO_MEM_ROM; | |
1911 | } else { | |
1912 | /* IO handlers are currently passed a phsical address. | |
1913 | It would be nice to pass an offset from the base address | |
1914 | of that region. This would avoid having to special case RAM, | |
1915 | and avoid full address decoding in every device. | |
1916 | We can't use the high bits of pd for this because | |
1917 | IO_MEM_ROMD uses these as a ram address. */ | |
1918 | iotlb = (pd & ~TARGET_PAGE_MASK) + paddr; | |
1919 | } | |
1920 | ||
1921 | code_address = address; | |
1922 | /* Make accesses to pages with watchpoints go via the | |
1923 | watchpoint trap routines. */ | |
1924 | for (i = 0; i < env->nb_watchpoints; i++) { | |
1925 | if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) { | |
1926 | iotlb = io_mem_watch + paddr; | |
1927 | /* TODO: The memory case can be optimized by not trapping | |
1928 | reads of pages with a write breakpoint. */ | |
1929 | address |= TLB_MMIO; | |
6658ffb8 | 1930 | } |
0f459d16 | 1931 | } |
d79acba4 | 1932 | |
0f459d16 PB |
1933 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
1934 | env->iotlb[mmu_idx][index] = iotlb - vaddr; | |
1935 | te = &env->tlb_table[mmu_idx][index]; | |
1936 | te->addend = addend - vaddr; | |
1937 | if (prot & PAGE_READ) { | |
1938 | te->addr_read = address; | |
1939 | } else { | |
1940 | te->addr_read = -1; | |
1941 | } | |
5c751e99 | 1942 | |
0f459d16 PB |
1943 | if (prot & PAGE_EXEC) { |
1944 | te->addr_code = code_address; | |
1945 | } else { | |
1946 | te->addr_code = -1; | |
1947 | } | |
1948 | if (prot & PAGE_WRITE) { | |
1949 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || | |
1950 | (pd & IO_MEM_ROMD)) { | |
1951 | /* Write access calls the I/O callback. */ | |
1952 | te->addr_write = address | TLB_MMIO; | |
1953 | } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && | |
1954 | !cpu_physical_memory_is_dirty(pd)) { | |
1955 | te->addr_write = address | TLB_NOTDIRTY; | |
9fa3e853 | 1956 | } else { |
0f459d16 | 1957 | te->addr_write = address; |
9fa3e853 | 1958 | } |
0f459d16 PB |
1959 | } else { |
1960 | te->addr_write = -1; | |
9fa3e853 | 1961 | } |
9fa3e853 FB |
1962 | return ret; |
1963 | } | |
1964 | ||
0124311e FB |
1965 | #else |
1966 | ||
ee8b7021 | 1967 | void tlb_flush(CPUState *env, int flush_global) |
0124311e FB |
1968 | { |
1969 | } | |
1970 | ||
2e12669a | 1971 | void tlb_flush_page(CPUState *env, target_ulong addr) |
0124311e FB |
1972 | { |
1973 | } | |
1974 | ||
5fafdf24 TS |
1975 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
1976 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 1977 | int mmu_idx, int is_softmmu) |
9fa3e853 FB |
1978 | { |
1979 | return 0; | |
1980 | } | |
0124311e | 1981 | |
9fa3e853 FB |
1982 | /* dump memory mappings */ |
1983 | void page_dump(FILE *f) | |
33417e70 | 1984 | { |
9fa3e853 FB |
1985 | unsigned long start, end; |
1986 | int i, j, prot, prot1; | |
1987 | PageDesc *p; | |
33417e70 | 1988 | |
9fa3e853 FB |
1989 | fprintf(f, "%-8s %-8s %-8s %s\n", |
1990 | "start", "end", "size", "prot"); | |
1991 | start = -1; | |
1992 | end = -1; | |
1993 | prot = 0; | |
1994 | for(i = 0; i <= L1_SIZE; i++) { | |
1995 | if (i < L1_SIZE) | |
1996 | p = l1_map[i]; | |
1997 | else | |
1998 | p = NULL; | |
1999 | for(j = 0;j < L2_SIZE; j++) { | |
2000 | if (!p) | |
2001 | prot1 = 0; | |
2002 | else | |
2003 | prot1 = p[j].flags; | |
2004 | if (prot1 != prot) { | |
2005 | end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS); | |
2006 | if (start != -1) { | |
2007 | fprintf(f, "%08lx-%08lx %08lx %c%c%c\n", | |
5fafdf24 | 2008 | start, end, end - start, |
9fa3e853 FB |
2009 | prot & PAGE_READ ? 'r' : '-', |
2010 | prot & PAGE_WRITE ? 'w' : '-', | |
2011 | prot & PAGE_EXEC ? 'x' : '-'); | |
2012 | } | |
2013 | if (prot1 != 0) | |
2014 | start = end; | |
2015 | else | |
2016 | start = -1; | |
2017 | prot = prot1; | |
2018 | } | |
2019 | if (!p) | |
2020 | break; | |
2021 | } | |
33417e70 | 2022 | } |
33417e70 FB |
2023 | } |
2024 | ||
53a5960a | 2025 | int page_get_flags(target_ulong address) |
33417e70 | 2026 | { |
9fa3e853 FB |
2027 | PageDesc *p; |
2028 | ||
2029 | p = page_find(address >> TARGET_PAGE_BITS); | |
33417e70 | 2030 | if (!p) |
9fa3e853 FB |
2031 | return 0; |
2032 | return p->flags; | |
2033 | } | |
2034 | ||
2035 | /* modify the flags of a page and invalidate the code if | |
2036 | necessary. The flag PAGE_WRITE_ORG is positionned automatically | |
2037 | depending on PAGE_WRITE */ | |
53a5960a | 2038 | void page_set_flags(target_ulong start, target_ulong end, int flags) |
9fa3e853 FB |
2039 | { |
2040 | PageDesc *p; | |
53a5960a | 2041 | target_ulong addr; |
9fa3e853 | 2042 | |
c8a706fe | 2043 | /* mmap_lock should already be held. */ |
9fa3e853 FB |
2044 | start = start & TARGET_PAGE_MASK; |
2045 | end = TARGET_PAGE_ALIGN(end); | |
2046 | if (flags & PAGE_WRITE) | |
2047 | flags |= PAGE_WRITE_ORG; | |
9fa3e853 FB |
2048 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2049 | p = page_find_alloc(addr >> TARGET_PAGE_BITS); | |
17e2377a PB |
2050 | /* We may be called for host regions that are outside guest |
2051 | address space. */ | |
2052 | if (!p) | |
2053 | return; | |
9fa3e853 FB |
2054 | /* if the write protection is set, then we invalidate the code |
2055 | inside */ | |
5fafdf24 | 2056 | if (!(p->flags & PAGE_WRITE) && |
9fa3e853 FB |
2057 | (flags & PAGE_WRITE) && |
2058 | p->first_tb) { | |
d720b93d | 2059 | tb_invalidate_phys_page(addr, 0, NULL); |
9fa3e853 FB |
2060 | } |
2061 | p->flags = flags; | |
2062 | } | |
33417e70 FB |
2063 | } |
2064 | ||
3d97b40b TS |
2065 | int page_check_range(target_ulong start, target_ulong len, int flags) |
2066 | { | |
2067 | PageDesc *p; | |
2068 | target_ulong end; | |
2069 | target_ulong addr; | |
2070 | ||
2071 | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */ | |
2072 | start = start & TARGET_PAGE_MASK; | |
2073 | ||
2074 | if( end < start ) | |
2075 | /* we've wrapped around */ | |
2076 | return -1; | |
2077 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { | |
2078 | p = page_find(addr >> TARGET_PAGE_BITS); | |
2079 | if( !p ) | |
2080 | return -1; | |
2081 | if( !(p->flags & PAGE_VALID) ) | |
2082 | return -1; | |
2083 | ||
dae3270c | 2084 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) |
3d97b40b | 2085 | return -1; |
dae3270c FB |
2086 | if (flags & PAGE_WRITE) { |
2087 | if (!(p->flags & PAGE_WRITE_ORG)) | |
2088 | return -1; | |
2089 | /* unprotect the page if it was put read-only because it | |
2090 | contains translated code */ | |
2091 | if (!(p->flags & PAGE_WRITE)) { | |
2092 | if (!page_unprotect(addr, 0, NULL)) | |
2093 | return -1; | |
2094 | } | |
2095 | return 0; | |
2096 | } | |
3d97b40b TS |
2097 | } |
2098 | return 0; | |
2099 | } | |
2100 | ||
9fa3e853 FB |
2101 | /* called from signal handler: invalidate the code and unprotect the |
2102 | page. Return TRUE if the fault was succesfully handled. */ | |
53a5960a | 2103 | int page_unprotect(target_ulong address, unsigned long pc, void *puc) |
9fa3e853 FB |
2104 | { |
2105 | unsigned int page_index, prot, pindex; | |
2106 | PageDesc *p, *p1; | |
53a5960a | 2107 | target_ulong host_start, host_end, addr; |
9fa3e853 | 2108 | |
c8a706fe PB |
2109 | /* Technically this isn't safe inside a signal handler. However we |
2110 | know this only ever happens in a synchronous SEGV handler, so in | |
2111 | practice it seems to be ok. */ | |
2112 | mmap_lock(); | |
2113 | ||
83fb7adf | 2114 | host_start = address & qemu_host_page_mask; |
9fa3e853 FB |
2115 | page_index = host_start >> TARGET_PAGE_BITS; |
2116 | p1 = page_find(page_index); | |
c8a706fe PB |
2117 | if (!p1) { |
2118 | mmap_unlock(); | |
9fa3e853 | 2119 | return 0; |
c8a706fe | 2120 | } |
83fb7adf | 2121 | host_end = host_start + qemu_host_page_size; |
9fa3e853 FB |
2122 | p = p1; |
2123 | prot = 0; | |
2124 | for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) { | |
2125 | prot |= p->flags; | |
2126 | p++; | |
2127 | } | |
2128 | /* if the page was really writable, then we change its | |
2129 | protection back to writable */ | |
2130 | if (prot & PAGE_WRITE_ORG) { | |
2131 | pindex = (address - host_start) >> TARGET_PAGE_BITS; | |
2132 | if (!(p1[pindex].flags & PAGE_WRITE)) { | |
5fafdf24 | 2133 | mprotect((void *)g2h(host_start), qemu_host_page_size, |
9fa3e853 FB |
2134 | (prot & PAGE_BITS) | PAGE_WRITE); |
2135 | p1[pindex].flags |= PAGE_WRITE; | |
2136 | /* and since the content will be modified, we must invalidate | |
2137 | the corresponding translated code. */ | |
d720b93d | 2138 | tb_invalidate_phys_page(address, pc, puc); |
9fa3e853 FB |
2139 | #ifdef DEBUG_TB_CHECK |
2140 | tb_invalidate_check(address); | |
2141 | #endif | |
c8a706fe | 2142 | mmap_unlock(); |
9fa3e853 FB |
2143 | return 1; |
2144 | } | |
2145 | } | |
c8a706fe | 2146 | mmap_unlock(); |
9fa3e853 FB |
2147 | return 0; |
2148 | } | |
2149 | ||
6a00d601 FB |
2150 | static inline void tlb_set_dirty(CPUState *env, |
2151 | unsigned long addr, target_ulong vaddr) | |
1ccde1cb FB |
2152 | { |
2153 | } | |
9fa3e853 FB |
2154 | #endif /* defined(CONFIG_USER_ONLY) */ |
2155 | ||
e2eef170 | 2156 | #if !defined(CONFIG_USER_ONLY) |
db7b5426 | 2157 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
00f82b8a AJ |
2158 | ram_addr_t memory); |
2159 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, | |
2160 | ram_addr_t orig_memory); | |
db7b5426 BS |
2161 | #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \ |
2162 | need_subpage) \ | |
2163 | do { \ | |
2164 | if (addr > start_addr) \ | |
2165 | start_addr2 = 0; \ | |
2166 | else { \ | |
2167 | start_addr2 = start_addr & ~TARGET_PAGE_MASK; \ | |
2168 | if (start_addr2 > 0) \ | |
2169 | need_subpage = 1; \ | |
2170 | } \ | |
2171 | \ | |
49e9fba2 | 2172 | if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \ |
db7b5426 BS |
2173 | end_addr2 = TARGET_PAGE_SIZE - 1; \ |
2174 | else { \ | |
2175 | end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \ | |
2176 | if (end_addr2 < TARGET_PAGE_SIZE - 1) \ | |
2177 | need_subpage = 1; \ | |
2178 | } \ | |
2179 | } while (0) | |
2180 | ||
33417e70 FB |
2181 | /* register physical memory. 'size' must be a multiple of the target |
2182 | page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an | |
2183 | io memory page */ | |
5fafdf24 | 2184 | void cpu_register_physical_memory(target_phys_addr_t start_addr, |
00f82b8a AJ |
2185 | ram_addr_t size, |
2186 | ram_addr_t phys_offset) | |
33417e70 | 2187 | { |
108c49b8 | 2188 | target_phys_addr_t addr, end_addr; |
92e873b9 | 2189 | PhysPageDesc *p; |
9d42037b | 2190 | CPUState *env; |
00f82b8a | 2191 | ram_addr_t orig_size = size; |
db7b5426 | 2192 | void *subpage; |
33417e70 | 2193 | |
da260249 FB |
2194 | #ifdef USE_KQEMU |
2195 | /* XXX: should not depend on cpu context */ | |
2196 | env = first_cpu; | |
2197 | if (env->kqemu_enabled) { | |
2198 | kqemu_set_phys_mem(start_addr, size, phys_offset); | |
2199 | } | |
2200 | #endif | |
5fd386f6 | 2201 | size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK; |
49e9fba2 BS |
2202 | end_addr = start_addr + (target_phys_addr_t)size; |
2203 | for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) { | |
db7b5426 BS |
2204 | p = phys_page_find(addr >> TARGET_PAGE_BITS); |
2205 | if (p && p->phys_offset != IO_MEM_UNASSIGNED) { | |
00f82b8a | 2206 | ram_addr_t orig_memory = p->phys_offset; |
db7b5426 BS |
2207 | target_phys_addr_t start_addr2, end_addr2; |
2208 | int need_subpage = 0; | |
2209 | ||
2210 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, | |
2211 | need_subpage); | |
4254fab8 | 2212 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 BS |
2213 | if (!(orig_memory & IO_MEM_SUBPAGE)) { |
2214 | subpage = subpage_init((addr & TARGET_PAGE_MASK), | |
2215 | &p->phys_offset, orig_memory); | |
2216 | } else { | |
2217 | subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK) | |
2218 | >> IO_MEM_SHIFT]; | |
2219 | } | |
2220 | subpage_register(subpage, start_addr2, end_addr2, phys_offset); | |
2221 | } else { | |
2222 | p->phys_offset = phys_offset; | |
2223 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2224 | (phys_offset & IO_MEM_ROMD)) | |
2225 | phys_offset += TARGET_PAGE_SIZE; | |
2226 | } | |
2227 | } else { | |
2228 | p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
2229 | p->phys_offset = phys_offset; | |
2230 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2231 | (phys_offset & IO_MEM_ROMD)) | |
2232 | phys_offset += TARGET_PAGE_SIZE; | |
2233 | else { | |
2234 | target_phys_addr_t start_addr2, end_addr2; | |
2235 | int need_subpage = 0; | |
2236 | ||
2237 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, | |
2238 | end_addr2, need_subpage); | |
2239 | ||
4254fab8 | 2240 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 BS |
2241 | subpage = subpage_init((addr & TARGET_PAGE_MASK), |
2242 | &p->phys_offset, IO_MEM_UNASSIGNED); | |
2243 | subpage_register(subpage, start_addr2, end_addr2, | |
2244 | phys_offset); | |
2245 | } | |
2246 | } | |
2247 | } | |
33417e70 | 2248 | } |
3b46e624 | 2249 | |
9d42037b FB |
2250 | /* since each CPU stores ram addresses in its TLB cache, we must |
2251 | reset the modified entries */ | |
2252 | /* XXX: slow ! */ | |
2253 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
2254 | tlb_flush(env, 1); | |
2255 | } | |
33417e70 FB |
2256 | } |
2257 | ||
ba863458 | 2258 | /* XXX: temporary until new memory mapping API */ |
00f82b8a | 2259 | ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr) |
ba863458 FB |
2260 | { |
2261 | PhysPageDesc *p; | |
2262 | ||
2263 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2264 | if (!p) | |
2265 | return IO_MEM_UNASSIGNED; | |
2266 | return p->phys_offset; | |
2267 | } | |
2268 | ||
e9a1ab19 | 2269 | /* XXX: better than nothing */ |
00f82b8a | 2270 | ram_addr_t qemu_ram_alloc(ram_addr_t size) |
e9a1ab19 FB |
2271 | { |
2272 | ram_addr_t addr; | |
7fb4fdcf | 2273 | if ((phys_ram_alloc_offset + size) > phys_ram_size) { |
012a7045 | 2274 | fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n", |
ed441467 | 2275 | (uint64_t)size, (uint64_t)phys_ram_size); |
e9a1ab19 FB |
2276 | abort(); |
2277 | } | |
2278 | addr = phys_ram_alloc_offset; | |
2279 | phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size); | |
2280 | return addr; | |
2281 | } | |
2282 | ||
2283 | void qemu_ram_free(ram_addr_t addr) | |
2284 | { | |
2285 | } | |
2286 | ||
a4193c8a | 2287 | static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr) |
33417e70 | 2288 | { |
67d3b957 | 2289 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2290 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); |
b4f0a316 BS |
2291 | #endif |
2292 | #ifdef TARGET_SPARC | |
6c36d3fa | 2293 | do_unassigned_access(addr, 0, 0, 0); |
eb38c52c | 2294 | #elif defined(TARGET_CRIS) |
f1ccf904 | 2295 | do_unassigned_access(addr, 0, 0, 0); |
67d3b957 | 2296 | #endif |
33417e70 FB |
2297 | return 0; |
2298 | } | |
2299 | ||
a4193c8a | 2300 | static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) |
33417e70 | 2301 | { |
67d3b957 | 2302 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2303 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); |
67d3b957 | 2304 | #endif |
b4f0a316 | 2305 | #ifdef TARGET_SPARC |
6c36d3fa | 2306 | do_unassigned_access(addr, 1, 0, 0); |
eb38c52c | 2307 | #elif defined(TARGET_CRIS) |
f1ccf904 | 2308 | do_unassigned_access(addr, 1, 0, 0); |
b4f0a316 | 2309 | #endif |
33417e70 FB |
2310 | } |
2311 | ||
2312 | static CPUReadMemoryFunc *unassigned_mem_read[3] = { | |
2313 | unassigned_mem_readb, | |
2314 | unassigned_mem_readb, | |
2315 | unassigned_mem_readb, | |
2316 | }; | |
2317 | ||
2318 | static CPUWriteMemoryFunc *unassigned_mem_write[3] = { | |
2319 | unassigned_mem_writeb, | |
2320 | unassigned_mem_writeb, | |
2321 | unassigned_mem_writeb, | |
2322 | }; | |
2323 | ||
0f459d16 PB |
2324 | static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr, |
2325 | uint32_t val) | |
9fa3e853 | 2326 | { |
3a7d929e | 2327 | int dirty_flags; |
3a7d929e FB |
2328 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2329 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2330 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2331 | tb_invalidate_phys_page_fast(ram_addr, 1); |
2332 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2333 | #endif |
3a7d929e | 2334 | } |
0f459d16 | 2335 | stb_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2336 | #ifdef USE_KQEMU |
2337 | if (cpu_single_env->kqemu_enabled && | |
2338 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2339 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2340 | #endif | |
f23db169 FB |
2341 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2342 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2343 | /* we remove the notdirty callback only if the code has been | |
2344 | flushed */ | |
2345 | if (dirty_flags == 0xff) | |
2e70f6ef | 2346 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2347 | } |
2348 | ||
0f459d16 PB |
2349 | static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr, |
2350 | uint32_t val) | |
9fa3e853 | 2351 | { |
3a7d929e | 2352 | int dirty_flags; |
3a7d929e FB |
2353 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2354 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2355 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2356 | tb_invalidate_phys_page_fast(ram_addr, 2); |
2357 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2358 | #endif |
3a7d929e | 2359 | } |
0f459d16 | 2360 | stw_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2361 | #ifdef USE_KQEMU |
2362 | if (cpu_single_env->kqemu_enabled && | |
2363 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2364 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2365 | #endif | |
f23db169 FB |
2366 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2367 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2368 | /* we remove the notdirty callback only if the code has been | |
2369 | flushed */ | |
2370 | if (dirty_flags == 0xff) | |
2e70f6ef | 2371 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2372 | } |
2373 | ||
0f459d16 PB |
2374 | static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr, |
2375 | uint32_t val) | |
9fa3e853 | 2376 | { |
3a7d929e | 2377 | int dirty_flags; |
3a7d929e FB |
2378 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2379 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2380 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2381 | tb_invalidate_phys_page_fast(ram_addr, 4); |
2382 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2383 | #endif |
3a7d929e | 2384 | } |
0f459d16 | 2385 | stl_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2386 | #ifdef USE_KQEMU |
2387 | if (cpu_single_env->kqemu_enabled && | |
2388 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2389 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2390 | #endif | |
f23db169 FB |
2391 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2392 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2393 | /* we remove the notdirty callback only if the code has been | |
2394 | flushed */ | |
2395 | if (dirty_flags == 0xff) | |
2e70f6ef | 2396 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2397 | } |
2398 | ||
3a7d929e | 2399 | static CPUReadMemoryFunc *error_mem_read[3] = { |
9fa3e853 FB |
2400 | NULL, /* never used */ |
2401 | NULL, /* never used */ | |
2402 | NULL, /* never used */ | |
2403 | }; | |
2404 | ||
1ccde1cb FB |
2405 | static CPUWriteMemoryFunc *notdirty_mem_write[3] = { |
2406 | notdirty_mem_writeb, | |
2407 | notdirty_mem_writew, | |
2408 | notdirty_mem_writel, | |
2409 | }; | |
2410 | ||
0f459d16 PB |
2411 | /* Generate a debug exception if a watchpoint has been hit. */ |
2412 | static void check_watchpoint(int offset, int flags) | |
2413 | { | |
2414 | CPUState *env = cpu_single_env; | |
2415 | target_ulong vaddr; | |
2416 | int i; | |
2417 | ||
2e70f6ef | 2418 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
0f459d16 PB |
2419 | for (i = 0; i < env->nb_watchpoints; i++) { |
2420 | if (vaddr == env->watchpoint[i].vaddr | |
2421 | && (env->watchpoint[i].type & flags)) { | |
2422 | env->watchpoint_hit = i + 1; | |
2423 | cpu_interrupt(env, CPU_INTERRUPT_DEBUG); | |
2424 | break; | |
2425 | } | |
2426 | } | |
2427 | } | |
2428 | ||
6658ffb8 PB |
2429 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2430 | so these check for a hit then pass through to the normal out-of-line | |
2431 | phys routines. */ | |
2432 | static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr) | |
2433 | { | |
0f459d16 | 2434 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ); |
6658ffb8 PB |
2435 | return ldub_phys(addr); |
2436 | } | |
2437 | ||
2438 | static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr) | |
2439 | { | |
0f459d16 | 2440 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ); |
6658ffb8 PB |
2441 | return lduw_phys(addr); |
2442 | } | |
2443 | ||
2444 | static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr) | |
2445 | { | |
0f459d16 | 2446 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ); |
6658ffb8 PB |
2447 | return ldl_phys(addr); |
2448 | } | |
2449 | ||
6658ffb8 PB |
2450 | static void watch_mem_writeb(void *opaque, target_phys_addr_t addr, |
2451 | uint32_t val) | |
2452 | { | |
0f459d16 | 2453 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE); |
6658ffb8 PB |
2454 | stb_phys(addr, val); |
2455 | } | |
2456 | ||
2457 | static void watch_mem_writew(void *opaque, target_phys_addr_t addr, | |
2458 | uint32_t val) | |
2459 | { | |
0f459d16 | 2460 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE); |
6658ffb8 PB |
2461 | stw_phys(addr, val); |
2462 | } | |
2463 | ||
2464 | static void watch_mem_writel(void *opaque, target_phys_addr_t addr, | |
2465 | uint32_t val) | |
2466 | { | |
0f459d16 | 2467 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE); |
6658ffb8 PB |
2468 | stl_phys(addr, val); |
2469 | } | |
2470 | ||
2471 | static CPUReadMemoryFunc *watch_mem_read[3] = { | |
2472 | watch_mem_readb, | |
2473 | watch_mem_readw, | |
2474 | watch_mem_readl, | |
2475 | }; | |
2476 | ||
2477 | static CPUWriteMemoryFunc *watch_mem_write[3] = { | |
2478 | watch_mem_writeb, | |
2479 | watch_mem_writew, | |
2480 | watch_mem_writel, | |
2481 | }; | |
6658ffb8 | 2482 | |
db7b5426 BS |
2483 | static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr, |
2484 | unsigned int len) | |
2485 | { | |
db7b5426 BS |
2486 | uint32_t ret; |
2487 | unsigned int idx; | |
2488 | ||
2489 | idx = SUBPAGE_IDX(addr - mmio->base); | |
2490 | #if defined(DEBUG_SUBPAGE) | |
2491 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, | |
2492 | mmio, len, addr, idx); | |
2493 | #endif | |
3ee89922 | 2494 | ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr); |
db7b5426 BS |
2495 | |
2496 | return ret; | |
2497 | } | |
2498 | ||
2499 | static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr, | |
2500 | uint32_t value, unsigned int len) | |
2501 | { | |
db7b5426 BS |
2502 | unsigned int idx; |
2503 | ||
2504 | idx = SUBPAGE_IDX(addr - mmio->base); | |
2505 | #if defined(DEBUG_SUBPAGE) | |
2506 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__, | |
2507 | mmio, len, addr, idx, value); | |
2508 | #endif | |
3ee89922 | 2509 | (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value); |
db7b5426 BS |
2510 | } |
2511 | ||
2512 | static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr) | |
2513 | { | |
2514 | #if defined(DEBUG_SUBPAGE) | |
2515 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2516 | #endif | |
2517 | ||
2518 | return subpage_readlen(opaque, addr, 0); | |
2519 | } | |
2520 | ||
2521 | static void subpage_writeb (void *opaque, target_phys_addr_t addr, | |
2522 | uint32_t value) | |
2523 | { | |
2524 | #if defined(DEBUG_SUBPAGE) | |
2525 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2526 | #endif | |
2527 | subpage_writelen(opaque, addr, value, 0); | |
2528 | } | |
2529 | ||
2530 | static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr) | |
2531 | { | |
2532 | #if defined(DEBUG_SUBPAGE) | |
2533 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2534 | #endif | |
2535 | ||
2536 | return subpage_readlen(opaque, addr, 1); | |
2537 | } | |
2538 | ||
2539 | static void subpage_writew (void *opaque, target_phys_addr_t addr, | |
2540 | uint32_t value) | |
2541 | { | |
2542 | #if defined(DEBUG_SUBPAGE) | |
2543 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2544 | #endif | |
2545 | subpage_writelen(opaque, addr, value, 1); | |
2546 | } | |
2547 | ||
2548 | static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr) | |
2549 | { | |
2550 | #if defined(DEBUG_SUBPAGE) | |
2551 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2552 | #endif | |
2553 | ||
2554 | return subpage_readlen(opaque, addr, 2); | |
2555 | } | |
2556 | ||
2557 | static void subpage_writel (void *opaque, | |
2558 | target_phys_addr_t addr, uint32_t value) | |
2559 | { | |
2560 | #if defined(DEBUG_SUBPAGE) | |
2561 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2562 | #endif | |
2563 | subpage_writelen(opaque, addr, value, 2); | |
2564 | } | |
2565 | ||
2566 | static CPUReadMemoryFunc *subpage_read[] = { | |
2567 | &subpage_readb, | |
2568 | &subpage_readw, | |
2569 | &subpage_readl, | |
2570 | }; | |
2571 | ||
2572 | static CPUWriteMemoryFunc *subpage_write[] = { | |
2573 | &subpage_writeb, | |
2574 | &subpage_writew, | |
2575 | &subpage_writel, | |
2576 | }; | |
2577 | ||
2578 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
00f82b8a | 2579 | ram_addr_t memory) |
db7b5426 BS |
2580 | { |
2581 | int idx, eidx; | |
4254fab8 | 2582 | unsigned int i; |
db7b5426 BS |
2583 | |
2584 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2585 | return -1; | |
2586 | idx = SUBPAGE_IDX(start); | |
2587 | eidx = SUBPAGE_IDX(end); | |
2588 | #if defined(DEBUG_SUBPAGE) | |
2589 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__, | |
2590 | mmio, start, end, idx, eidx, memory); | |
2591 | #endif | |
2592 | memory >>= IO_MEM_SHIFT; | |
2593 | for (; idx <= eidx; idx++) { | |
4254fab8 | 2594 | for (i = 0; i < 4; i++) { |
3ee89922 BS |
2595 | if (io_mem_read[memory][i]) { |
2596 | mmio->mem_read[idx][i] = &io_mem_read[memory][i]; | |
2597 | mmio->opaque[idx][0][i] = io_mem_opaque[memory]; | |
2598 | } | |
2599 | if (io_mem_write[memory][i]) { | |
2600 | mmio->mem_write[idx][i] = &io_mem_write[memory][i]; | |
2601 | mmio->opaque[idx][1][i] = io_mem_opaque[memory]; | |
2602 | } | |
4254fab8 | 2603 | } |
db7b5426 BS |
2604 | } |
2605 | ||
2606 | return 0; | |
2607 | } | |
2608 | ||
00f82b8a AJ |
2609 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
2610 | ram_addr_t orig_memory) | |
db7b5426 BS |
2611 | { |
2612 | subpage_t *mmio; | |
2613 | int subpage_memory; | |
2614 | ||
2615 | mmio = qemu_mallocz(sizeof(subpage_t)); | |
2616 | if (mmio != NULL) { | |
2617 | mmio->base = base; | |
2618 | subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio); | |
2619 | #if defined(DEBUG_SUBPAGE) | |
2620 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, | |
2621 | mmio, base, TARGET_PAGE_SIZE, subpage_memory); | |
2622 | #endif | |
2623 | *phys = subpage_memory | IO_MEM_SUBPAGE; | |
2624 | subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory); | |
2625 | } | |
2626 | ||
2627 | return mmio; | |
2628 | } | |
2629 | ||
33417e70 FB |
2630 | static void io_mem_init(void) |
2631 | { | |
3a7d929e | 2632 | cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL); |
a4193c8a | 2633 | cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL); |
3a7d929e | 2634 | cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL); |
1ccde1cb FB |
2635 | io_mem_nb = 5; |
2636 | ||
0f459d16 | 2637 | io_mem_watch = cpu_register_io_memory(0, watch_mem_read, |
6658ffb8 | 2638 | watch_mem_write, NULL); |
1ccde1cb | 2639 | /* alloc dirty bits array */ |
0a962c02 | 2640 | phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS); |
3a7d929e | 2641 | memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS); |
33417e70 FB |
2642 | } |
2643 | ||
2644 | /* mem_read and mem_write are arrays of functions containing the | |
2645 | function to access byte (index 0), word (index 1) and dword (index | |
3ee89922 BS |
2646 | 2). Functions can be omitted with a NULL function pointer. The |
2647 | registered functions may be modified dynamically later. | |
2648 | If io_index is non zero, the corresponding io zone is | |
4254fab8 BS |
2649 | modified. If it is zero, a new io zone is allocated. The return |
2650 | value can be used with cpu_register_physical_memory(). (-1) is | |
2651 | returned if error. */ | |
33417e70 FB |
2652 | int cpu_register_io_memory(int io_index, |
2653 | CPUReadMemoryFunc **mem_read, | |
a4193c8a FB |
2654 | CPUWriteMemoryFunc **mem_write, |
2655 | void *opaque) | |
33417e70 | 2656 | { |
4254fab8 | 2657 | int i, subwidth = 0; |
33417e70 FB |
2658 | |
2659 | if (io_index <= 0) { | |
b5ff1b31 | 2660 | if (io_mem_nb >= IO_MEM_NB_ENTRIES) |
33417e70 FB |
2661 | return -1; |
2662 | io_index = io_mem_nb++; | |
2663 | } else { | |
2664 | if (io_index >= IO_MEM_NB_ENTRIES) | |
2665 | return -1; | |
2666 | } | |
b5ff1b31 | 2667 | |
33417e70 | 2668 | for(i = 0;i < 3; i++) { |
4254fab8 BS |
2669 | if (!mem_read[i] || !mem_write[i]) |
2670 | subwidth = IO_MEM_SUBWIDTH; | |
33417e70 FB |
2671 | io_mem_read[io_index][i] = mem_read[i]; |
2672 | io_mem_write[io_index][i] = mem_write[i]; | |
2673 | } | |
a4193c8a | 2674 | io_mem_opaque[io_index] = opaque; |
4254fab8 | 2675 | return (io_index << IO_MEM_SHIFT) | subwidth; |
33417e70 | 2676 | } |
61382a50 | 2677 | |
8926b517 FB |
2678 | CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index) |
2679 | { | |
2680 | return io_mem_write[io_index >> IO_MEM_SHIFT]; | |
2681 | } | |
2682 | ||
2683 | CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index) | |
2684 | { | |
2685 | return io_mem_read[io_index >> IO_MEM_SHIFT]; | |
2686 | } | |
2687 | ||
e2eef170 PB |
2688 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2689 | ||
13eb76e0 FB |
2690 | /* physical memory access (slow version, mainly for debug) */ |
2691 | #if defined(CONFIG_USER_ONLY) | |
5fafdf24 | 2692 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
2693 | int len, int is_write) |
2694 | { | |
2695 | int l, flags; | |
2696 | target_ulong page; | |
53a5960a | 2697 | void * p; |
13eb76e0 FB |
2698 | |
2699 | while (len > 0) { | |
2700 | page = addr & TARGET_PAGE_MASK; | |
2701 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2702 | if (l > len) | |
2703 | l = len; | |
2704 | flags = page_get_flags(page); | |
2705 | if (!(flags & PAGE_VALID)) | |
2706 | return; | |
2707 | if (is_write) { | |
2708 | if (!(flags & PAGE_WRITE)) | |
2709 | return; | |
579a97f7 | 2710 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2711 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
579a97f7 FB |
2712 | /* FIXME - should this return an error rather than just fail? */ |
2713 | return; | |
72fb7daa AJ |
2714 | memcpy(p, buf, l); |
2715 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2716 | } else { |
2717 | if (!(flags & PAGE_READ)) | |
2718 | return; | |
579a97f7 | 2719 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2720 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
579a97f7 FB |
2721 | /* FIXME - should this return an error rather than just fail? */ |
2722 | return; | |
72fb7daa | 2723 | memcpy(buf, p, l); |
5b257578 | 2724 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2725 | } |
2726 | len -= l; | |
2727 | buf += l; | |
2728 | addr += l; | |
2729 | } | |
2730 | } | |
8df1cd07 | 2731 | |
13eb76e0 | 2732 | #else |
5fafdf24 | 2733 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
2734 | int len, int is_write) |
2735 | { | |
2736 | int l, io_index; | |
2737 | uint8_t *ptr; | |
2738 | uint32_t val; | |
2e12669a FB |
2739 | target_phys_addr_t page; |
2740 | unsigned long pd; | |
92e873b9 | 2741 | PhysPageDesc *p; |
3b46e624 | 2742 | |
13eb76e0 FB |
2743 | while (len > 0) { |
2744 | page = addr & TARGET_PAGE_MASK; | |
2745 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2746 | if (l > len) | |
2747 | l = len; | |
92e873b9 | 2748 | p = phys_page_find(page >> TARGET_PAGE_BITS); |
13eb76e0 FB |
2749 | if (!p) { |
2750 | pd = IO_MEM_UNASSIGNED; | |
2751 | } else { | |
2752 | pd = p->phys_offset; | |
2753 | } | |
3b46e624 | 2754 | |
13eb76e0 | 2755 | if (is_write) { |
3a7d929e | 2756 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
13eb76e0 | 2757 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
6a00d601 FB |
2758 | /* XXX: could force cpu_single_env to NULL to avoid |
2759 | potential bugs */ | |
13eb76e0 | 2760 | if (l >= 4 && ((addr & 3) == 0)) { |
1c213d19 | 2761 | /* 32 bit write access */ |
c27004ec | 2762 | val = ldl_p(buf); |
a4193c8a | 2763 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
13eb76e0 FB |
2764 | l = 4; |
2765 | } else if (l >= 2 && ((addr & 1) == 0)) { | |
1c213d19 | 2766 | /* 16 bit write access */ |
c27004ec | 2767 | val = lduw_p(buf); |
a4193c8a | 2768 | io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val); |
13eb76e0 FB |
2769 | l = 2; |
2770 | } else { | |
1c213d19 | 2771 | /* 8 bit write access */ |
c27004ec | 2772 | val = ldub_p(buf); |
a4193c8a | 2773 | io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val); |
13eb76e0 FB |
2774 | l = 1; |
2775 | } | |
2776 | } else { | |
b448f2f3 FB |
2777 | unsigned long addr1; |
2778 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
13eb76e0 | 2779 | /* RAM case */ |
b448f2f3 | 2780 | ptr = phys_ram_base + addr1; |
13eb76e0 | 2781 | memcpy(ptr, buf, l); |
3a7d929e FB |
2782 | if (!cpu_physical_memory_is_dirty(addr1)) { |
2783 | /* invalidate code */ | |
2784 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
2785 | /* set dirty bit */ | |
5fafdf24 | 2786 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
f23db169 | 2787 | (0xff & ~CODE_DIRTY_FLAG); |
3a7d929e | 2788 | } |
13eb76e0 FB |
2789 | } |
2790 | } else { | |
5fafdf24 | 2791 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 2792 | !(pd & IO_MEM_ROMD)) { |
13eb76e0 FB |
2793 | /* I/O case */ |
2794 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
2795 | if (l >= 4 && ((addr & 3) == 0)) { | |
2796 | /* 32 bit read access */ | |
a4193c8a | 2797 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); |
c27004ec | 2798 | stl_p(buf, val); |
13eb76e0 FB |
2799 | l = 4; |
2800 | } else if (l >= 2 && ((addr & 1) == 0)) { | |
2801 | /* 16 bit read access */ | |
a4193c8a | 2802 | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr); |
c27004ec | 2803 | stw_p(buf, val); |
13eb76e0 FB |
2804 | l = 2; |
2805 | } else { | |
1c213d19 | 2806 | /* 8 bit read access */ |
a4193c8a | 2807 | val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr); |
c27004ec | 2808 | stb_p(buf, val); |
13eb76e0 FB |
2809 | l = 1; |
2810 | } | |
2811 | } else { | |
2812 | /* RAM case */ | |
5fafdf24 | 2813 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
13eb76e0 FB |
2814 | (addr & ~TARGET_PAGE_MASK); |
2815 | memcpy(buf, ptr, l); | |
2816 | } | |
2817 | } | |
2818 | len -= l; | |
2819 | buf += l; | |
2820 | addr += l; | |
2821 | } | |
2822 | } | |
8df1cd07 | 2823 | |
d0ecd2aa | 2824 | /* used for ROM loading : can write in RAM and ROM */ |
5fafdf24 | 2825 | void cpu_physical_memory_write_rom(target_phys_addr_t addr, |
d0ecd2aa FB |
2826 | const uint8_t *buf, int len) |
2827 | { | |
2828 | int l; | |
2829 | uint8_t *ptr; | |
2830 | target_phys_addr_t page; | |
2831 | unsigned long pd; | |
2832 | PhysPageDesc *p; | |
3b46e624 | 2833 | |
d0ecd2aa FB |
2834 | while (len > 0) { |
2835 | page = addr & TARGET_PAGE_MASK; | |
2836 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2837 | if (l > len) | |
2838 | l = len; | |
2839 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
2840 | if (!p) { | |
2841 | pd = IO_MEM_UNASSIGNED; | |
2842 | } else { | |
2843 | pd = p->phys_offset; | |
2844 | } | |
3b46e624 | 2845 | |
d0ecd2aa | 2846 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM && |
2a4188a3 FB |
2847 | (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM && |
2848 | !(pd & IO_MEM_ROMD)) { | |
d0ecd2aa FB |
2849 | /* do nothing */ |
2850 | } else { | |
2851 | unsigned long addr1; | |
2852 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
2853 | /* ROM/RAM case */ | |
2854 | ptr = phys_ram_base + addr1; | |
2855 | memcpy(ptr, buf, l); | |
2856 | } | |
2857 | len -= l; | |
2858 | buf += l; | |
2859 | addr += l; | |
2860 | } | |
2861 | } | |
2862 | ||
2863 | ||
8df1cd07 FB |
2864 | /* warning: addr must be aligned */ |
2865 | uint32_t ldl_phys(target_phys_addr_t addr) | |
2866 | { | |
2867 | int io_index; | |
2868 | uint8_t *ptr; | |
2869 | uint32_t val; | |
2870 | unsigned long pd; | |
2871 | PhysPageDesc *p; | |
2872 | ||
2873 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2874 | if (!p) { | |
2875 | pd = IO_MEM_UNASSIGNED; | |
2876 | } else { | |
2877 | pd = p->phys_offset; | |
2878 | } | |
3b46e624 | 2879 | |
5fafdf24 | 2880 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 2881 | !(pd & IO_MEM_ROMD)) { |
8df1cd07 FB |
2882 | /* I/O case */ |
2883 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
2884 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
2885 | } else { | |
2886 | /* RAM case */ | |
5fafdf24 | 2887 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
8df1cd07 FB |
2888 | (addr & ~TARGET_PAGE_MASK); |
2889 | val = ldl_p(ptr); | |
2890 | } | |
2891 | return val; | |
2892 | } | |
2893 | ||
84b7b8e7 FB |
2894 | /* warning: addr must be aligned */ |
2895 | uint64_t ldq_phys(target_phys_addr_t addr) | |
2896 | { | |
2897 | int io_index; | |
2898 | uint8_t *ptr; | |
2899 | uint64_t val; | |
2900 | unsigned long pd; | |
2901 | PhysPageDesc *p; | |
2902 | ||
2903 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2904 | if (!p) { | |
2905 | pd = IO_MEM_UNASSIGNED; | |
2906 | } else { | |
2907 | pd = p->phys_offset; | |
2908 | } | |
3b46e624 | 2909 | |
2a4188a3 FB |
2910 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2911 | !(pd & IO_MEM_ROMD)) { | |
84b7b8e7 FB |
2912 | /* I/O case */ |
2913 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
2914 | #ifdef TARGET_WORDS_BIGENDIAN | |
2915 | val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32; | |
2916 | val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4); | |
2917 | #else | |
2918 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
2919 | val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32; | |
2920 | #endif | |
2921 | } else { | |
2922 | /* RAM case */ | |
5fafdf24 | 2923 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
84b7b8e7 FB |
2924 | (addr & ~TARGET_PAGE_MASK); |
2925 | val = ldq_p(ptr); | |
2926 | } | |
2927 | return val; | |
2928 | } | |
2929 | ||
aab33094 FB |
2930 | /* XXX: optimize */ |
2931 | uint32_t ldub_phys(target_phys_addr_t addr) | |
2932 | { | |
2933 | uint8_t val; | |
2934 | cpu_physical_memory_read(addr, &val, 1); | |
2935 | return val; | |
2936 | } | |
2937 | ||
2938 | /* XXX: optimize */ | |
2939 | uint32_t lduw_phys(target_phys_addr_t addr) | |
2940 | { | |
2941 | uint16_t val; | |
2942 | cpu_physical_memory_read(addr, (uint8_t *)&val, 2); | |
2943 | return tswap16(val); | |
2944 | } | |
2945 | ||
8df1cd07 FB |
2946 | /* warning: addr must be aligned. The ram page is not masked as dirty |
2947 | and the code inside is not invalidated. It is useful if the dirty | |
2948 | bits are used to track modified PTEs */ | |
2949 | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val) | |
2950 | { | |
2951 | int io_index; | |
2952 | uint8_t *ptr; | |
2953 | unsigned long pd; | |
2954 | PhysPageDesc *p; | |
2955 | ||
2956 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2957 | if (!p) { | |
2958 | pd = IO_MEM_UNASSIGNED; | |
2959 | } else { | |
2960 | pd = p->phys_offset; | |
2961 | } | |
3b46e624 | 2962 | |
3a7d929e | 2963 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 FB |
2964 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
2965 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
2966 | } else { | |
5fafdf24 | 2967 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
8df1cd07 FB |
2968 | (addr & ~TARGET_PAGE_MASK); |
2969 | stl_p(ptr, val); | |
2970 | } | |
2971 | } | |
2972 | ||
bc98a7ef JM |
2973 | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val) |
2974 | { | |
2975 | int io_index; | |
2976 | uint8_t *ptr; | |
2977 | unsigned long pd; | |
2978 | PhysPageDesc *p; | |
2979 | ||
2980 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2981 | if (!p) { | |
2982 | pd = IO_MEM_UNASSIGNED; | |
2983 | } else { | |
2984 | pd = p->phys_offset; | |
2985 | } | |
3b46e624 | 2986 | |
bc98a7ef JM |
2987 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
2988 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
2989 | #ifdef TARGET_WORDS_BIGENDIAN | |
2990 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32); | |
2991 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val); | |
2992 | #else | |
2993 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
2994 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32); | |
2995 | #endif | |
2996 | } else { | |
5fafdf24 | 2997 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
bc98a7ef JM |
2998 | (addr & ~TARGET_PAGE_MASK); |
2999 | stq_p(ptr, val); | |
3000 | } | |
3001 | } | |
3002 | ||
8df1cd07 | 3003 | /* warning: addr must be aligned */ |
8df1cd07 FB |
3004 | void stl_phys(target_phys_addr_t addr, uint32_t val) |
3005 | { | |
3006 | int io_index; | |
3007 | uint8_t *ptr; | |
3008 | unsigned long pd; | |
3009 | PhysPageDesc *p; | |
3010 | ||
3011 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3012 | if (!p) { | |
3013 | pd = IO_MEM_UNASSIGNED; | |
3014 | } else { | |
3015 | pd = p->phys_offset; | |
3016 | } | |
3b46e624 | 3017 | |
3a7d929e | 3018 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 FB |
3019 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
3020 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3021 | } else { | |
3022 | unsigned long addr1; | |
3023 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3024 | /* RAM case */ | |
3025 | ptr = phys_ram_base + addr1; | |
3026 | stl_p(ptr, val); | |
3a7d929e FB |
3027 | if (!cpu_physical_memory_is_dirty(addr1)) { |
3028 | /* invalidate code */ | |
3029 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3030 | /* set dirty bit */ | |
f23db169 FB |
3031 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
3032 | (0xff & ~CODE_DIRTY_FLAG); | |
3a7d929e | 3033 | } |
8df1cd07 FB |
3034 | } |
3035 | } | |
3036 | ||
aab33094 FB |
3037 | /* XXX: optimize */ |
3038 | void stb_phys(target_phys_addr_t addr, uint32_t val) | |
3039 | { | |
3040 | uint8_t v = val; | |
3041 | cpu_physical_memory_write(addr, &v, 1); | |
3042 | } | |
3043 | ||
3044 | /* XXX: optimize */ | |
3045 | void stw_phys(target_phys_addr_t addr, uint32_t val) | |
3046 | { | |
3047 | uint16_t v = tswap16(val); | |
3048 | cpu_physical_memory_write(addr, (const uint8_t *)&v, 2); | |
3049 | } | |
3050 | ||
3051 | /* XXX: optimize */ | |
3052 | void stq_phys(target_phys_addr_t addr, uint64_t val) | |
3053 | { | |
3054 | val = tswap64(val); | |
3055 | cpu_physical_memory_write(addr, (const uint8_t *)&val, 8); | |
3056 | } | |
3057 | ||
13eb76e0 FB |
3058 | #endif |
3059 | ||
3060 | /* virtual memory access for debug */ | |
5fafdf24 | 3061 | int cpu_memory_rw_debug(CPUState *env, target_ulong addr, |
b448f2f3 | 3062 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3063 | { |
3064 | int l; | |
9b3c35e0 JM |
3065 | target_phys_addr_t phys_addr; |
3066 | target_ulong page; | |
13eb76e0 FB |
3067 | |
3068 | while (len > 0) { | |
3069 | page = addr & TARGET_PAGE_MASK; | |
3070 | phys_addr = cpu_get_phys_page_debug(env, page); | |
3071 | /* if no physical page mapped, return an error */ | |
3072 | if (phys_addr == -1) | |
3073 | return -1; | |
3074 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3075 | if (l > len) | |
3076 | l = len; | |
5fafdf24 | 3077 | cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK), |
b448f2f3 | 3078 | buf, l, is_write); |
13eb76e0 FB |
3079 | len -= l; |
3080 | buf += l; | |
3081 | addr += l; | |
3082 | } | |
3083 | return 0; | |
3084 | } | |
3085 | ||
2e70f6ef PB |
3086 | /* in deterministic execution mode, instructions doing device I/Os |
3087 | must be at the end of the TB */ | |
3088 | void cpu_io_recompile(CPUState *env, void *retaddr) | |
3089 | { | |
3090 | TranslationBlock *tb; | |
3091 | uint32_t n, cflags; | |
3092 | target_ulong pc, cs_base; | |
3093 | uint64_t flags; | |
3094 | ||
3095 | tb = tb_find_pc((unsigned long)retaddr); | |
3096 | if (!tb) { | |
3097 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | |
3098 | retaddr); | |
3099 | } | |
3100 | n = env->icount_decr.u16.low + tb->icount; | |
3101 | cpu_restore_state(tb, env, (unsigned long)retaddr, NULL); | |
3102 | /* Calculate how many instructions had been executed before the fault | |
bf20dc07 | 3103 | occurred. */ |
2e70f6ef PB |
3104 | n = n - env->icount_decr.u16.low; |
3105 | /* Generate a new TB ending on the I/O insn. */ | |
3106 | n++; | |
3107 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
3108 | they were already the first instruction in the TB. If this is not | |
bf20dc07 | 3109 | the first instruction in a TB then re-execute the preceding |
2e70f6ef PB |
3110 | branch. */ |
3111 | #if defined(TARGET_MIPS) | |
3112 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
3113 | env->active_tc.PC -= 4; | |
3114 | env->icount_decr.u16.low++; | |
3115 | env->hflags &= ~MIPS_HFLAG_BMASK; | |
3116 | } | |
3117 | #elif defined(TARGET_SH4) | |
3118 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
3119 | && n > 1) { | |
3120 | env->pc -= 2; | |
3121 | env->icount_decr.u16.low++; | |
3122 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | |
3123 | } | |
3124 | #endif | |
3125 | /* This should never happen. */ | |
3126 | if (n > CF_COUNT_MASK) | |
3127 | cpu_abort(env, "TB too big during recompile"); | |
3128 | ||
3129 | cflags = n | CF_LAST_IO; | |
3130 | pc = tb->pc; | |
3131 | cs_base = tb->cs_base; | |
3132 | flags = tb->flags; | |
3133 | tb_phys_invalidate(tb, -1); | |
3134 | /* FIXME: In theory this could raise an exception. In practice | |
3135 | we have already translated the block once so it's probably ok. */ | |
3136 | tb_gen_code(env, pc, cs_base, flags, cflags); | |
bf20dc07 | 3137 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not |
2e70f6ef PB |
3138 | the first in the TB) then we end up generating a whole new TB and |
3139 | repeating the fault, which is horribly inefficient. | |
3140 | Better would be to execute just this insn uncached, or generate a | |
3141 | second new TB. */ | |
3142 | cpu_resume_from_signal(env, NULL); | |
3143 | } | |
3144 | ||
e3db7226 FB |
3145 | void dump_exec_info(FILE *f, |
3146 | int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) | |
3147 | { | |
3148 | int i, target_code_size, max_target_code_size; | |
3149 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
3150 | TranslationBlock *tb; | |
3b46e624 | 3151 | |
e3db7226 FB |
3152 | target_code_size = 0; |
3153 | max_target_code_size = 0; | |
3154 | cross_page = 0; | |
3155 | direct_jmp_count = 0; | |
3156 | direct_jmp2_count = 0; | |
3157 | for(i = 0; i < nb_tbs; i++) { | |
3158 | tb = &tbs[i]; | |
3159 | target_code_size += tb->size; | |
3160 | if (tb->size > max_target_code_size) | |
3161 | max_target_code_size = tb->size; | |
3162 | if (tb->page_addr[1] != -1) | |
3163 | cross_page++; | |
3164 | if (tb->tb_next_offset[0] != 0xffff) { | |
3165 | direct_jmp_count++; | |
3166 | if (tb->tb_next_offset[1] != 0xffff) { | |
3167 | direct_jmp2_count++; | |
3168 | } | |
3169 | } | |
3170 | } | |
3171 | /* XXX: avoid using doubles ? */ | |
57fec1fe | 3172 | cpu_fprintf(f, "Translation buffer state:\n"); |
26a5f13b FB |
3173 | cpu_fprintf(f, "gen code size %ld/%ld\n", |
3174 | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size); | |
3175 | cpu_fprintf(f, "TB count %d/%d\n", | |
3176 | nb_tbs, code_gen_max_blocks); | |
5fafdf24 | 3177 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", |
e3db7226 FB |
3178 | nb_tbs ? target_code_size / nb_tbs : 0, |
3179 | max_target_code_size); | |
5fafdf24 | 3180 | cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n", |
e3db7226 FB |
3181 | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0, |
3182 | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0); | |
5fafdf24 TS |
3183 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", |
3184 | cross_page, | |
e3db7226 FB |
3185 | nb_tbs ? (cross_page * 100) / nb_tbs : 0); |
3186 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", | |
5fafdf24 | 3187 | direct_jmp_count, |
e3db7226 FB |
3188 | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0, |
3189 | direct_jmp2_count, | |
3190 | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0); | |
57fec1fe | 3191 | cpu_fprintf(f, "\nStatistics:\n"); |
e3db7226 FB |
3192 | cpu_fprintf(f, "TB flush count %d\n", tb_flush_count); |
3193 | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count); | |
3194 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); | |
b67d9a52 | 3195 | tcg_dump_info(f, cpu_fprintf); |
e3db7226 FB |
3196 | } |
3197 | ||
5fafdf24 | 3198 | #if !defined(CONFIG_USER_ONLY) |
61382a50 FB |
3199 | |
3200 | #define MMUSUFFIX _cmmu | |
3201 | #define GETPC() NULL | |
3202 | #define env cpu_single_env | |
b769d8fe | 3203 | #define SOFTMMU_CODE_ACCESS |
61382a50 FB |
3204 | |
3205 | #define SHIFT 0 | |
3206 | #include "softmmu_template.h" | |
3207 | ||
3208 | #define SHIFT 1 | |
3209 | #include "softmmu_template.h" | |
3210 | ||
3211 | #define SHIFT 2 | |
3212 | #include "softmmu_template.h" | |
3213 | ||
3214 | #define SHIFT 3 | |
3215 | #include "softmmu_template.h" | |
3216 | ||
3217 | #undef env | |
3218 | ||
3219 | #endif |