]>
Commit | Line | Data |
---|---|---|
db1a4972 PB |
1 | /* |
2 | * QEMU System Emulator | |
3 | * | |
4 | * Copyright (c) 2003-2008 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
25 | #include "sysemu.h" | |
26 | #include "net.h" | |
27 | #include "monitor.h" | |
28 | #include "console.h" | |
29 | ||
30 | #include "hw/hw.h" | |
31 | ||
32 | #include <unistd.h> | |
33 | #include <fcntl.h> | |
34 | #include <time.h> | |
35 | #include <errno.h> | |
36 | #include <sys/time.h> | |
37 | #include <signal.h> | |
44459349 JL |
38 | #ifdef __FreeBSD__ |
39 | #include <sys/param.h> | |
40 | #endif | |
db1a4972 PB |
41 | |
42 | #ifdef __linux__ | |
43 | #include <sys/ioctl.h> | |
44 | #include <linux/rtc.h> | |
45 | /* For the benefit of older linux systems which don't supply it, | |
46 | we use a local copy of hpet.h. */ | |
47 | /* #include <linux/hpet.h> */ | |
48 | #include "hpet.h" | |
49 | #endif | |
50 | ||
51 | #ifdef _WIN32 | |
52 | #include <windows.h> | |
53 | #include <mmsystem.h> | |
54 | #endif | |
55 | ||
db1a4972 | 56 | #include "qemu-timer.h" |
db1a4972 PB |
57 | |
58 | /* Conversion factor from emulated instructions to virtual clock ticks. */ | |
29e922b6 | 59 | int icount_time_shift; |
db1a4972 PB |
60 | /* Arbitrarily pick 1MIPS as the minimum allowable speed. */ |
61 | #define MAX_ICOUNT_SHIFT 10 | |
62 | /* Compensate for varying guest execution speed. */ | |
29e922b6 | 63 | int64_t qemu_icount_bias; |
db1a4972 PB |
64 | static QEMUTimer *icount_rt_timer; |
65 | static QEMUTimer *icount_vm_timer; | |
66 | ||
db1a4972 PB |
67 | /***********************************************************/ |
68 | /* guest cycle counter */ | |
69 | ||
70 | typedef struct TimersState { | |
71 | int64_t cpu_ticks_prev; | |
72 | int64_t cpu_ticks_offset; | |
73 | int64_t cpu_clock_offset; | |
74 | int32_t cpu_ticks_enabled; | |
75 | int64_t dummy; | |
76 | } TimersState; | |
77 | ||
78 | TimersState timers_state; | |
79 | ||
80 | /* return the host CPU cycle counter and handle stop/restart */ | |
81 | int64_t cpu_get_ticks(void) | |
82 | { | |
83 | if (use_icount) { | |
84 | return cpu_get_icount(); | |
85 | } | |
86 | if (!timers_state.cpu_ticks_enabled) { | |
87 | return timers_state.cpu_ticks_offset; | |
88 | } else { | |
89 | int64_t ticks; | |
90 | ticks = cpu_get_real_ticks(); | |
91 | if (timers_state.cpu_ticks_prev > ticks) { | |
92 | /* Note: non increasing ticks may happen if the host uses | |
93 | software suspend */ | |
94 | timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks; | |
95 | } | |
96 | timers_state.cpu_ticks_prev = ticks; | |
97 | return ticks + timers_state.cpu_ticks_offset; | |
98 | } | |
99 | } | |
100 | ||
101 | /* return the host CPU monotonic timer and handle stop/restart */ | |
102 | static int64_t cpu_get_clock(void) | |
103 | { | |
104 | int64_t ti; | |
105 | if (!timers_state.cpu_ticks_enabled) { | |
106 | return timers_state.cpu_clock_offset; | |
107 | } else { | |
108 | ti = get_clock(); | |
109 | return ti + timers_state.cpu_clock_offset; | |
110 | } | |
111 | } | |
112 | ||
db1a4972 PB |
113 | static int64_t qemu_icount_delta(void) |
114 | { | |
c9f7383c | 115 | if (use_icount == 1) { |
db1a4972 PB |
116 | /* When not using an adaptive execution frequency |
117 | we tend to get badly out of sync with real time, | |
118 | so just delay for a reasonable amount of time. */ | |
119 | return 0; | |
120 | } else { | |
121 | return cpu_get_icount() - cpu_get_clock(); | |
122 | } | |
123 | } | |
db1a4972 PB |
124 | |
125 | /* enable cpu_get_ticks() */ | |
126 | void cpu_enable_ticks(void) | |
127 | { | |
128 | if (!timers_state.cpu_ticks_enabled) { | |
129 | timers_state.cpu_ticks_offset -= cpu_get_real_ticks(); | |
130 | timers_state.cpu_clock_offset -= get_clock(); | |
131 | timers_state.cpu_ticks_enabled = 1; | |
132 | } | |
133 | } | |
134 | ||
135 | /* disable cpu_get_ticks() : the clock is stopped. You must not call | |
136 | cpu_get_ticks() after that. */ | |
137 | void cpu_disable_ticks(void) | |
138 | { | |
139 | if (timers_state.cpu_ticks_enabled) { | |
140 | timers_state.cpu_ticks_offset = cpu_get_ticks(); | |
141 | timers_state.cpu_clock_offset = cpu_get_clock(); | |
142 | timers_state.cpu_ticks_enabled = 0; | |
143 | } | |
144 | } | |
145 | ||
146 | /***********************************************************/ | |
147 | /* timers */ | |
148 | ||
149 | #define QEMU_CLOCK_REALTIME 0 | |
150 | #define QEMU_CLOCK_VIRTUAL 1 | |
151 | #define QEMU_CLOCK_HOST 2 | |
152 | ||
153 | struct QEMUClock { | |
154 | int type; | |
155 | int enabled; | |
156 | /* XXX: add frequency */ | |
157 | }; | |
158 | ||
159 | struct QEMUTimer { | |
160 | QEMUClock *clock; | |
161 | int64_t expire_time; | |
162 | QEMUTimerCB *cb; | |
163 | void *opaque; | |
164 | struct QEMUTimer *next; | |
165 | }; | |
166 | ||
167 | struct qemu_alarm_timer { | |
168 | char const *name; | |
169 | int (*start)(struct qemu_alarm_timer *t); | |
170 | void (*stop)(struct qemu_alarm_timer *t); | |
171 | void (*rearm)(struct qemu_alarm_timer *t); | |
172 | void *priv; | |
173 | ||
174 | char expired; | |
175 | char pending; | |
176 | }; | |
177 | ||
178 | static struct qemu_alarm_timer *alarm_timer; | |
179 | ||
180 | int qemu_alarm_pending(void) | |
181 | { | |
182 | return alarm_timer->pending; | |
183 | } | |
184 | ||
185 | static inline int alarm_has_dynticks(struct qemu_alarm_timer *t) | |
186 | { | |
187 | return !!t->rearm; | |
188 | } | |
189 | ||
190 | static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t) | |
191 | { | |
192 | if (!alarm_has_dynticks(t)) | |
193 | return; | |
194 | ||
195 | t->rearm(t); | |
196 | } | |
197 | ||
9c13246a PB |
198 | /* TODO: MIN_TIMER_REARM_NS should be optimized */ |
199 | #define MIN_TIMER_REARM_NS 250000 | |
db1a4972 PB |
200 | |
201 | #ifdef _WIN32 | |
202 | ||
203 | struct qemu_alarm_win32 { | |
204 | MMRESULT timerId; | |
205 | unsigned int period; | |
206 | } alarm_win32_data = {0, 0}; | |
207 | ||
208 | static int win32_start_timer(struct qemu_alarm_timer *t); | |
209 | static void win32_stop_timer(struct qemu_alarm_timer *t); | |
210 | static void win32_rearm_timer(struct qemu_alarm_timer *t); | |
211 | ||
212 | #else | |
213 | ||
214 | static int unix_start_timer(struct qemu_alarm_timer *t); | |
215 | static void unix_stop_timer(struct qemu_alarm_timer *t); | |
216 | ||
217 | #ifdef __linux__ | |
218 | ||
219 | static int dynticks_start_timer(struct qemu_alarm_timer *t); | |
220 | static void dynticks_stop_timer(struct qemu_alarm_timer *t); | |
221 | static void dynticks_rearm_timer(struct qemu_alarm_timer *t); | |
222 | ||
223 | static int hpet_start_timer(struct qemu_alarm_timer *t); | |
224 | static void hpet_stop_timer(struct qemu_alarm_timer *t); | |
225 | ||
226 | static int rtc_start_timer(struct qemu_alarm_timer *t); | |
227 | static void rtc_stop_timer(struct qemu_alarm_timer *t); | |
228 | ||
229 | #endif /* __linux__ */ | |
230 | ||
231 | #endif /* _WIN32 */ | |
232 | ||
233 | /* Correlation between real and virtual time is always going to be | |
234 | fairly approximate, so ignore small variation. | |
235 | When the guest is idle real and virtual time will be aligned in | |
236 | the IO wait loop. */ | |
237 | #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10) | |
238 | ||
239 | static void icount_adjust(void) | |
240 | { | |
241 | int64_t cur_time; | |
242 | int64_t cur_icount; | |
243 | int64_t delta; | |
244 | static int64_t last_delta; | |
245 | /* If the VM is not running, then do nothing. */ | |
246 | if (!vm_running) | |
247 | return; | |
248 | ||
249 | cur_time = cpu_get_clock(); | |
250 | cur_icount = qemu_get_clock(vm_clock); | |
251 | delta = cur_icount - cur_time; | |
252 | /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */ | |
253 | if (delta > 0 | |
254 | && last_delta + ICOUNT_WOBBLE < delta * 2 | |
255 | && icount_time_shift > 0) { | |
256 | /* The guest is getting too far ahead. Slow time down. */ | |
257 | icount_time_shift--; | |
258 | } | |
259 | if (delta < 0 | |
260 | && last_delta - ICOUNT_WOBBLE > delta * 2 | |
261 | && icount_time_shift < MAX_ICOUNT_SHIFT) { | |
262 | /* The guest is getting too far behind. Speed time up. */ | |
263 | icount_time_shift++; | |
264 | } | |
265 | last_delta = delta; | |
266 | qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift); | |
267 | } | |
268 | ||
269 | static void icount_adjust_rt(void * opaque) | |
270 | { | |
271 | qemu_mod_timer(icount_rt_timer, | |
272 | qemu_get_clock(rt_clock) + 1000); | |
273 | icount_adjust(); | |
274 | } | |
275 | ||
276 | static void icount_adjust_vm(void * opaque) | |
277 | { | |
278 | qemu_mod_timer(icount_vm_timer, | |
279 | qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10); | |
280 | icount_adjust(); | |
281 | } | |
282 | ||
283 | int64_t qemu_icount_round(int64_t count) | |
284 | { | |
285 | return (count + (1 << icount_time_shift) - 1) >> icount_time_shift; | |
286 | } | |
287 | ||
288 | static struct qemu_alarm_timer alarm_timers[] = { | |
289 | #ifndef _WIN32 | |
290 | #ifdef __linux__ | |
291 | {"dynticks", dynticks_start_timer, | |
292 | dynticks_stop_timer, dynticks_rearm_timer, NULL}, | |
293 | /* HPET - if available - is preferred */ | |
294 | {"hpet", hpet_start_timer, hpet_stop_timer, NULL, NULL}, | |
295 | /* ...otherwise try RTC */ | |
296 | {"rtc", rtc_start_timer, rtc_stop_timer, NULL, NULL}, | |
297 | #endif | |
298 | {"unix", unix_start_timer, unix_stop_timer, NULL, NULL}, | |
299 | #else | |
300 | {"dynticks", win32_start_timer, | |
301 | win32_stop_timer, win32_rearm_timer, &alarm_win32_data}, | |
302 | {"win32", win32_start_timer, | |
303 | win32_stop_timer, NULL, &alarm_win32_data}, | |
304 | #endif | |
305 | {NULL, } | |
306 | }; | |
307 | ||
308 | static void show_available_alarms(void) | |
309 | { | |
310 | int i; | |
311 | ||
312 | printf("Available alarm timers, in order of precedence:\n"); | |
313 | for (i = 0; alarm_timers[i].name; i++) | |
314 | printf("%s\n", alarm_timers[i].name); | |
315 | } | |
316 | ||
317 | void configure_alarms(char const *opt) | |
318 | { | |
319 | int i; | |
320 | int cur = 0; | |
321 | int count = ARRAY_SIZE(alarm_timers) - 1; | |
322 | char *arg; | |
323 | char *name; | |
324 | struct qemu_alarm_timer tmp; | |
325 | ||
326 | if (!strcmp(opt, "?")) { | |
327 | show_available_alarms(); | |
328 | exit(0); | |
329 | } | |
330 | ||
331 | arg = qemu_strdup(opt); | |
332 | ||
333 | /* Reorder the array */ | |
334 | name = strtok(arg, ","); | |
335 | while (name) { | |
336 | for (i = 0; i < count && alarm_timers[i].name; i++) { | |
337 | if (!strcmp(alarm_timers[i].name, name)) | |
338 | break; | |
339 | } | |
340 | ||
341 | if (i == count) { | |
342 | fprintf(stderr, "Unknown clock %s\n", name); | |
343 | goto next; | |
344 | } | |
345 | ||
346 | if (i < cur) | |
347 | /* Ignore */ | |
348 | goto next; | |
349 | ||
350 | /* Swap */ | |
351 | tmp = alarm_timers[i]; | |
352 | alarm_timers[i] = alarm_timers[cur]; | |
353 | alarm_timers[cur] = tmp; | |
354 | ||
355 | cur++; | |
356 | next: | |
357 | name = strtok(NULL, ","); | |
358 | } | |
359 | ||
360 | qemu_free(arg); | |
361 | ||
362 | if (cur) { | |
363 | /* Disable remaining timers */ | |
364 | for (i = cur; i < count; i++) | |
365 | alarm_timers[i].name = NULL; | |
366 | } else { | |
367 | show_available_alarms(); | |
368 | exit(1); | |
369 | } | |
370 | } | |
371 | ||
372 | #define QEMU_NUM_CLOCKS 3 | |
373 | ||
374 | QEMUClock *rt_clock; | |
375 | QEMUClock *vm_clock; | |
376 | QEMUClock *host_clock; | |
377 | ||
378 | static QEMUTimer *active_timers[QEMU_NUM_CLOCKS]; | |
379 | ||
380 | static QEMUClock *qemu_new_clock(int type) | |
381 | { | |
382 | QEMUClock *clock; | |
383 | clock = qemu_mallocz(sizeof(QEMUClock)); | |
384 | clock->type = type; | |
385 | clock->enabled = 1; | |
386 | return clock; | |
387 | } | |
388 | ||
389 | void qemu_clock_enable(QEMUClock *clock, int enabled) | |
390 | { | |
391 | clock->enabled = enabled; | |
392 | } | |
393 | ||
394 | QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque) | |
395 | { | |
396 | QEMUTimer *ts; | |
397 | ||
398 | ts = qemu_mallocz(sizeof(QEMUTimer)); | |
399 | ts->clock = clock; | |
400 | ts->cb = cb; | |
401 | ts->opaque = opaque; | |
402 | return ts; | |
403 | } | |
404 | ||
405 | void qemu_free_timer(QEMUTimer *ts) | |
406 | { | |
407 | qemu_free(ts); | |
408 | } | |
409 | ||
410 | /* stop a timer, but do not dealloc it */ | |
411 | void qemu_del_timer(QEMUTimer *ts) | |
412 | { | |
413 | QEMUTimer **pt, *t; | |
414 | ||
415 | /* NOTE: this code must be signal safe because | |
416 | qemu_timer_expired() can be called from a signal. */ | |
417 | pt = &active_timers[ts->clock->type]; | |
418 | for(;;) { | |
419 | t = *pt; | |
420 | if (!t) | |
421 | break; | |
422 | if (t == ts) { | |
423 | *pt = t->next; | |
424 | break; | |
425 | } | |
426 | pt = &t->next; | |
427 | } | |
428 | } | |
429 | ||
430 | /* modify the current timer so that it will be fired when current_time | |
431 | >= expire_time. The corresponding callback will be called. */ | |
432 | void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time) | |
433 | { | |
434 | QEMUTimer **pt, *t; | |
435 | ||
436 | qemu_del_timer(ts); | |
437 | ||
438 | /* add the timer in the sorted list */ | |
439 | /* NOTE: this code must be signal safe because | |
440 | qemu_timer_expired() can be called from a signal. */ | |
441 | pt = &active_timers[ts->clock->type]; | |
442 | for(;;) { | |
443 | t = *pt; | |
444 | if (!t) | |
445 | break; | |
446 | if (t->expire_time > expire_time) | |
447 | break; | |
448 | pt = &t->next; | |
449 | } | |
450 | ts->expire_time = expire_time; | |
451 | ts->next = *pt; | |
452 | *pt = ts; | |
453 | ||
454 | /* Rearm if necessary */ | |
455 | if (pt == &active_timers[ts->clock->type]) { | |
456 | if (!alarm_timer->pending) { | |
457 | qemu_rearm_alarm_timer(alarm_timer); | |
458 | } | |
459 | /* Interrupt execution to force deadline recalculation. */ | |
460 | if (use_icount) | |
461 | qemu_notify_event(); | |
462 | } | |
463 | } | |
464 | ||
465 | int qemu_timer_pending(QEMUTimer *ts) | |
466 | { | |
467 | QEMUTimer *t; | |
468 | for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) { | |
469 | if (t == ts) | |
470 | return 1; | |
471 | } | |
472 | return 0; | |
473 | } | |
474 | ||
475 | int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time) | |
476 | { | |
477 | if (!timer_head) | |
478 | return 0; | |
479 | return (timer_head->expire_time <= current_time); | |
480 | } | |
481 | ||
482 | static void qemu_run_timers(QEMUClock *clock) | |
483 | { | |
484 | QEMUTimer **ptimer_head, *ts; | |
485 | int64_t current_time; | |
486 | ||
487 | if (!clock->enabled) | |
488 | return; | |
489 | ||
490 | current_time = qemu_get_clock (clock); | |
491 | ptimer_head = &active_timers[clock->type]; | |
492 | for(;;) { | |
493 | ts = *ptimer_head; | |
494 | if (!ts || ts->expire_time > current_time) | |
495 | break; | |
496 | /* remove timer from the list before calling the callback */ | |
497 | *ptimer_head = ts->next; | |
498 | ts->next = NULL; | |
499 | ||
500 | /* run the callback (the timer list can be modified) */ | |
501 | ts->cb(ts->opaque); | |
502 | } | |
503 | } | |
504 | ||
505 | int64_t qemu_get_clock(QEMUClock *clock) | |
506 | { | |
507 | switch(clock->type) { | |
508 | case QEMU_CLOCK_REALTIME: | |
509 | return get_clock() / 1000000; | |
510 | default: | |
511 | case QEMU_CLOCK_VIRTUAL: | |
512 | if (use_icount) { | |
513 | return cpu_get_icount(); | |
514 | } else { | |
515 | return cpu_get_clock(); | |
516 | } | |
517 | case QEMU_CLOCK_HOST: | |
518 | return get_clock_realtime(); | |
519 | } | |
520 | } | |
521 | ||
522 | int64_t qemu_get_clock_ns(QEMUClock *clock) | |
523 | { | |
524 | switch(clock->type) { | |
525 | case QEMU_CLOCK_REALTIME: | |
526 | return get_clock(); | |
527 | default: | |
528 | case QEMU_CLOCK_VIRTUAL: | |
529 | if (use_icount) { | |
530 | return cpu_get_icount(); | |
531 | } else { | |
532 | return cpu_get_clock(); | |
533 | } | |
534 | case QEMU_CLOCK_HOST: | |
535 | return get_clock_realtime(); | |
536 | } | |
537 | } | |
538 | ||
539 | void init_clocks(void) | |
540 | { | |
db1a4972 PB |
541 | rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME); |
542 | vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL); | |
543 | host_clock = qemu_new_clock(QEMU_CLOCK_HOST); | |
544 | ||
545 | rtc_clock = host_clock; | |
546 | } | |
547 | ||
548 | /* save a timer */ | |
549 | void qemu_put_timer(QEMUFile *f, QEMUTimer *ts) | |
550 | { | |
551 | uint64_t expire_time; | |
552 | ||
553 | if (qemu_timer_pending(ts)) { | |
554 | expire_time = ts->expire_time; | |
555 | } else { | |
556 | expire_time = -1; | |
557 | } | |
558 | qemu_put_be64(f, expire_time); | |
559 | } | |
560 | ||
561 | void qemu_get_timer(QEMUFile *f, QEMUTimer *ts) | |
562 | { | |
563 | uint64_t expire_time; | |
564 | ||
565 | expire_time = qemu_get_be64(f); | |
566 | if (expire_time != -1) { | |
567 | qemu_mod_timer(ts, expire_time); | |
568 | } else { | |
569 | qemu_del_timer(ts); | |
570 | } | |
571 | } | |
572 | ||
573 | static const VMStateDescription vmstate_timers = { | |
574 | .name = "timer", | |
575 | .version_id = 2, | |
576 | .minimum_version_id = 1, | |
577 | .minimum_version_id_old = 1, | |
578 | .fields = (VMStateField []) { | |
579 | VMSTATE_INT64(cpu_ticks_offset, TimersState), | |
580 | VMSTATE_INT64(dummy, TimersState), | |
581 | VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2), | |
582 | VMSTATE_END_OF_LIST() | |
583 | } | |
584 | }; | |
585 | ||
586 | void configure_icount(const char *option) | |
587 | { | |
0be71e32 | 588 | vmstate_register(NULL, 0, &vmstate_timers, &timers_state); |
db1a4972 PB |
589 | if (!option) |
590 | return; | |
591 | ||
592 | if (strcmp(option, "auto") != 0) { | |
593 | icount_time_shift = strtol(option, NULL, 0); | |
594 | use_icount = 1; | |
595 | return; | |
596 | } | |
597 | ||
598 | use_icount = 2; | |
599 | ||
600 | /* 125MIPS seems a reasonable initial guess at the guest speed. | |
601 | It will be corrected fairly quickly anyway. */ | |
602 | icount_time_shift = 3; | |
603 | ||
604 | /* Have both realtime and virtual time triggers for speed adjustment. | |
605 | The realtime trigger catches emulated time passing too slowly, | |
606 | the virtual time trigger catches emulated time passing too fast. | |
607 | Realtime triggers occur even when idle, so use them less frequently | |
608 | than VM triggers. */ | |
609 | icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL); | |
610 | qemu_mod_timer(icount_rt_timer, | |
611 | qemu_get_clock(rt_clock) + 1000); | |
612 | icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL); | |
613 | qemu_mod_timer(icount_vm_timer, | |
614 | qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10); | |
615 | } | |
616 | ||
617 | void qemu_run_all_timers(void) | |
618 | { | |
ca5a2a4b PB |
619 | alarm_timer->pending = 0; |
620 | ||
db1a4972 PB |
621 | /* rearm timer, if not periodic */ |
622 | if (alarm_timer->expired) { | |
623 | alarm_timer->expired = 0; | |
624 | qemu_rearm_alarm_timer(alarm_timer); | |
625 | } | |
626 | ||
db1a4972 PB |
627 | /* vm time timers */ |
628 | if (vm_running) { | |
629 | qemu_run_timers(vm_clock); | |
630 | } | |
631 | ||
632 | qemu_run_timers(rt_clock); | |
633 | qemu_run_timers(host_clock); | |
634 | } | |
635 | ||
4c3d45eb PB |
636 | static int64_t qemu_next_alarm_deadline(void); |
637 | ||
db1a4972 PB |
638 | #ifdef _WIN32 |
639 | static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg, | |
640 | DWORD_PTR dwUser, DWORD_PTR dw1, | |
641 | DWORD_PTR dw2) | |
642 | #else | |
643 | static void host_alarm_handler(int host_signum) | |
644 | #endif | |
645 | { | |
646 | struct qemu_alarm_timer *t = alarm_timer; | |
647 | if (!t) | |
648 | return; | |
649 | ||
650 | #if 0 | |
651 | #define DISP_FREQ 1000 | |
652 | { | |
653 | static int64_t delta_min = INT64_MAX; | |
654 | static int64_t delta_max, delta_cum, last_clock, delta, ti; | |
655 | static int count; | |
656 | ti = qemu_get_clock(vm_clock); | |
657 | if (last_clock != 0) { | |
658 | delta = ti - last_clock; | |
659 | if (delta < delta_min) | |
660 | delta_min = delta; | |
661 | if (delta > delta_max) | |
662 | delta_max = delta; | |
663 | delta_cum += delta; | |
664 | if (++count == DISP_FREQ) { | |
665 | printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n", | |
666 | muldiv64(delta_min, 1000000, get_ticks_per_sec()), | |
667 | muldiv64(delta_max, 1000000, get_ticks_per_sec()), | |
668 | muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()), | |
669 | (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ)); | |
670 | count = 0; | |
671 | delta_min = INT64_MAX; | |
672 | delta_max = 0; | |
673 | delta_cum = 0; | |
674 | } | |
675 | } | |
676 | last_clock = ti; | |
677 | } | |
678 | #endif | |
679 | if (alarm_has_dynticks(t) || | |
4c3d45eb | 680 | qemu_next_alarm_deadline () <= 0) { |
db1a4972 PB |
681 | t->expired = alarm_has_dynticks(t); |
682 | t->pending = 1; | |
683 | qemu_notify_event(); | |
684 | } | |
685 | } | |
686 | ||
687 | int64_t qemu_next_deadline(void) | |
688 | { | |
689 | /* To avoid problems with overflow limit this to 2^32. */ | |
690 | int64_t delta = INT32_MAX; | |
691 | ||
692 | if (active_timers[QEMU_CLOCK_VIRTUAL]) { | |
693 | delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time - | |
9c13246a | 694 | qemu_get_clock_ns(vm_clock); |
db1a4972 PB |
695 | } |
696 | if (active_timers[QEMU_CLOCK_HOST]) { | |
697 | int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time - | |
9c13246a | 698 | qemu_get_clock_ns(host_clock); |
db1a4972 PB |
699 | if (hdelta < delta) |
700 | delta = hdelta; | |
701 | } | |
702 | ||
703 | if (delta < 0) | |
704 | delta = 0; | |
705 | ||
706 | return delta; | |
707 | } | |
708 | ||
4c3d45eb | 709 | static int64_t qemu_next_alarm_deadline(void) |
db1a4972 PB |
710 | { |
711 | int64_t delta; | |
712 | int64_t rtdelta; | |
713 | ||
6ad0a1ed PB |
714 | if (!use_icount && active_timers[QEMU_CLOCK_VIRTUAL]) { |
715 | delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time - | |
716 | qemu_get_clock(vm_clock); | |
717 | } else { | |
db1a4972 | 718 | delta = INT32_MAX; |
6ad0a1ed PB |
719 | } |
720 | if (active_timers[QEMU_CLOCK_HOST]) { | |
721 | int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time - | |
722 | qemu_get_clock_ns(host_clock); | |
723 | if (hdelta < delta) | |
724 | delta = hdelta; | |
725 | } | |
db1a4972 | 726 | if (active_timers[QEMU_CLOCK_REALTIME]) { |
9c13246a PB |
727 | rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time * 1000000 - |
728 | qemu_get_clock_ns(rt_clock)); | |
db1a4972 PB |
729 | if (rtdelta < delta) |
730 | delta = rtdelta; | |
731 | } | |
732 | ||
db1a4972 PB |
733 | return delta; |
734 | } | |
735 | ||
4c3d45eb PB |
736 | #if defined(__linux__) |
737 | ||
738 | #define RTC_FREQ 1024 | |
739 | ||
db1a4972 PB |
740 | static void enable_sigio_timer(int fd) |
741 | { | |
742 | struct sigaction act; | |
743 | ||
744 | /* timer signal */ | |
745 | sigfillset(&act.sa_mask); | |
746 | act.sa_flags = 0; | |
747 | act.sa_handler = host_alarm_handler; | |
748 | ||
749 | sigaction(SIGIO, &act, NULL); | |
750 | fcntl_setfl(fd, O_ASYNC); | |
751 | fcntl(fd, F_SETOWN, getpid()); | |
752 | } | |
753 | ||
754 | static int hpet_start_timer(struct qemu_alarm_timer *t) | |
755 | { | |
756 | struct hpet_info info; | |
757 | int r, fd; | |
758 | ||
759 | fd = qemu_open("/dev/hpet", O_RDONLY); | |
760 | if (fd < 0) | |
761 | return -1; | |
762 | ||
763 | /* Set frequency */ | |
764 | r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ); | |
765 | if (r < 0) { | |
766 | fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n" | |
767 | "error, but for better emulation accuracy type:\n" | |
768 | "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n"); | |
769 | goto fail; | |
770 | } | |
771 | ||
772 | /* Check capabilities */ | |
773 | r = ioctl(fd, HPET_INFO, &info); | |
774 | if (r < 0) | |
775 | goto fail; | |
776 | ||
777 | /* Enable periodic mode */ | |
778 | r = ioctl(fd, HPET_EPI, 0); | |
779 | if (info.hi_flags && (r < 0)) | |
780 | goto fail; | |
781 | ||
782 | /* Enable interrupt */ | |
783 | r = ioctl(fd, HPET_IE_ON, 0); | |
784 | if (r < 0) | |
785 | goto fail; | |
786 | ||
787 | enable_sigio_timer(fd); | |
788 | t->priv = (void *)(long)fd; | |
789 | ||
790 | return 0; | |
791 | fail: | |
792 | close(fd); | |
793 | return -1; | |
794 | } | |
795 | ||
796 | static void hpet_stop_timer(struct qemu_alarm_timer *t) | |
797 | { | |
798 | int fd = (long)t->priv; | |
799 | ||
800 | close(fd); | |
801 | } | |
802 | ||
803 | static int rtc_start_timer(struct qemu_alarm_timer *t) | |
804 | { | |
805 | int rtc_fd; | |
806 | unsigned long current_rtc_freq = 0; | |
807 | ||
808 | TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY)); | |
809 | if (rtc_fd < 0) | |
810 | return -1; | |
811 | ioctl(rtc_fd, RTC_IRQP_READ, ¤t_rtc_freq); | |
812 | if (current_rtc_freq != RTC_FREQ && | |
813 | ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) { | |
814 | fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n" | |
815 | "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n" | |
816 | "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n"); | |
817 | goto fail; | |
818 | } | |
819 | if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) { | |
820 | fail: | |
821 | close(rtc_fd); | |
822 | return -1; | |
823 | } | |
824 | ||
825 | enable_sigio_timer(rtc_fd); | |
826 | ||
827 | t->priv = (void *)(long)rtc_fd; | |
828 | ||
829 | return 0; | |
830 | } | |
831 | ||
832 | static void rtc_stop_timer(struct qemu_alarm_timer *t) | |
833 | { | |
834 | int rtc_fd = (long)t->priv; | |
835 | ||
836 | close(rtc_fd); | |
837 | } | |
838 | ||
839 | static int dynticks_start_timer(struct qemu_alarm_timer *t) | |
840 | { | |
841 | struct sigevent ev; | |
842 | timer_t host_timer; | |
843 | struct sigaction act; | |
844 | ||
845 | sigfillset(&act.sa_mask); | |
846 | act.sa_flags = 0; | |
847 | act.sa_handler = host_alarm_handler; | |
848 | ||
849 | sigaction(SIGALRM, &act, NULL); | |
850 | ||
851 | /* | |
852 | * Initialize ev struct to 0 to avoid valgrind complaining | |
853 | * about uninitialized data in timer_create call | |
854 | */ | |
855 | memset(&ev, 0, sizeof(ev)); | |
856 | ev.sigev_value.sival_int = 0; | |
857 | ev.sigev_notify = SIGEV_SIGNAL; | |
858 | ev.sigev_signo = SIGALRM; | |
859 | ||
860 | if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) { | |
861 | perror("timer_create"); | |
862 | ||
863 | /* disable dynticks */ | |
864 | fprintf(stderr, "Dynamic Ticks disabled\n"); | |
865 | ||
866 | return -1; | |
867 | } | |
868 | ||
869 | t->priv = (void *)(long)host_timer; | |
870 | ||
871 | return 0; | |
872 | } | |
873 | ||
874 | static void dynticks_stop_timer(struct qemu_alarm_timer *t) | |
875 | { | |
876 | timer_t host_timer = (timer_t)(long)t->priv; | |
877 | ||
878 | timer_delete(host_timer); | |
879 | } | |
880 | ||
881 | static void dynticks_rearm_timer(struct qemu_alarm_timer *t) | |
882 | { | |
883 | timer_t host_timer = (timer_t)(long)t->priv; | |
884 | struct itimerspec timeout; | |
9c13246a PB |
885 | int64_t nearest_delta_ns = INT64_MAX; |
886 | int64_t current_ns; | |
db1a4972 PB |
887 | |
888 | assert(alarm_has_dynticks(t)); | |
889 | if (!active_timers[QEMU_CLOCK_REALTIME] && | |
890 | !active_timers[QEMU_CLOCK_VIRTUAL] && | |
891 | !active_timers[QEMU_CLOCK_HOST]) | |
892 | return; | |
893 | ||
4c3d45eb PB |
894 | nearest_delta_ns = qemu_next_alarm_deadline(); |
895 | if (nearest_delta_ns < MIN_TIMER_REARM_NS) | |
896 | nearest_delta_ns = MIN_TIMER_REARM_NS; | |
db1a4972 PB |
897 | |
898 | /* check whether a timer is already running */ | |
899 | if (timer_gettime(host_timer, &timeout)) { | |
900 | perror("gettime"); | |
901 | fprintf(stderr, "Internal timer error: aborting\n"); | |
902 | exit(1); | |
903 | } | |
9c13246a PB |
904 | current_ns = timeout.it_value.tv_sec * 1000000000LL + timeout.it_value.tv_nsec; |
905 | if (current_ns && current_ns <= nearest_delta_ns) | |
db1a4972 PB |
906 | return; |
907 | ||
908 | timeout.it_interval.tv_sec = 0; | |
909 | timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */ | |
9c13246a PB |
910 | timeout.it_value.tv_sec = nearest_delta_ns / 1000000000; |
911 | timeout.it_value.tv_nsec = nearest_delta_ns % 1000000000; | |
db1a4972 PB |
912 | if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) { |
913 | perror("settime"); | |
914 | fprintf(stderr, "Internal timer error: aborting\n"); | |
915 | exit(1); | |
916 | } | |
917 | } | |
918 | ||
919 | #endif /* defined(__linux__) */ | |
920 | ||
f26e5a54 SW |
921 | #if !defined(_WIN32) |
922 | ||
db1a4972 PB |
923 | static int unix_start_timer(struct qemu_alarm_timer *t) |
924 | { | |
925 | struct sigaction act; | |
926 | struct itimerval itv; | |
927 | int err; | |
928 | ||
929 | /* timer signal */ | |
930 | sigfillset(&act.sa_mask); | |
931 | act.sa_flags = 0; | |
932 | act.sa_handler = host_alarm_handler; | |
933 | ||
934 | sigaction(SIGALRM, &act, NULL); | |
935 | ||
936 | itv.it_interval.tv_sec = 0; | |
937 | /* for i386 kernel 2.6 to get 1 ms */ | |
938 | itv.it_interval.tv_usec = 999; | |
939 | itv.it_value.tv_sec = 0; | |
940 | itv.it_value.tv_usec = 10 * 1000; | |
941 | ||
942 | err = setitimer(ITIMER_REAL, &itv, NULL); | |
943 | if (err) | |
944 | return -1; | |
945 | ||
946 | return 0; | |
947 | } | |
948 | ||
949 | static void unix_stop_timer(struct qemu_alarm_timer *t) | |
950 | { | |
951 | struct itimerval itv; | |
952 | ||
953 | memset(&itv, 0, sizeof(itv)); | |
954 | setitimer(ITIMER_REAL, &itv, NULL); | |
955 | } | |
956 | ||
957 | #endif /* !defined(_WIN32) */ | |
958 | ||
959 | ||
960 | #ifdef _WIN32 | |
961 | ||
962 | static int win32_start_timer(struct qemu_alarm_timer *t) | |
963 | { | |
964 | TIMECAPS tc; | |
965 | struct qemu_alarm_win32 *data = t->priv; | |
966 | UINT flags; | |
967 | ||
968 | memset(&tc, 0, sizeof(tc)); | |
969 | timeGetDevCaps(&tc, sizeof(tc)); | |
970 | ||
971 | data->period = tc.wPeriodMin; | |
972 | timeBeginPeriod(data->period); | |
973 | ||
974 | flags = TIME_CALLBACK_FUNCTION; | |
975 | if (alarm_has_dynticks(t)) | |
976 | flags |= TIME_ONESHOT; | |
977 | else | |
978 | flags |= TIME_PERIODIC; | |
979 | ||
980 | data->timerId = timeSetEvent(1, // interval (ms) | |
981 | data->period, // resolution | |
982 | host_alarm_handler, // function | |
983 | (DWORD)t, // parameter | |
984 | flags); | |
985 | ||
986 | if (!data->timerId) { | |
987 | fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n", | |
988 | GetLastError()); | |
989 | timeEndPeriod(data->period); | |
990 | return -1; | |
991 | } | |
992 | ||
993 | return 0; | |
994 | } | |
995 | ||
996 | static void win32_stop_timer(struct qemu_alarm_timer *t) | |
997 | { | |
998 | struct qemu_alarm_win32 *data = t->priv; | |
999 | ||
1000 | timeKillEvent(data->timerId); | |
1001 | timeEndPeriod(data->period); | |
1002 | } | |
1003 | ||
1004 | static void win32_rearm_timer(struct qemu_alarm_timer *t) | |
1005 | { | |
1006 | struct qemu_alarm_win32 *data = t->priv; | |
cfced5b2 | 1007 | int nearest_delta_ms; |
db1a4972 PB |
1008 | |
1009 | assert(alarm_has_dynticks(t)); | |
1010 | if (!active_timers[QEMU_CLOCK_REALTIME] && | |
1011 | !active_timers[QEMU_CLOCK_VIRTUAL] && | |
1012 | !active_timers[QEMU_CLOCK_HOST]) | |
1013 | return; | |
1014 | ||
1015 | timeKillEvent(data->timerId); | |
1016 | ||
cfced5b2 PB |
1017 | nearest_delta_ms = (qemu_next_alarm_deadline() + 999999) / 1000000; |
1018 | if (nearest_delta_ms < 1) { | |
1019 | nearest_delta_ms = 1; | |
1020 | } | |
1021 | data->timerId = timeSetEvent(nearest_delta_ms, | |
db1a4972 PB |
1022 | data->period, |
1023 | host_alarm_handler, | |
1024 | (DWORD)t, | |
1025 | TIME_ONESHOT | TIME_CALLBACK_FUNCTION); | |
1026 | ||
1027 | if (!data->timerId) { | |
1028 | fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n", | |
1029 | GetLastError()); | |
1030 | ||
1031 | timeEndPeriod(data->period); | |
1032 | exit(1); | |
1033 | } | |
1034 | } | |
1035 | ||
1036 | #endif /* _WIN32 */ | |
1037 | ||
1038 | static void alarm_timer_on_change_state_rearm(void *opaque, int running, int reason) | |
1039 | { | |
1040 | if (running) | |
1041 | qemu_rearm_alarm_timer((struct qemu_alarm_timer *) opaque); | |
1042 | } | |
1043 | ||
1044 | int init_timer_alarm(void) | |
1045 | { | |
1046 | struct qemu_alarm_timer *t = NULL; | |
1047 | int i, err = -1; | |
1048 | ||
1049 | for (i = 0; alarm_timers[i].name; i++) { | |
1050 | t = &alarm_timers[i]; | |
1051 | ||
1052 | err = t->start(t); | |
1053 | if (!err) | |
1054 | break; | |
1055 | } | |
1056 | ||
1057 | if (err) { | |
1058 | err = -ENOENT; | |
1059 | goto fail; | |
1060 | } | |
1061 | ||
1062 | /* first event is at time 0 */ | |
1063 | t->pending = 1; | |
1064 | alarm_timer = t; | |
1065 | qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm, t); | |
1066 | ||
1067 | return 0; | |
1068 | ||
1069 | fail: | |
1070 | return err; | |
1071 | } | |
1072 | ||
1073 | void quit_timers(void) | |
1074 | { | |
1075 | struct qemu_alarm_timer *t = alarm_timer; | |
1076 | alarm_timer = NULL; | |
1077 | t->stop(t); | |
1078 | } | |
1079 | ||
1080 | int qemu_calculate_timeout(void) | |
1081 | { | |
db1a4972 | 1082 | int timeout; |
c9f7383c PB |
1083 | int64_t add; |
1084 | int64_t delta; | |
db1a4972 | 1085 | |
225d02cd EI |
1086 | /* When using icount, making forward progress with qemu_icount when the |
1087 | guest CPU is idle is critical. We only use the static io-thread timeout | |
1088 | for non icount runs. */ | |
c9f7383c PB |
1089 | if (!use_icount || !vm_running) { |
1090 | return 5000; | |
225d02cd | 1091 | } |
225d02cd | 1092 | |
c9f7383c PB |
1093 | /* Advance virtual time to the next event. */ |
1094 | delta = qemu_icount_delta(); | |
1095 | if (delta > 0) { | |
1096 | /* If virtual time is ahead of real time then just | |
1097 | wait for IO. */ | |
1098 | timeout = (delta + 999999) / 1000000; | |
1099 | } else { | |
1100 | /* Wait for either IO to occur or the next | |
1101 | timer event. */ | |
1102 | add = qemu_next_deadline(); | |
1103 | /* We advance the timer before checking for IO. | |
1104 | Limit the amount we advance so that early IO | |
1105 | activity won't get the guest too far ahead. */ | |
1106 | if (add > 10000000) | |
1107 | add = 10000000; | |
1108 | delta += add; | |
1109 | qemu_icount += qemu_icount_round (add); | |
1110 | timeout = delta / 1000000; | |
1111 | if (timeout < 0) | |
1112 | timeout = 0; | |
db1a4972 PB |
1113 | } |
1114 | ||
1115 | return timeout; | |
db1a4972 PB |
1116 | } |
1117 |