]>
Commit | Line | Data |
---|---|---|
cec93a93 SP |
1 | /* |
2 | * ARM GICv3 emulation: Redistributor | |
3 | * | |
4 | * Copyright (c) 2015 Huawei. | |
5 | * Copyright (c) 2016 Linaro Limited. | |
6 | * Written by Shlomo Pongratz, Peter Maydell | |
7 | * | |
8 | * This code is licensed under the GPL, version 2 or (at your option) | |
9 | * any later version. | |
10 | */ | |
11 | ||
12 | #include "qemu/osdep.h" | |
13 | #include "trace.h" | |
14 | #include "gicv3_internal.h" | |
15 | ||
16 | static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs) | |
17 | { | |
18 | /* Return a 32-bit mask which should be applied for this set of 32 | |
19 | * interrupts; each bit is 1 if access is permitted by the | |
20 | * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does | |
21 | * not affect config register accesses, unlike GICD_NSACR.) | |
22 | */ | |
23 | if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { | |
24 | /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */ | |
25 | return cs->gicr_igroupr0; | |
26 | } | |
27 | return 0xFFFFFFFFU; | |
28 | } | |
29 | ||
30 | static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, | |
31 | uint32_t *reg, uint32_t val) | |
32 | { | |
33 | /* Helper routine to implement writing to a "set-bitmap" register */ | |
34 | val &= mask_group(cs, attrs); | |
35 | *reg |= val; | |
36 | gicv3_redist_update(cs); | |
37 | } | |
38 | ||
39 | static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, | |
40 | uint32_t *reg, uint32_t val) | |
41 | { | |
42 | /* Helper routine to implement writing to a "clear-bitmap" register */ | |
43 | val &= mask_group(cs, attrs); | |
44 | *reg &= ~val; | |
45 | gicv3_redist_update(cs); | |
46 | } | |
47 | ||
48 | static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, | |
49 | uint32_t reg) | |
50 | { | |
51 | reg &= mask_group(cs, attrs); | |
52 | return reg; | |
53 | } | |
54 | ||
55 | static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, | |
56 | int irq) | |
57 | { | |
58 | /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt, | |
59 | * honouring security state (these are RAZ/WI for Group 0 or Secure | |
60 | * Group 1 interrupts). | |
61 | */ | |
62 | uint32_t prio; | |
63 | ||
64 | prio = cs->gicr_ipriorityr[irq]; | |
65 | ||
66 | if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { | |
67 | if (!(cs->gicr_igroupr0 & (1U << irq))) { | |
68 | /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ | |
69 | return 0; | |
70 | } | |
71 | /* NS view of the interrupt priority */ | |
72 | prio = (prio << 1) & 0xff; | |
73 | } | |
74 | return prio; | |
75 | } | |
76 | ||
77 | static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq, | |
78 | uint8_t value) | |
79 | { | |
80 | /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt, | |
81 | * honouring security state (these are RAZ/WI for Group 0 or Secure | |
82 | * Group 1 interrupts). | |
83 | */ | |
84 | if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { | |
85 | if (!(cs->gicr_igroupr0 & (1U << irq))) { | |
86 | /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ | |
87 | return; | |
88 | } | |
89 | /* NS view of the interrupt priority */ | |
90 | value = 0x80 | (value >> 1); | |
91 | } | |
92 | cs->gicr_ipriorityr[irq] = value; | |
93 | } | |
94 | ||
95 | static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset, | |
96 | uint64_t *data, MemTxAttrs attrs) | |
97 | { | |
98 | switch (offset) { | |
99 | case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: | |
100 | *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR); | |
101 | return MEMTX_OK; | |
102 | default: | |
103 | return MEMTX_ERROR; | |
104 | } | |
105 | } | |
106 | ||
107 | static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset, | |
108 | uint64_t value, MemTxAttrs attrs) | |
109 | { | |
110 | switch (offset) { | |
111 | case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: | |
112 | gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value); | |
113 | gicv3_redist_update(cs); | |
114 | return MEMTX_OK; | |
115 | default: | |
116 | return MEMTX_ERROR; | |
117 | } | |
118 | } | |
119 | ||
120 | static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset, | |
121 | uint64_t *data, MemTxAttrs attrs) | |
122 | { | |
123 | switch (offset) { | |
124 | case GICR_CTLR: | |
125 | *data = cs->gicr_ctlr; | |
126 | return MEMTX_OK; | |
127 | case GICR_IIDR: | |
128 | *data = gicv3_iidr(); | |
129 | return MEMTX_OK; | |
130 | case GICR_TYPER: | |
131 | *data = extract64(cs->gicr_typer, 0, 32); | |
132 | return MEMTX_OK; | |
133 | case GICR_TYPER + 4: | |
134 | *data = extract64(cs->gicr_typer, 32, 32); | |
135 | return MEMTX_OK; | |
136 | case GICR_STATUSR: | |
137 | /* RAZ/WI for us (this is an optional register and our implementation | |
138 | * does not track RO/WO/reserved violations to report them to the guest) | |
139 | */ | |
140 | *data = 0; | |
141 | return MEMTX_OK; | |
142 | case GICR_WAKER: | |
143 | *data = cs->gicr_waker; | |
144 | return MEMTX_OK; | |
145 | case GICR_PROPBASER: | |
146 | *data = extract64(cs->gicr_propbaser, 0, 32); | |
147 | return MEMTX_OK; | |
148 | case GICR_PROPBASER + 4: | |
149 | *data = extract64(cs->gicr_propbaser, 32, 32); | |
150 | return MEMTX_OK; | |
151 | case GICR_PENDBASER: | |
152 | *data = extract64(cs->gicr_pendbaser, 0, 32); | |
153 | return MEMTX_OK; | |
154 | case GICR_PENDBASER + 4: | |
155 | *data = extract64(cs->gicr_pendbaser, 32, 32); | |
156 | return MEMTX_OK; | |
157 | case GICR_IGROUPR0: | |
158 | if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { | |
159 | *data = 0; | |
160 | return MEMTX_OK; | |
161 | } | |
162 | *data = cs->gicr_igroupr0; | |
163 | return MEMTX_OK; | |
164 | case GICR_ISENABLER0: | |
165 | case GICR_ICENABLER0: | |
166 | *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0); | |
167 | return MEMTX_OK; | |
168 | case GICR_ISPENDR0: | |
169 | case GICR_ICPENDR0: | |
170 | { | |
171 | /* The pending register reads as the logical OR of the pending | |
172 | * latch and the input line level for level-triggered interrupts. | |
173 | */ | |
174 | uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level); | |
175 | *data = gicr_read_bitmap_reg(cs, attrs, val); | |
176 | return MEMTX_OK; | |
177 | } | |
178 | case GICR_ISACTIVER0: | |
179 | case GICR_ICACTIVER0: | |
180 | *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0); | |
181 | return MEMTX_OK; | |
182 | case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: | |
183 | { | |
184 | int i, irq = offset - GICR_IPRIORITYR; | |
185 | uint32_t value = 0; | |
186 | ||
187 | for (i = irq + 3; i >= irq; i--, value <<= 8) { | |
188 | value |= gicr_read_ipriorityr(cs, attrs, i); | |
189 | } | |
190 | *data = value; | |
191 | return MEMTX_OK; | |
192 | } | |
193 | case GICR_ICFGR0: | |
194 | case GICR_ICFGR1: | |
195 | { | |
196 | /* Our edge_trigger bitmap is one bit per irq; take the correct | |
197 | * half of it, and spread it out into the odd bits. | |
198 | */ | |
199 | uint32_t value; | |
200 | ||
201 | value = cs->edge_trigger & mask_group(cs, attrs); | |
202 | value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16); | |
203 | value = half_shuffle32(value) << 1; | |
204 | *data = value; | |
205 | return MEMTX_OK; | |
206 | } | |
207 | case GICR_IGRPMODR0: | |
208 | if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { | |
209 | /* RAZ/WI if security disabled, or if | |
210 | * security enabled and this is an NS access | |
211 | */ | |
212 | *data = 0; | |
213 | return MEMTX_OK; | |
214 | } | |
215 | *data = cs->gicr_igrpmodr0; | |
216 | return MEMTX_OK; | |
217 | case GICR_NSACR: | |
218 | if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { | |
219 | /* RAZ/WI if security disabled, or if | |
220 | * security enabled and this is an NS access | |
221 | */ | |
222 | *data = 0; | |
223 | return MEMTX_OK; | |
224 | } | |
225 | *data = cs->gicr_nsacr; | |
226 | return MEMTX_OK; | |
227 | case GICR_IDREGS ... GICR_IDREGS + 0x1f: | |
228 | *data = gicv3_idreg(offset - GICR_IDREGS); | |
229 | return MEMTX_OK; | |
230 | default: | |
231 | return MEMTX_ERROR; | |
232 | } | |
233 | } | |
234 | ||
235 | static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset, | |
236 | uint64_t value, MemTxAttrs attrs) | |
237 | { | |
238 | switch (offset) { | |
239 | case GICR_CTLR: | |
240 | /* For our implementation, GICR_TYPER.DPGS is 0 and so all | |
241 | * the DPG bits are RAZ/WI. We don't do anything asynchronously, | |
242 | * so UWP and RWP are RAZ/WI. And GICR_TYPER.LPIS is 0 (we don't | |
243 | * implement LPIs) so Enable_LPIs is RES0. So there are no writable | |
244 | * bits for us. | |
245 | */ | |
246 | return MEMTX_OK; | |
247 | case GICR_STATUSR: | |
248 | /* RAZ/WI for our implementation */ | |
249 | return MEMTX_OK; | |
250 | case GICR_WAKER: | |
251 | /* Only the ProcessorSleep bit is writeable. When the guest sets | |
252 | * it it requests that we transition the channel between the | |
253 | * redistributor and the cpu interface to quiescent, and that | |
254 | * we set the ChildrenAsleep bit once the inteface has reached the | |
255 | * quiescent state. | |
256 | * Setting the ProcessorSleep to 0 reverses the quiescing, and | |
257 | * ChildrenAsleep is cleared once the transition is complete. | |
258 | * Since our interface is not asynchronous, we complete these | |
259 | * transitions instantaneously, so we set ChildrenAsleep to the | |
260 | * same value as ProcessorSleep here. | |
261 | */ | |
262 | value &= GICR_WAKER_ProcessorSleep; | |
263 | if (value & GICR_WAKER_ProcessorSleep) { | |
264 | value |= GICR_WAKER_ChildrenAsleep; | |
265 | } | |
266 | cs->gicr_waker = value; | |
267 | return MEMTX_OK; | |
268 | case GICR_PROPBASER: | |
269 | cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value); | |
270 | return MEMTX_OK; | |
271 | case GICR_PROPBASER + 4: | |
272 | cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value); | |
273 | return MEMTX_OK; | |
274 | case GICR_PENDBASER: | |
275 | cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value); | |
276 | return MEMTX_OK; | |
277 | case GICR_PENDBASER + 4: | |
278 | cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value); | |
279 | return MEMTX_OK; | |
280 | case GICR_IGROUPR0: | |
281 | if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { | |
282 | return MEMTX_OK; | |
283 | } | |
284 | cs->gicr_igroupr0 = value; | |
285 | gicv3_redist_update(cs); | |
286 | return MEMTX_OK; | |
287 | case GICR_ISENABLER0: | |
288 | gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value); | |
289 | return MEMTX_OK; | |
290 | case GICR_ICENABLER0: | |
291 | gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value); | |
292 | return MEMTX_OK; | |
293 | case GICR_ISPENDR0: | |
294 | gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value); | |
295 | return MEMTX_OK; | |
296 | case GICR_ICPENDR0: | |
297 | gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value); | |
298 | return MEMTX_OK; | |
299 | case GICR_ISACTIVER0: | |
300 | gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value); | |
301 | return MEMTX_OK; | |
302 | case GICR_ICACTIVER0: | |
303 | gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value); | |
304 | return MEMTX_OK; | |
305 | case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: | |
306 | { | |
307 | int i, irq = offset - GICR_IPRIORITYR; | |
308 | ||
309 | for (i = irq; i < irq + 4; i++, value >>= 8) { | |
310 | gicr_write_ipriorityr(cs, attrs, i, value); | |
311 | } | |
312 | gicv3_redist_update(cs); | |
313 | return MEMTX_OK; | |
314 | } | |
315 | case GICR_ICFGR0: | |
316 | /* Register is all RAZ/WI or RAO/WI bits */ | |
317 | return MEMTX_OK; | |
318 | case GICR_ICFGR1: | |
319 | { | |
320 | uint32_t mask; | |
321 | ||
322 | /* Since our edge_trigger bitmap is one bit per irq, our input | |
323 | * 32-bits will compress down into 16 bits which we need | |
324 | * to write into the bitmap. | |
325 | */ | |
326 | value = half_unshuffle32(value >> 1) << 16; | |
327 | mask = mask_group(cs, attrs) & 0xffff0000U; | |
328 | ||
329 | cs->edge_trigger &= ~mask; | |
330 | cs->edge_trigger |= (value & mask); | |
331 | ||
332 | gicv3_redist_update(cs); | |
333 | return MEMTX_OK; | |
334 | } | |
335 | case GICR_IGRPMODR0: | |
336 | if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { | |
337 | /* RAZ/WI if security disabled, or if | |
338 | * security enabled and this is an NS access | |
339 | */ | |
340 | return MEMTX_OK; | |
341 | } | |
342 | cs->gicr_igrpmodr0 = value; | |
343 | gicv3_redist_update(cs); | |
344 | return MEMTX_OK; | |
345 | case GICR_NSACR: | |
346 | if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { | |
347 | /* RAZ/WI if security disabled, or if | |
348 | * security enabled and this is an NS access | |
349 | */ | |
350 | return MEMTX_OK; | |
351 | } | |
352 | cs->gicr_nsacr = value; | |
353 | /* no update required as this only affects access permission checks */ | |
354 | return MEMTX_OK; | |
355 | case GICR_IIDR: | |
356 | case GICR_TYPER: | |
357 | case GICR_IDREGS ... GICR_IDREGS + 0x1f: | |
358 | /* RO registers, ignore the write */ | |
359 | qemu_log_mask(LOG_GUEST_ERROR, | |
360 | "%s: invalid guest write to RO register at offset " | |
361 | TARGET_FMT_plx "\n", __func__, offset); | |
362 | return MEMTX_OK; | |
363 | default: | |
364 | return MEMTX_ERROR; | |
365 | } | |
366 | } | |
367 | ||
368 | static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset, | |
369 | uint64_t *data, MemTxAttrs attrs) | |
370 | { | |
371 | switch (offset) { | |
372 | case GICR_TYPER: | |
373 | *data = cs->gicr_typer; | |
374 | return MEMTX_OK; | |
375 | case GICR_PROPBASER: | |
376 | *data = cs->gicr_propbaser; | |
377 | return MEMTX_OK; | |
378 | case GICR_PENDBASER: | |
379 | *data = cs->gicr_pendbaser; | |
380 | return MEMTX_OK; | |
381 | default: | |
382 | return MEMTX_ERROR; | |
383 | } | |
384 | } | |
385 | ||
386 | static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset, | |
387 | uint64_t value, MemTxAttrs attrs) | |
388 | { | |
389 | switch (offset) { | |
390 | case GICR_PROPBASER: | |
391 | cs->gicr_propbaser = value; | |
392 | return MEMTX_OK; | |
393 | case GICR_PENDBASER: | |
394 | cs->gicr_pendbaser = value; | |
395 | return MEMTX_OK; | |
396 | case GICR_TYPER: | |
397 | /* RO register, ignore the write */ | |
398 | qemu_log_mask(LOG_GUEST_ERROR, | |
399 | "%s: invalid guest write to RO register at offset " | |
400 | TARGET_FMT_plx "\n", __func__, offset); | |
401 | return MEMTX_OK; | |
402 | default: | |
403 | return MEMTX_ERROR; | |
404 | } | |
405 | } | |
406 | ||
407 | MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data, | |
408 | unsigned size, MemTxAttrs attrs) | |
409 | { | |
410 | GICv3State *s = opaque; | |
411 | GICv3CPUState *cs; | |
412 | MemTxResult r; | |
413 | int cpuidx; | |
414 | ||
415 | /* This region covers all the redistributor pages; there are | |
416 | * (for GICv3) two 64K pages per CPU. At the moment they are | |
417 | * all contiguous (ie in this one region), though we might later | |
418 | * want to allow splitting of redistributor pages into several | |
419 | * blocks so we can support more CPUs. | |
420 | */ | |
421 | cpuidx = offset / 0x20000; | |
422 | offset %= 0x20000; | |
423 | assert(cpuidx < s->num_cpu); | |
424 | ||
425 | cs = &s->cpu[cpuidx]; | |
426 | ||
427 | switch (size) { | |
428 | case 1: | |
429 | r = gicr_readb(cs, offset, data, attrs); | |
430 | break; | |
431 | case 4: | |
432 | r = gicr_readl(cs, offset, data, attrs); | |
433 | break; | |
434 | case 8: | |
435 | r = gicr_readll(cs, offset, data, attrs); | |
436 | break; | |
437 | default: | |
438 | r = MEMTX_ERROR; | |
439 | break; | |
440 | } | |
441 | ||
442 | if (r == MEMTX_ERROR) { | |
443 | qemu_log_mask(LOG_GUEST_ERROR, | |
444 | "%s: invalid guest read at offset " TARGET_FMT_plx | |
445 | "size %u\n", __func__, offset, size); | |
446 | trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset, | |
447 | size, attrs.secure); | |
448 | } else { | |
449 | trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data, | |
450 | size, attrs.secure); | |
451 | } | |
452 | return r; | |
453 | } | |
454 | ||
455 | MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data, | |
456 | unsigned size, MemTxAttrs attrs) | |
457 | { | |
458 | GICv3State *s = opaque; | |
459 | GICv3CPUState *cs; | |
460 | MemTxResult r; | |
461 | int cpuidx; | |
462 | ||
463 | /* This region covers all the redistributor pages; there are | |
464 | * (for GICv3) two 64K pages per CPU. At the moment they are | |
465 | * all contiguous (ie in this one region), though we might later | |
466 | * want to allow splitting of redistributor pages into several | |
467 | * blocks so we can support more CPUs. | |
468 | */ | |
469 | cpuidx = offset / 0x20000; | |
470 | offset %= 0x20000; | |
471 | assert(cpuidx < s->num_cpu); | |
472 | ||
473 | cs = &s->cpu[cpuidx]; | |
474 | ||
475 | switch (size) { | |
476 | case 1: | |
477 | r = gicr_writeb(cs, offset, data, attrs); | |
478 | break; | |
479 | case 4: | |
480 | r = gicr_writel(cs, offset, data, attrs); | |
481 | break; | |
482 | case 8: | |
483 | r = gicr_writell(cs, offset, data, attrs); | |
484 | break; | |
485 | default: | |
486 | r = MEMTX_ERROR; | |
487 | break; | |
488 | } | |
489 | ||
490 | if (r == MEMTX_ERROR) { | |
491 | qemu_log_mask(LOG_GUEST_ERROR, | |
492 | "%s: invalid guest write at offset " TARGET_FMT_plx | |
493 | "size %u\n", __func__, offset, size); | |
494 | trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data, | |
495 | size, attrs.secure); | |
496 | } else { | |
497 | trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data, | |
498 | size, attrs.secure); | |
499 | } | |
500 | return r; | |
501 | } |