]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
fd6ce8f6 | 2 | * virtual page mapping and translated block handling |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
67b915a5 | 19 | #include "config.h" |
d5a8f07c FB |
20 | #ifdef _WIN32 |
21 | #include <windows.h> | |
22 | #else | |
a98d49b1 | 23 | #include <sys/types.h> |
d5a8f07c FB |
24 | #include <sys/mman.h> |
25 | #endif | |
54936004 FB |
26 | #include <stdlib.h> |
27 | #include <stdio.h> | |
28 | #include <stdarg.h> | |
29 | #include <string.h> | |
30 | #include <errno.h> | |
31 | #include <unistd.h> | |
32 | #include <inttypes.h> | |
33 | ||
6180a181 FB |
34 | #include "cpu.h" |
35 | #include "exec-all.h" | |
ca10f867 | 36 | #include "qemu-common.h" |
b67d9a52 | 37 | #include "tcg.h" |
b3c7724c | 38 | #include "hw/hw.h" |
74576198 | 39 | #include "osdep.h" |
7ba1e619 | 40 | #include "kvm.h" |
53a5960a PB |
41 | #if defined(CONFIG_USER_ONLY) |
42 | #include <qemu.h> | |
43 | #endif | |
54936004 | 44 | |
fd6ce8f6 | 45 | //#define DEBUG_TB_INVALIDATE |
66e85a21 | 46 | //#define DEBUG_FLUSH |
9fa3e853 | 47 | //#define DEBUG_TLB |
67d3b957 | 48 | //#define DEBUG_UNASSIGNED |
fd6ce8f6 FB |
49 | |
50 | /* make various TB consistency checks */ | |
5fafdf24 TS |
51 | //#define DEBUG_TB_CHECK |
52 | //#define DEBUG_TLB_CHECK | |
fd6ce8f6 | 53 | |
1196be37 | 54 | //#define DEBUG_IOPORT |
db7b5426 | 55 | //#define DEBUG_SUBPAGE |
1196be37 | 56 | |
99773bd4 PB |
57 | #if !defined(CONFIG_USER_ONLY) |
58 | /* TB consistency checks only implemented for usermode emulation. */ | |
59 | #undef DEBUG_TB_CHECK | |
60 | #endif | |
61 | ||
9fa3e853 FB |
62 | #define SMC_BITMAP_USE_THRESHOLD 10 |
63 | ||
108c49b8 FB |
64 | #if defined(TARGET_SPARC64) |
65 | #define TARGET_PHYS_ADDR_SPACE_BITS 41 | |
5dcb6b91 BS |
66 | #elif defined(TARGET_SPARC) |
67 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
bedb69ea JM |
68 | #elif defined(TARGET_ALPHA) |
69 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
70 | #define TARGET_VIRT_ADDR_SPACE_BITS 42 | |
108c49b8 FB |
71 | #elif defined(TARGET_PPC64) |
72 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
640f42e4 | 73 | #elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU) |
00f82b8a | 74 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 |
640f42e4 | 75 | #elif defined(TARGET_I386) && !defined(CONFIG_KQEMU) |
00f82b8a | 76 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 |
108c49b8 FB |
77 | #else |
78 | /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */ | |
79 | #define TARGET_PHYS_ADDR_SPACE_BITS 32 | |
80 | #endif | |
81 | ||
bdaf78e0 | 82 | static TranslationBlock *tbs; |
26a5f13b | 83 | int code_gen_max_blocks; |
9fa3e853 | 84 | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; |
bdaf78e0 | 85 | static int nb_tbs; |
eb51d102 FB |
86 | /* any access to the tbs or the page table must use this lock */ |
87 | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED; | |
fd6ce8f6 | 88 | |
141ac468 BS |
89 | #if defined(__arm__) || defined(__sparc_v9__) |
90 | /* The prologue must be reachable with a direct jump. ARM and Sparc64 | |
91 | have limited branch ranges (possibly also PPC) so place it in a | |
d03d860b BS |
92 | section close to code segment. */ |
93 | #define code_gen_section \ | |
94 | __attribute__((__section__(".gen_code"))) \ | |
95 | __attribute__((aligned (32))) | |
f8e2af11 SW |
96 | #elif defined(_WIN32) |
97 | /* Maximum alignment for Win32 is 16. */ | |
98 | #define code_gen_section \ | |
99 | __attribute__((aligned (16))) | |
d03d860b BS |
100 | #else |
101 | #define code_gen_section \ | |
102 | __attribute__((aligned (32))) | |
103 | #endif | |
104 | ||
105 | uint8_t code_gen_prologue[1024] code_gen_section; | |
bdaf78e0 BS |
106 | static uint8_t *code_gen_buffer; |
107 | static unsigned long code_gen_buffer_size; | |
26a5f13b | 108 | /* threshold to flush the translated code buffer */ |
bdaf78e0 | 109 | static unsigned long code_gen_buffer_max_size; |
fd6ce8f6 FB |
110 | uint8_t *code_gen_ptr; |
111 | ||
e2eef170 | 112 | #if !defined(CONFIG_USER_ONLY) |
9fa3e853 | 113 | int phys_ram_fd; |
1ccde1cb | 114 | uint8_t *phys_ram_dirty; |
74576198 | 115 | static int in_migration; |
94a6b54f PB |
116 | |
117 | typedef struct RAMBlock { | |
118 | uint8_t *host; | |
119 | ram_addr_t offset; | |
120 | ram_addr_t length; | |
121 | struct RAMBlock *next; | |
122 | } RAMBlock; | |
123 | ||
124 | static RAMBlock *ram_blocks; | |
125 | /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug) | |
ccbb4d44 | 126 | then we can no longer assume contiguous ram offsets, and external uses |
94a6b54f PB |
127 | of this variable will break. */ |
128 | ram_addr_t last_ram_offset; | |
e2eef170 | 129 | #endif |
9fa3e853 | 130 | |
6a00d601 FB |
131 | CPUState *first_cpu; |
132 | /* current CPU in the current thread. It is only valid inside | |
133 | cpu_exec() */ | |
5fafdf24 | 134 | CPUState *cpu_single_env; |
2e70f6ef | 135 | /* 0 = Do not count executed instructions. |
bf20dc07 | 136 | 1 = Precise instruction counting. |
2e70f6ef PB |
137 | 2 = Adaptive rate instruction counting. */ |
138 | int use_icount = 0; | |
139 | /* Current instruction counter. While executing translated code this may | |
140 | include some instructions that have not yet been executed. */ | |
141 | int64_t qemu_icount; | |
6a00d601 | 142 | |
54936004 | 143 | typedef struct PageDesc { |
92e873b9 | 144 | /* list of TBs intersecting this ram page */ |
fd6ce8f6 | 145 | TranslationBlock *first_tb; |
9fa3e853 FB |
146 | /* in order to optimize self modifying code, we count the number |
147 | of lookups we do to a given page to use a bitmap */ | |
148 | unsigned int code_write_count; | |
149 | uint8_t *code_bitmap; | |
150 | #if defined(CONFIG_USER_ONLY) | |
151 | unsigned long flags; | |
152 | #endif | |
54936004 FB |
153 | } PageDesc; |
154 | ||
92e873b9 | 155 | typedef struct PhysPageDesc { |
0f459d16 | 156 | /* offset in host memory of the page + io_index in the low bits */ |
00f82b8a | 157 | ram_addr_t phys_offset; |
8da3ff18 | 158 | ram_addr_t region_offset; |
92e873b9 FB |
159 | } PhysPageDesc; |
160 | ||
54936004 | 161 | #define L2_BITS 10 |
bedb69ea JM |
162 | #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS) |
163 | /* XXX: this is a temporary hack for alpha target. | |
164 | * In the future, this is to be replaced by a multi-level table | |
165 | * to actually be able to handle the complete 64 bits address space. | |
166 | */ | |
167 | #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS) | |
168 | #else | |
03875444 | 169 | #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS) |
bedb69ea | 170 | #endif |
54936004 FB |
171 | |
172 | #define L1_SIZE (1 << L1_BITS) | |
173 | #define L2_SIZE (1 << L2_BITS) | |
174 | ||
83fb7adf FB |
175 | unsigned long qemu_real_host_page_size; |
176 | unsigned long qemu_host_page_bits; | |
177 | unsigned long qemu_host_page_size; | |
178 | unsigned long qemu_host_page_mask; | |
54936004 | 179 | |
92e873b9 | 180 | /* XXX: for system emulation, it could just be an array */ |
54936004 | 181 | static PageDesc *l1_map[L1_SIZE]; |
bdaf78e0 | 182 | static PhysPageDesc **l1_phys_map; |
54936004 | 183 | |
e2eef170 PB |
184 | #if !defined(CONFIG_USER_ONLY) |
185 | static void io_mem_init(void); | |
186 | ||
33417e70 | 187 | /* io memory support */ |
33417e70 FB |
188 | CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; |
189 | CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; | |
a4193c8a | 190 | void *io_mem_opaque[IO_MEM_NB_ENTRIES]; |
511d2b14 | 191 | static char io_mem_used[IO_MEM_NB_ENTRIES]; |
6658ffb8 PB |
192 | static int io_mem_watch; |
193 | #endif | |
33417e70 | 194 | |
34865134 | 195 | /* log support */ |
d9b630fd | 196 | static const char *logfilename = "/tmp/qemu.log"; |
34865134 FB |
197 | FILE *logfile; |
198 | int loglevel; | |
e735b91c | 199 | static int log_append = 0; |
34865134 | 200 | |
e3db7226 FB |
201 | /* statistics */ |
202 | static int tlb_flush_count; | |
203 | static int tb_flush_count; | |
204 | static int tb_phys_invalidate_count; | |
205 | ||
db7b5426 BS |
206 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
207 | typedef struct subpage_t { | |
208 | target_phys_addr_t base; | |
3ee89922 BS |
209 | CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4]; |
210 | CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4]; | |
211 | void *opaque[TARGET_PAGE_SIZE][2][4]; | |
8da3ff18 | 212 | ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4]; |
db7b5426 BS |
213 | } subpage_t; |
214 | ||
7cb69cae FB |
215 | #ifdef _WIN32 |
216 | static void map_exec(void *addr, long size) | |
217 | { | |
218 | DWORD old_protect; | |
219 | VirtualProtect(addr, size, | |
220 | PAGE_EXECUTE_READWRITE, &old_protect); | |
221 | ||
222 | } | |
223 | #else | |
224 | static void map_exec(void *addr, long size) | |
225 | { | |
4369415f | 226 | unsigned long start, end, page_size; |
7cb69cae | 227 | |
4369415f | 228 | page_size = getpagesize(); |
7cb69cae | 229 | start = (unsigned long)addr; |
4369415f | 230 | start &= ~(page_size - 1); |
7cb69cae FB |
231 | |
232 | end = (unsigned long)addr + size; | |
4369415f FB |
233 | end += page_size - 1; |
234 | end &= ~(page_size - 1); | |
7cb69cae FB |
235 | |
236 | mprotect((void *)start, end - start, | |
237 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
238 | } | |
239 | #endif | |
240 | ||
b346ff46 | 241 | static void page_init(void) |
54936004 | 242 | { |
83fb7adf | 243 | /* NOTE: we can always suppose that qemu_host_page_size >= |
54936004 | 244 | TARGET_PAGE_SIZE */ |
c2b48b69 AL |
245 | #ifdef _WIN32 |
246 | { | |
247 | SYSTEM_INFO system_info; | |
248 | ||
249 | GetSystemInfo(&system_info); | |
250 | qemu_real_host_page_size = system_info.dwPageSize; | |
251 | } | |
252 | #else | |
253 | qemu_real_host_page_size = getpagesize(); | |
254 | #endif | |
83fb7adf FB |
255 | if (qemu_host_page_size == 0) |
256 | qemu_host_page_size = qemu_real_host_page_size; | |
257 | if (qemu_host_page_size < TARGET_PAGE_SIZE) | |
258 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
259 | qemu_host_page_bits = 0; | |
260 | while ((1 << qemu_host_page_bits) < qemu_host_page_size) | |
261 | qemu_host_page_bits++; | |
262 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |
108c49b8 FB |
263 | l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *)); |
264 | memset(l1_phys_map, 0, L1_SIZE * sizeof(void *)); | |
50a9569b AZ |
265 | |
266 | #if !defined(_WIN32) && defined(CONFIG_USER_ONLY) | |
267 | { | |
268 | long long startaddr, endaddr; | |
269 | FILE *f; | |
270 | int n; | |
271 | ||
c8a706fe | 272 | mmap_lock(); |
0776590d | 273 | last_brk = (unsigned long)sbrk(0); |
50a9569b AZ |
274 | f = fopen("/proc/self/maps", "r"); |
275 | if (f) { | |
276 | do { | |
277 | n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr); | |
278 | if (n == 2) { | |
e0b8d65a BS |
279 | startaddr = MIN(startaddr, |
280 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
281 | endaddr = MIN(endaddr, | |
282 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
b5fc909e | 283 | page_set_flags(startaddr & TARGET_PAGE_MASK, |
50a9569b AZ |
284 | TARGET_PAGE_ALIGN(endaddr), |
285 | PAGE_RESERVED); | |
286 | } | |
287 | } while (!feof(f)); | |
288 | fclose(f); | |
289 | } | |
c8a706fe | 290 | mmap_unlock(); |
50a9569b AZ |
291 | } |
292 | #endif | |
54936004 FB |
293 | } |
294 | ||
434929bf | 295 | static inline PageDesc **page_l1_map(target_ulong index) |
54936004 | 296 | { |
17e2377a PB |
297 | #if TARGET_LONG_BITS > 32 |
298 | /* Host memory outside guest VM. For 32-bit targets we have already | |
299 | excluded high addresses. */ | |
d8173e0f | 300 | if (index > ((target_ulong)L2_SIZE * L1_SIZE)) |
17e2377a PB |
301 | return NULL; |
302 | #endif | |
434929bf AL |
303 | return &l1_map[index >> L2_BITS]; |
304 | } | |
305 | ||
306 | static inline PageDesc *page_find_alloc(target_ulong index) | |
307 | { | |
308 | PageDesc **lp, *p; | |
309 | lp = page_l1_map(index); | |
310 | if (!lp) | |
311 | return NULL; | |
312 | ||
54936004 FB |
313 | p = *lp; |
314 | if (!p) { | |
315 | /* allocate if not found */ | |
17e2377a | 316 | #if defined(CONFIG_USER_ONLY) |
17e2377a PB |
317 | size_t len = sizeof(PageDesc) * L2_SIZE; |
318 | /* Don't use qemu_malloc because it may recurse. */ | |
660f11be | 319 | p = mmap(NULL, len, PROT_READ | PROT_WRITE, |
17e2377a | 320 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
54936004 | 321 | *lp = p; |
fb1c2cd7 AJ |
322 | if (h2g_valid(p)) { |
323 | unsigned long addr = h2g(p); | |
17e2377a PB |
324 | page_set_flags(addr & TARGET_PAGE_MASK, |
325 | TARGET_PAGE_ALIGN(addr + len), | |
326 | PAGE_RESERVED); | |
327 | } | |
328 | #else | |
329 | p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE); | |
330 | *lp = p; | |
331 | #endif | |
54936004 FB |
332 | } |
333 | return p + (index & (L2_SIZE - 1)); | |
334 | } | |
335 | ||
00f82b8a | 336 | static inline PageDesc *page_find(target_ulong index) |
54936004 | 337 | { |
434929bf AL |
338 | PageDesc **lp, *p; |
339 | lp = page_l1_map(index); | |
340 | if (!lp) | |
341 | return NULL; | |
54936004 | 342 | |
434929bf | 343 | p = *lp; |
660f11be BS |
344 | if (!p) { |
345 | return NULL; | |
346 | } | |
fd6ce8f6 FB |
347 | return p + (index & (L2_SIZE - 1)); |
348 | } | |
349 | ||
108c49b8 | 350 | static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc) |
92e873b9 | 351 | { |
108c49b8 | 352 | void **lp, **p; |
e3f4e2a4 | 353 | PhysPageDesc *pd; |
92e873b9 | 354 | |
108c49b8 FB |
355 | p = (void **)l1_phys_map; |
356 | #if TARGET_PHYS_ADDR_SPACE_BITS > 32 | |
357 | ||
358 | #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS) | |
359 | #error unsupported TARGET_PHYS_ADDR_SPACE_BITS | |
360 | #endif | |
361 | lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1)); | |
92e873b9 FB |
362 | p = *lp; |
363 | if (!p) { | |
364 | /* allocate if not found */ | |
108c49b8 FB |
365 | if (!alloc) |
366 | return NULL; | |
367 | p = qemu_vmalloc(sizeof(void *) * L1_SIZE); | |
368 | memset(p, 0, sizeof(void *) * L1_SIZE); | |
369 | *lp = p; | |
370 | } | |
371 | #endif | |
372 | lp = p + ((index >> L2_BITS) & (L1_SIZE - 1)); | |
e3f4e2a4 PB |
373 | pd = *lp; |
374 | if (!pd) { | |
375 | int i; | |
108c49b8 FB |
376 | /* allocate if not found */ |
377 | if (!alloc) | |
378 | return NULL; | |
e3f4e2a4 PB |
379 | pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE); |
380 | *lp = pd; | |
67c4d23c | 381 | for (i = 0; i < L2_SIZE; i++) { |
e3f4e2a4 | 382 | pd[i].phys_offset = IO_MEM_UNASSIGNED; |
67c4d23c PB |
383 | pd[i].region_offset = (index + i) << TARGET_PAGE_BITS; |
384 | } | |
92e873b9 | 385 | } |
e3f4e2a4 | 386 | return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1)); |
92e873b9 FB |
387 | } |
388 | ||
108c49b8 | 389 | static inline PhysPageDesc *phys_page_find(target_phys_addr_t index) |
92e873b9 | 390 | { |
108c49b8 | 391 | return phys_page_find_alloc(index, 0); |
92e873b9 FB |
392 | } |
393 | ||
9fa3e853 | 394 | #if !defined(CONFIG_USER_ONLY) |
6a00d601 | 395 | static void tlb_protect_code(ram_addr_t ram_addr); |
5fafdf24 | 396 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 397 | target_ulong vaddr); |
c8a706fe PB |
398 | #define mmap_lock() do { } while(0) |
399 | #define mmap_unlock() do { } while(0) | |
9fa3e853 | 400 | #endif |
fd6ce8f6 | 401 | |
4369415f FB |
402 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024) |
403 | ||
404 | #if defined(CONFIG_USER_ONLY) | |
ccbb4d44 | 405 | /* Currently it is not recommended to allocate big chunks of data in |
4369415f FB |
406 | user mode. It will change when a dedicated libc will be used */ |
407 | #define USE_STATIC_CODE_GEN_BUFFER | |
408 | #endif | |
409 | ||
410 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
411 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]; | |
412 | #endif | |
413 | ||
8fcd3692 | 414 | static void code_gen_alloc(unsigned long tb_size) |
26a5f13b | 415 | { |
4369415f FB |
416 | #ifdef USE_STATIC_CODE_GEN_BUFFER |
417 | code_gen_buffer = static_code_gen_buffer; | |
418 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
419 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
420 | #else | |
26a5f13b FB |
421 | code_gen_buffer_size = tb_size; |
422 | if (code_gen_buffer_size == 0) { | |
4369415f FB |
423 | #if defined(CONFIG_USER_ONLY) |
424 | /* in user mode, phys_ram_size is not meaningful */ | |
425 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
426 | #else | |
ccbb4d44 | 427 | /* XXX: needs adjustments */ |
94a6b54f | 428 | code_gen_buffer_size = (unsigned long)(ram_size / 4); |
4369415f | 429 | #endif |
26a5f13b FB |
430 | } |
431 | if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE) | |
432 | code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE; | |
433 | /* The code gen buffer location may have constraints depending on | |
434 | the host cpu and OS */ | |
435 | #if defined(__linux__) | |
436 | { | |
437 | int flags; | |
141ac468 BS |
438 | void *start = NULL; |
439 | ||
26a5f13b FB |
440 | flags = MAP_PRIVATE | MAP_ANONYMOUS; |
441 | #if defined(__x86_64__) | |
442 | flags |= MAP_32BIT; | |
443 | /* Cannot map more than that */ | |
444 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
445 | code_gen_buffer_size = (800 * 1024 * 1024); | |
141ac468 BS |
446 | #elif defined(__sparc_v9__) |
447 | // Map the buffer below 2G, so we can use direct calls and branches | |
448 | flags |= MAP_FIXED; | |
449 | start = (void *) 0x60000000UL; | |
450 | if (code_gen_buffer_size > (512 * 1024 * 1024)) | |
451 | code_gen_buffer_size = (512 * 1024 * 1024); | |
1cb0661e | 452 | #elif defined(__arm__) |
63d41246 | 453 | /* Map the buffer below 32M, so we can use direct calls and branches */ |
1cb0661e AZ |
454 | flags |= MAP_FIXED; |
455 | start = (void *) 0x01000000UL; | |
456 | if (code_gen_buffer_size > 16 * 1024 * 1024) | |
457 | code_gen_buffer_size = 16 * 1024 * 1024; | |
26a5f13b | 458 | #endif |
141ac468 BS |
459 | code_gen_buffer = mmap(start, code_gen_buffer_size, |
460 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
26a5f13b FB |
461 | flags, -1, 0); |
462 | if (code_gen_buffer == MAP_FAILED) { | |
463 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
464 | exit(1); | |
465 | } | |
466 | } | |
c5e97233 | 467 | #elif defined(__FreeBSD__) || defined(__DragonFly__) |
06e67a82 AL |
468 | { |
469 | int flags; | |
470 | void *addr = NULL; | |
471 | flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
472 | #if defined(__x86_64__) | |
473 | /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume | |
474 | * 0x40000000 is free */ | |
475 | flags |= MAP_FIXED; | |
476 | addr = (void *)0x40000000; | |
477 | /* Cannot map more than that */ | |
478 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
479 | code_gen_buffer_size = (800 * 1024 * 1024); | |
480 | #endif | |
481 | code_gen_buffer = mmap(addr, code_gen_buffer_size, | |
482 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
483 | flags, -1, 0); | |
484 | if (code_gen_buffer == MAP_FAILED) { | |
485 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
486 | exit(1); | |
487 | } | |
488 | } | |
26a5f13b FB |
489 | #else |
490 | code_gen_buffer = qemu_malloc(code_gen_buffer_size); | |
26a5f13b FB |
491 | map_exec(code_gen_buffer, code_gen_buffer_size); |
492 | #endif | |
4369415f | 493 | #endif /* !USE_STATIC_CODE_GEN_BUFFER */ |
26a5f13b FB |
494 | map_exec(code_gen_prologue, sizeof(code_gen_prologue)); |
495 | code_gen_buffer_max_size = code_gen_buffer_size - | |
496 | code_gen_max_block_size(); | |
497 | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; | |
498 | tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock)); | |
499 | } | |
500 | ||
501 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
502 | (in bytes) allocated to the translation buffer. Zero means default | |
503 | size. */ | |
504 | void cpu_exec_init_all(unsigned long tb_size) | |
505 | { | |
26a5f13b FB |
506 | cpu_gen_init(); |
507 | code_gen_alloc(tb_size); | |
508 | code_gen_ptr = code_gen_buffer; | |
4369415f | 509 | page_init(); |
e2eef170 | 510 | #if !defined(CONFIG_USER_ONLY) |
26a5f13b | 511 | io_mem_init(); |
e2eef170 | 512 | #endif |
26a5f13b FB |
513 | } |
514 | ||
9656f324 PB |
515 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
516 | ||
517 | #define CPU_COMMON_SAVE_VERSION 1 | |
518 | ||
519 | static void cpu_common_save(QEMUFile *f, void *opaque) | |
520 | { | |
521 | CPUState *env = opaque; | |
522 | ||
b0a46a33 JK |
523 | cpu_synchronize_state(env, 0); |
524 | ||
9656f324 PB |
525 | qemu_put_be32s(f, &env->halted); |
526 | qemu_put_be32s(f, &env->interrupt_request); | |
527 | } | |
528 | ||
529 | static int cpu_common_load(QEMUFile *f, void *opaque, int version_id) | |
530 | { | |
531 | CPUState *env = opaque; | |
532 | ||
533 | if (version_id != CPU_COMMON_SAVE_VERSION) | |
534 | return -EINVAL; | |
535 | ||
536 | qemu_get_be32s(f, &env->halted); | |
75f482ae | 537 | qemu_get_be32s(f, &env->interrupt_request); |
3098dba0 AJ |
538 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
539 | version_id is increased. */ | |
540 | env->interrupt_request &= ~0x01; | |
9656f324 | 541 | tlb_flush(env, 1); |
b0a46a33 | 542 | cpu_synchronize_state(env, 1); |
9656f324 PB |
543 | |
544 | return 0; | |
545 | } | |
546 | #endif | |
547 | ||
950f1472 GC |
548 | CPUState *qemu_get_cpu(int cpu) |
549 | { | |
550 | CPUState *env = first_cpu; | |
551 | ||
552 | while (env) { | |
553 | if (env->cpu_index == cpu) | |
554 | break; | |
555 | env = env->next_cpu; | |
556 | } | |
557 | ||
558 | return env; | |
559 | } | |
560 | ||
6a00d601 | 561 | void cpu_exec_init(CPUState *env) |
fd6ce8f6 | 562 | { |
6a00d601 FB |
563 | CPUState **penv; |
564 | int cpu_index; | |
565 | ||
c2764719 PB |
566 | #if defined(CONFIG_USER_ONLY) |
567 | cpu_list_lock(); | |
568 | #endif | |
6a00d601 FB |
569 | env->next_cpu = NULL; |
570 | penv = &first_cpu; | |
571 | cpu_index = 0; | |
572 | while (*penv != NULL) { | |
1e9fa730 | 573 | penv = &(*penv)->next_cpu; |
6a00d601 FB |
574 | cpu_index++; |
575 | } | |
576 | env->cpu_index = cpu_index; | |
268a362c | 577 | env->numa_node = 0; |
c0ce998e AL |
578 | TAILQ_INIT(&env->breakpoints); |
579 | TAILQ_INIT(&env->watchpoints); | |
6a00d601 | 580 | *penv = env; |
c2764719 PB |
581 | #if defined(CONFIG_USER_ONLY) |
582 | cpu_list_unlock(); | |
583 | #endif | |
b3c7724c | 584 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
9656f324 PB |
585 | register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION, |
586 | cpu_common_save, cpu_common_load, env); | |
b3c7724c PB |
587 | register_savevm("cpu", cpu_index, CPU_SAVE_VERSION, |
588 | cpu_save, cpu_load, env); | |
589 | #endif | |
fd6ce8f6 FB |
590 | } |
591 | ||
9fa3e853 FB |
592 | static inline void invalidate_page_bitmap(PageDesc *p) |
593 | { | |
594 | if (p->code_bitmap) { | |
59817ccb | 595 | qemu_free(p->code_bitmap); |
9fa3e853 FB |
596 | p->code_bitmap = NULL; |
597 | } | |
598 | p->code_write_count = 0; | |
599 | } | |
600 | ||
fd6ce8f6 FB |
601 | /* set to NULL all the 'first_tb' fields in all PageDescs */ |
602 | static void page_flush_tb(void) | |
603 | { | |
604 | int i, j; | |
605 | PageDesc *p; | |
606 | ||
607 | for(i = 0; i < L1_SIZE; i++) { | |
608 | p = l1_map[i]; | |
609 | if (p) { | |
9fa3e853 FB |
610 | for(j = 0; j < L2_SIZE; j++) { |
611 | p->first_tb = NULL; | |
612 | invalidate_page_bitmap(p); | |
613 | p++; | |
614 | } | |
fd6ce8f6 FB |
615 | } |
616 | } | |
617 | } | |
618 | ||
619 | /* flush all the translation blocks */ | |
d4e8164f | 620 | /* XXX: tb_flush is currently not thread safe */ |
6a00d601 | 621 | void tb_flush(CPUState *env1) |
fd6ce8f6 | 622 | { |
6a00d601 | 623 | CPUState *env; |
0124311e | 624 | #if defined(DEBUG_FLUSH) |
ab3d1727 BS |
625 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", |
626 | (unsigned long)(code_gen_ptr - code_gen_buffer), | |
627 | nb_tbs, nb_tbs > 0 ? | |
628 | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0); | |
fd6ce8f6 | 629 | #endif |
26a5f13b | 630 | if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size) |
a208e54a PB |
631 | cpu_abort(env1, "Internal error: code buffer overflow\n"); |
632 | ||
fd6ce8f6 | 633 | nb_tbs = 0; |
3b46e624 | 634 | |
6a00d601 FB |
635 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
636 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
637 | } | |
9fa3e853 | 638 | |
8a8a608f | 639 | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); |
fd6ce8f6 | 640 | page_flush_tb(); |
9fa3e853 | 641 | |
fd6ce8f6 | 642 | code_gen_ptr = code_gen_buffer; |
d4e8164f FB |
643 | /* XXX: flush processor icache at this point if cache flush is |
644 | expensive */ | |
e3db7226 | 645 | tb_flush_count++; |
fd6ce8f6 FB |
646 | } |
647 | ||
648 | #ifdef DEBUG_TB_CHECK | |
649 | ||
bc98a7ef | 650 | static void tb_invalidate_check(target_ulong address) |
fd6ce8f6 FB |
651 | { |
652 | TranslationBlock *tb; | |
653 | int i; | |
654 | address &= TARGET_PAGE_MASK; | |
99773bd4 PB |
655 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
656 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
657 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || |
658 | address >= tb->pc + tb->size)) { | |
0bf9e31a BS |
659 | printf("ERROR invalidate: address=" TARGET_FMT_lx |
660 | " PC=%08lx size=%04x\n", | |
99773bd4 | 661 | address, (long)tb->pc, tb->size); |
fd6ce8f6 FB |
662 | } |
663 | } | |
664 | } | |
665 | } | |
666 | ||
667 | /* verify that all the pages have correct rights for code */ | |
668 | static void tb_page_check(void) | |
669 | { | |
670 | TranslationBlock *tb; | |
671 | int i, flags1, flags2; | |
3b46e624 | 672 | |
99773bd4 PB |
673 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
674 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
675 | flags1 = page_get_flags(tb->pc); |
676 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
677 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
678 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
99773bd4 | 679 | (long)tb->pc, tb->size, flags1, flags2); |
fd6ce8f6 FB |
680 | } |
681 | } | |
682 | } | |
683 | } | |
684 | ||
685 | #endif | |
686 | ||
687 | /* invalidate one TB */ | |
688 | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb, | |
689 | int next_offset) | |
690 | { | |
691 | TranslationBlock *tb1; | |
692 | for(;;) { | |
693 | tb1 = *ptb; | |
694 | if (tb1 == tb) { | |
695 | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset); | |
696 | break; | |
697 | } | |
698 | ptb = (TranslationBlock **)((char *)tb1 + next_offset); | |
699 | } | |
700 | } | |
701 | ||
9fa3e853 FB |
702 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) |
703 | { | |
704 | TranslationBlock *tb1; | |
705 | unsigned int n1; | |
706 | ||
707 | for(;;) { | |
708 | tb1 = *ptb; | |
709 | n1 = (long)tb1 & 3; | |
710 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
711 | if (tb1 == tb) { | |
712 | *ptb = tb1->page_next[n1]; | |
713 | break; | |
714 | } | |
715 | ptb = &tb1->page_next[n1]; | |
716 | } | |
717 | } | |
718 | ||
d4e8164f FB |
719 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) |
720 | { | |
721 | TranslationBlock *tb1, **ptb; | |
722 | unsigned int n1; | |
723 | ||
724 | ptb = &tb->jmp_next[n]; | |
725 | tb1 = *ptb; | |
726 | if (tb1) { | |
727 | /* find tb(n) in circular list */ | |
728 | for(;;) { | |
729 | tb1 = *ptb; | |
730 | n1 = (long)tb1 & 3; | |
731 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
732 | if (n1 == n && tb1 == tb) | |
733 | break; | |
734 | if (n1 == 2) { | |
735 | ptb = &tb1->jmp_first; | |
736 | } else { | |
737 | ptb = &tb1->jmp_next[n1]; | |
738 | } | |
739 | } | |
740 | /* now we can suppress tb(n) from the list */ | |
741 | *ptb = tb->jmp_next[n]; | |
742 | ||
743 | tb->jmp_next[n] = NULL; | |
744 | } | |
745 | } | |
746 | ||
747 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
748 | another TB */ | |
749 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
750 | { | |
751 | tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n])); | |
752 | } | |
753 | ||
2e70f6ef | 754 | void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr) |
fd6ce8f6 | 755 | { |
6a00d601 | 756 | CPUState *env; |
8a40a180 | 757 | PageDesc *p; |
d4e8164f | 758 | unsigned int h, n1; |
00f82b8a | 759 | target_phys_addr_t phys_pc; |
8a40a180 | 760 | TranslationBlock *tb1, *tb2; |
3b46e624 | 761 | |
8a40a180 FB |
762 | /* remove the TB from the hash list */ |
763 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
764 | h = tb_phys_hash_func(phys_pc); | |
5fafdf24 | 765 | tb_remove(&tb_phys_hash[h], tb, |
8a40a180 FB |
766 | offsetof(TranslationBlock, phys_hash_next)); |
767 | ||
768 | /* remove the TB from the page list */ | |
769 | if (tb->page_addr[0] != page_addr) { | |
770 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
771 | tb_page_remove(&p->first_tb, tb); | |
772 | invalidate_page_bitmap(p); | |
773 | } | |
774 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
775 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
776 | tb_page_remove(&p->first_tb, tb); | |
777 | invalidate_page_bitmap(p); | |
778 | } | |
779 | ||
36bdbe54 | 780 | tb_invalidated_flag = 1; |
59817ccb | 781 | |
fd6ce8f6 | 782 | /* remove the TB from the hash list */ |
8a40a180 | 783 | h = tb_jmp_cache_hash_func(tb->pc); |
6a00d601 FB |
784 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
785 | if (env->tb_jmp_cache[h] == tb) | |
786 | env->tb_jmp_cache[h] = NULL; | |
787 | } | |
d4e8164f FB |
788 | |
789 | /* suppress this TB from the two jump lists */ | |
790 | tb_jmp_remove(tb, 0); | |
791 | tb_jmp_remove(tb, 1); | |
792 | ||
793 | /* suppress any remaining jumps to this TB */ | |
794 | tb1 = tb->jmp_first; | |
795 | for(;;) { | |
796 | n1 = (long)tb1 & 3; | |
797 | if (n1 == 2) | |
798 | break; | |
799 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
800 | tb2 = tb1->jmp_next[n1]; | |
801 | tb_reset_jump(tb1, n1); | |
802 | tb1->jmp_next[n1] = NULL; | |
803 | tb1 = tb2; | |
804 | } | |
805 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */ | |
9fa3e853 | 806 | |
e3db7226 | 807 | tb_phys_invalidate_count++; |
9fa3e853 FB |
808 | } |
809 | ||
810 | static inline void set_bits(uint8_t *tab, int start, int len) | |
811 | { | |
812 | int end, mask, end1; | |
813 | ||
814 | end = start + len; | |
815 | tab += start >> 3; | |
816 | mask = 0xff << (start & 7); | |
817 | if ((start & ~7) == (end & ~7)) { | |
818 | if (start < end) { | |
819 | mask &= ~(0xff << (end & 7)); | |
820 | *tab |= mask; | |
821 | } | |
822 | } else { | |
823 | *tab++ |= mask; | |
824 | start = (start + 8) & ~7; | |
825 | end1 = end & ~7; | |
826 | while (start < end1) { | |
827 | *tab++ = 0xff; | |
828 | start += 8; | |
829 | } | |
830 | if (start < end) { | |
831 | mask = ~(0xff << (end & 7)); | |
832 | *tab |= mask; | |
833 | } | |
834 | } | |
835 | } | |
836 | ||
837 | static void build_page_bitmap(PageDesc *p) | |
838 | { | |
839 | int n, tb_start, tb_end; | |
840 | TranslationBlock *tb; | |
3b46e624 | 841 | |
b2a7081a | 842 | p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8); |
9fa3e853 FB |
843 | |
844 | tb = p->first_tb; | |
845 | while (tb != NULL) { | |
846 | n = (long)tb & 3; | |
847 | tb = (TranslationBlock *)((long)tb & ~3); | |
848 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
849 | if (n == 0) { | |
850 | /* NOTE: tb_end may be after the end of the page, but | |
851 | it is not a problem */ | |
852 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
853 | tb_end = tb_start + tb->size; | |
854 | if (tb_end > TARGET_PAGE_SIZE) | |
855 | tb_end = TARGET_PAGE_SIZE; | |
856 | } else { | |
857 | tb_start = 0; | |
858 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
859 | } | |
860 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |
861 | tb = tb->page_next[n]; | |
862 | } | |
863 | } | |
864 | ||
2e70f6ef PB |
865 | TranslationBlock *tb_gen_code(CPUState *env, |
866 | target_ulong pc, target_ulong cs_base, | |
867 | int flags, int cflags) | |
d720b93d FB |
868 | { |
869 | TranslationBlock *tb; | |
870 | uint8_t *tc_ptr; | |
871 | target_ulong phys_pc, phys_page2, virt_page2; | |
872 | int code_gen_size; | |
873 | ||
c27004ec FB |
874 | phys_pc = get_phys_addr_code(env, pc); |
875 | tb = tb_alloc(pc); | |
d720b93d FB |
876 | if (!tb) { |
877 | /* flush must be done */ | |
878 | tb_flush(env); | |
879 | /* cannot fail at this point */ | |
c27004ec | 880 | tb = tb_alloc(pc); |
2e70f6ef PB |
881 | /* Don't forget to invalidate previous TB info. */ |
882 | tb_invalidated_flag = 1; | |
d720b93d FB |
883 | } |
884 | tc_ptr = code_gen_ptr; | |
885 | tb->tc_ptr = tc_ptr; | |
886 | tb->cs_base = cs_base; | |
887 | tb->flags = flags; | |
888 | tb->cflags = cflags; | |
d07bde88 | 889 | cpu_gen_code(env, tb, &code_gen_size); |
d720b93d | 890 | code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); |
3b46e624 | 891 | |
d720b93d | 892 | /* check next page if needed */ |
c27004ec | 893 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; |
d720b93d | 894 | phys_page2 = -1; |
c27004ec | 895 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { |
d720b93d FB |
896 | phys_page2 = get_phys_addr_code(env, virt_page2); |
897 | } | |
898 | tb_link_phys(tb, phys_pc, phys_page2); | |
2e70f6ef | 899 | return tb; |
d720b93d | 900 | } |
3b46e624 | 901 | |
9fa3e853 FB |
902 | /* invalidate all TBs which intersect with the target physical page |
903 | starting in range [start;end[. NOTE: start and end must refer to | |
d720b93d FB |
904 | the same physical page. 'is_cpu_write_access' should be true if called |
905 | from a real cpu write access: the virtual CPU will exit the current | |
906 | TB if code is modified inside this TB. */ | |
00f82b8a | 907 | void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, |
d720b93d FB |
908 | int is_cpu_write_access) |
909 | { | |
6b917547 | 910 | TranslationBlock *tb, *tb_next, *saved_tb; |
d720b93d | 911 | CPUState *env = cpu_single_env; |
9fa3e853 | 912 | target_ulong tb_start, tb_end; |
6b917547 AL |
913 | PageDesc *p; |
914 | int n; | |
915 | #ifdef TARGET_HAS_PRECISE_SMC | |
916 | int current_tb_not_found = is_cpu_write_access; | |
917 | TranslationBlock *current_tb = NULL; | |
918 | int current_tb_modified = 0; | |
919 | target_ulong current_pc = 0; | |
920 | target_ulong current_cs_base = 0; | |
921 | int current_flags = 0; | |
922 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
923 | |
924 | p = page_find(start >> TARGET_PAGE_BITS); | |
5fafdf24 | 925 | if (!p) |
9fa3e853 | 926 | return; |
5fafdf24 | 927 | if (!p->code_bitmap && |
d720b93d FB |
928 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && |
929 | is_cpu_write_access) { | |
9fa3e853 FB |
930 | /* build code bitmap */ |
931 | build_page_bitmap(p); | |
932 | } | |
933 | ||
934 | /* we remove all the TBs in the range [start, end[ */ | |
935 | /* XXX: see if in some cases it could be faster to invalidate all the code */ | |
936 | tb = p->first_tb; | |
937 | while (tb != NULL) { | |
938 | n = (long)tb & 3; | |
939 | tb = (TranslationBlock *)((long)tb & ~3); | |
940 | tb_next = tb->page_next[n]; | |
941 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
942 | if (n == 0) { | |
943 | /* NOTE: tb_end may be after the end of the page, but | |
944 | it is not a problem */ | |
945 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
946 | tb_end = tb_start + tb->size; | |
947 | } else { | |
948 | tb_start = tb->page_addr[1]; | |
949 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
950 | } | |
951 | if (!(tb_end <= start || tb_start >= end)) { | |
d720b93d FB |
952 | #ifdef TARGET_HAS_PRECISE_SMC |
953 | if (current_tb_not_found) { | |
954 | current_tb_not_found = 0; | |
955 | current_tb = NULL; | |
2e70f6ef | 956 | if (env->mem_io_pc) { |
d720b93d | 957 | /* now we have a real cpu fault */ |
2e70f6ef | 958 | current_tb = tb_find_pc(env->mem_io_pc); |
d720b93d FB |
959 | } |
960 | } | |
961 | if (current_tb == tb && | |
2e70f6ef | 962 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
963 | /* If we are modifying the current TB, we must stop |
964 | its execution. We could be more precise by checking | |
965 | that the modification is after the current PC, but it | |
966 | would require a specialized function to partially | |
967 | restore the CPU state */ | |
3b46e624 | 968 | |
d720b93d | 969 | current_tb_modified = 1; |
5fafdf24 | 970 | cpu_restore_state(current_tb, env, |
2e70f6ef | 971 | env->mem_io_pc, NULL); |
6b917547 AL |
972 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
973 | ¤t_flags); | |
d720b93d FB |
974 | } |
975 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
6f5a9f7e FB |
976 | /* we need to do that to handle the case where a signal |
977 | occurs while doing tb_phys_invalidate() */ | |
978 | saved_tb = NULL; | |
979 | if (env) { | |
980 | saved_tb = env->current_tb; | |
981 | env->current_tb = NULL; | |
982 | } | |
9fa3e853 | 983 | tb_phys_invalidate(tb, -1); |
6f5a9f7e FB |
984 | if (env) { |
985 | env->current_tb = saved_tb; | |
986 | if (env->interrupt_request && env->current_tb) | |
987 | cpu_interrupt(env, env->interrupt_request); | |
988 | } | |
9fa3e853 FB |
989 | } |
990 | tb = tb_next; | |
991 | } | |
992 | #if !defined(CONFIG_USER_ONLY) | |
993 | /* if no code remaining, no need to continue to use slow writes */ | |
994 | if (!p->first_tb) { | |
995 | invalidate_page_bitmap(p); | |
d720b93d | 996 | if (is_cpu_write_access) { |
2e70f6ef | 997 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); |
d720b93d FB |
998 | } |
999 | } | |
1000 | #endif | |
1001 | #ifdef TARGET_HAS_PRECISE_SMC | |
1002 | if (current_tb_modified) { | |
1003 | /* we generate a block containing just the instruction | |
1004 | modifying the memory. It will ensure that it cannot modify | |
1005 | itself */ | |
ea1c1802 | 1006 | env->current_tb = NULL; |
2e70f6ef | 1007 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d | 1008 | cpu_resume_from_signal(env, NULL); |
9fa3e853 | 1009 | } |
fd6ce8f6 | 1010 | #endif |
9fa3e853 | 1011 | } |
fd6ce8f6 | 1012 | |
9fa3e853 | 1013 | /* len must be <= 8 and start must be a multiple of len */ |
00f82b8a | 1014 | static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len) |
9fa3e853 FB |
1015 | { |
1016 | PageDesc *p; | |
1017 | int offset, b; | |
59817ccb | 1018 | #if 0 |
a4193c8a | 1019 | if (1) { |
93fcfe39 AL |
1020 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", |
1021 | cpu_single_env->mem_io_vaddr, len, | |
1022 | cpu_single_env->eip, | |
1023 | cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base); | |
59817ccb FB |
1024 | } |
1025 | #endif | |
9fa3e853 | 1026 | p = page_find(start >> TARGET_PAGE_BITS); |
5fafdf24 | 1027 | if (!p) |
9fa3e853 FB |
1028 | return; |
1029 | if (p->code_bitmap) { | |
1030 | offset = start & ~TARGET_PAGE_MASK; | |
1031 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |
1032 | if (b & ((1 << len) - 1)) | |
1033 | goto do_invalidate; | |
1034 | } else { | |
1035 | do_invalidate: | |
d720b93d | 1036 | tb_invalidate_phys_page_range(start, start + len, 1); |
9fa3e853 FB |
1037 | } |
1038 | } | |
1039 | ||
9fa3e853 | 1040 | #if !defined(CONFIG_SOFTMMU) |
00f82b8a | 1041 | static void tb_invalidate_phys_page(target_phys_addr_t addr, |
d720b93d | 1042 | unsigned long pc, void *puc) |
9fa3e853 | 1043 | { |
6b917547 | 1044 | TranslationBlock *tb; |
9fa3e853 | 1045 | PageDesc *p; |
6b917547 | 1046 | int n; |
d720b93d | 1047 | #ifdef TARGET_HAS_PRECISE_SMC |
6b917547 | 1048 | TranslationBlock *current_tb = NULL; |
d720b93d | 1049 | CPUState *env = cpu_single_env; |
6b917547 AL |
1050 | int current_tb_modified = 0; |
1051 | target_ulong current_pc = 0; | |
1052 | target_ulong current_cs_base = 0; | |
1053 | int current_flags = 0; | |
d720b93d | 1054 | #endif |
9fa3e853 FB |
1055 | |
1056 | addr &= TARGET_PAGE_MASK; | |
1057 | p = page_find(addr >> TARGET_PAGE_BITS); | |
5fafdf24 | 1058 | if (!p) |
9fa3e853 FB |
1059 | return; |
1060 | tb = p->first_tb; | |
d720b93d FB |
1061 | #ifdef TARGET_HAS_PRECISE_SMC |
1062 | if (tb && pc != 0) { | |
1063 | current_tb = tb_find_pc(pc); | |
1064 | } | |
1065 | #endif | |
9fa3e853 FB |
1066 | while (tb != NULL) { |
1067 | n = (long)tb & 3; | |
1068 | tb = (TranslationBlock *)((long)tb & ~3); | |
d720b93d FB |
1069 | #ifdef TARGET_HAS_PRECISE_SMC |
1070 | if (current_tb == tb && | |
2e70f6ef | 1071 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
1072 | /* If we are modifying the current TB, we must stop |
1073 | its execution. We could be more precise by checking | |
1074 | that the modification is after the current PC, but it | |
1075 | would require a specialized function to partially | |
1076 | restore the CPU state */ | |
3b46e624 | 1077 | |
d720b93d FB |
1078 | current_tb_modified = 1; |
1079 | cpu_restore_state(current_tb, env, pc, puc); | |
6b917547 AL |
1080 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1081 | ¤t_flags); | |
d720b93d FB |
1082 | } |
1083 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
1084 | tb_phys_invalidate(tb, addr); |
1085 | tb = tb->page_next[n]; | |
1086 | } | |
fd6ce8f6 | 1087 | p->first_tb = NULL; |
d720b93d FB |
1088 | #ifdef TARGET_HAS_PRECISE_SMC |
1089 | if (current_tb_modified) { | |
1090 | /* we generate a block containing just the instruction | |
1091 | modifying the memory. It will ensure that it cannot modify | |
1092 | itself */ | |
ea1c1802 | 1093 | env->current_tb = NULL; |
2e70f6ef | 1094 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d FB |
1095 | cpu_resume_from_signal(env, puc); |
1096 | } | |
1097 | #endif | |
fd6ce8f6 | 1098 | } |
9fa3e853 | 1099 | #endif |
fd6ce8f6 FB |
1100 | |
1101 | /* add the tb in the target page and protect it if necessary */ | |
5fafdf24 | 1102 | static inline void tb_alloc_page(TranslationBlock *tb, |
53a5960a | 1103 | unsigned int n, target_ulong page_addr) |
fd6ce8f6 FB |
1104 | { |
1105 | PageDesc *p; | |
9fa3e853 FB |
1106 | TranslationBlock *last_first_tb; |
1107 | ||
1108 | tb->page_addr[n] = page_addr; | |
3a7d929e | 1109 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1110 | tb->page_next[n] = p->first_tb; |
1111 | last_first_tb = p->first_tb; | |
1112 | p->first_tb = (TranslationBlock *)((long)tb | n); | |
1113 | invalidate_page_bitmap(p); | |
fd6ce8f6 | 1114 | |
107db443 | 1115 | #if defined(TARGET_HAS_SMC) || 1 |
d720b93d | 1116 | |
9fa3e853 | 1117 | #if defined(CONFIG_USER_ONLY) |
fd6ce8f6 | 1118 | if (p->flags & PAGE_WRITE) { |
53a5960a PB |
1119 | target_ulong addr; |
1120 | PageDesc *p2; | |
9fa3e853 FB |
1121 | int prot; |
1122 | ||
fd6ce8f6 FB |
1123 | /* force the host page as non writable (writes will have a |
1124 | page fault + mprotect overhead) */ | |
53a5960a | 1125 | page_addr &= qemu_host_page_mask; |
fd6ce8f6 | 1126 | prot = 0; |
53a5960a PB |
1127 | for(addr = page_addr; addr < page_addr + qemu_host_page_size; |
1128 | addr += TARGET_PAGE_SIZE) { | |
1129 | ||
1130 | p2 = page_find (addr >> TARGET_PAGE_BITS); | |
1131 | if (!p2) | |
1132 | continue; | |
1133 | prot |= p2->flags; | |
1134 | p2->flags &= ~PAGE_WRITE; | |
1135 | page_get_flags(addr); | |
1136 | } | |
5fafdf24 | 1137 | mprotect(g2h(page_addr), qemu_host_page_size, |
fd6ce8f6 FB |
1138 | (prot & PAGE_BITS) & ~PAGE_WRITE); |
1139 | #ifdef DEBUG_TB_INVALIDATE | |
ab3d1727 | 1140 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", |
53a5960a | 1141 | page_addr); |
fd6ce8f6 | 1142 | #endif |
fd6ce8f6 | 1143 | } |
9fa3e853 FB |
1144 | #else |
1145 | /* if some code is already present, then the pages are already | |
1146 | protected. So we handle the case where only the first TB is | |
1147 | allocated in a physical page */ | |
1148 | if (!last_first_tb) { | |
6a00d601 | 1149 | tlb_protect_code(page_addr); |
9fa3e853 FB |
1150 | } |
1151 | #endif | |
d720b93d FB |
1152 | |
1153 | #endif /* TARGET_HAS_SMC */ | |
fd6ce8f6 FB |
1154 | } |
1155 | ||
1156 | /* Allocate a new translation block. Flush the translation buffer if | |
1157 | too many translation blocks or too much generated code. */ | |
c27004ec | 1158 | TranslationBlock *tb_alloc(target_ulong pc) |
fd6ce8f6 FB |
1159 | { |
1160 | TranslationBlock *tb; | |
fd6ce8f6 | 1161 | |
26a5f13b FB |
1162 | if (nb_tbs >= code_gen_max_blocks || |
1163 | (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size) | |
d4e8164f | 1164 | return NULL; |
fd6ce8f6 FB |
1165 | tb = &tbs[nb_tbs++]; |
1166 | tb->pc = pc; | |
b448f2f3 | 1167 | tb->cflags = 0; |
d4e8164f FB |
1168 | return tb; |
1169 | } | |
1170 | ||
2e70f6ef PB |
1171 | void tb_free(TranslationBlock *tb) |
1172 | { | |
bf20dc07 | 1173 | /* In practice this is mostly used for single use temporary TB |
2e70f6ef PB |
1174 | Ignore the hard cases and just back up if this TB happens to |
1175 | be the last one generated. */ | |
1176 | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) { | |
1177 | code_gen_ptr = tb->tc_ptr; | |
1178 | nb_tbs--; | |
1179 | } | |
1180 | } | |
1181 | ||
9fa3e853 FB |
1182 | /* add a new TB and link it to the physical page tables. phys_page2 is |
1183 | (-1) to indicate that only one page contains the TB. */ | |
5fafdf24 | 1184 | void tb_link_phys(TranslationBlock *tb, |
9fa3e853 | 1185 | target_ulong phys_pc, target_ulong phys_page2) |
d4e8164f | 1186 | { |
9fa3e853 FB |
1187 | unsigned int h; |
1188 | TranslationBlock **ptb; | |
1189 | ||
c8a706fe PB |
1190 | /* Grab the mmap lock to stop another thread invalidating this TB |
1191 | before we are done. */ | |
1192 | mmap_lock(); | |
9fa3e853 FB |
1193 | /* add in the physical hash table */ |
1194 | h = tb_phys_hash_func(phys_pc); | |
1195 | ptb = &tb_phys_hash[h]; | |
1196 | tb->phys_hash_next = *ptb; | |
1197 | *ptb = tb; | |
fd6ce8f6 FB |
1198 | |
1199 | /* add in the page list */ | |
9fa3e853 FB |
1200 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); |
1201 | if (phys_page2 != -1) | |
1202 | tb_alloc_page(tb, 1, phys_page2); | |
1203 | else | |
1204 | tb->page_addr[1] = -1; | |
9fa3e853 | 1205 | |
d4e8164f FB |
1206 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); |
1207 | tb->jmp_next[0] = NULL; | |
1208 | tb->jmp_next[1] = NULL; | |
1209 | ||
1210 | /* init original jump addresses */ | |
1211 | if (tb->tb_next_offset[0] != 0xffff) | |
1212 | tb_reset_jump(tb, 0); | |
1213 | if (tb->tb_next_offset[1] != 0xffff) | |
1214 | tb_reset_jump(tb, 1); | |
8a40a180 FB |
1215 | |
1216 | #ifdef DEBUG_TB_CHECK | |
1217 | tb_page_check(); | |
1218 | #endif | |
c8a706fe | 1219 | mmap_unlock(); |
fd6ce8f6 FB |
1220 | } |
1221 | ||
9fa3e853 FB |
1222 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < |
1223 | tb[1].tc_ptr. Return NULL if not found */ | |
1224 | TranslationBlock *tb_find_pc(unsigned long tc_ptr) | |
fd6ce8f6 | 1225 | { |
9fa3e853 FB |
1226 | int m_min, m_max, m; |
1227 | unsigned long v; | |
1228 | TranslationBlock *tb; | |
a513fe19 FB |
1229 | |
1230 | if (nb_tbs <= 0) | |
1231 | return NULL; | |
1232 | if (tc_ptr < (unsigned long)code_gen_buffer || | |
1233 | tc_ptr >= (unsigned long)code_gen_ptr) | |
1234 | return NULL; | |
1235 | /* binary search (cf Knuth) */ | |
1236 | m_min = 0; | |
1237 | m_max = nb_tbs - 1; | |
1238 | while (m_min <= m_max) { | |
1239 | m = (m_min + m_max) >> 1; | |
1240 | tb = &tbs[m]; | |
1241 | v = (unsigned long)tb->tc_ptr; | |
1242 | if (v == tc_ptr) | |
1243 | return tb; | |
1244 | else if (tc_ptr < v) { | |
1245 | m_max = m - 1; | |
1246 | } else { | |
1247 | m_min = m + 1; | |
1248 | } | |
5fafdf24 | 1249 | } |
a513fe19 FB |
1250 | return &tbs[m_max]; |
1251 | } | |
7501267e | 1252 | |
ea041c0e FB |
1253 | static void tb_reset_jump_recursive(TranslationBlock *tb); |
1254 | ||
1255 | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) | |
1256 | { | |
1257 | TranslationBlock *tb1, *tb_next, **ptb; | |
1258 | unsigned int n1; | |
1259 | ||
1260 | tb1 = tb->jmp_next[n]; | |
1261 | if (tb1 != NULL) { | |
1262 | /* find head of list */ | |
1263 | for(;;) { | |
1264 | n1 = (long)tb1 & 3; | |
1265 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1266 | if (n1 == 2) | |
1267 | break; | |
1268 | tb1 = tb1->jmp_next[n1]; | |
1269 | } | |
1270 | /* we are now sure now that tb jumps to tb1 */ | |
1271 | tb_next = tb1; | |
1272 | ||
1273 | /* remove tb from the jmp_first list */ | |
1274 | ptb = &tb_next->jmp_first; | |
1275 | for(;;) { | |
1276 | tb1 = *ptb; | |
1277 | n1 = (long)tb1 & 3; | |
1278 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1279 | if (n1 == n && tb1 == tb) | |
1280 | break; | |
1281 | ptb = &tb1->jmp_next[n1]; | |
1282 | } | |
1283 | *ptb = tb->jmp_next[n]; | |
1284 | tb->jmp_next[n] = NULL; | |
3b46e624 | 1285 | |
ea041c0e FB |
1286 | /* suppress the jump to next tb in generated code */ |
1287 | tb_reset_jump(tb, n); | |
1288 | ||
0124311e | 1289 | /* suppress jumps in the tb on which we could have jumped */ |
ea041c0e FB |
1290 | tb_reset_jump_recursive(tb_next); |
1291 | } | |
1292 | } | |
1293 | ||
1294 | static void tb_reset_jump_recursive(TranslationBlock *tb) | |
1295 | { | |
1296 | tb_reset_jump_recursive2(tb, 0); | |
1297 | tb_reset_jump_recursive2(tb, 1); | |
1298 | } | |
1299 | ||
1fddef4b | 1300 | #if defined(TARGET_HAS_ICE) |
d720b93d FB |
1301 | static void breakpoint_invalidate(CPUState *env, target_ulong pc) |
1302 | { | |
9b3c35e0 JM |
1303 | target_phys_addr_t addr; |
1304 | target_ulong pd; | |
c2f07f81 PB |
1305 | ram_addr_t ram_addr; |
1306 | PhysPageDesc *p; | |
d720b93d | 1307 | |
c2f07f81 PB |
1308 | addr = cpu_get_phys_page_debug(env, pc); |
1309 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
1310 | if (!p) { | |
1311 | pd = IO_MEM_UNASSIGNED; | |
1312 | } else { | |
1313 | pd = p->phys_offset; | |
1314 | } | |
1315 | ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK); | |
706cd4b5 | 1316 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
d720b93d | 1317 | } |
c27004ec | 1318 | #endif |
d720b93d | 1319 | |
6658ffb8 | 1320 | /* Add a watchpoint. */ |
a1d1bb31 AL |
1321 | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, |
1322 | int flags, CPUWatchpoint **watchpoint) | |
6658ffb8 | 1323 | { |
b4051334 | 1324 | target_ulong len_mask = ~(len - 1); |
c0ce998e | 1325 | CPUWatchpoint *wp; |
6658ffb8 | 1326 | |
b4051334 AL |
1327 | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ |
1328 | if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) { | |
1329 | fprintf(stderr, "qemu: tried to set invalid watchpoint at " | |
1330 | TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len); | |
1331 | return -EINVAL; | |
1332 | } | |
a1d1bb31 | 1333 | wp = qemu_malloc(sizeof(*wp)); |
a1d1bb31 AL |
1334 | |
1335 | wp->vaddr = addr; | |
b4051334 | 1336 | wp->len_mask = len_mask; |
a1d1bb31 AL |
1337 | wp->flags = flags; |
1338 | ||
2dc9f411 | 1339 | /* keep all GDB-injected watchpoints in front */ |
c0ce998e AL |
1340 | if (flags & BP_GDB) |
1341 | TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry); | |
1342 | else | |
1343 | TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry); | |
6658ffb8 | 1344 | |
6658ffb8 | 1345 | tlb_flush_page(env, addr); |
a1d1bb31 AL |
1346 | |
1347 | if (watchpoint) | |
1348 | *watchpoint = wp; | |
1349 | return 0; | |
6658ffb8 PB |
1350 | } |
1351 | ||
a1d1bb31 AL |
1352 | /* Remove a specific watchpoint. */ |
1353 | int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len, | |
1354 | int flags) | |
6658ffb8 | 1355 | { |
b4051334 | 1356 | target_ulong len_mask = ~(len - 1); |
a1d1bb31 | 1357 | CPUWatchpoint *wp; |
6658ffb8 | 1358 | |
c0ce998e | 1359 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
b4051334 | 1360 | if (addr == wp->vaddr && len_mask == wp->len_mask |
6e140f28 | 1361 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
a1d1bb31 | 1362 | cpu_watchpoint_remove_by_ref(env, wp); |
6658ffb8 PB |
1363 | return 0; |
1364 | } | |
1365 | } | |
a1d1bb31 | 1366 | return -ENOENT; |
6658ffb8 PB |
1367 | } |
1368 | ||
a1d1bb31 AL |
1369 | /* Remove a specific watchpoint by reference. */ |
1370 | void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint) | |
1371 | { | |
c0ce998e | 1372 | TAILQ_REMOVE(&env->watchpoints, watchpoint, entry); |
7d03f82f | 1373 | |
a1d1bb31 AL |
1374 | tlb_flush_page(env, watchpoint->vaddr); |
1375 | ||
1376 | qemu_free(watchpoint); | |
1377 | } | |
1378 | ||
1379 | /* Remove all matching watchpoints. */ | |
1380 | void cpu_watchpoint_remove_all(CPUState *env, int mask) | |
1381 | { | |
c0ce998e | 1382 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 1383 | |
c0ce998e | 1384 | TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) { |
a1d1bb31 AL |
1385 | if (wp->flags & mask) |
1386 | cpu_watchpoint_remove_by_ref(env, wp); | |
c0ce998e | 1387 | } |
7d03f82f EI |
1388 | } |
1389 | ||
a1d1bb31 AL |
1390 | /* Add a breakpoint. */ |
1391 | int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags, | |
1392 | CPUBreakpoint **breakpoint) | |
4c3a88a2 | 1393 | { |
1fddef4b | 1394 | #if defined(TARGET_HAS_ICE) |
c0ce998e | 1395 | CPUBreakpoint *bp; |
3b46e624 | 1396 | |
a1d1bb31 | 1397 | bp = qemu_malloc(sizeof(*bp)); |
4c3a88a2 | 1398 | |
a1d1bb31 AL |
1399 | bp->pc = pc; |
1400 | bp->flags = flags; | |
1401 | ||
2dc9f411 | 1402 | /* keep all GDB-injected breakpoints in front */ |
c0ce998e AL |
1403 | if (flags & BP_GDB) |
1404 | TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry); | |
1405 | else | |
1406 | TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry); | |
3b46e624 | 1407 | |
d720b93d | 1408 | breakpoint_invalidate(env, pc); |
a1d1bb31 AL |
1409 | |
1410 | if (breakpoint) | |
1411 | *breakpoint = bp; | |
4c3a88a2 FB |
1412 | return 0; |
1413 | #else | |
a1d1bb31 | 1414 | return -ENOSYS; |
4c3a88a2 FB |
1415 | #endif |
1416 | } | |
1417 | ||
a1d1bb31 AL |
1418 | /* Remove a specific breakpoint. */ |
1419 | int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags) | |
1420 | { | |
7d03f82f | 1421 | #if defined(TARGET_HAS_ICE) |
a1d1bb31 AL |
1422 | CPUBreakpoint *bp; |
1423 | ||
c0ce998e | 1424 | TAILQ_FOREACH(bp, &env->breakpoints, entry) { |
a1d1bb31 AL |
1425 | if (bp->pc == pc && bp->flags == flags) { |
1426 | cpu_breakpoint_remove_by_ref(env, bp); | |
1427 | return 0; | |
1428 | } | |
7d03f82f | 1429 | } |
a1d1bb31 AL |
1430 | return -ENOENT; |
1431 | #else | |
1432 | return -ENOSYS; | |
7d03f82f EI |
1433 | #endif |
1434 | } | |
1435 | ||
a1d1bb31 AL |
1436 | /* Remove a specific breakpoint by reference. */ |
1437 | void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint) | |
4c3a88a2 | 1438 | { |
1fddef4b | 1439 | #if defined(TARGET_HAS_ICE) |
c0ce998e | 1440 | TAILQ_REMOVE(&env->breakpoints, breakpoint, entry); |
d720b93d | 1441 | |
a1d1bb31 AL |
1442 | breakpoint_invalidate(env, breakpoint->pc); |
1443 | ||
1444 | qemu_free(breakpoint); | |
1445 | #endif | |
1446 | } | |
1447 | ||
1448 | /* Remove all matching breakpoints. */ | |
1449 | void cpu_breakpoint_remove_all(CPUState *env, int mask) | |
1450 | { | |
1451 | #if defined(TARGET_HAS_ICE) | |
c0ce998e | 1452 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 1453 | |
c0ce998e | 1454 | TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) { |
a1d1bb31 AL |
1455 | if (bp->flags & mask) |
1456 | cpu_breakpoint_remove_by_ref(env, bp); | |
c0ce998e | 1457 | } |
4c3a88a2 FB |
1458 | #endif |
1459 | } | |
1460 | ||
c33a346e FB |
1461 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
1462 | CPU loop after each instruction */ | |
1463 | void cpu_single_step(CPUState *env, int enabled) | |
1464 | { | |
1fddef4b | 1465 | #if defined(TARGET_HAS_ICE) |
c33a346e FB |
1466 | if (env->singlestep_enabled != enabled) { |
1467 | env->singlestep_enabled = enabled; | |
e22a25c9 AL |
1468 | if (kvm_enabled()) |
1469 | kvm_update_guest_debug(env, 0); | |
1470 | else { | |
ccbb4d44 | 1471 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 AL |
1472 | /* XXX: only flush what is necessary */ |
1473 | tb_flush(env); | |
1474 | } | |
c33a346e FB |
1475 | } |
1476 | #endif | |
1477 | } | |
1478 | ||
34865134 FB |
1479 | /* enable or disable low levels log */ |
1480 | void cpu_set_log(int log_flags) | |
1481 | { | |
1482 | loglevel = log_flags; | |
1483 | if (loglevel && !logfile) { | |
11fcfab4 | 1484 | logfile = fopen(logfilename, log_append ? "a" : "w"); |
34865134 FB |
1485 | if (!logfile) { |
1486 | perror(logfilename); | |
1487 | _exit(1); | |
1488 | } | |
9fa3e853 FB |
1489 | #if !defined(CONFIG_SOFTMMU) |
1490 | /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ | |
1491 | { | |
b55266b5 | 1492 | static char logfile_buf[4096]; |
9fa3e853 FB |
1493 | setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); |
1494 | } | |
bf65f53f FN |
1495 | #elif !defined(_WIN32) |
1496 | /* Win32 doesn't support line-buffering and requires size >= 2 */ | |
34865134 | 1497 | setvbuf(logfile, NULL, _IOLBF, 0); |
9fa3e853 | 1498 | #endif |
e735b91c PB |
1499 | log_append = 1; |
1500 | } | |
1501 | if (!loglevel && logfile) { | |
1502 | fclose(logfile); | |
1503 | logfile = NULL; | |
34865134 FB |
1504 | } |
1505 | } | |
1506 | ||
1507 | void cpu_set_log_filename(const char *filename) | |
1508 | { | |
1509 | logfilename = strdup(filename); | |
e735b91c PB |
1510 | if (logfile) { |
1511 | fclose(logfile); | |
1512 | logfile = NULL; | |
1513 | } | |
1514 | cpu_set_log(loglevel); | |
34865134 | 1515 | } |
c33a346e | 1516 | |
3098dba0 | 1517 | static void cpu_unlink_tb(CPUState *env) |
ea041c0e | 1518 | { |
2f7bb878 | 1519 | #if defined(CONFIG_USE_NPTL) |
3098dba0 AJ |
1520 | /* FIXME: TB unchaining isn't SMP safe. For now just ignore the |
1521 | problem and hope the cpu will stop of its own accord. For userspace | |
1522 | emulation this often isn't actually as bad as it sounds. Often | |
1523 | signals are used primarily to interrupt blocking syscalls. */ | |
1524 | #else | |
ea041c0e | 1525 | TranslationBlock *tb; |
15a51156 | 1526 | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; |
59817ccb | 1527 | |
3098dba0 AJ |
1528 | tb = env->current_tb; |
1529 | /* if the cpu is currently executing code, we must unlink it and | |
1530 | all the potentially executing TB */ | |
1531 | if (tb && !testandset(&interrupt_lock)) { | |
1532 | env->current_tb = NULL; | |
1533 | tb_reset_jump_recursive(tb); | |
1534 | resetlock(&interrupt_lock); | |
be214e6c | 1535 | } |
3098dba0 AJ |
1536 | #endif |
1537 | } | |
1538 | ||
1539 | /* mask must never be zero, except for A20 change call */ | |
1540 | void cpu_interrupt(CPUState *env, int mask) | |
1541 | { | |
1542 | int old_mask; | |
be214e6c | 1543 | |
2e70f6ef | 1544 | old_mask = env->interrupt_request; |
68a79315 | 1545 | env->interrupt_request |= mask; |
3098dba0 | 1546 | |
8edac960 AL |
1547 | #ifndef CONFIG_USER_ONLY |
1548 | /* | |
1549 | * If called from iothread context, wake the target cpu in | |
1550 | * case its halted. | |
1551 | */ | |
1552 | if (!qemu_cpu_self(env)) { | |
1553 | qemu_cpu_kick(env); | |
1554 | return; | |
1555 | } | |
1556 | #endif | |
1557 | ||
2e70f6ef | 1558 | if (use_icount) { |
266910c4 | 1559 | env->icount_decr.u16.high = 0xffff; |
2e70f6ef | 1560 | #ifndef CONFIG_USER_ONLY |
2e70f6ef | 1561 | if (!can_do_io(env) |
be214e6c | 1562 | && (mask & ~old_mask) != 0) { |
2e70f6ef PB |
1563 | cpu_abort(env, "Raised interrupt while not in I/O function"); |
1564 | } | |
1565 | #endif | |
1566 | } else { | |
3098dba0 | 1567 | cpu_unlink_tb(env); |
ea041c0e FB |
1568 | } |
1569 | } | |
1570 | ||
b54ad049 FB |
1571 | void cpu_reset_interrupt(CPUState *env, int mask) |
1572 | { | |
1573 | env->interrupt_request &= ~mask; | |
1574 | } | |
1575 | ||
3098dba0 AJ |
1576 | void cpu_exit(CPUState *env) |
1577 | { | |
1578 | env->exit_request = 1; | |
1579 | cpu_unlink_tb(env); | |
1580 | } | |
1581 | ||
c7cd6a37 | 1582 | const CPULogItem cpu_log_items[] = { |
5fafdf24 | 1583 | { CPU_LOG_TB_OUT_ASM, "out_asm", |
f193c797 FB |
1584 | "show generated host assembly code for each compiled TB" }, |
1585 | { CPU_LOG_TB_IN_ASM, "in_asm", | |
1586 | "show target assembly code for each compiled TB" }, | |
5fafdf24 | 1587 | { CPU_LOG_TB_OP, "op", |
57fec1fe | 1588 | "show micro ops for each compiled TB" }, |
f193c797 | 1589 | { CPU_LOG_TB_OP_OPT, "op_opt", |
e01a1157 BS |
1590 | "show micro ops " |
1591 | #ifdef TARGET_I386 | |
1592 | "before eflags optimization and " | |
f193c797 | 1593 | #endif |
e01a1157 | 1594 | "after liveness analysis" }, |
f193c797 FB |
1595 | { CPU_LOG_INT, "int", |
1596 | "show interrupts/exceptions in short format" }, | |
1597 | { CPU_LOG_EXEC, "exec", | |
1598 | "show trace before each executed TB (lots of logs)" }, | |
9fddaa0c | 1599 | { CPU_LOG_TB_CPU, "cpu", |
e91c8a77 | 1600 | "show CPU state before block translation" }, |
f193c797 FB |
1601 | #ifdef TARGET_I386 |
1602 | { CPU_LOG_PCALL, "pcall", | |
1603 | "show protected mode far calls/returns/exceptions" }, | |
eca1bdf4 AL |
1604 | { CPU_LOG_RESET, "cpu_reset", |
1605 | "show CPU state before CPU resets" }, | |
f193c797 | 1606 | #endif |
8e3a9fd2 | 1607 | #ifdef DEBUG_IOPORT |
fd872598 FB |
1608 | { CPU_LOG_IOPORT, "ioport", |
1609 | "show all i/o ports accesses" }, | |
8e3a9fd2 | 1610 | #endif |
f193c797 FB |
1611 | { 0, NULL, NULL }, |
1612 | }; | |
1613 | ||
1614 | static int cmp1(const char *s1, int n, const char *s2) | |
1615 | { | |
1616 | if (strlen(s2) != n) | |
1617 | return 0; | |
1618 | return memcmp(s1, s2, n) == 0; | |
1619 | } | |
3b46e624 | 1620 | |
f193c797 FB |
1621 | /* takes a comma separated list of log masks. Return 0 if error. */ |
1622 | int cpu_str_to_log_mask(const char *str) | |
1623 | { | |
c7cd6a37 | 1624 | const CPULogItem *item; |
f193c797 FB |
1625 | int mask; |
1626 | const char *p, *p1; | |
1627 | ||
1628 | p = str; | |
1629 | mask = 0; | |
1630 | for(;;) { | |
1631 | p1 = strchr(p, ','); | |
1632 | if (!p1) | |
1633 | p1 = p + strlen(p); | |
8e3a9fd2 FB |
1634 | if(cmp1(p,p1-p,"all")) { |
1635 | for(item = cpu_log_items; item->mask != 0; item++) { | |
1636 | mask |= item->mask; | |
1637 | } | |
1638 | } else { | |
f193c797 FB |
1639 | for(item = cpu_log_items; item->mask != 0; item++) { |
1640 | if (cmp1(p, p1 - p, item->name)) | |
1641 | goto found; | |
1642 | } | |
1643 | return 0; | |
8e3a9fd2 | 1644 | } |
f193c797 FB |
1645 | found: |
1646 | mask |= item->mask; | |
1647 | if (*p1 != ',') | |
1648 | break; | |
1649 | p = p1 + 1; | |
1650 | } | |
1651 | return mask; | |
1652 | } | |
ea041c0e | 1653 | |
7501267e FB |
1654 | void cpu_abort(CPUState *env, const char *fmt, ...) |
1655 | { | |
1656 | va_list ap; | |
493ae1f0 | 1657 | va_list ap2; |
7501267e FB |
1658 | |
1659 | va_start(ap, fmt); | |
493ae1f0 | 1660 | va_copy(ap2, ap); |
7501267e FB |
1661 | fprintf(stderr, "qemu: fatal: "); |
1662 | vfprintf(stderr, fmt, ap); | |
1663 | fprintf(stderr, "\n"); | |
1664 | #ifdef TARGET_I386 | |
7fe48483 FB |
1665 | cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); |
1666 | #else | |
1667 | cpu_dump_state(env, stderr, fprintf, 0); | |
7501267e | 1668 | #endif |
93fcfe39 AL |
1669 | if (qemu_log_enabled()) { |
1670 | qemu_log("qemu: fatal: "); | |
1671 | qemu_log_vprintf(fmt, ap2); | |
1672 | qemu_log("\n"); | |
f9373291 | 1673 | #ifdef TARGET_I386 |
93fcfe39 | 1674 | log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP); |
f9373291 | 1675 | #else |
93fcfe39 | 1676 | log_cpu_state(env, 0); |
f9373291 | 1677 | #endif |
31b1a7b4 | 1678 | qemu_log_flush(); |
93fcfe39 | 1679 | qemu_log_close(); |
924edcae | 1680 | } |
493ae1f0 | 1681 | va_end(ap2); |
f9373291 | 1682 | va_end(ap); |
7501267e FB |
1683 | abort(); |
1684 | } | |
1685 | ||
c5be9f08 TS |
1686 | CPUState *cpu_copy(CPUState *env) |
1687 | { | |
01ba9816 | 1688 | CPUState *new_env = cpu_init(env->cpu_model_str); |
c5be9f08 TS |
1689 | CPUState *next_cpu = new_env->next_cpu; |
1690 | int cpu_index = new_env->cpu_index; | |
5a38f081 AL |
1691 | #if defined(TARGET_HAS_ICE) |
1692 | CPUBreakpoint *bp; | |
1693 | CPUWatchpoint *wp; | |
1694 | #endif | |
1695 | ||
c5be9f08 | 1696 | memcpy(new_env, env, sizeof(CPUState)); |
5a38f081 AL |
1697 | |
1698 | /* Preserve chaining and index. */ | |
c5be9f08 TS |
1699 | new_env->next_cpu = next_cpu; |
1700 | new_env->cpu_index = cpu_index; | |
5a38f081 AL |
1701 | |
1702 | /* Clone all break/watchpoints. | |
1703 | Note: Once we support ptrace with hw-debug register access, make sure | |
1704 | BP_CPU break/watchpoints are handled correctly on clone. */ | |
1705 | TAILQ_INIT(&env->breakpoints); | |
1706 | TAILQ_INIT(&env->watchpoints); | |
1707 | #if defined(TARGET_HAS_ICE) | |
1708 | TAILQ_FOREACH(bp, &env->breakpoints, entry) { | |
1709 | cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL); | |
1710 | } | |
1711 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
1712 | cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1, | |
1713 | wp->flags, NULL); | |
1714 | } | |
1715 | #endif | |
1716 | ||
c5be9f08 TS |
1717 | return new_env; |
1718 | } | |
1719 | ||
0124311e FB |
1720 | #if !defined(CONFIG_USER_ONLY) |
1721 | ||
5c751e99 EI |
1722 | static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr) |
1723 | { | |
1724 | unsigned int i; | |
1725 | ||
1726 | /* Discard jump cache entries for any tb which might potentially | |
1727 | overlap the flushed page. */ | |
1728 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
1729 | memset (&env->tb_jmp_cache[i], 0, | |
1730 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1731 | ||
1732 | i = tb_jmp_cache_hash_page(addr); | |
1733 | memset (&env->tb_jmp_cache[i], 0, | |
1734 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1735 | } | |
1736 | ||
08738984 IK |
1737 | static CPUTLBEntry s_cputlb_empty_entry = { |
1738 | .addr_read = -1, | |
1739 | .addr_write = -1, | |
1740 | .addr_code = -1, | |
1741 | .addend = -1, | |
1742 | }; | |
1743 | ||
ee8b7021 FB |
1744 | /* NOTE: if flush_global is true, also flush global entries (not |
1745 | implemented yet) */ | |
1746 | void tlb_flush(CPUState *env, int flush_global) | |
33417e70 | 1747 | { |
33417e70 | 1748 | int i; |
0124311e | 1749 | |
9fa3e853 FB |
1750 | #if defined(DEBUG_TLB) |
1751 | printf("tlb_flush:\n"); | |
1752 | #endif | |
0124311e FB |
1753 | /* must reset current TB so that interrupts cannot modify the |
1754 | links while we are modifying them */ | |
1755 | env->current_tb = NULL; | |
1756 | ||
33417e70 | 1757 | for(i = 0; i < CPU_TLB_SIZE; i++) { |
cfde4bd9 IY |
1758 | int mmu_idx; |
1759 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
08738984 | 1760 | env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry; |
cfde4bd9 | 1761 | } |
33417e70 | 1762 | } |
9fa3e853 | 1763 | |
8a40a180 | 1764 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); |
9fa3e853 | 1765 | |
640f42e4 | 1766 | #ifdef CONFIG_KQEMU |
0a962c02 FB |
1767 | if (env->kqemu_enabled) { |
1768 | kqemu_flush(env, flush_global); | |
1769 | } | |
9fa3e853 | 1770 | #endif |
e3db7226 | 1771 | tlb_flush_count++; |
33417e70 FB |
1772 | } |
1773 | ||
274da6b2 | 1774 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) |
61382a50 | 1775 | { |
5fafdf24 | 1776 | if (addr == (tlb_entry->addr_read & |
84b7b8e7 | 1777 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1778 | addr == (tlb_entry->addr_write & |
84b7b8e7 | 1779 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1780 | addr == (tlb_entry->addr_code & |
84b7b8e7 | 1781 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
08738984 | 1782 | *tlb_entry = s_cputlb_empty_entry; |
84b7b8e7 | 1783 | } |
61382a50 FB |
1784 | } |
1785 | ||
2e12669a | 1786 | void tlb_flush_page(CPUState *env, target_ulong addr) |
33417e70 | 1787 | { |
8a40a180 | 1788 | int i; |
cfde4bd9 | 1789 | int mmu_idx; |
0124311e | 1790 | |
9fa3e853 | 1791 | #if defined(DEBUG_TLB) |
108c49b8 | 1792 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); |
9fa3e853 | 1793 | #endif |
0124311e FB |
1794 | /* must reset current TB so that interrupts cannot modify the |
1795 | links while we are modifying them */ | |
1796 | env->current_tb = NULL; | |
61382a50 FB |
1797 | |
1798 | addr &= TARGET_PAGE_MASK; | |
1799 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
cfde4bd9 IY |
1800 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) |
1801 | tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); | |
0124311e | 1802 | |
5c751e99 | 1803 | tlb_flush_jmp_cache(env, addr); |
9fa3e853 | 1804 | |
640f42e4 | 1805 | #ifdef CONFIG_KQEMU |
0a962c02 FB |
1806 | if (env->kqemu_enabled) { |
1807 | kqemu_flush_page(env, addr); | |
1808 | } | |
1809 | #endif | |
9fa3e853 FB |
1810 | } |
1811 | ||
9fa3e853 FB |
1812 | /* update the TLBs so that writes to code in the virtual page 'addr' |
1813 | can be detected */ | |
6a00d601 | 1814 | static void tlb_protect_code(ram_addr_t ram_addr) |
9fa3e853 | 1815 | { |
5fafdf24 | 1816 | cpu_physical_memory_reset_dirty(ram_addr, |
6a00d601 FB |
1817 | ram_addr + TARGET_PAGE_SIZE, |
1818 | CODE_DIRTY_FLAG); | |
9fa3e853 FB |
1819 | } |
1820 | ||
9fa3e853 | 1821 | /* update the TLB so that writes in physical page 'phys_addr' are no longer |
3a7d929e | 1822 | tested for self modifying code */ |
5fafdf24 | 1823 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 1824 | target_ulong vaddr) |
9fa3e853 | 1825 | { |
3a7d929e | 1826 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG; |
1ccde1cb FB |
1827 | } |
1828 | ||
5fafdf24 | 1829 | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, |
1ccde1cb FB |
1830 | unsigned long start, unsigned long length) |
1831 | { | |
1832 | unsigned long addr; | |
84b7b8e7 FB |
1833 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
1834 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | |
1ccde1cb | 1835 | if ((addr - start) < length) { |
0f459d16 | 1836 | tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY; |
1ccde1cb FB |
1837 | } |
1838 | } | |
1839 | } | |
1840 | ||
5579c7f3 | 1841 | /* Note: start and end must be within the same ram block. */ |
3a7d929e | 1842 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, |
0a962c02 | 1843 | int dirty_flags) |
1ccde1cb FB |
1844 | { |
1845 | CPUState *env; | |
4f2ac237 | 1846 | unsigned long length, start1; |
0a962c02 FB |
1847 | int i, mask, len; |
1848 | uint8_t *p; | |
1ccde1cb FB |
1849 | |
1850 | start &= TARGET_PAGE_MASK; | |
1851 | end = TARGET_PAGE_ALIGN(end); | |
1852 | ||
1853 | length = end - start; | |
1854 | if (length == 0) | |
1855 | return; | |
0a962c02 | 1856 | len = length >> TARGET_PAGE_BITS; |
640f42e4 | 1857 | #ifdef CONFIG_KQEMU |
6a00d601 FB |
1858 | /* XXX: should not depend on cpu context */ |
1859 | env = first_cpu; | |
3a7d929e | 1860 | if (env->kqemu_enabled) { |
f23db169 FB |
1861 | ram_addr_t addr; |
1862 | addr = start; | |
1863 | for(i = 0; i < len; i++) { | |
1864 | kqemu_set_notdirty(env, addr); | |
1865 | addr += TARGET_PAGE_SIZE; | |
1866 | } | |
3a7d929e FB |
1867 | } |
1868 | #endif | |
f23db169 FB |
1869 | mask = ~dirty_flags; |
1870 | p = phys_ram_dirty + (start >> TARGET_PAGE_BITS); | |
1871 | for(i = 0; i < len; i++) | |
1872 | p[i] &= mask; | |
1873 | ||
1ccde1cb FB |
1874 | /* we modify the TLB cache so that the dirty bit will be set again |
1875 | when accessing the range */ | |
5579c7f3 PB |
1876 | start1 = (unsigned long)qemu_get_ram_ptr(start); |
1877 | /* Chek that we don't span multiple blocks - this breaks the | |
1878 | address comparisons below. */ | |
1879 | if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1 | |
1880 | != (end - 1) - start) { | |
1881 | abort(); | |
1882 | } | |
1883 | ||
6a00d601 | 1884 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
cfde4bd9 IY |
1885 | int mmu_idx; |
1886 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
1887 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1888 | tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], | |
1889 | start1, length); | |
1890 | } | |
6a00d601 | 1891 | } |
1ccde1cb FB |
1892 | } |
1893 | ||
74576198 AL |
1894 | int cpu_physical_memory_set_dirty_tracking(int enable) |
1895 | { | |
1896 | in_migration = enable; | |
b0a46a33 JK |
1897 | if (kvm_enabled()) { |
1898 | return kvm_set_migration_log(enable); | |
1899 | } | |
74576198 AL |
1900 | return 0; |
1901 | } | |
1902 | ||
1903 | int cpu_physical_memory_get_dirty_tracking(void) | |
1904 | { | |
1905 | return in_migration; | |
1906 | } | |
1907 | ||
151f7749 JK |
1908 | int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, |
1909 | target_phys_addr_t end_addr) | |
2bec46dc | 1910 | { |
151f7749 JK |
1911 | int ret = 0; |
1912 | ||
2bec46dc | 1913 | if (kvm_enabled()) |
151f7749 JK |
1914 | ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr); |
1915 | return ret; | |
2bec46dc AL |
1916 | } |
1917 | ||
3a7d929e FB |
1918 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) |
1919 | { | |
1920 | ram_addr_t ram_addr; | |
5579c7f3 | 1921 | void *p; |
3a7d929e | 1922 | |
84b7b8e7 | 1923 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
5579c7f3 PB |
1924 | p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK) |
1925 | + tlb_entry->addend); | |
1926 | ram_addr = qemu_ram_addr_from_host(p); | |
3a7d929e | 1927 | if (!cpu_physical_memory_is_dirty(ram_addr)) { |
0f459d16 | 1928 | tlb_entry->addr_write |= TLB_NOTDIRTY; |
3a7d929e FB |
1929 | } |
1930 | } | |
1931 | } | |
1932 | ||
1933 | /* update the TLB according to the current state of the dirty bits */ | |
1934 | void cpu_tlb_update_dirty(CPUState *env) | |
1935 | { | |
1936 | int i; | |
cfde4bd9 IY |
1937 | int mmu_idx; |
1938 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
1939 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1940 | tlb_update_dirty(&env->tlb_table[mmu_idx][i]); | |
1941 | } | |
3a7d929e FB |
1942 | } |
1943 | ||
0f459d16 | 1944 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) |
1ccde1cb | 1945 | { |
0f459d16 PB |
1946 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) |
1947 | tlb_entry->addr_write = vaddr; | |
1ccde1cb FB |
1948 | } |
1949 | ||
0f459d16 PB |
1950 | /* update the TLB corresponding to virtual page vaddr |
1951 | so that it is no longer dirty */ | |
1952 | static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr) | |
1ccde1cb | 1953 | { |
1ccde1cb | 1954 | int i; |
cfde4bd9 | 1955 | int mmu_idx; |
1ccde1cb | 1956 | |
0f459d16 | 1957 | vaddr &= TARGET_PAGE_MASK; |
1ccde1cb | 1958 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
cfde4bd9 IY |
1959 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) |
1960 | tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); | |
9fa3e853 FB |
1961 | } |
1962 | ||
59817ccb FB |
1963 | /* add a new TLB entry. At most one entry for a given virtual address |
1964 | is permitted. Return 0 if OK or 2 if the page could not be mapped | |
1965 | (can only happen in non SOFTMMU mode for I/O pages or pages | |
1966 | conflicting with the host address space). */ | |
5fafdf24 TS |
1967 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
1968 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 1969 | int mmu_idx, int is_softmmu) |
9fa3e853 | 1970 | { |
92e873b9 | 1971 | PhysPageDesc *p; |
4f2ac237 | 1972 | unsigned long pd; |
9fa3e853 | 1973 | unsigned int index; |
4f2ac237 | 1974 | target_ulong address; |
0f459d16 | 1975 | target_ulong code_address; |
108c49b8 | 1976 | target_phys_addr_t addend; |
9fa3e853 | 1977 | int ret; |
84b7b8e7 | 1978 | CPUTLBEntry *te; |
a1d1bb31 | 1979 | CPUWatchpoint *wp; |
0f459d16 | 1980 | target_phys_addr_t iotlb; |
9fa3e853 | 1981 | |
92e873b9 | 1982 | p = phys_page_find(paddr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1983 | if (!p) { |
1984 | pd = IO_MEM_UNASSIGNED; | |
9fa3e853 FB |
1985 | } else { |
1986 | pd = p->phys_offset; | |
9fa3e853 FB |
1987 | } |
1988 | #if defined(DEBUG_TLB) | |
6ebbf390 JM |
1989 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n", |
1990 | vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd); | |
9fa3e853 FB |
1991 | #endif |
1992 | ||
1993 | ret = 0; | |
0f459d16 PB |
1994 | address = vaddr; |
1995 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { | |
1996 | /* IO memory case (romd handled later) */ | |
1997 | address |= TLB_MMIO; | |
1998 | } | |
5579c7f3 | 1999 | addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK); |
0f459d16 PB |
2000 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) { |
2001 | /* Normal RAM. */ | |
2002 | iotlb = pd & TARGET_PAGE_MASK; | |
2003 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM) | |
2004 | iotlb |= IO_MEM_NOTDIRTY; | |
2005 | else | |
2006 | iotlb |= IO_MEM_ROM; | |
2007 | } else { | |
ccbb4d44 | 2008 | /* IO handlers are currently passed a physical address. |
0f459d16 PB |
2009 | It would be nice to pass an offset from the base address |
2010 | of that region. This would avoid having to special case RAM, | |
2011 | and avoid full address decoding in every device. | |
2012 | We can't use the high bits of pd for this because | |
2013 | IO_MEM_ROMD uses these as a ram address. */ | |
8da3ff18 PB |
2014 | iotlb = (pd & ~TARGET_PAGE_MASK); |
2015 | if (p) { | |
8da3ff18 PB |
2016 | iotlb += p->region_offset; |
2017 | } else { | |
2018 | iotlb += paddr; | |
2019 | } | |
0f459d16 PB |
2020 | } |
2021 | ||
2022 | code_address = address; | |
2023 | /* Make accesses to pages with watchpoints go via the | |
2024 | watchpoint trap routines. */ | |
c0ce998e | 2025 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
a1d1bb31 | 2026 | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) { |
0f459d16 PB |
2027 | iotlb = io_mem_watch + paddr; |
2028 | /* TODO: The memory case can be optimized by not trapping | |
2029 | reads of pages with a write breakpoint. */ | |
2030 | address |= TLB_MMIO; | |
6658ffb8 | 2031 | } |
0f459d16 | 2032 | } |
d79acba4 | 2033 | |
0f459d16 PB |
2034 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
2035 | env->iotlb[mmu_idx][index] = iotlb - vaddr; | |
2036 | te = &env->tlb_table[mmu_idx][index]; | |
2037 | te->addend = addend - vaddr; | |
2038 | if (prot & PAGE_READ) { | |
2039 | te->addr_read = address; | |
2040 | } else { | |
2041 | te->addr_read = -1; | |
2042 | } | |
5c751e99 | 2043 | |
0f459d16 PB |
2044 | if (prot & PAGE_EXEC) { |
2045 | te->addr_code = code_address; | |
2046 | } else { | |
2047 | te->addr_code = -1; | |
2048 | } | |
2049 | if (prot & PAGE_WRITE) { | |
2050 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || | |
2051 | (pd & IO_MEM_ROMD)) { | |
2052 | /* Write access calls the I/O callback. */ | |
2053 | te->addr_write = address | TLB_MMIO; | |
2054 | } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && | |
2055 | !cpu_physical_memory_is_dirty(pd)) { | |
2056 | te->addr_write = address | TLB_NOTDIRTY; | |
9fa3e853 | 2057 | } else { |
0f459d16 | 2058 | te->addr_write = address; |
9fa3e853 | 2059 | } |
0f459d16 PB |
2060 | } else { |
2061 | te->addr_write = -1; | |
9fa3e853 | 2062 | } |
9fa3e853 FB |
2063 | return ret; |
2064 | } | |
2065 | ||
0124311e FB |
2066 | #else |
2067 | ||
ee8b7021 | 2068 | void tlb_flush(CPUState *env, int flush_global) |
0124311e FB |
2069 | { |
2070 | } | |
2071 | ||
2e12669a | 2072 | void tlb_flush_page(CPUState *env, target_ulong addr) |
0124311e FB |
2073 | { |
2074 | } | |
2075 | ||
5fafdf24 TS |
2076 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
2077 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 2078 | int mmu_idx, int is_softmmu) |
9fa3e853 FB |
2079 | { |
2080 | return 0; | |
2081 | } | |
0124311e | 2082 | |
edf8e2af MW |
2083 | /* |
2084 | * Walks guest process memory "regions" one by one | |
2085 | * and calls callback function 'fn' for each region. | |
2086 | */ | |
2087 | int walk_memory_regions(void *priv, | |
2088 | int (*fn)(void *, unsigned long, unsigned long, unsigned long)) | |
33417e70 | 2089 | { |
9fa3e853 | 2090 | unsigned long start, end; |
edf8e2af | 2091 | PageDesc *p = NULL; |
9fa3e853 | 2092 | int i, j, prot, prot1; |
edf8e2af | 2093 | int rc = 0; |
33417e70 | 2094 | |
edf8e2af | 2095 | start = end = -1; |
9fa3e853 | 2096 | prot = 0; |
edf8e2af MW |
2097 | |
2098 | for (i = 0; i <= L1_SIZE; i++) { | |
2099 | p = (i < L1_SIZE) ? l1_map[i] : NULL; | |
2100 | for (j = 0; j < L2_SIZE; j++) { | |
2101 | prot1 = (p == NULL) ? 0 : p[j].flags; | |
2102 | /* | |
2103 | * "region" is one continuous chunk of memory | |
2104 | * that has same protection flags set. | |
2105 | */ | |
9fa3e853 FB |
2106 | if (prot1 != prot) { |
2107 | end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS); | |
2108 | if (start != -1) { | |
edf8e2af MW |
2109 | rc = (*fn)(priv, start, end, prot); |
2110 | /* callback can stop iteration by returning != 0 */ | |
2111 | if (rc != 0) | |
2112 | return (rc); | |
9fa3e853 FB |
2113 | } |
2114 | if (prot1 != 0) | |
2115 | start = end; | |
2116 | else | |
2117 | start = -1; | |
2118 | prot = prot1; | |
2119 | } | |
edf8e2af | 2120 | if (p == NULL) |
9fa3e853 FB |
2121 | break; |
2122 | } | |
33417e70 | 2123 | } |
edf8e2af MW |
2124 | return (rc); |
2125 | } | |
2126 | ||
2127 | static int dump_region(void *priv, unsigned long start, | |
2128 | unsigned long end, unsigned long prot) | |
2129 | { | |
2130 | FILE *f = (FILE *)priv; | |
2131 | ||
2132 | (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n", | |
2133 | start, end, end - start, | |
2134 | ((prot & PAGE_READ) ? 'r' : '-'), | |
2135 | ((prot & PAGE_WRITE) ? 'w' : '-'), | |
2136 | ((prot & PAGE_EXEC) ? 'x' : '-')); | |
2137 | ||
2138 | return (0); | |
2139 | } | |
2140 | ||
2141 | /* dump memory mappings */ | |
2142 | void page_dump(FILE *f) | |
2143 | { | |
2144 | (void) fprintf(f, "%-8s %-8s %-8s %s\n", | |
2145 | "start", "end", "size", "prot"); | |
2146 | walk_memory_regions(f, dump_region); | |
33417e70 FB |
2147 | } |
2148 | ||
53a5960a | 2149 | int page_get_flags(target_ulong address) |
33417e70 | 2150 | { |
9fa3e853 FB |
2151 | PageDesc *p; |
2152 | ||
2153 | p = page_find(address >> TARGET_PAGE_BITS); | |
33417e70 | 2154 | if (!p) |
9fa3e853 FB |
2155 | return 0; |
2156 | return p->flags; | |
2157 | } | |
2158 | ||
2159 | /* modify the flags of a page and invalidate the code if | |
ccbb4d44 | 2160 | necessary. The flag PAGE_WRITE_ORG is positioned automatically |
9fa3e853 | 2161 | depending on PAGE_WRITE */ |
53a5960a | 2162 | void page_set_flags(target_ulong start, target_ulong end, int flags) |
9fa3e853 FB |
2163 | { |
2164 | PageDesc *p; | |
53a5960a | 2165 | target_ulong addr; |
9fa3e853 | 2166 | |
c8a706fe | 2167 | /* mmap_lock should already be held. */ |
9fa3e853 FB |
2168 | start = start & TARGET_PAGE_MASK; |
2169 | end = TARGET_PAGE_ALIGN(end); | |
2170 | if (flags & PAGE_WRITE) | |
2171 | flags |= PAGE_WRITE_ORG; | |
9fa3e853 FB |
2172 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2173 | p = page_find_alloc(addr >> TARGET_PAGE_BITS); | |
17e2377a PB |
2174 | /* We may be called for host regions that are outside guest |
2175 | address space. */ | |
2176 | if (!p) | |
2177 | return; | |
9fa3e853 FB |
2178 | /* if the write protection is set, then we invalidate the code |
2179 | inside */ | |
5fafdf24 | 2180 | if (!(p->flags & PAGE_WRITE) && |
9fa3e853 FB |
2181 | (flags & PAGE_WRITE) && |
2182 | p->first_tb) { | |
d720b93d | 2183 | tb_invalidate_phys_page(addr, 0, NULL); |
9fa3e853 FB |
2184 | } |
2185 | p->flags = flags; | |
2186 | } | |
33417e70 FB |
2187 | } |
2188 | ||
3d97b40b TS |
2189 | int page_check_range(target_ulong start, target_ulong len, int flags) |
2190 | { | |
2191 | PageDesc *p; | |
2192 | target_ulong end; | |
2193 | target_ulong addr; | |
2194 | ||
55f280c9 AZ |
2195 | if (start + len < start) |
2196 | /* we've wrapped around */ | |
2197 | return -1; | |
2198 | ||
3d97b40b TS |
2199 | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */ |
2200 | start = start & TARGET_PAGE_MASK; | |
2201 | ||
3d97b40b TS |
2202 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2203 | p = page_find(addr >> TARGET_PAGE_BITS); | |
2204 | if( !p ) | |
2205 | return -1; | |
2206 | if( !(p->flags & PAGE_VALID) ) | |
2207 | return -1; | |
2208 | ||
dae3270c | 2209 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) |
3d97b40b | 2210 | return -1; |
dae3270c FB |
2211 | if (flags & PAGE_WRITE) { |
2212 | if (!(p->flags & PAGE_WRITE_ORG)) | |
2213 | return -1; | |
2214 | /* unprotect the page if it was put read-only because it | |
2215 | contains translated code */ | |
2216 | if (!(p->flags & PAGE_WRITE)) { | |
2217 | if (!page_unprotect(addr, 0, NULL)) | |
2218 | return -1; | |
2219 | } | |
2220 | return 0; | |
2221 | } | |
3d97b40b TS |
2222 | } |
2223 | return 0; | |
2224 | } | |
2225 | ||
9fa3e853 | 2226 | /* called from signal handler: invalidate the code and unprotect the |
ccbb4d44 | 2227 | page. Return TRUE if the fault was successfully handled. */ |
53a5960a | 2228 | int page_unprotect(target_ulong address, unsigned long pc, void *puc) |
9fa3e853 FB |
2229 | { |
2230 | unsigned int page_index, prot, pindex; | |
2231 | PageDesc *p, *p1; | |
53a5960a | 2232 | target_ulong host_start, host_end, addr; |
9fa3e853 | 2233 | |
c8a706fe PB |
2234 | /* Technically this isn't safe inside a signal handler. However we |
2235 | know this only ever happens in a synchronous SEGV handler, so in | |
2236 | practice it seems to be ok. */ | |
2237 | mmap_lock(); | |
2238 | ||
83fb7adf | 2239 | host_start = address & qemu_host_page_mask; |
9fa3e853 FB |
2240 | page_index = host_start >> TARGET_PAGE_BITS; |
2241 | p1 = page_find(page_index); | |
c8a706fe PB |
2242 | if (!p1) { |
2243 | mmap_unlock(); | |
9fa3e853 | 2244 | return 0; |
c8a706fe | 2245 | } |
83fb7adf | 2246 | host_end = host_start + qemu_host_page_size; |
9fa3e853 FB |
2247 | p = p1; |
2248 | prot = 0; | |
2249 | for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) { | |
2250 | prot |= p->flags; | |
2251 | p++; | |
2252 | } | |
2253 | /* if the page was really writable, then we change its | |
2254 | protection back to writable */ | |
2255 | if (prot & PAGE_WRITE_ORG) { | |
2256 | pindex = (address - host_start) >> TARGET_PAGE_BITS; | |
2257 | if (!(p1[pindex].flags & PAGE_WRITE)) { | |
5fafdf24 | 2258 | mprotect((void *)g2h(host_start), qemu_host_page_size, |
9fa3e853 FB |
2259 | (prot & PAGE_BITS) | PAGE_WRITE); |
2260 | p1[pindex].flags |= PAGE_WRITE; | |
2261 | /* and since the content will be modified, we must invalidate | |
2262 | the corresponding translated code. */ | |
d720b93d | 2263 | tb_invalidate_phys_page(address, pc, puc); |
9fa3e853 FB |
2264 | #ifdef DEBUG_TB_CHECK |
2265 | tb_invalidate_check(address); | |
2266 | #endif | |
c8a706fe | 2267 | mmap_unlock(); |
9fa3e853 FB |
2268 | return 1; |
2269 | } | |
2270 | } | |
c8a706fe | 2271 | mmap_unlock(); |
9fa3e853 FB |
2272 | return 0; |
2273 | } | |
2274 | ||
6a00d601 FB |
2275 | static inline void tlb_set_dirty(CPUState *env, |
2276 | unsigned long addr, target_ulong vaddr) | |
1ccde1cb FB |
2277 | { |
2278 | } | |
9fa3e853 FB |
2279 | #endif /* defined(CONFIG_USER_ONLY) */ |
2280 | ||
e2eef170 | 2281 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 2282 | |
db7b5426 | 2283 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
8da3ff18 | 2284 | ram_addr_t memory, ram_addr_t region_offset); |
00f82b8a | 2285 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
8da3ff18 | 2286 | ram_addr_t orig_memory, ram_addr_t region_offset); |
db7b5426 BS |
2287 | #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \ |
2288 | need_subpage) \ | |
2289 | do { \ | |
2290 | if (addr > start_addr) \ | |
2291 | start_addr2 = 0; \ | |
2292 | else { \ | |
2293 | start_addr2 = start_addr & ~TARGET_PAGE_MASK; \ | |
2294 | if (start_addr2 > 0) \ | |
2295 | need_subpage = 1; \ | |
2296 | } \ | |
2297 | \ | |
49e9fba2 | 2298 | if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \ |
db7b5426 BS |
2299 | end_addr2 = TARGET_PAGE_SIZE - 1; \ |
2300 | else { \ | |
2301 | end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \ | |
2302 | if (end_addr2 < TARGET_PAGE_SIZE - 1) \ | |
2303 | need_subpage = 1; \ | |
2304 | } \ | |
2305 | } while (0) | |
2306 | ||
33417e70 FB |
2307 | /* register physical memory. 'size' must be a multiple of the target |
2308 | page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an | |
8da3ff18 PB |
2309 | io memory page. The address used when calling the IO function is |
2310 | the offset from the start of the region, plus region_offset. Both | |
ccbb4d44 | 2311 | start_addr and region_offset are rounded down to a page boundary |
8da3ff18 PB |
2312 | before calculating this offset. This should not be a problem unless |
2313 | the low bits of start_addr and region_offset differ. */ | |
2314 | void cpu_register_physical_memory_offset(target_phys_addr_t start_addr, | |
2315 | ram_addr_t size, | |
2316 | ram_addr_t phys_offset, | |
2317 | ram_addr_t region_offset) | |
33417e70 | 2318 | { |
108c49b8 | 2319 | target_phys_addr_t addr, end_addr; |
92e873b9 | 2320 | PhysPageDesc *p; |
9d42037b | 2321 | CPUState *env; |
00f82b8a | 2322 | ram_addr_t orig_size = size; |
db7b5426 | 2323 | void *subpage; |
33417e70 | 2324 | |
640f42e4 | 2325 | #ifdef CONFIG_KQEMU |
da260249 FB |
2326 | /* XXX: should not depend on cpu context */ |
2327 | env = first_cpu; | |
2328 | if (env->kqemu_enabled) { | |
2329 | kqemu_set_phys_mem(start_addr, size, phys_offset); | |
2330 | } | |
2331 | #endif | |
7ba1e619 AL |
2332 | if (kvm_enabled()) |
2333 | kvm_set_phys_mem(start_addr, size, phys_offset); | |
2334 | ||
67c4d23c PB |
2335 | if (phys_offset == IO_MEM_UNASSIGNED) { |
2336 | region_offset = start_addr; | |
2337 | } | |
8da3ff18 | 2338 | region_offset &= TARGET_PAGE_MASK; |
5fd386f6 | 2339 | size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK; |
49e9fba2 BS |
2340 | end_addr = start_addr + (target_phys_addr_t)size; |
2341 | for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) { | |
db7b5426 BS |
2342 | p = phys_page_find(addr >> TARGET_PAGE_BITS); |
2343 | if (p && p->phys_offset != IO_MEM_UNASSIGNED) { | |
00f82b8a | 2344 | ram_addr_t orig_memory = p->phys_offset; |
db7b5426 BS |
2345 | target_phys_addr_t start_addr2, end_addr2; |
2346 | int need_subpage = 0; | |
2347 | ||
2348 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, | |
2349 | need_subpage); | |
4254fab8 | 2350 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 BS |
2351 | if (!(orig_memory & IO_MEM_SUBPAGE)) { |
2352 | subpage = subpage_init((addr & TARGET_PAGE_MASK), | |
8da3ff18 PB |
2353 | &p->phys_offset, orig_memory, |
2354 | p->region_offset); | |
db7b5426 BS |
2355 | } else { |
2356 | subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK) | |
2357 | >> IO_MEM_SHIFT]; | |
2358 | } | |
8da3ff18 PB |
2359 | subpage_register(subpage, start_addr2, end_addr2, phys_offset, |
2360 | region_offset); | |
2361 | p->region_offset = 0; | |
db7b5426 BS |
2362 | } else { |
2363 | p->phys_offset = phys_offset; | |
2364 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2365 | (phys_offset & IO_MEM_ROMD)) | |
2366 | phys_offset += TARGET_PAGE_SIZE; | |
2367 | } | |
2368 | } else { | |
2369 | p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
2370 | p->phys_offset = phys_offset; | |
8da3ff18 | 2371 | p->region_offset = region_offset; |
db7b5426 | 2372 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || |
8da3ff18 | 2373 | (phys_offset & IO_MEM_ROMD)) { |
db7b5426 | 2374 | phys_offset += TARGET_PAGE_SIZE; |
0e8f0967 | 2375 | } else { |
db7b5426 BS |
2376 | target_phys_addr_t start_addr2, end_addr2; |
2377 | int need_subpage = 0; | |
2378 | ||
2379 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, | |
2380 | end_addr2, need_subpage); | |
2381 | ||
4254fab8 | 2382 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 | 2383 | subpage = subpage_init((addr & TARGET_PAGE_MASK), |
8da3ff18 | 2384 | &p->phys_offset, IO_MEM_UNASSIGNED, |
67c4d23c | 2385 | addr & TARGET_PAGE_MASK); |
db7b5426 | 2386 | subpage_register(subpage, start_addr2, end_addr2, |
8da3ff18 PB |
2387 | phys_offset, region_offset); |
2388 | p->region_offset = 0; | |
db7b5426 BS |
2389 | } |
2390 | } | |
2391 | } | |
8da3ff18 | 2392 | region_offset += TARGET_PAGE_SIZE; |
33417e70 | 2393 | } |
3b46e624 | 2394 | |
9d42037b FB |
2395 | /* since each CPU stores ram addresses in its TLB cache, we must |
2396 | reset the modified entries */ | |
2397 | /* XXX: slow ! */ | |
2398 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
2399 | tlb_flush(env, 1); | |
2400 | } | |
33417e70 FB |
2401 | } |
2402 | ||
ba863458 | 2403 | /* XXX: temporary until new memory mapping API */ |
00f82b8a | 2404 | ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr) |
ba863458 FB |
2405 | { |
2406 | PhysPageDesc *p; | |
2407 | ||
2408 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2409 | if (!p) | |
2410 | return IO_MEM_UNASSIGNED; | |
2411 | return p->phys_offset; | |
2412 | } | |
2413 | ||
f65ed4c1 AL |
2414 | void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) |
2415 | { | |
2416 | if (kvm_enabled()) | |
2417 | kvm_coalesce_mmio_region(addr, size); | |
2418 | } | |
2419 | ||
2420 | void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) | |
2421 | { | |
2422 | if (kvm_enabled()) | |
2423 | kvm_uncoalesce_mmio_region(addr, size); | |
2424 | } | |
2425 | ||
640f42e4 | 2426 | #ifdef CONFIG_KQEMU |
e9a1ab19 | 2427 | /* XXX: better than nothing */ |
94a6b54f | 2428 | static ram_addr_t kqemu_ram_alloc(ram_addr_t size) |
e9a1ab19 FB |
2429 | { |
2430 | ram_addr_t addr; | |
94a6b54f | 2431 | if ((last_ram_offset + size) > kqemu_phys_ram_size) { |
012a7045 | 2432 | fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n", |
94a6b54f | 2433 | (uint64_t)size, (uint64_t)kqemu_phys_ram_size); |
e9a1ab19 FB |
2434 | abort(); |
2435 | } | |
94a6b54f PB |
2436 | addr = last_ram_offset; |
2437 | last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size); | |
e9a1ab19 FB |
2438 | return addr; |
2439 | } | |
94a6b54f PB |
2440 | #endif |
2441 | ||
2442 | ram_addr_t qemu_ram_alloc(ram_addr_t size) | |
2443 | { | |
2444 | RAMBlock *new_block; | |
2445 | ||
640f42e4 | 2446 | #ifdef CONFIG_KQEMU |
94a6b54f PB |
2447 | if (kqemu_phys_ram_base) { |
2448 | return kqemu_ram_alloc(size); | |
2449 | } | |
2450 | #endif | |
2451 | ||
2452 | size = TARGET_PAGE_ALIGN(size); | |
2453 | new_block = qemu_malloc(sizeof(*new_block)); | |
2454 | ||
2455 | new_block->host = qemu_vmalloc(size); | |
2456 | new_block->offset = last_ram_offset; | |
2457 | new_block->length = size; | |
2458 | ||
2459 | new_block->next = ram_blocks; | |
2460 | ram_blocks = new_block; | |
2461 | ||
2462 | phys_ram_dirty = qemu_realloc(phys_ram_dirty, | |
2463 | (last_ram_offset + size) >> TARGET_PAGE_BITS); | |
2464 | memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS), | |
2465 | 0xff, size >> TARGET_PAGE_BITS); | |
2466 | ||
2467 | last_ram_offset += size; | |
2468 | ||
6f0437e8 JK |
2469 | if (kvm_enabled()) |
2470 | kvm_setup_guest_memory(new_block->host, size); | |
2471 | ||
94a6b54f PB |
2472 | return new_block->offset; |
2473 | } | |
e9a1ab19 FB |
2474 | |
2475 | void qemu_ram_free(ram_addr_t addr) | |
2476 | { | |
94a6b54f | 2477 | /* TODO: implement this. */ |
e9a1ab19 FB |
2478 | } |
2479 | ||
dc828ca1 | 2480 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
5579c7f3 PB |
2481 | With the exception of the softmmu code in this file, this should |
2482 | only be used for local memory (e.g. video ram) that the device owns, | |
2483 | and knows it isn't going to access beyond the end of the block. | |
2484 | ||
2485 | It should not be used for general purpose DMA. | |
2486 | Use cpu_physical_memory_map/cpu_physical_memory_rw instead. | |
2487 | */ | |
dc828ca1 PB |
2488 | void *qemu_get_ram_ptr(ram_addr_t addr) |
2489 | { | |
94a6b54f PB |
2490 | RAMBlock *prev; |
2491 | RAMBlock **prevp; | |
2492 | RAMBlock *block; | |
2493 | ||
640f42e4 | 2494 | #ifdef CONFIG_KQEMU |
94a6b54f PB |
2495 | if (kqemu_phys_ram_base) { |
2496 | return kqemu_phys_ram_base + addr; | |
2497 | } | |
2498 | #endif | |
2499 | ||
2500 | prev = NULL; | |
2501 | prevp = &ram_blocks; | |
2502 | block = ram_blocks; | |
2503 | while (block && (block->offset > addr | |
2504 | || block->offset + block->length <= addr)) { | |
2505 | if (prev) | |
2506 | prevp = &prev->next; | |
2507 | prev = block; | |
2508 | block = block->next; | |
2509 | } | |
2510 | if (!block) { | |
2511 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
2512 | abort(); | |
2513 | } | |
2514 | /* Move this entry to to start of the list. */ | |
2515 | if (prev) { | |
2516 | prev->next = block->next; | |
2517 | block->next = *prevp; | |
2518 | *prevp = block; | |
2519 | } | |
2520 | return block->host + (addr - block->offset); | |
dc828ca1 PB |
2521 | } |
2522 | ||
5579c7f3 PB |
2523 | /* Some of the softmmu routines need to translate from a host pointer |
2524 | (typically a TLB entry) back to a ram offset. */ | |
2525 | ram_addr_t qemu_ram_addr_from_host(void *ptr) | |
2526 | { | |
94a6b54f PB |
2527 | RAMBlock *prev; |
2528 | RAMBlock **prevp; | |
2529 | RAMBlock *block; | |
2530 | uint8_t *host = ptr; | |
2531 | ||
640f42e4 | 2532 | #ifdef CONFIG_KQEMU |
94a6b54f PB |
2533 | if (kqemu_phys_ram_base) { |
2534 | return host - kqemu_phys_ram_base; | |
2535 | } | |
2536 | #endif | |
2537 | ||
2538 | prev = NULL; | |
2539 | prevp = &ram_blocks; | |
2540 | block = ram_blocks; | |
2541 | while (block && (block->host > host | |
2542 | || block->host + block->length <= host)) { | |
2543 | if (prev) | |
2544 | prevp = &prev->next; | |
2545 | prev = block; | |
2546 | block = block->next; | |
2547 | } | |
2548 | if (!block) { | |
2549 | fprintf(stderr, "Bad ram pointer %p\n", ptr); | |
2550 | abort(); | |
2551 | } | |
2552 | return block->offset + (host - block->host); | |
5579c7f3 PB |
2553 | } |
2554 | ||
a4193c8a | 2555 | static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr) |
33417e70 | 2556 | { |
67d3b957 | 2557 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2558 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); |
b4f0a316 | 2559 | #endif |
0a6f8a6d | 2560 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2561 | do_unassigned_access(addr, 0, 0, 0, 1); |
2562 | #endif | |
2563 | return 0; | |
2564 | } | |
2565 | ||
2566 | static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr) | |
2567 | { | |
2568 | #ifdef DEBUG_UNASSIGNED | |
2569 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2570 | #endif | |
0a6f8a6d | 2571 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2572 | do_unassigned_access(addr, 0, 0, 0, 2); |
2573 | #endif | |
2574 | return 0; | |
2575 | } | |
2576 | ||
2577 | static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr) | |
2578 | { | |
2579 | #ifdef DEBUG_UNASSIGNED | |
2580 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2581 | #endif | |
0a6f8a6d | 2582 | #if defined(TARGET_SPARC) |
e18231a3 | 2583 | do_unassigned_access(addr, 0, 0, 0, 4); |
67d3b957 | 2584 | #endif |
33417e70 FB |
2585 | return 0; |
2586 | } | |
2587 | ||
a4193c8a | 2588 | static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) |
33417e70 | 2589 | { |
67d3b957 | 2590 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2591 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); |
67d3b957 | 2592 | #endif |
0a6f8a6d | 2593 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2594 | do_unassigned_access(addr, 1, 0, 0, 1); |
2595 | #endif | |
2596 | } | |
2597 | ||
2598 | static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2599 | { | |
2600 | #ifdef DEBUG_UNASSIGNED | |
2601 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2602 | #endif | |
0a6f8a6d | 2603 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2604 | do_unassigned_access(addr, 1, 0, 0, 2); |
2605 | #endif | |
2606 | } | |
2607 | ||
2608 | static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2609 | { | |
2610 | #ifdef DEBUG_UNASSIGNED | |
2611 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2612 | #endif | |
0a6f8a6d | 2613 | #if defined(TARGET_SPARC) |
e18231a3 | 2614 | do_unassigned_access(addr, 1, 0, 0, 4); |
b4f0a316 | 2615 | #endif |
33417e70 FB |
2616 | } |
2617 | ||
2618 | static CPUReadMemoryFunc *unassigned_mem_read[3] = { | |
2619 | unassigned_mem_readb, | |
e18231a3 BS |
2620 | unassigned_mem_readw, |
2621 | unassigned_mem_readl, | |
33417e70 FB |
2622 | }; |
2623 | ||
2624 | static CPUWriteMemoryFunc *unassigned_mem_write[3] = { | |
2625 | unassigned_mem_writeb, | |
e18231a3 BS |
2626 | unassigned_mem_writew, |
2627 | unassigned_mem_writel, | |
33417e70 FB |
2628 | }; |
2629 | ||
0f459d16 PB |
2630 | static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr, |
2631 | uint32_t val) | |
9fa3e853 | 2632 | { |
3a7d929e | 2633 | int dirty_flags; |
3a7d929e FB |
2634 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2635 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2636 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2637 | tb_invalidate_phys_page_fast(ram_addr, 1); |
2638 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2639 | #endif |
3a7d929e | 2640 | } |
5579c7f3 | 2641 | stb_p(qemu_get_ram_ptr(ram_addr), val); |
640f42e4 | 2642 | #ifdef CONFIG_KQEMU |
f32fc648 FB |
2643 | if (cpu_single_env->kqemu_enabled && |
2644 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2645 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2646 | #endif | |
f23db169 FB |
2647 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2648 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2649 | /* we remove the notdirty callback only if the code has been | |
2650 | flushed */ | |
2651 | if (dirty_flags == 0xff) | |
2e70f6ef | 2652 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2653 | } |
2654 | ||
0f459d16 PB |
2655 | static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr, |
2656 | uint32_t val) | |
9fa3e853 | 2657 | { |
3a7d929e | 2658 | int dirty_flags; |
3a7d929e FB |
2659 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2660 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2661 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2662 | tb_invalidate_phys_page_fast(ram_addr, 2); |
2663 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2664 | #endif |
3a7d929e | 2665 | } |
5579c7f3 | 2666 | stw_p(qemu_get_ram_ptr(ram_addr), val); |
640f42e4 | 2667 | #ifdef CONFIG_KQEMU |
f32fc648 FB |
2668 | if (cpu_single_env->kqemu_enabled && |
2669 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2670 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2671 | #endif | |
f23db169 FB |
2672 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2673 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2674 | /* we remove the notdirty callback only if the code has been | |
2675 | flushed */ | |
2676 | if (dirty_flags == 0xff) | |
2e70f6ef | 2677 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2678 | } |
2679 | ||
0f459d16 PB |
2680 | static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr, |
2681 | uint32_t val) | |
9fa3e853 | 2682 | { |
3a7d929e | 2683 | int dirty_flags; |
3a7d929e FB |
2684 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2685 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2686 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2687 | tb_invalidate_phys_page_fast(ram_addr, 4); |
2688 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2689 | #endif |
3a7d929e | 2690 | } |
5579c7f3 | 2691 | stl_p(qemu_get_ram_ptr(ram_addr), val); |
640f42e4 | 2692 | #ifdef CONFIG_KQEMU |
f32fc648 FB |
2693 | if (cpu_single_env->kqemu_enabled && |
2694 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2695 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2696 | #endif | |
f23db169 FB |
2697 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2698 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2699 | /* we remove the notdirty callback only if the code has been | |
2700 | flushed */ | |
2701 | if (dirty_flags == 0xff) | |
2e70f6ef | 2702 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2703 | } |
2704 | ||
3a7d929e | 2705 | static CPUReadMemoryFunc *error_mem_read[3] = { |
9fa3e853 FB |
2706 | NULL, /* never used */ |
2707 | NULL, /* never used */ | |
2708 | NULL, /* never used */ | |
2709 | }; | |
2710 | ||
1ccde1cb FB |
2711 | static CPUWriteMemoryFunc *notdirty_mem_write[3] = { |
2712 | notdirty_mem_writeb, | |
2713 | notdirty_mem_writew, | |
2714 | notdirty_mem_writel, | |
2715 | }; | |
2716 | ||
0f459d16 | 2717 | /* Generate a debug exception if a watchpoint has been hit. */ |
b4051334 | 2718 | static void check_watchpoint(int offset, int len_mask, int flags) |
0f459d16 PB |
2719 | { |
2720 | CPUState *env = cpu_single_env; | |
06d55cc1 AL |
2721 | target_ulong pc, cs_base; |
2722 | TranslationBlock *tb; | |
0f459d16 | 2723 | target_ulong vaddr; |
a1d1bb31 | 2724 | CPUWatchpoint *wp; |
06d55cc1 | 2725 | int cpu_flags; |
0f459d16 | 2726 | |
06d55cc1 AL |
2727 | if (env->watchpoint_hit) { |
2728 | /* We re-entered the check after replacing the TB. Now raise | |
2729 | * the debug interrupt so that is will trigger after the | |
2730 | * current instruction. */ | |
2731 | cpu_interrupt(env, CPU_INTERRUPT_DEBUG); | |
2732 | return; | |
2733 | } | |
2e70f6ef | 2734 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
c0ce998e | 2735 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
b4051334 AL |
2736 | if ((vaddr == (wp->vaddr & len_mask) || |
2737 | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { | |
6e140f28 AL |
2738 | wp->flags |= BP_WATCHPOINT_HIT; |
2739 | if (!env->watchpoint_hit) { | |
2740 | env->watchpoint_hit = wp; | |
2741 | tb = tb_find_pc(env->mem_io_pc); | |
2742 | if (!tb) { | |
2743 | cpu_abort(env, "check_watchpoint: could not find TB for " | |
2744 | "pc=%p", (void *)env->mem_io_pc); | |
2745 | } | |
2746 | cpu_restore_state(tb, env, env->mem_io_pc, NULL); | |
2747 | tb_phys_invalidate(tb, -1); | |
2748 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
2749 | env->exception_index = EXCP_DEBUG; | |
2750 | } else { | |
2751 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
2752 | tb_gen_code(env, pc, cs_base, cpu_flags, 1); | |
2753 | } | |
2754 | cpu_resume_from_signal(env, NULL); | |
06d55cc1 | 2755 | } |
6e140f28 AL |
2756 | } else { |
2757 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2758 | } |
2759 | } | |
2760 | } | |
2761 | ||
6658ffb8 PB |
2762 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2763 | so these check for a hit then pass through to the normal out-of-line | |
2764 | phys routines. */ | |
2765 | static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr) | |
2766 | { | |
b4051334 | 2767 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ); |
6658ffb8 PB |
2768 | return ldub_phys(addr); |
2769 | } | |
2770 | ||
2771 | static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr) | |
2772 | { | |
b4051334 | 2773 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ); |
6658ffb8 PB |
2774 | return lduw_phys(addr); |
2775 | } | |
2776 | ||
2777 | static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr) | |
2778 | { | |
b4051334 | 2779 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ); |
6658ffb8 PB |
2780 | return ldl_phys(addr); |
2781 | } | |
2782 | ||
6658ffb8 PB |
2783 | static void watch_mem_writeb(void *opaque, target_phys_addr_t addr, |
2784 | uint32_t val) | |
2785 | { | |
b4051334 | 2786 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE); |
6658ffb8 PB |
2787 | stb_phys(addr, val); |
2788 | } | |
2789 | ||
2790 | static void watch_mem_writew(void *opaque, target_phys_addr_t addr, | |
2791 | uint32_t val) | |
2792 | { | |
b4051334 | 2793 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE); |
6658ffb8 PB |
2794 | stw_phys(addr, val); |
2795 | } | |
2796 | ||
2797 | static void watch_mem_writel(void *opaque, target_phys_addr_t addr, | |
2798 | uint32_t val) | |
2799 | { | |
b4051334 | 2800 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE); |
6658ffb8 PB |
2801 | stl_phys(addr, val); |
2802 | } | |
2803 | ||
2804 | static CPUReadMemoryFunc *watch_mem_read[3] = { | |
2805 | watch_mem_readb, | |
2806 | watch_mem_readw, | |
2807 | watch_mem_readl, | |
2808 | }; | |
2809 | ||
2810 | static CPUWriteMemoryFunc *watch_mem_write[3] = { | |
2811 | watch_mem_writeb, | |
2812 | watch_mem_writew, | |
2813 | watch_mem_writel, | |
2814 | }; | |
6658ffb8 | 2815 | |
db7b5426 BS |
2816 | static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr, |
2817 | unsigned int len) | |
2818 | { | |
db7b5426 BS |
2819 | uint32_t ret; |
2820 | unsigned int idx; | |
2821 | ||
8da3ff18 | 2822 | idx = SUBPAGE_IDX(addr); |
db7b5426 BS |
2823 | #if defined(DEBUG_SUBPAGE) |
2824 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, | |
2825 | mmio, len, addr, idx); | |
2826 | #endif | |
8da3ff18 PB |
2827 | ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], |
2828 | addr + mmio->region_offset[idx][0][len]); | |
db7b5426 BS |
2829 | |
2830 | return ret; | |
2831 | } | |
2832 | ||
2833 | static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr, | |
2834 | uint32_t value, unsigned int len) | |
2835 | { | |
db7b5426 BS |
2836 | unsigned int idx; |
2837 | ||
8da3ff18 | 2838 | idx = SUBPAGE_IDX(addr); |
db7b5426 BS |
2839 | #if defined(DEBUG_SUBPAGE) |
2840 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__, | |
2841 | mmio, len, addr, idx, value); | |
2842 | #endif | |
8da3ff18 PB |
2843 | (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], |
2844 | addr + mmio->region_offset[idx][1][len], | |
2845 | value); | |
db7b5426 BS |
2846 | } |
2847 | ||
2848 | static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr) | |
2849 | { | |
2850 | #if defined(DEBUG_SUBPAGE) | |
2851 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2852 | #endif | |
2853 | ||
2854 | return subpage_readlen(opaque, addr, 0); | |
2855 | } | |
2856 | ||
2857 | static void subpage_writeb (void *opaque, target_phys_addr_t addr, | |
2858 | uint32_t value) | |
2859 | { | |
2860 | #if defined(DEBUG_SUBPAGE) | |
2861 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2862 | #endif | |
2863 | subpage_writelen(opaque, addr, value, 0); | |
2864 | } | |
2865 | ||
2866 | static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr) | |
2867 | { | |
2868 | #if defined(DEBUG_SUBPAGE) | |
2869 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2870 | #endif | |
2871 | ||
2872 | return subpage_readlen(opaque, addr, 1); | |
2873 | } | |
2874 | ||
2875 | static void subpage_writew (void *opaque, target_phys_addr_t addr, | |
2876 | uint32_t value) | |
2877 | { | |
2878 | #if defined(DEBUG_SUBPAGE) | |
2879 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2880 | #endif | |
2881 | subpage_writelen(opaque, addr, value, 1); | |
2882 | } | |
2883 | ||
2884 | static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr) | |
2885 | { | |
2886 | #if defined(DEBUG_SUBPAGE) | |
2887 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2888 | #endif | |
2889 | ||
2890 | return subpage_readlen(opaque, addr, 2); | |
2891 | } | |
2892 | ||
2893 | static void subpage_writel (void *opaque, | |
2894 | target_phys_addr_t addr, uint32_t value) | |
2895 | { | |
2896 | #if defined(DEBUG_SUBPAGE) | |
2897 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2898 | #endif | |
2899 | subpage_writelen(opaque, addr, value, 2); | |
2900 | } | |
2901 | ||
2902 | static CPUReadMemoryFunc *subpage_read[] = { | |
2903 | &subpage_readb, | |
2904 | &subpage_readw, | |
2905 | &subpage_readl, | |
2906 | }; | |
2907 | ||
2908 | static CPUWriteMemoryFunc *subpage_write[] = { | |
2909 | &subpage_writeb, | |
2910 | &subpage_writew, | |
2911 | &subpage_writel, | |
2912 | }; | |
2913 | ||
2914 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
8da3ff18 | 2915 | ram_addr_t memory, ram_addr_t region_offset) |
db7b5426 BS |
2916 | { |
2917 | int idx, eidx; | |
4254fab8 | 2918 | unsigned int i; |
db7b5426 BS |
2919 | |
2920 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2921 | return -1; | |
2922 | idx = SUBPAGE_IDX(start); | |
2923 | eidx = SUBPAGE_IDX(end); | |
2924 | #if defined(DEBUG_SUBPAGE) | |
0bf9e31a | 2925 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__, |
db7b5426 BS |
2926 | mmio, start, end, idx, eidx, memory); |
2927 | #endif | |
2928 | memory >>= IO_MEM_SHIFT; | |
2929 | for (; idx <= eidx; idx++) { | |
4254fab8 | 2930 | for (i = 0; i < 4; i++) { |
3ee89922 BS |
2931 | if (io_mem_read[memory][i]) { |
2932 | mmio->mem_read[idx][i] = &io_mem_read[memory][i]; | |
2933 | mmio->opaque[idx][0][i] = io_mem_opaque[memory]; | |
8da3ff18 | 2934 | mmio->region_offset[idx][0][i] = region_offset; |
3ee89922 BS |
2935 | } |
2936 | if (io_mem_write[memory][i]) { | |
2937 | mmio->mem_write[idx][i] = &io_mem_write[memory][i]; | |
2938 | mmio->opaque[idx][1][i] = io_mem_opaque[memory]; | |
8da3ff18 | 2939 | mmio->region_offset[idx][1][i] = region_offset; |
3ee89922 | 2940 | } |
4254fab8 | 2941 | } |
db7b5426 BS |
2942 | } |
2943 | ||
2944 | return 0; | |
2945 | } | |
2946 | ||
00f82b8a | 2947 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
8da3ff18 | 2948 | ram_addr_t orig_memory, ram_addr_t region_offset) |
db7b5426 BS |
2949 | { |
2950 | subpage_t *mmio; | |
2951 | int subpage_memory; | |
2952 | ||
2953 | mmio = qemu_mallocz(sizeof(subpage_t)); | |
1eec614b AL |
2954 | |
2955 | mmio->base = base; | |
1eed09cb | 2956 | subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio); |
db7b5426 | 2957 | #if defined(DEBUG_SUBPAGE) |
1eec614b AL |
2958 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, |
2959 | mmio, base, TARGET_PAGE_SIZE, subpage_memory); | |
db7b5426 | 2960 | #endif |
1eec614b AL |
2961 | *phys = subpage_memory | IO_MEM_SUBPAGE; |
2962 | subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory, | |
8da3ff18 | 2963 | region_offset); |
db7b5426 BS |
2964 | |
2965 | return mmio; | |
2966 | } | |
2967 | ||
88715657 AL |
2968 | static int get_free_io_mem_idx(void) |
2969 | { | |
2970 | int i; | |
2971 | ||
2972 | for (i = 0; i<IO_MEM_NB_ENTRIES; i++) | |
2973 | if (!io_mem_used[i]) { | |
2974 | io_mem_used[i] = 1; | |
2975 | return i; | |
2976 | } | |
2977 | ||
2978 | return -1; | |
2979 | } | |
2980 | ||
33417e70 FB |
2981 | /* mem_read and mem_write are arrays of functions containing the |
2982 | function to access byte (index 0), word (index 1) and dword (index | |
0b4e6e3e | 2983 | 2). Functions can be omitted with a NULL function pointer. |
3ee89922 | 2984 | If io_index is non zero, the corresponding io zone is |
4254fab8 BS |
2985 | modified. If it is zero, a new io zone is allocated. The return |
2986 | value can be used with cpu_register_physical_memory(). (-1) is | |
2987 | returned if error. */ | |
1eed09cb AK |
2988 | static int cpu_register_io_memory_fixed(int io_index, |
2989 | CPUReadMemoryFunc **mem_read, | |
2990 | CPUWriteMemoryFunc **mem_write, | |
2991 | void *opaque) | |
33417e70 | 2992 | { |
4254fab8 | 2993 | int i, subwidth = 0; |
33417e70 FB |
2994 | |
2995 | if (io_index <= 0) { | |
88715657 AL |
2996 | io_index = get_free_io_mem_idx(); |
2997 | if (io_index == -1) | |
2998 | return io_index; | |
33417e70 | 2999 | } else { |
1eed09cb | 3000 | io_index >>= IO_MEM_SHIFT; |
33417e70 FB |
3001 | if (io_index >= IO_MEM_NB_ENTRIES) |
3002 | return -1; | |
3003 | } | |
b5ff1b31 | 3004 | |
33417e70 | 3005 | for(i = 0;i < 3; i++) { |
4254fab8 BS |
3006 | if (!mem_read[i] || !mem_write[i]) |
3007 | subwidth = IO_MEM_SUBWIDTH; | |
33417e70 FB |
3008 | io_mem_read[io_index][i] = mem_read[i]; |
3009 | io_mem_write[io_index][i] = mem_write[i]; | |
3010 | } | |
a4193c8a | 3011 | io_mem_opaque[io_index] = opaque; |
4254fab8 | 3012 | return (io_index << IO_MEM_SHIFT) | subwidth; |
33417e70 | 3013 | } |
61382a50 | 3014 | |
1eed09cb AK |
3015 | int cpu_register_io_memory(CPUReadMemoryFunc **mem_read, |
3016 | CPUWriteMemoryFunc **mem_write, | |
3017 | void *opaque) | |
3018 | { | |
3019 | return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque); | |
3020 | } | |
3021 | ||
88715657 AL |
3022 | void cpu_unregister_io_memory(int io_table_address) |
3023 | { | |
3024 | int i; | |
3025 | int io_index = io_table_address >> IO_MEM_SHIFT; | |
3026 | ||
3027 | for (i=0;i < 3; i++) { | |
3028 | io_mem_read[io_index][i] = unassigned_mem_read[i]; | |
3029 | io_mem_write[io_index][i] = unassigned_mem_write[i]; | |
3030 | } | |
3031 | io_mem_opaque[io_index] = NULL; | |
3032 | io_mem_used[io_index] = 0; | |
3033 | } | |
3034 | ||
e9179ce1 AK |
3035 | static void io_mem_init(void) |
3036 | { | |
3037 | int i; | |
3038 | ||
3039 | cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL); | |
3040 | cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL); | |
3041 | cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL); | |
3042 | for (i=0; i<5; i++) | |
3043 | io_mem_used[i] = 1; | |
3044 | ||
3045 | io_mem_watch = cpu_register_io_memory(watch_mem_read, | |
3046 | watch_mem_write, NULL); | |
3047 | #ifdef CONFIG_KQEMU | |
3048 | if (kqemu_phys_ram_base) { | |
3049 | /* alloc dirty bits array */ | |
3050 | phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS); | |
3051 | memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS); | |
3052 | } | |
3053 | #endif | |
3054 | } | |
3055 | ||
e2eef170 PB |
3056 | #endif /* !defined(CONFIG_USER_ONLY) */ |
3057 | ||
13eb76e0 FB |
3058 | /* physical memory access (slow version, mainly for debug) */ |
3059 | #if defined(CONFIG_USER_ONLY) | |
5fafdf24 | 3060 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
3061 | int len, int is_write) |
3062 | { | |
3063 | int l, flags; | |
3064 | target_ulong page; | |
53a5960a | 3065 | void * p; |
13eb76e0 FB |
3066 | |
3067 | while (len > 0) { | |
3068 | page = addr & TARGET_PAGE_MASK; | |
3069 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3070 | if (l > len) | |
3071 | l = len; | |
3072 | flags = page_get_flags(page); | |
3073 | if (!(flags & PAGE_VALID)) | |
3074 | return; | |
3075 | if (is_write) { | |
3076 | if (!(flags & PAGE_WRITE)) | |
3077 | return; | |
579a97f7 | 3078 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 3079 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
579a97f7 FB |
3080 | /* FIXME - should this return an error rather than just fail? */ |
3081 | return; | |
72fb7daa AJ |
3082 | memcpy(p, buf, l); |
3083 | unlock_user(p, addr, l); | |
13eb76e0 FB |
3084 | } else { |
3085 | if (!(flags & PAGE_READ)) | |
3086 | return; | |
579a97f7 | 3087 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 3088 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
579a97f7 FB |
3089 | /* FIXME - should this return an error rather than just fail? */ |
3090 | return; | |
72fb7daa | 3091 | memcpy(buf, p, l); |
5b257578 | 3092 | unlock_user(p, addr, 0); |
13eb76e0 FB |
3093 | } |
3094 | len -= l; | |
3095 | buf += l; | |
3096 | addr += l; | |
3097 | } | |
3098 | } | |
8df1cd07 | 3099 | |
13eb76e0 | 3100 | #else |
5fafdf24 | 3101 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
3102 | int len, int is_write) |
3103 | { | |
3104 | int l, io_index; | |
3105 | uint8_t *ptr; | |
3106 | uint32_t val; | |
2e12669a FB |
3107 | target_phys_addr_t page; |
3108 | unsigned long pd; | |
92e873b9 | 3109 | PhysPageDesc *p; |
3b46e624 | 3110 | |
13eb76e0 FB |
3111 | while (len > 0) { |
3112 | page = addr & TARGET_PAGE_MASK; | |
3113 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3114 | if (l > len) | |
3115 | l = len; | |
92e873b9 | 3116 | p = phys_page_find(page >> TARGET_PAGE_BITS); |
13eb76e0 FB |
3117 | if (!p) { |
3118 | pd = IO_MEM_UNASSIGNED; | |
3119 | } else { | |
3120 | pd = p->phys_offset; | |
3121 | } | |
3b46e624 | 3122 | |
13eb76e0 | 3123 | if (is_write) { |
3a7d929e | 3124 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
6c2934db | 3125 | target_phys_addr_t addr1 = addr; |
13eb76e0 | 3126 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 | 3127 | if (p) |
6c2934db | 3128 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
6a00d601 FB |
3129 | /* XXX: could force cpu_single_env to NULL to avoid |
3130 | potential bugs */ | |
6c2934db | 3131 | if (l >= 4 && ((addr1 & 3) == 0)) { |
1c213d19 | 3132 | /* 32 bit write access */ |
c27004ec | 3133 | val = ldl_p(buf); |
6c2934db | 3134 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val); |
13eb76e0 | 3135 | l = 4; |
6c2934db | 3136 | } else if (l >= 2 && ((addr1 & 1) == 0)) { |
1c213d19 | 3137 | /* 16 bit write access */ |
c27004ec | 3138 | val = lduw_p(buf); |
6c2934db | 3139 | io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val); |
13eb76e0 FB |
3140 | l = 2; |
3141 | } else { | |
1c213d19 | 3142 | /* 8 bit write access */ |
c27004ec | 3143 | val = ldub_p(buf); |
6c2934db | 3144 | io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val); |
13eb76e0 FB |
3145 | l = 1; |
3146 | } | |
3147 | } else { | |
b448f2f3 FB |
3148 | unsigned long addr1; |
3149 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
13eb76e0 | 3150 | /* RAM case */ |
5579c7f3 | 3151 | ptr = qemu_get_ram_ptr(addr1); |
13eb76e0 | 3152 | memcpy(ptr, buf, l); |
3a7d929e FB |
3153 | if (!cpu_physical_memory_is_dirty(addr1)) { |
3154 | /* invalidate code */ | |
3155 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
3156 | /* set dirty bit */ | |
5fafdf24 | 3157 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
f23db169 | 3158 | (0xff & ~CODE_DIRTY_FLAG); |
3a7d929e | 3159 | } |
13eb76e0 FB |
3160 | } |
3161 | } else { | |
5fafdf24 | 3162 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 3163 | !(pd & IO_MEM_ROMD)) { |
6c2934db | 3164 | target_phys_addr_t addr1 = addr; |
13eb76e0 FB |
3165 | /* I/O case */ |
3166 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 | 3167 | if (p) |
6c2934db AJ |
3168 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
3169 | if (l >= 4 && ((addr1 & 3) == 0)) { | |
13eb76e0 | 3170 | /* 32 bit read access */ |
6c2934db | 3171 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1); |
c27004ec | 3172 | stl_p(buf, val); |
13eb76e0 | 3173 | l = 4; |
6c2934db | 3174 | } else if (l >= 2 && ((addr1 & 1) == 0)) { |
13eb76e0 | 3175 | /* 16 bit read access */ |
6c2934db | 3176 | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1); |
c27004ec | 3177 | stw_p(buf, val); |
13eb76e0 FB |
3178 | l = 2; |
3179 | } else { | |
1c213d19 | 3180 | /* 8 bit read access */ |
6c2934db | 3181 | val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1); |
c27004ec | 3182 | stb_p(buf, val); |
13eb76e0 FB |
3183 | l = 1; |
3184 | } | |
3185 | } else { | |
3186 | /* RAM case */ | |
5579c7f3 | 3187 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + |
13eb76e0 FB |
3188 | (addr & ~TARGET_PAGE_MASK); |
3189 | memcpy(buf, ptr, l); | |
3190 | } | |
3191 | } | |
3192 | len -= l; | |
3193 | buf += l; | |
3194 | addr += l; | |
3195 | } | |
3196 | } | |
8df1cd07 | 3197 | |
d0ecd2aa | 3198 | /* used for ROM loading : can write in RAM and ROM */ |
5fafdf24 | 3199 | void cpu_physical_memory_write_rom(target_phys_addr_t addr, |
d0ecd2aa FB |
3200 | const uint8_t *buf, int len) |
3201 | { | |
3202 | int l; | |
3203 | uint8_t *ptr; | |
3204 | target_phys_addr_t page; | |
3205 | unsigned long pd; | |
3206 | PhysPageDesc *p; | |
3b46e624 | 3207 | |
d0ecd2aa FB |
3208 | while (len > 0) { |
3209 | page = addr & TARGET_PAGE_MASK; | |
3210 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3211 | if (l > len) | |
3212 | l = len; | |
3213 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
3214 | if (!p) { | |
3215 | pd = IO_MEM_UNASSIGNED; | |
3216 | } else { | |
3217 | pd = p->phys_offset; | |
3218 | } | |
3b46e624 | 3219 | |
d0ecd2aa | 3220 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM && |
2a4188a3 FB |
3221 | (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM && |
3222 | !(pd & IO_MEM_ROMD)) { | |
d0ecd2aa FB |
3223 | /* do nothing */ |
3224 | } else { | |
3225 | unsigned long addr1; | |
3226 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3227 | /* ROM/RAM case */ | |
5579c7f3 | 3228 | ptr = qemu_get_ram_ptr(addr1); |
d0ecd2aa FB |
3229 | memcpy(ptr, buf, l); |
3230 | } | |
3231 | len -= l; | |
3232 | buf += l; | |
3233 | addr += l; | |
3234 | } | |
3235 | } | |
3236 | ||
6d16c2f8 AL |
3237 | typedef struct { |
3238 | void *buffer; | |
3239 | target_phys_addr_t addr; | |
3240 | target_phys_addr_t len; | |
3241 | } BounceBuffer; | |
3242 | ||
3243 | static BounceBuffer bounce; | |
3244 | ||
ba223c29 AL |
3245 | typedef struct MapClient { |
3246 | void *opaque; | |
3247 | void (*callback)(void *opaque); | |
3248 | LIST_ENTRY(MapClient) link; | |
3249 | } MapClient; | |
3250 | ||
3251 | static LIST_HEAD(map_client_list, MapClient) map_client_list | |
3252 | = LIST_HEAD_INITIALIZER(map_client_list); | |
3253 | ||
3254 | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)) | |
3255 | { | |
3256 | MapClient *client = qemu_malloc(sizeof(*client)); | |
3257 | ||
3258 | client->opaque = opaque; | |
3259 | client->callback = callback; | |
3260 | LIST_INSERT_HEAD(&map_client_list, client, link); | |
3261 | return client; | |
3262 | } | |
3263 | ||
3264 | void cpu_unregister_map_client(void *_client) | |
3265 | { | |
3266 | MapClient *client = (MapClient *)_client; | |
3267 | ||
3268 | LIST_REMOVE(client, link); | |
34d5e948 | 3269 | qemu_free(client); |
ba223c29 AL |
3270 | } |
3271 | ||
3272 | static void cpu_notify_map_clients(void) | |
3273 | { | |
3274 | MapClient *client; | |
3275 | ||
3276 | while (!LIST_EMPTY(&map_client_list)) { | |
3277 | client = LIST_FIRST(&map_client_list); | |
3278 | client->callback(client->opaque); | |
34d5e948 | 3279 | cpu_unregister_map_client(client); |
ba223c29 AL |
3280 | } |
3281 | } | |
3282 | ||
6d16c2f8 AL |
3283 | /* Map a physical memory region into a host virtual address. |
3284 | * May map a subset of the requested range, given by and returned in *plen. | |
3285 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3286 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
3287 | * Use cpu_register_map_client() to know when retrying the map operation is |
3288 | * likely to succeed. | |
6d16c2f8 AL |
3289 | */ |
3290 | void *cpu_physical_memory_map(target_phys_addr_t addr, | |
3291 | target_phys_addr_t *plen, | |
3292 | int is_write) | |
3293 | { | |
3294 | target_phys_addr_t len = *plen; | |
3295 | target_phys_addr_t done = 0; | |
3296 | int l; | |
3297 | uint8_t *ret = NULL; | |
3298 | uint8_t *ptr; | |
3299 | target_phys_addr_t page; | |
3300 | unsigned long pd; | |
3301 | PhysPageDesc *p; | |
3302 | unsigned long addr1; | |
3303 | ||
3304 | while (len > 0) { | |
3305 | page = addr & TARGET_PAGE_MASK; | |
3306 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3307 | if (l > len) | |
3308 | l = len; | |
3309 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
3310 | if (!p) { | |
3311 | pd = IO_MEM_UNASSIGNED; | |
3312 | } else { | |
3313 | pd = p->phys_offset; | |
3314 | } | |
3315 | ||
3316 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | |
3317 | if (done || bounce.buffer) { | |
3318 | break; | |
3319 | } | |
3320 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); | |
3321 | bounce.addr = addr; | |
3322 | bounce.len = l; | |
3323 | if (!is_write) { | |
3324 | cpu_physical_memory_rw(addr, bounce.buffer, l, 0); | |
3325 | } | |
3326 | ptr = bounce.buffer; | |
3327 | } else { | |
3328 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
5579c7f3 | 3329 | ptr = qemu_get_ram_ptr(addr1); |
6d16c2f8 AL |
3330 | } |
3331 | if (!done) { | |
3332 | ret = ptr; | |
3333 | } else if (ret + done != ptr) { | |
3334 | break; | |
3335 | } | |
3336 | ||
3337 | len -= l; | |
3338 | addr += l; | |
3339 | done += l; | |
3340 | } | |
3341 | *plen = done; | |
3342 | return ret; | |
3343 | } | |
3344 | ||
3345 | /* Unmaps a memory region previously mapped by cpu_physical_memory_map(). | |
3346 | * Will also mark the memory as dirty if is_write == 1. access_len gives | |
3347 | * the amount of memory that was actually read or written by the caller. | |
3348 | */ | |
3349 | void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len, | |
3350 | int is_write, target_phys_addr_t access_len) | |
3351 | { | |
3352 | if (buffer != bounce.buffer) { | |
3353 | if (is_write) { | |
5579c7f3 | 3354 | ram_addr_t addr1 = qemu_ram_addr_from_host(buffer); |
6d16c2f8 AL |
3355 | while (access_len) { |
3356 | unsigned l; | |
3357 | l = TARGET_PAGE_SIZE; | |
3358 | if (l > access_len) | |
3359 | l = access_len; | |
3360 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3361 | /* invalidate code */ | |
3362 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
3363 | /* set dirty bit */ | |
3364 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3365 | (0xff & ~CODE_DIRTY_FLAG); | |
3366 | } | |
3367 | addr1 += l; | |
3368 | access_len -= l; | |
3369 | } | |
3370 | } | |
3371 | return; | |
3372 | } | |
3373 | if (is_write) { | |
3374 | cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len); | |
3375 | } | |
3376 | qemu_free(bounce.buffer); | |
3377 | bounce.buffer = NULL; | |
ba223c29 | 3378 | cpu_notify_map_clients(); |
6d16c2f8 | 3379 | } |
d0ecd2aa | 3380 | |
8df1cd07 FB |
3381 | /* warning: addr must be aligned */ |
3382 | uint32_t ldl_phys(target_phys_addr_t addr) | |
3383 | { | |
3384 | int io_index; | |
3385 | uint8_t *ptr; | |
3386 | uint32_t val; | |
3387 | unsigned long pd; | |
3388 | PhysPageDesc *p; | |
3389 | ||
3390 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3391 | if (!p) { | |
3392 | pd = IO_MEM_UNASSIGNED; | |
3393 | } else { | |
3394 | pd = p->phys_offset; | |
3395 | } | |
3b46e624 | 3396 | |
5fafdf24 | 3397 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 3398 | !(pd & IO_MEM_ROMD)) { |
8df1cd07 FB |
3399 | /* I/O case */ |
3400 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3401 | if (p) |
3402 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3403 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); |
3404 | } else { | |
3405 | /* RAM case */ | |
5579c7f3 | 3406 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + |
8df1cd07 FB |
3407 | (addr & ~TARGET_PAGE_MASK); |
3408 | val = ldl_p(ptr); | |
3409 | } | |
3410 | return val; | |
3411 | } | |
3412 | ||
84b7b8e7 FB |
3413 | /* warning: addr must be aligned */ |
3414 | uint64_t ldq_phys(target_phys_addr_t addr) | |
3415 | { | |
3416 | int io_index; | |
3417 | uint8_t *ptr; | |
3418 | uint64_t val; | |
3419 | unsigned long pd; | |
3420 | PhysPageDesc *p; | |
3421 | ||
3422 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3423 | if (!p) { | |
3424 | pd = IO_MEM_UNASSIGNED; | |
3425 | } else { | |
3426 | pd = p->phys_offset; | |
3427 | } | |
3b46e624 | 3428 | |
2a4188a3 FB |
3429 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
3430 | !(pd & IO_MEM_ROMD)) { | |
84b7b8e7 FB |
3431 | /* I/O case */ |
3432 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3433 | if (p) |
3434 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
84b7b8e7 FB |
3435 | #ifdef TARGET_WORDS_BIGENDIAN |
3436 | val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32; | |
3437 | val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4); | |
3438 | #else | |
3439 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
3440 | val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32; | |
3441 | #endif | |
3442 | } else { | |
3443 | /* RAM case */ | |
5579c7f3 | 3444 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + |
84b7b8e7 FB |
3445 | (addr & ~TARGET_PAGE_MASK); |
3446 | val = ldq_p(ptr); | |
3447 | } | |
3448 | return val; | |
3449 | } | |
3450 | ||
aab33094 FB |
3451 | /* XXX: optimize */ |
3452 | uint32_t ldub_phys(target_phys_addr_t addr) | |
3453 | { | |
3454 | uint8_t val; | |
3455 | cpu_physical_memory_read(addr, &val, 1); | |
3456 | return val; | |
3457 | } | |
3458 | ||
3459 | /* XXX: optimize */ | |
3460 | uint32_t lduw_phys(target_phys_addr_t addr) | |
3461 | { | |
3462 | uint16_t val; | |
3463 | cpu_physical_memory_read(addr, (uint8_t *)&val, 2); | |
3464 | return tswap16(val); | |
3465 | } | |
3466 | ||
8df1cd07 FB |
3467 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3468 | and the code inside is not invalidated. It is useful if the dirty | |
3469 | bits are used to track modified PTEs */ | |
3470 | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val) | |
3471 | { | |
3472 | int io_index; | |
3473 | uint8_t *ptr; | |
3474 | unsigned long pd; | |
3475 | PhysPageDesc *p; | |
3476 | ||
3477 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3478 | if (!p) { | |
3479 | pd = IO_MEM_UNASSIGNED; | |
3480 | } else { | |
3481 | pd = p->phys_offset; | |
3482 | } | |
3b46e624 | 3483 | |
3a7d929e | 3484 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 | 3485 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 PB |
3486 | if (p) |
3487 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3488 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
3489 | } else { | |
74576198 | 3490 | unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
5579c7f3 | 3491 | ptr = qemu_get_ram_ptr(addr1); |
8df1cd07 | 3492 | stl_p(ptr, val); |
74576198 AL |
3493 | |
3494 | if (unlikely(in_migration)) { | |
3495 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3496 | /* invalidate code */ | |
3497 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3498 | /* set dirty bit */ | |
3499 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3500 | (0xff & ~CODE_DIRTY_FLAG); | |
3501 | } | |
3502 | } | |
8df1cd07 FB |
3503 | } |
3504 | } | |
3505 | ||
bc98a7ef JM |
3506 | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val) |
3507 | { | |
3508 | int io_index; | |
3509 | uint8_t *ptr; | |
3510 | unsigned long pd; | |
3511 | PhysPageDesc *p; | |
3512 | ||
3513 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3514 | if (!p) { | |
3515 | pd = IO_MEM_UNASSIGNED; | |
3516 | } else { | |
3517 | pd = p->phys_offset; | |
3518 | } | |
3b46e624 | 3519 | |
bc98a7ef JM |
3520 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
3521 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3522 | if (p) |
3523 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
bc98a7ef JM |
3524 | #ifdef TARGET_WORDS_BIGENDIAN |
3525 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32); | |
3526 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val); | |
3527 | #else | |
3528 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3529 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32); | |
3530 | #endif | |
3531 | } else { | |
5579c7f3 | 3532 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + |
bc98a7ef JM |
3533 | (addr & ~TARGET_PAGE_MASK); |
3534 | stq_p(ptr, val); | |
3535 | } | |
3536 | } | |
3537 | ||
8df1cd07 | 3538 | /* warning: addr must be aligned */ |
8df1cd07 FB |
3539 | void stl_phys(target_phys_addr_t addr, uint32_t val) |
3540 | { | |
3541 | int io_index; | |
3542 | uint8_t *ptr; | |
3543 | unsigned long pd; | |
3544 | PhysPageDesc *p; | |
3545 | ||
3546 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3547 | if (!p) { | |
3548 | pd = IO_MEM_UNASSIGNED; | |
3549 | } else { | |
3550 | pd = p->phys_offset; | |
3551 | } | |
3b46e624 | 3552 | |
3a7d929e | 3553 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 | 3554 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 PB |
3555 | if (p) |
3556 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3557 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
3558 | } else { | |
3559 | unsigned long addr1; | |
3560 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3561 | /* RAM case */ | |
5579c7f3 | 3562 | ptr = qemu_get_ram_ptr(addr1); |
8df1cd07 | 3563 | stl_p(ptr, val); |
3a7d929e FB |
3564 | if (!cpu_physical_memory_is_dirty(addr1)) { |
3565 | /* invalidate code */ | |
3566 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3567 | /* set dirty bit */ | |
f23db169 FB |
3568 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
3569 | (0xff & ~CODE_DIRTY_FLAG); | |
3a7d929e | 3570 | } |
8df1cd07 FB |
3571 | } |
3572 | } | |
3573 | ||
aab33094 FB |
3574 | /* XXX: optimize */ |
3575 | void stb_phys(target_phys_addr_t addr, uint32_t val) | |
3576 | { | |
3577 | uint8_t v = val; | |
3578 | cpu_physical_memory_write(addr, &v, 1); | |
3579 | } | |
3580 | ||
3581 | /* XXX: optimize */ | |
3582 | void stw_phys(target_phys_addr_t addr, uint32_t val) | |
3583 | { | |
3584 | uint16_t v = tswap16(val); | |
3585 | cpu_physical_memory_write(addr, (const uint8_t *)&v, 2); | |
3586 | } | |
3587 | ||
3588 | /* XXX: optimize */ | |
3589 | void stq_phys(target_phys_addr_t addr, uint64_t val) | |
3590 | { | |
3591 | val = tswap64(val); | |
3592 | cpu_physical_memory_write(addr, (const uint8_t *)&val, 8); | |
3593 | } | |
3594 | ||
13eb76e0 FB |
3595 | #endif |
3596 | ||
5e2972fd | 3597 | /* virtual memory access for debug (includes writing to ROM) */ |
5fafdf24 | 3598 | int cpu_memory_rw_debug(CPUState *env, target_ulong addr, |
b448f2f3 | 3599 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3600 | { |
3601 | int l; | |
9b3c35e0 JM |
3602 | target_phys_addr_t phys_addr; |
3603 | target_ulong page; | |
13eb76e0 FB |
3604 | |
3605 | while (len > 0) { | |
3606 | page = addr & TARGET_PAGE_MASK; | |
3607 | phys_addr = cpu_get_phys_page_debug(env, page); | |
3608 | /* if no physical page mapped, return an error */ | |
3609 | if (phys_addr == -1) | |
3610 | return -1; | |
3611 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3612 | if (l > len) | |
3613 | l = len; | |
5e2972fd AL |
3614 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
3615 | #if !defined(CONFIG_USER_ONLY) | |
3616 | if (is_write) | |
3617 | cpu_physical_memory_write_rom(phys_addr, buf, l); | |
3618 | else | |
3619 | #endif | |
3620 | cpu_physical_memory_rw(phys_addr, buf, l, is_write); | |
13eb76e0 FB |
3621 | len -= l; |
3622 | buf += l; | |
3623 | addr += l; | |
3624 | } | |
3625 | return 0; | |
3626 | } | |
3627 | ||
2e70f6ef PB |
3628 | /* in deterministic execution mode, instructions doing device I/Os |
3629 | must be at the end of the TB */ | |
3630 | void cpu_io_recompile(CPUState *env, void *retaddr) | |
3631 | { | |
3632 | TranslationBlock *tb; | |
3633 | uint32_t n, cflags; | |
3634 | target_ulong pc, cs_base; | |
3635 | uint64_t flags; | |
3636 | ||
3637 | tb = tb_find_pc((unsigned long)retaddr); | |
3638 | if (!tb) { | |
3639 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | |
3640 | retaddr); | |
3641 | } | |
3642 | n = env->icount_decr.u16.low + tb->icount; | |
3643 | cpu_restore_state(tb, env, (unsigned long)retaddr, NULL); | |
3644 | /* Calculate how many instructions had been executed before the fault | |
bf20dc07 | 3645 | occurred. */ |
2e70f6ef PB |
3646 | n = n - env->icount_decr.u16.low; |
3647 | /* Generate a new TB ending on the I/O insn. */ | |
3648 | n++; | |
3649 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
3650 | they were already the first instruction in the TB. If this is not | |
bf20dc07 | 3651 | the first instruction in a TB then re-execute the preceding |
2e70f6ef PB |
3652 | branch. */ |
3653 | #if defined(TARGET_MIPS) | |
3654 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
3655 | env->active_tc.PC -= 4; | |
3656 | env->icount_decr.u16.low++; | |
3657 | env->hflags &= ~MIPS_HFLAG_BMASK; | |
3658 | } | |
3659 | #elif defined(TARGET_SH4) | |
3660 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
3661 | && n > 1) { | |
3662 | env->pc -= 2; | |
3663 | env->icount_decr.u16.low++; | |
3664 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | |
3665 | } | |
3666 | #endif | |
3667 | /* This should never happen. */ | |
3668 | if (n > CF_COUNT_MASK) | |
3669 | cpu_abort(env, "TB too big during recompile"); | |
3670 | ||
3671 | cflags = n | CF_LAST_IO; | |
3672 | pc = tb->pc; | |
3673 | cs_base = tb->cs_base; | |
3674 | flags = tb->flags; | |
3675 | tb_phys_invalidate(tb, -1); | |
3676 | /* FIXME: In theory this could raise an exception. In practice | |
3677 | we have already translated the block once so it's probably ok. */ | |
3678 | tb_gen_code(env, pc, cs_base, flags, cflags); | |
bf20dc07 | 3679 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not |
2e70f6ef PB |
3680 | the first in the TB) then we end up generating a whole new TB and |
3681 | repeating the fault, which is horribly inefficient. | |
3682 | Better would be to execute just this insn uncached, or generate a | |
3683 | second new TB. */ | |
3684 | cpu_resume_from_signal(env, NULL); | |
3685 | } | |
3686 | ||
e3db7226 FB |
3687 | void dump_exec_info(FILE *f, |
3688 | int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) | |
3689 | { | |
3690 | int i, target_code_size, max_target_code_size; | |
3691 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
3692 | TranslationBlock *tb; | |
3b46e624 | 3693 | |
e3db7226 FB |
3694 | target_code_size = 0; |
3695 | max_target_code_size = 0; | |
3696 | cross_page = 0; | |
3697 | direct_jmp_count = 0; | |
3698 | direct_jmp2_count = 0; | |
3699 | for(i = 0; i < nb_tbs; i++) { | |
3700 | tb = &tbs[i]; | |
3701 | target_code_size += tb->size; | |
3702 | if (tb->size > max_target_code_size) | |
3703 | max_target_code_size = tb->size; | |
3704 | if (tb->page_addr[1] != -1) | |
3705 | cross_page++; | |
3706 | if (tb->tb_next_offset[0] != 0xffff) { | |
3707 | direct_jmp_count++; | |
3708 | if (tb->tb_next_offset[1] != 0xffff) { | |
3709 | direct_jmp2_count++; | |
3710 | } | |
3711 | } | |
3712 | } | |
3713 | /* XXX: avoid using doubles ? */ | |
57fec1fe | 3714 | cpu_fprintf(f, "Translation buffer state:\n"); |
26a5f13b FB |
3715 | cpu_fprintf(f, "gen code size %ld/%ld\n", |
3716 | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size); | |
3717 | cpu_fprintf(f, "TB count %d/%d\n", | |
3718 | nb_tbs, code_gen_max_blocks); | |
5fafdf24 | 3719 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", |
e3db7226 FB |
3720 | nb_tbs ? target_code_size / nb_tbs : 0, |
3721 | max_target_code_size); | |
5fafdf24 | 3722 | cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n", |
e3db7226 FB |
3723 | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0, |
3724 | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0); | |
5fafdf24 TS |
3725 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", |
3726 | cross_page, | |
e3db7226 FB |
3727 | nb_tbs ? (cross_page * 100) / nb_tbs : 0); |
3728 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", | |
5fafdf24 | 3729 | direct_jmp_count, |
e3db7226 FB |
3730 | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0, |
3731 | direct_jmp2_count, | |
3732 | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0); | |
57fec1fe | 3733 | cpu_fprintf(f, "\nStatistics:\n"); |
e3db7226 FB |
3734 | cpu_fprintf(f, "TB flush count %d\n", tb_flush_count); |
3735 | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count); | |
3736 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); | |
b67d9a52 | 3737 | tcg_dump_info(f, cpu_fprintf); |
e3db7226 FB |
3738 | } |
3739 | ||
5fafdf24 | 3740 | #if !defined(CONFIG_USER_ONLY) |
61382a50 FB |
3741 | |
3742 | #define MMUSUFFIX _cmmu | |
3743 | #define GETPC() NULL | |
3744 | #define env cpu_single_env | |
b769d8fe | 3745 | #define SOFTMMU_CODE_ACCESS |
61382a50 FB |
3746 | |
3747 | #define SHIFT 0 | |
3748 | #include "softmmu_template.h" | |
3749 | ||
3750 | #define SHIFT 1 | |
3751 | #include "softmmu_template.h" | |
3752 | ||
3753 | #define SHIFT 2 | |
3754 | #include "softmmu_template.h" | |
3755 | ||
3756 | #define SHIFT 3 | |
3757 | #include "softmmu_template.h" | |
3758 | ||
3759 | #undef env | |
3760 | ||
3761 | #endif |