]>
Commit | Line | Data |
---|---|---|
cec93a93 SP |
1 | /* |
2 | * ARM GICv3 emulation: Redistributor | |
3 | * | |
4 | * Copyright (c) 2015 Huawei. | |
5 | * Copyright (c) 2016 Linaro Limited. | |
6 | * Written by Shlomo Pongratz, Peter Maydell | |
7 | * | |
8 | * This code is licensed under the GPL, version 2 or (at your option) | |
9 | * any later version. | |
10 | */ | |
11 | ||
12 | #include "qemu/osdep.h" | |
b1e3493b | 13 | #include "qemu/log.h" |
cec93a93 SP |
14 | #include "trace.h" |
15 | #include "gicv3_internal.h" | |
16 | ||
17 | static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs) | |
18 | { | |
19 | /* Return a 32-bit mask which should be applied for this set of 32 | |
20 | * interrupts; each bit is 1 if access is permitted by the | |
21 | * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does | |
22 | * not affect config register accesses, unlike GICD_NSACR.) | |
23 | */ | |
24 | if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { | |
25 | /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */ | |
26 | return cs->gicr_igroupr0; | |
27 | } | |
28 | return 0xFFFFFFFFU; | |
29 | } | |
30 | ||
b1a0eb77 PM |
31 | static int gicr_ns_access(GICv3CPUState *cs, int irq) |
32 | { | |
33 | /* Return the 2 bit NSACR.NS_access field for this SGI */ | |
34 | assert(irq < 16); | |
35 | return extract32(cs->gicr_nsacr, irq * 2, 2); | |
36 | } | |
37 | ||
cec93a93 SP |
38 | static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, |
39 | uint32_t *reg, uint32_t val) | |
40 | { | |
41 | /* Helper routine to implement writing to a "set-bitmap" register */ | |
42 | val &= mask_group(cs, attrs); | |
43 | *reg |= val; | |
44 | gicv3_redist_update(cs); | |
45 | } | |
46 | ||
47 | static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, | |
48 | uint32_t *reg, uint32_t val) | |
49 | { | |
50 | /* Helper routine to implement writing to a "clear-bitmap" register */ | |
51 | val &= mask_group(cs, attrs); | |
52 | *reg &= ~val; | |
53 | gicv3_redist_update(cs); | |
54 | } | |
55 | ||
56 | static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, | |
57 | uint32_t reg) | |
58 | { | |
59 | reg &= mask_group(cs, attrs); | |
60 | return reg; | |
61 | } | |
62 | ||
63 | static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, | |
64 | int irq) | |
65 | { | |
66 | /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt, | |
67 | * honouring security state (these are RAZ/WI for Group 0 or Secure | |
68 | * Group 1 interrupts). | |
69 | */ | |
70 | uint32_t prio; | |
71 | ||
72 | prio = cs->gicr_ipriorityr[irq]; | |
73 | ||
74 | if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { | |
75 | if (!(cs->gicr_igroupr0 & (1U << irq))) { | |
76 | /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ | |
77 | return 0; | |
78 | } | |
79 | /* NS view of the interrupt priority */ | |
80 | prio = (prio << 1) & 0xff; | |
81 | } | |
82 | return prio; | |
83 | } | |
84 | ||
85 | static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq, | |
86 | uint8_t value) | |
87 | { | |
88 | /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt, | |
89 | * honouring security state (these are RAZ/WI for Group 0 or Secure | |
90 | * Group 1 interrupts). | |
91 | */ | |
92 | if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { | |
93 | if (!(cs->gicr_igroupr0 & (1U << irq))) { | |
94 | /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ | |
95 | return; | |
96 | } | |
97 | /* NS view of the interrupt priority */ | |
98 | value = 0x80 | (value >> 1); | |
99 | } | |
100 | cs->gicr_ipriorityr[irq] = value; | |
101 | } | |
102 | ||
103 | static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset, | |
104 | uint64_t *data, MemTxAttrs attrs) | |
105 | { | |
106 | switch (offset) { | |
107 | case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: | |
108 | *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR); | |
109 | return MEMTX_OK; | |
110 | default: | |
111 | return MEMTX_ERROR; | |
112 | } | |
113 | } | |
114 | ||
115 | static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset, | |
116 | uint64_t value, MemTxAttrs attrs) | |
117 | { | |
118 | switch (offset) { | |
119 | case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: | |
120 | gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value); | |
121 | gicv3_redist_update(cs); | |
122 | return MEMTX_OK; | |
123 | default: | |
124 | return MEMTX_ERROR; | |
125 | } | |
126 | } | |
127 | ||
128 | static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset, | |
129 | uint64_t *data, MemTxAttrs attrs) | |
130 | { | |
131 | switch (offset) { | |
132 | case GICR_CTLR: | |
133 | *data = cs->gicr_ctlr; | |
134 | return MEMTX_OK; | |
135 | case GICR_IIDR: | |
136 | *data = gicv3_iidr(); | |
137 | return MEMTX_OK; | |
138 | case GICR_TYPER: | |
139 | *data = extract64(cs->gicr_typer, 0, 32); | |
140 | return MEMTX_OK; | |
141 | case GICR_TYPER + 4: | |
142 | *data = extract64(cs->gicr_typer, 32, 32); | |
143 | return MEMTX_OK; | |
144 | case GICR_STATUSR: | |
145 | /* RAZ/WI for us (this is an optional register and our implementation | |
146 | * does not track RO/WO/reserved violations to report them to the guest) | |
147 | */ | |
148 | *data = 0; | |
149 | return MEMTX_OK; | |
150 | case GICR_WAKER: | |
151 | *data = cs->gicr_waker; | |
152 | return MEMTX_OK; | |
153 | case GICR_PROPBASER: | |
154 | *data = extract64(cs->gicr_propbaser, 0, 32); | |
155 | return MEMTX_OK; | |
156 | case GICR_PROPBASER + 4: | |
157 | *data = extract64(cs->gicr_propbaser, 32, 32); | |
158 | return MEMTX_OK; | |
159 | case GICR_PENDBASER: | |
160 | *data = extract64(cs->gicr_pendbaser, 0, 32); | |
161 | return MEMTX_OK; | |
162 | case GICR_PENDBASER + 4: | |
163 | *data = extract64(cs->gicr_pendbaser, 32, 32); | |
164 | return MEMTX_OK; | |
165 | case GICR_IGROUPR0: | |
166 | if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { | |
167 | *data = 0; | |
168 | return MEMTX_OK; | |
169 | } | |
170 | *data = cs->gicr_igroupr0; | |
171 | return MEMTX_OK; | |
172 | case GICR_ISENABLER0: | |
173 | case GICR_ICENABLER0: | |
174 | *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0); | |
175 | return MEMTX_OK; | |
176 | case GICR_ISPENDR0: | |
177 | case GICR_ICPENDR0: | |
178 | { | |
179 | /* The pending register reads as the logical OR of the pending | |
180 | * latch and the input line level for level-triggered interrupts. | |
181 | */ | |
182 | uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level); | |
183 | *data = gicr_read_bitmap_reg(cs, attrs, val); | |
184 | return MEMTX_OK; | |
185 | } | |
186 | case GICR_ISACTIVER0: | |
187 | case GICR_ICACTIVER0: | |
188 | *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0); | |
189 | return MEMTX_OK; | |
190 | case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: | |
191 | { | |
192 | int i, irq = offset - GICR_IPRIORITYR; | |
193 | uint32_t value = 0; | |
194 | ||
d419890c AS |
195 | for (i = irq + 3; i >= irq; i--) { |
196 | value <<= 8; | |
cec93a93 SP |
197 | value |= gicr_read_ipriorityr(cs, attrs, i); |
198 | } | |
199 | *data = value; | |
200 | return MEMTX_OK; | |
201 | } | |
202 | case GICR_ICFGR0: | |
203 | case GICR_ICFGR1: | |
204 | { | |
205 | /* Our edge_trigger bitmap is one bit per irq; take the correct | |
206 | * half of it, and spread it out into the odd bits. | |
207 | */ | |
208 | uint32_t value; | |
209 | ||
210 | value = cs->edge_trigger & mask_group(cs, attrs); | |
211 | value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16); | |
212 | value = half_shuffle32(value) << 1; | |
213 | *data = value; | |
214 | return MEMTX_OK; | |
215 | } | |
216 | case GICR_IGRPMODR0: | |
217 | if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { | |
218 | /* RAZ/WI if security disabled, or if | |
219 | * security enabled and this is an NS access | |
220 | */ | |
221 | *data = 0; | |
222 | return MEMTX_OK; | |
223 | } | |
224 | *data = cs->gicr_igrpmodr0; | |
225 | return MEMTX_OK; | |
226 | case GICR_NSACR: | |
227 | if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { | |
228 | /* RAZ/WI if security disabled, or if | |
229 | * security enabled and this is an NS access | |
230 | */ | |
231 | *data = 0; | |
232 | return MEMTX_OK; | |
233 | } | |
234 | *data = cs->gicr_nsacr; | |
235 | return MEMTX_OK; | |
236 | case GICR_IDREGS ... GICR_IDREGS + 0x1f: | |
237 | *data = gicv3_idreg(offset - GICR_IDREGS); | |
238 | return MEMTX_OK; | |
239 | default: | |
240 | return MEMTX_ERROR; | |
241 | } | |
242 | } | |
243 | ||
244 | static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset, | |
245 | uint64_t value, MemTxAttrs attrs) | |
246 | { | |
247 | switch (offset) { | |
248 | case GICR_CTLR: | |
249 | /* For our implementation, GICR_TYPER.DPGS is 0 and so all | |
250 | * the DPG bits are RAZ/WI. We don't do anything asynchronously, | |
251 | * so UWP and RWP are RAZ/WI. And GICR_TYPER.LPIS is 0 (we don't | |
252 | * implement LPIs) so Enable_LPIs is RES0. So there are no writable | |
253 | * bits for us. | |
254 | */ | |
255 | return MEMTX_OK; | |
256 | case GICR_STATUSR: | |
257 | /* RAZ/WI for our implementation */ | |
258 | return MEMTX_OK; | |
259 | case GICR_WAKER: | |
260 | /* Only the ProcessorSleep bit is writeable. When the guest sets | |
261 | * it it requests that we transition the channel between the | |
262 | * redistributor and the cpu interface to quiescent, and that | |
263 | * we set the ChildrenAsleep bit once the inteface has reached the | |
264 | * quiescent state. | |
265 | * Setting the ProcessorSleep to 0 reverses the quiescing, and | |
266 | * ChildrenAsleep is cleared once the transition is complete. | |
267 | * Since our interface is not asynchronous, we complete these | |
268 | * transitions instantaneously, so we set ChildrenAsleep to the | |
269 | * same value as ProcessorSleep here. | |
270 | */ | |
271 | value &= GICR_WAKER_ProcessorSleep; | |
272 | if (value & GICR_WAKER_ProcessorSleep) { | |
273 | value |= GICR_WAKER_ChildrenAsleep; | |
274 | } | |
275 | cs->gicr_waker = value; | |
276 | return MEMTX_OK; | |
277 | case GICR_PROPBASER: | |
278 | cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value); | |
279 | return MEMTX_OK; | |
280 | case GICR_PROPBASER + 4: | |
281 | cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value); | |
282 | return MEMTX_OK; | |
283 | case GICR_PENDBASER: | |
284 | cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value); | |
285 | return MEMTX_OK; | |
286 | case GICR_PENDBASER + 4: | |
287 | cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value); | |
288 | return MEMTX_OK; | |
289 | case GICR_IGROUPR0: | |
290 | if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { | |
291 | return MEMTX_OK; | |
292 | } | |
293 | cs->gicr_igroupr0 = value; | |
294 | gicv3_redist_update(cs); | |
295 | return MEMTX_OK; | |
296 | case GICR_ISENABLER0: | |
297 | gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value); | |
298 | return MEMTX_OK; | |
299 | case GICR_ICENABLER0: | |
300 | gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value); | |
301 | return MEMTX_OK; | |
302 | case GICR_ISPENDR0: | |
303 | gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value); | |
304 | return MEMTX_OK; | |
305 | case GICR_ICPENDR0: | |
306 | gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value); | |
307 | return MEMTX_OK; | |
308 | case GICR_ISACTIVER0: | |
309 | gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value); | |
310 | return MEMTX_OK; | |
311 | case GICR_ICACTIVER0: | |
312 | gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value); | |
313 | return MEMTX_OK; | |
314 | case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: | |
315 | { | |
316 | int i, irq = offset - GICR_IPRIORITYR; | |
317 | ||
318 | for (i = irq; i < irq + 4; i++, value >>= 8) { | |
319 | gicr_write_ipriorityr(cs, attrs, i, value); | |
320 | } | |
321 | gicv3_redist_update(cs); | |
322 | return MEMTX_OK; | |
323 | } | |
324 | case GICR_ICFGR0: | |
325 | /* Register is all RAZ/WI or RAO/WI bits */ | |
326 | return MEMTX_OK; | |
327 | case GICR_ICFGR1: | |
328 | { | |
329 | uint32_t mask; | |
330 | ||
331 | /* Since our edge_trigger bitmap is one bit per irq, our input | |
332 | * 32-bits will compress down into 16 bits which we need | |
333 | * to write into the bitmap. | |
334 | */ | |
335 | value = half_unshuffle32(value >> 1) << 16; | |
336 | mask = mask_group(cs, attrs) & 0xffff0000U; | |
337 | ||
338 | cs->edge_trigger &= ~mask; | |
339 | cs->edge_trigger |= (value & mask); | |
340 | ||
341 | gicv3_redist_update(cs); | |
342 | return MEMTX_OK; | |
343 | } | |
344 | case GICR_IGRPMODR0: | |
345 | if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { | |
346 | /* RAZ/WI if security disabled, or if | |
347 | * security enabled and this is an NS access | |
348 | */ | |
349 | return MEMTX_OK; | |
350 | } | |
351 | cs->gicr_igrpmodr0 = value; | |
352 | gicv3_redist_update(cs); | |
353 | return MEMTX_OK; | |
354 | case GICR_NSACR: | |
355 | if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { | |
356 | /* RAZ/WI if security disabled, or if | |
357 | * security enabled and this is an NS access | |
358 | */ | |
359 | return MEMTX_OK; | |
360 | } | |
361 | cs->gicr_nsacr = value; | |
362 | /* no update required as this only affects access permission checks */ | |
363 | return MEMTX_OK; | |
364 | case GICR_IIDR: | |
365 | case GICR_TYPER: | |
366 | case GICR_IDREGS ... GICR_IDREGS + 0x1f: | |
367 | /* RO registers, ignore the write */ | |
368 | qemu_log_mask(LOG_GUEST_ERROR, | |
369 | "%s: invalid guest write to RO register at offset " | |
370 | TARGET_FMT_plx "\n", __func__, offset); | |
371 | return MEMTX_OK; | |
372 | default: | |
373 | return MEMTX_ERROR; | |
374 | } | |
375 | } | |
376 | ||
377 | static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset, | |
378 | uint64_t *data, MemTxAttrs attrs) | |
379 | { | |
380 | switch (offset) { | |
381 | case GICR_TYPER: | |
382 | *data = cs->gicr_typer; | |
383 | return MEMTX_OK; | |
384 | case GICR_PROPBASER: | |
385 | *data = cs->gicr_propbaser; | |
386 | return MEMTX_OK; | |
387 | case GICR_PENDBASER: | |
388 | *data = cs->gicr_pendbaser; | |
389 | return MEMTX_OK; | |
390 | default: | |
391 | return MEMTX_ERROR; | |
392 | } | |
393 | } | |
394 | ||
395 | static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset, | |
396 | uint64_t value, MemTxAttrs attrs) | |
397 | { | |
398 | switch (offset) { | |
399 | case GICR_PROPBASER: | |
400 | cs->gicr_propbaser = value; | |
401 | return MEMTX_OK; | |
402 | case GICR_PENDBASER: | |
403 | cs->gicr_pendbaser = value; | |
404 | return MEMTX_OK; | |
405 | case GICR_TYPER: | |
406 | /* RO register, ignore the write */ | |
407 | qemu_log_mask(LOG_GUEST_ERROR, | |
408 | "%s: invalid guest write to RO register at offset " | |
409 | TARGET_FMT_plx "\n", __func__, offset); | |
410 | return MEMTX_OK; | |
411 | default: | |
412 | return MEMTX_ERROR; | |
413 | } | |
414 | } | |
415 | ||
416 | MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data, | |
417 | unsigned size, MemTxAttrs attrs) | |
418 | { | |
419 | GICv3State *s = opaque; | |
420 | GICv3CPUState *cs; | |
421 | MemTxResult r; | |
422 | int cpuidx; | |
423 | ||
acd82796 PM |
424 | assert((offset & (size - 1)) == 0); |
425 | ||
cec93a93 SP |
426 | /* This region covers all the redistributor pages; there are |
427 | * (for GICv3) two 64K pages per CPU. At the moment they are | |
428 | * all contiguous (ie in this one region), though we might later | |
429 | * want to allow splitting of redistributor pages into several | |
430 | * blocks so we can support more CPUs. | |
431 | */ | |
432 | cpuidx = offset / 0x20000; | |
433 | offset %= 0x20000; | |
434 | assert(cpuidx < s->num_cpu); | |
435 | ||
436 | cs = &s->cpu[cpuidx]; | |
437 | ||
438 | switch (size) { | |
439 | case 1: | |
440 | r = gicr_readb(cs, offset, data, attrs); | |
441 | break; | |
442 | case 4: | |
443 | r = gicr_readl(cs, offset, data, attrs); | |
444 | break; | |
445 | case 8: | |
446 | r = gicr_readll(cs, offset, data, attrs); | |
447 | break; | |
448 | default: | |
449 | r = MEMTX_ERROR; | |
450 | break; | |
451 | } | |
452 | ||
453 | if (r == MEMTX_ERROR) { | |
454 | qemu_log_mask(LOG_GUEST_ERROR, | |
455 | "%s: invalid guest read at offset " TARGET_FMT_plx | |
456 | "size %u\n", __func__, offset, size); | |
457 | trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset, | |
458 | size, attrs.secure); | |
f1945632 PM |
459 | /* The spec requires that reserved registers are RAZ/WI; |
460 | * so use MEMTX_ERROR returns from leaf functions as a way to | |
461 | * trigger the guest-error logging but don't return it to | |
462 | * the caller, or we'll cause a spurious guest data abort. | |
463 | */ | |
464 | r = MEMTX_OK; | |
465 | *data = 0; | |
cec93a93 SP |
466 | } else { |
467 | trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data, | |
468 | size, attrs.secure); | |
469 | } | |
470 | return r; | |
471 | } | |
472 | ||
473 | MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data, | |
474 | unsigned size, MemTxAttrs attrs) | |
475 | { | |
476 | GICv3State *s = opaque; | |
477 | GICv3CPUState *cs; | |
478 | MemTxResult r; | |
479 | int cpuidx; | |
480 | ||
acd82796 PM |
481 | assert((offset & (size - 1)) == 0); |
482 | ||
cec93a93 SP |
483 | /* This region covers all the redistributor pages; there are |
484 | * (for GICv3) two 64K pages per CPU. At the moment they are | |
485 | * all contiguous (ie in this one region), though we might later | |
486 | * want to allow splitting of redistributor pages into several | |
487 | * blocks so we can support more CPUs. | |
488 | */ | |
489 | cpuidx = offset / 0x20000; | |
490 | offset %= 0x20000; | |
491 | assert(cpuidx < s->num_cpu); | |
492 | ||
493 | cs = &s->cpu[cpuidx]; | |
494 | ||
495 | switch (size) { | |
496 | case 1: | |
497 | r = gicr_writeb(cs, offset, data, attrs); | |
498 | break; | |
499 | case 4: | |
500 | r = gicr_writel(cs, offset, data, attrs); | |
501 | break; | |
502 | case 8: | |
503 | r = gicr_writell(cs, offset, data, attrs); | |
504 | break; | |
505 | default: | |
506 | r = MEMTX_ERROR; | |
507 | break; | |
508 | } | |
509 | ||
510 | if (r == MEMTX_ERROR) { | |
511 | qemu_log_mask(LOG_GUEST_ERROR, | |
512 | "%s: invalid guest write at offset " TARGET_FMT_plx | |
513 | "size %u\n", __func__, offset, size); | |
514 | trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data, | |
515 | size, attrs.secure); | |
f1945632 PM |
516 | /* The spec requires that reserved registers are RAZ/WI; |
517 | * so use MEMTX_ERROR returns from leaf functions as a way to | |
518 | * trigger the guest-error logging but don't return it to | |
519 | * the caller, or we'll cause a spurious guest data abort. | |
520 | */ | |
521 | r = MEMTX_OK; | |
cec93a93 SP |
522 | } else { |
523 | trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data, | |
524 | size, attrs.secure); | |
525 | } | |
526 | return r; | |
527 | } | |
c84428b3 PM |
528 | |
529 | void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level) | |
530 | { | |
531 | /* Update redistributor state for a change in an external PPI input line */ | |
532 | if (level == extract32(cs->level, irq, 1)) { | |
533 | return; | |
534 | } | |
535 | ||
536 | trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level); | |
537 | ||
538 | cs->level = deposit32(cs->level, irq, 1, level); | |
539 | ||
540 | if (level) { | |
541 | /* 0->1 edges latch the pending bit for edge-triggered interrupts */ | |
542 | if (extract32(cs->edge_trigger, irq, 1)) { | |
543 | cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1); | |
544 | } | |
545 | } | |
546 | ||
547 | gicv3_redist_update(cs); | |
548 | } | |
b1a0eb77 PM |
549 | |
550 | void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns) | |
551 | { | |
552 | /* Update redistributor state for a generated SGI */ | |
553 | int irqgrp = gicv3_irq_group(cs->gic, cs, irq); | |
554 | ||
555 | /* If we are asked for a Secure Group 1 SGI and it's actually | |
556 | * configured as Secure Group 0 this is OK (subject to the usual | |
557 | * NSACR checks). | |
558 | */ | |
559 | if (grp == GICV3_G1 && irqgrp == GICV3_G0) { | |
560 | grp = GICV3_G0; | |
561 | } | |
562 | ||
563 | if (grp != irqgrp) { | |
564 | return; | |
565 | } | |
566 | ||
567 | if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { | |
568 | /* If security is enabled we must test the NSACR bits */ | |
569 | int nsaccess = gicr_ns_access(cs, irq); | |
570 | ||
571 | if ((irqgrp == GICV3_G0 && nsaccess < 1) || | |
572 | (irqgrp == GICV3_G1 && nsaccess < 2)) { | |
573 | return; | |
574 | } | |
575 | } | |
576 | ||
577 | /* OK, we can accept the SGI */ | |
578 | trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq); | |
579 | cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1); | |
580 | gicv3_redist_update(cs); | |
581 | } |