]>
Commit | Line | Data |
---|---|---|
db1a4972 PB |
1 | /* |
2 | * QEMU System Emulator | |
3 | * | |
4 | * Copyright (c) 2003-2008 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
25 | #include "sysemu.h" | |
26 | #include "net.h" | |
27 | #include "monitor.h" | |
28 | #include "console.h" | |
29 | ||
30 | #include "hw/hw.h" | |
31 | ||
32 | #include <unistd.h> | |
33 | #include <fcntl.h> | |
34 | #include <time.h> | |
35 | #include <errno.h> | |
36 | #include <sys/time.h> | |
37 | #include <signal.h> | |
44459349 JL |
38 | #ifdef __FreeBSD__ |
39 | #include <sys/param.h> | |
40 | #endif | |
db1a4972 PB |
41 | |
42 | #ifdef __linux__ | |
43 | #include <sys/ioctl.h> | |
44 | #include <linux/rtc.h> | |
45 | /* For the benefit of older linux systems which don't supply it, | |
46 | we use a local copy of hpet.h. */ | |
47 | /* #include <linux/hpet.h> */ | |
48 | #include "hpet.h" | |
49 | #endif | |
50 | ||
51 | #ifdef _WIN32 | |
52 | #include <windows.h> | |
53 | #include <mmsystem.h> | |
54 | #endif | |
55 | ||
db1a4972 | 56 | #include "qemu-timer.h" |
db1a4972 PB |
57 | |
58 | /* Conversion factor from emulated instructions to virtual clock ticks. */ | |
29e922b6 | 59 | int icount_time_shift; |
db1a4972 PB |
60 | /* Arbitrarily pick 1MIPS as the minimum allowable speed. */ |
61 | #define MAX_ICOUNT_SHIFT 10 | |
62 | /* Compensate for varying guest execution speed. */ | |
29e922b6 | 63 | int64_t qemu_icount_bias; |
db1a4972 PB |
64 | static QEMUTimer *icount_rt_timer; |
65 | static QEMUTimer *icount_vm_timer; | |
66 | ||
db1a4972 PB |
67 | /***********************************************************/ |
68 | /* guest cycle counter */ | |
69 | ||
70 | typedef struct TimersState { | |
71 | int64_t cpu_ticks_prev; | |
72 | int64_t cpu_ticks_offset; | |
73 | int64_t cpu_clock_offset; | |
74 | int32_t cpu_ticks_enabled; | |
75 | int64_t dummy; | |
76 | } TimersState; | |
77 | ||
78 | TimersState timers_state; | |
79 | ||
80 | /* return the host CPU cycle counter and handle stop/restart */ | |
81 | int64_t cpu_get_ticks(void) | |
82 | { | |
83 | if (use_icount) { | |
84 | return cpu_get_icount(); | |
85 | } | |
86 | if (!timers_state.cpu_ticks_enabled) { | |
87 | return timers_state.cpu_ticks_offset; | |
88 | } else { | |
89 | int64_t ticks; | |
90 | ticks = cpu_get_real_ticks(); | |
91 | if (timers_state.cpu_ticks_prev > ticks) { | |
92 | /* Note: non increasing ticks may happen if the host uses | |
93 | software suspend */ | |
94 | timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks; | |
95 | } | |
96 | timers_state.cpu_ticks_prev = ticks; | |
97 | return ticks + timers_state.cpu_ticks_offset; | |
98 | } | |
99 | } | |
100 | ||
101 | /* return the host CPU monotonic timer and handle stop/restart */ | |
102 | static int64_t cpu_get_clock(void) | |
103 | { | |
104 | int64_t ti; | |
105 | if (!timers_state.cpu_ticks_enabled) { | |
106 | return timers_state.cpu_clock_offset; | |
107 | } else { | |
108 | ti = get_clock(); | |
109 | return ti + timers_state.cpu_clock_offset; | |
110 | } | |
111 | } | |
112 | ||
db1a4972 PB |
113 | static int64_t qemu_icount_delta(void) |
114 | { | |
115 | if (!use_icount) { | |
116 | return 5000 * (int64_t) 1000000; | |
117 | } else if (use_icount == 1) { | |
118 | /* When not using an adaptive execution frequency | |
119 | we tend to get badly out of sync with real time, | |
120 | so just delay for a reasonable amount of time. */ | |
121 | return 0; | |
122 | } else { | |
123 | return cpu_get_icount() - cpu_get_clock(); | |
124 | } | |
125 | } | |
db1a4972 PB |
126 | |
127 | /* enable cpu_get_ticks() */ | |
128 | void cpu_enable_ticks(void) | |
129 | { | |
130 | if (!timers_state.cpu_ticks_enabled) { | |
131 | timers_state.cpu_ticks_offset -= cpu_get_real_ticks(); | |
132 | timers_state.cpu_clock_offset -= get_clock(); | |
133 | timers_state.cpu_ticks_enabled = 1; | |
134 | } | |
135 | } | |
136 | ||
137 | /* disable cpu_get_ticks() : the clock is stopped. You must not call | |
138 | cpu_get_ticks() after that. */ | |
139 | void cpu_disable_ticks(void) | |
140 | { | |
141 | if (timers_state.cpu_ticks_enabled) { | |
142 | timers_state.cpu_ticks_offset = cpu_get_ticks(); | |
143 | timers_state.cpu_clock_offset = cpu_get_clock(); | |
144 | timers_state.cpu_ticks_enabled = 0; | |
145 | } | |
146 | } | |
147 | ||
148 | /***********************************************************/ | |
149 | /* timers */ | |
150 | ||
151 | #define QEMU_CLOCK_REALTIME 0 | |
152 | #define QEMU_CLOCK_VIRTUAL 1 | |
153 | #define QEMU_CLOCK_HOST 2 | |
154 | ||
155 | struct QEMUClock { | |
156 | int type; | |
157 | int enabled; | |
158 | /* XXX: add frequency */ | |
159 | }; | |
160 | ||
161 | struct QEMUTimer { | |
162 | QEMUClock *clock; | |
163 | int64_t expire_time; | |
164 | QEMUTimerCB *cb; | |
165 | void *opaque; | |
166 | struct QEMUTimer *next; | |
167 | }; | |
168 | ||
169 | struct qemu_alarm_timer { | |
170 | char const *name; | |
171 | int (*start)(struct qemu_alarm_timer *t); | |
172 | void (*stop)(struct qemu_alarm_timer *t); | |
173 | void (*rearm)(struct qemu_alarm_timer *t); | |
174 | void *priv; | |
175 | ||
176 | char expired; | |
177 | char pending; | |
178 | }; | |
179 | ||
180 | static struct qemu_alarm_timer *alarm_timer; | |
181 | ||
182 | int qemu_alarm_pending(void) | |
183 | { | |
184 | return alarm_timer->pending; | |
185 | } | |
186 | ||
187 | static inline int alarm_has_dynticks(struct qemu_alarm_timer *t) | |
188 | { | |
189 | return !!t->rearm; | |
190 | } | |
191 | ||
192 | static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t) | |
193 | { | |
194 | if (!alarm_has_dynticks(t)) | |
195 | return; | |
196 | ||
197 | t->rearm(t); | |
198 | } | |
199 | ||
9c13246a PB |
200 | /* TODO: MIN_TIMER_REARM_NS should be optimized */ |
201 | #define MIN_TIMER_REARM_NS 250000 | |
db1a4972 PB |
202 | |
203 | #ifdef _WIN32 | |
204 | ||
205 | struct qemu_alarm_win32 { | |
206 | MMRESULT timerId; | |
207 | unsigned int period; | |
208 | } alarm_win32_data = {0, 0}; | |
209 | ||
210 | static int win32_start_timer(struct qemu_alarm_timer *t); | |
211 | static void win32_stop_timer(struct qemu_alarm_timer *t); | |
212 | static void win32_rearm_timer(struct qemu_alarm_timer *t); | |
213 | ||
214 | #else | |
215 | ||
216 | static int unix_start_timer(struct qemu_alarm_timer *t); | |
217 | static void unix_stop_timer(struct qemu_alarm_timer *t); | |
218 | ||
219 | #ifdef __linux__ | |
220 | ||
221 | static int dynticks_start_timer(struct qemu_alarm_timer *t); | |
222 | static void dynticks_stop_timer(struct qemu_alarm_timer *t); | |
223 | static void dynticks_rearm_timer(struct qemu_alarm_timer *t); | |
224 | ||
225 | static int hpet_start_timer(struct qemu_alarm_timer *t); | |
226 | static void hpet_stop_timer(struct qemu_alarm_timer *t); | |
227 | ||
228 | static int rtc_start_timer(struct qemu_alarm_timer *t); | |
229 | static void rtc_stop_timer(struct qemu_alarm_timer *t); | |
230 | ||
231 | #endif /* __linux__ */ | |
232 | ||
233 | #endif /* _WIN32 */ | |
234 | ||
235 | /* Correlation between real and virtual time is always going to be | |
236 | fairly approximate, so ignore small variation. | |
237 | When the guest is idle real and virtual time will be aligned in | |
238 | the IO wait loop. */ | |
239 | #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10) | |
240 | ||
241 | static void icount_adjust(void) | |
242 | { | |
243 | int64_t cur_time; | |
244 | int64_t cur_icount; | |
245 | int64_t delta; | |
246 | static int64_t last_delta; | |
247 | /* If the VM is not running, then do nothing. */ | |
248 | if (!vm_running) | |
249 | return; | |
250 | ||
251 | cur_time = cpu_get_clock(); | |
252 | cur_icount = qemu_get_clock(vm_clock); | |
253 | delta = cur_icount - cur_time; | |
254 | /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */ | |
255 | if (delta > 0 | |
256 | && last_delta + ICOUNT_WOBBLE < delta * 2 | |
257 | && icount_time_shift > 0) { | |
258 | /* The guest is getting too far ahead. Slow time down. */ | |
259 | icount_time_shift--; | |
260 | } | |
261 | if (delta < 0 | |
262 | && last_delta - ICOUNT_WOBBLE > delta * 2 | |
263 | && icount_time_shift < MAX_ICOUNT_SHIFT) { | |
264 | /* The guest is getting too far behind. Speed time up. */ | |
265 | icount_time_shift++; | |
266 | } | |
267 | last_delta = delta; | |
268 | qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift); | |
269 | } | |
270 | ||
271 | static void icount_adjust_rt(void * opaque) | |
272 | { | |
273 | qemu_mod_timer(icount_rt_timer, | |
274 | qemu_get_clock(rt_clock) + 1000); | |
275 | icount_adjust(); | |
276 | } | |
277 | ||
278 | static void icount_adjust_vm(void * opaque) | |
279 | { | |
280 | qemu_mod_timer(icount_vm_timer, | |
281 | qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10); | |
282 | icount_adjust(); | |
283 | } | |
284 | ||
285 | int64_t qemu_icount_round(int64_t count) | |
286 | { | |
287 | return (count + (1 << icount_time_shift) - 1) >> icount_time_shift; | |
288 | } | |
289 | ||
290 | static struct qemu_alarm_timer alarm_timers[] = { | |
291 | #ifndef _WIN32 | |
292 | #ifdef __linux__ | |
293 | {"dynticks", dynticks_start_timer, | |
294 | dynticks_stop_timer, dynticks_rearm_timer, NULL}, | |
295 | /* HPET - if available - is preferred */ | |
296 | {"hpet", hpet_start_timer, hpet_stop_timer, NULL, NULL}, | |
297 | /* ...otherwise try RTC */ | |
298 | {"rtc", rtc_start_timer, rtc_stop_timer, NULL, NULL}, | |
299 | #endif | |
300 | {"unix", unix_start_timer, unix_stop_timer, NULL, NULL}, | |
301 | #else | |
302 | {"dynticks", win32_start_timer, | |
303 | win32_stop_timer, win32_rearm_timer, &alarm_win32_data}, | |
304 | {"win32", win32_start_timer, | |
305 | win32_stop_timer, NULL, &alarm_win32_data}, | |
306 | #endif | |
307 | {NULL, } | |
308 | }; | |
309 | ||
310 | static void show_available_alarms(void) | |
311 | { | |
312 | int i; | |
313 | ||
314 | printf("Available alarm timers, in order of precedence:\n"); | |
315 | for (i = 0; alarm_timers[i].name; i++) | |
316 | printf("%s\n", alarm_timers[i].name); | |
317 | } | |
318 | ||
319 | void configure_alarms(char const *opt) | |
320 | { | |
321 | int i; | |
322 | int cur = 0; | |
323 | int count = ARRAY_SIZE(alarm_timers) - 1; | |
324 | char *arg; | |
325 | char *name; | |
326 | struct qemu_alarm_timer tmp; | |
327 | ||
328 | if (!strcmp(opt, "?")) { | |
329 | show_available_alarms(); | |
330 | exit(0); | |
331 | } | |
332 | ||
333 | arg = qemu_strdup(opt); | |
334 | ||
335 | /* Reorder the array */ | |
336 | name = strtok(arg, ","); | |
337 | while (name) { | |
338 | for (i = 0; i < count && alarm_timers[i].name; i++) { | |
339 | if (!strcmp(alarm_timers[i].name, name)) | |
340 | break; | |
341 | } | |
342 | ||
343 | if (i == count) { | |
344 | fprintf(stderr, "Unknown clock %s\n", name); | |
345 | goto next; | |
346 | } | |
347 | ||
348 | if (i < cur) | |
349 | /* Ignore */ | |
350 | goto next; | |
351 | ||
352 | /* Swap */ | |
353 | tmp = alarm_timers[i]; | |
354 | alarm_timers[i] = alarm_timers[cur]; | |
355 | alarm_timers[cur] = tmp; | |
356 | ||
357 | cur++; | |
358 | next: | |
359 | name = strtok(NULL, ","); | |
360 | } | |
361 | ||
362 | qemu_free(arg); | |
363 | ||
364 | if (cur) { | |
365 | /* Disable remaining timers */ | |
366 | for (i = cur; i < count; i++) | |
367 | alarm_timers[i].name = NULL; | |
368 | } else { | |
369 | show_available_alarms(); | |
370 | exit(1); | |
371 | } | |
372 | } | |
373 | ||
374 | #define QEMU_NUM_CLOCKS 3 | |
375 | ||
376 | QEMUClock *rt_clock; | |
377 | QEMUClock *vm_clock; | |
378 | QEMUClock *host_clock; | |
379 | ||
380 | static QEMUTimer *active_timers[QEMU_NUM_CLOCKS]; | |
381 | ||
382 | static QEMUClock *qemu_new_clock(int type) | |
383 | { | |
384 | QEMUClock *clock; | |
385 | clock = qemu_mallocz(sizeof(QEMUClock)); | |
386 | clock->type = type; | |
387 | clock->enabled = 1; | |
388 | return clock; | |
389 | } | |
390 | ||
391 | void qemu_clock_enable(QEMUClock *clock, int enabled) | |
392 | { | |
393 | clock->enabled = enabled; | |
394 | } | |
395 | ||
396 | QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque) | |
397 | { | |
398 | QEMUTimer *ts; | |
399 | ||
400 | ts = qemu_mallocz(sizeof(QEMUTimer)); | |
401 | ts->clock = clock; | |
402 | ts->cb = cb; | |
403 | ts->opaque = opaque; | |
404 | return ts; | |
405 | } | |
406 | ||
407 | void qemu_free_timer(QEMUTimer *ts) | |
408 | { | |
409 | qemu_free(ts); | |
410 | } | |
411 | ||
412 | /* stop a timer, but do not dealloc it */ | |
413 | void qemu_del_timer(QEMUTimer *ts) | |
414 | { | |
415 | QEMUTimer **pt, *t; | |
416 | ||
417 | /* NOTE: this code must be signal safe because | |
418 | qemu_timer_expired() can be called from a signal. */ | |
419 | pt = &active_timers[ts->clock->type]; | |
420 | for(;;) { | |
421 | t = *pt; | |
422 | if (!t) | |
423 | break; | |
424 | if (t == ts) { | |
425 | *pt = t->next; | |
426 | break; | |
427 | } | |
428 | pt = &t->next; | |
429 | } | |
430 | } | |
431 | ||
432 | /* modify the current timer so that it will be fired when current_time | |
433 | >= expire_time. The corresponding callback will be called. */ | |
434 | void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time) | |
435 | { | |
436 | QEMUTimer **pt, *t; | |
437 | ||
438 | qemu_del_timer(ts); | |
439 | ||
440 | /* add the timer in the sorted list */ | |
441 | /* NOTE: this code must be signal safe because | |
442 | qemu_timer_expired() can be called from a signal. */ | |
443 | pt = &active_timers[ts->clock->type]; | |
444 | for(;;) { | |
445 | t = *pt; | |
446 | if (!t) | |
447 | break; | |
448 | if (t->expire_time > expire_time) | |
449 | break; | |
450 | pt = &t->next; | |
451 | } | |
452 | ts->expire_time = expire_time; | |
453 | ts->next = *pt; | |
454 | *pt = ts; | |
455 | ||
456 | /* Rearm if necessary */ | |
457 | if (pt == &active_timers[ts->clock->type]) { | |
458 | if (!alarm_timer->pending) { | |
459 | qemu_rearm_alarm_timer(alarm_timer); | |
460 | } | |
461 | /* Interrupt execution to force deadline recalculation. */ | |
462 | if (use_icount) | |
463 | qemu_notify_event(); | |
464 | } | |
465 | } | |
466 | ||
467 | int qemu_timer_pending(QEMUTimer *ts) | |
468 | { | |
469 | QEMUTimer *t; | |
470 | for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) { | |
471 | if (t == ts) | |
472 | return 1; | |
473 | } | |
474 | return 0; | |
475 | } | |
476 | ||
477 | int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time) | |
478 | { | |
479 | if (!timer_head) | |
480 | return 0; | |
481 | return (timer_head->expire_time <= current_time); | |
482 | } | |
483 | ||
484 | static void qemu_run_timers(QEMUClock *clock) | |
485 | { | |
486 | QEMUTimer **ptimer_head, *ts; | |
487 | int64_t current_time; | |
488 | ||
489 | if (!clock->enabled) | |
490 | return; | |
491 | ||
492 | current_time = qemu_get_clock (clock); | |
493 | ptimer_head = &active_timers[clock->type]; | |
494 | for(;;) { | |
495 | ts = *ptimer_head; | |
496 | if (!ts || ts->expire_time > current_time) | |
497 | break; | |
498 | /* remove timer from the list before calling the callback */ | |
499 | *ptimer_head = ts->next; | |
500 | ts->next = NULL; | |
501 | ||
502 | /* run the callback (the timer list can be modified) */ | |
503 | ts->cb(ts->opaque); | |
504 | } | |
505 | } | |
506 | ||
507 | int64_t qemu_get_clock(QEMUClock *clock) | |
508 | { | |
509 | switch(clock->type) { | |
510 | case QEMU_CLOCK_REALTIME: | |
511 | return get_clock() / 1000000; | |
512 | default: | |
513 | case QEMU_CLOCK_VIRTUAL: | |
514 | if (use_icount) { | |
515 | return cpu_get_icount(); | |
516 | } else { | |
517 | return cpu_get_clock(); | |
518 | } | |
519 | case QEMU_CLOCK_HOST: | |
520 | return get_clock_realtime(); | |
521 | } | |
522 | } | |
523 | ||
524 | int64_t qemu_get_clock_ns(QEMUClock *clock) | |
525 | { | |
526 | switch(clock->type) { | |
527 | case QEMU_CLOCK_REALTIME: | |
528 | return get_clock(); | |
529 | default: | |
530 | case QEMU_CLOCK_VIRTUAL: | |
531 | if (use_icount) { | |
532 | return cpu_get_icount(); | |
533 | } else { | |
534 | return cpu_get_clock(); | |
535 | } | |
536 | case QEMU_CLOCK_HOST: | |
537 | return get_clock_realtime(); | |
538 | } | |
539 | } | |
540 | ||
541 | void init_clocks(void) | |
542 | { | |
db1a4972 PB |
543 | rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME); |
544 | vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL); | |
545 | host_clock = qemu_new_clock(QEMU_CLOCK_HOST); | |
546 | ||
547 | rtc_clock = host_clock; | |
548 | } | |
549 | ||
550 | /* save a timer */ | |
551 | void qemu_put_timer(QEMUFile *f, QEMUTimer *ts) | |
552 | { | |
553 | uint64_t expire_time; | |
554 | ||
555 | if (qemu_timer_pending(ts)) { | |
556 | expire_time = ts->expire_time; | |
557 | } else { | |
558 | expire_time = -1; | |
559 | } | |
560 | qemu_put_be64(f, expire_time); | |
561 | } | |
562 | ||
563 | void qemu_get_timer(QEMUFile *f, QEMUTimer *ts) | |
564 | { | |
565 | uint64_t expire_time; | |
566 | ||
567 | expire_time = qemu_get_be64(f); | |
568 | if (expire_time != -1) { | |
569 | qemu_mod_timer(ts, expire_time); | |
570 | } else { | |
571 | qemu_del_timer(ts); | |
572 | } | |
573 | } | |
574 | ||
575 | static const VMStateDescription vmstate_timers = { | |
576 | .name = "timer", | |
577 | .version_id = 2, | |
578 | .minimum_version_id = 1, | |
579 | .minimum_version_id_old = 1, | |
580 | .fields = (VMStateField []) { | |
581 | VMSTATE_INT64(cpu_ticks_offset, TimersState), | |
582 | VMSTATE_INT64(dummy, TimersState), | |
583 | VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2), | |
584 | VMSTATE_END_OF_LIST() | |
585 | } | |
586 | }; | |
587 | ||
588 | void configure_icount(const char *option) | |
589 | { | |
0be71e32 | 590 | vmstate_register(NULL, 0, &vmstate_timers, &timers_state); |
db1a4972 PB |
591 | if (!option) |
592 | return; | |
593 | ||
594 | if (strcmp(option, "auto") != 0) { | |
595 | icount_time_shift = strtol(option, NULL, 0); | |
596 | use_icount = 1; | |
597 | return; | |
598 | } | |
599 | ||
600 | use_icount = 2; | |
601 | ||
602 | /* 125MIPS seems a reasonable initial guess at the guest speed. | |
603 | It will be corrected fairly quickly anyway. */ | |
604 | icount_time_shift = 3; | |
605 | ||
606 | /* Have both realtime and virtual time triggers for speed adjustment. | |
607 | The realtime trigger catches emulated time passing too slowly, | |
608 | the virtual time trigger catches emulated time passing too fast. | |
609 | Realtime triggers occur even when idle, so use them less frequently | |
610 | than VM triggers. */ | |
611 | icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL); | |
612 | qemu_mod_timer(icount_rt_timer, | |
613 | qemu_get_clock(rt_clock) + 1000); | |
614 | icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL); | |
615 | qemu_mod_timer(icount_vm_timer, | |
616 | qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10); | |
617 | } | |
618 | ||
619 | void qemu_run_all_timers(void) | |
620 | { | |
ca5a2a4b PB |
621 | alarm_timer->pending = 0; |
622 | ||
db1a4972 PB |
623 | /* rearm timer, if not periodic */ |
624 | if (alarm_timer->expired) { | |
625 | alarm_timer->expired = 0; | |
626 | qemu_rearm_alarm_timer(alarm_timer); | |
627 | } | |
628 | ||
db1a4972 PB |
629 | /* vm time timers */ |
630 | if (vm_running) { | |
631 | qemu_run_timers(vm_clock); | |
632 | } | |
633 | ||
634 | qemu_run_timers(rt_clock); | |
635 | qemu_run_timers(host_clock); | |
636 | } | |
637 | ||
4c3d45eb PB |
638 | static int64_t qemu_next_alarm_deadline(void); |
639 | ||
db1a4972 PB |
640 | #ifdef _WIN32 |
641 | static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg, | |
642 | DWORD_PTR dwUser, DWORD_PTR dw1, | |
643 | DWORD_PTR dw2) | |
644 | #else | |
645 | static void host_alarm_handler(int host_signum) | |
646 | #endif | |
647 | { | |
648 | struct qemu_alarm_timer *t = alarm_timer; | |
649 | if (!t) | |
650 | return; | |
651 | ||
652 | #if 0 | |
653 | #define DISP_FREQ 1000 | |
654 | { | |
655 | static int64_t delta_min = INT64_MAX; | |
656 | static int64_t delta_max, delta_cum, last_clock, delta, ti; | |
657 | static int count; | |
658 | ti = qemu_get_clock(vm_clock); | |
659 | if (last_clock != 0) { | |
660 | delta = ti - last_clock; | |
661 | if (delta < delta_min) | |
662 | delta_min = delta; | |
663 | if (delta > delta_max) | |
664 | delta_max = delta; | |
665 | delta_cum += delta; | |
666 | if (++count == DISP_FREQ) { | |
667 | printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n", | |
668 | muldiv64(delta_min, 1000000, get_ticks_per_sec()), | |
669 | muldiv64(delta_max, 1000000, get_ticks_per_sec()), | |
670 | muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()), | |
671 | (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ)); | |
672 | count = 0; | |
673 | delta_min = INT64_MAX; | |
674 | delta_max = 0; | |
675 | delta_cum = 0; | |
676 | } | |
677 | } | |
678 | last_clock = ti; | |
679 | } | |
680 | #endif | |
681 | if (alarm_has_dynticks(t) || | |
4c3d45eb | 682 | qemu_next_alarm_deadline () <= 0) { |
db1a4972 PB |
683 | t->expired = alarm_has_dynticks(t); |
684 | t->pending = 1; | |
685 | qemu_notify_event(); | |
686 | } | |
687 | } | |
688 | ||
689 | int64_t qemu_next_deadline(void) | |
690 | { | |
691 | /* To avoid problems with overflow limit this to 2^32. */ | |
692 | int64_t delta = INT32_MAX; | |
693 | ||
694 | if (active_timers[QEMU_CLOCK_VIRTUAL]) { | |
695 | delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time - | |
9c13246a | 696 | qemu_get_clock_ns(vm_clock); |
db1a4972 PB |
697 | } |
698 | if (active_timers[QEMU_CLOCK_HOST]) { | |
699 | int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time - | |
9c13246a | 700 | qemu_get_clock_ns(host_clock); |
db1a4972 PB |
701 | if (hdelta < delta) |
702 | delta = hdelta; | |
703 | } | |
704 | ||
705 | if (delta < 0) | |
706 | delta = 0; | |
707 | ||
708 | return delta; | |
709 | } | |
710 | ||
711 | #ifndef _WIN32 | |
712 | ||
4c3d45eb | 713 | static int64_t qemu_next_alarm_deadline(void) |
db1a4972 PB |
714 | { |
715 | int64_t delta; | |
716 | int64_t rtdelta; | |
717 | ||
6ad0a1ed PB |
718 | if (!use_icount && active_timers[QEMU_CLOCK_VIRTUAL]) { |
719 | delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time - | |
720 | qemu_get_clock(vm_clock); | |
721 | } else { | |
db1a4972 | 722 | delta = INT32_MAX; |
6ad0a1ed PB |
723 | } |
724 | if (active_timers[QEMU_CLOCK_HOST]) { | |
725 | int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time - | |
726 | qemu_get_clock_ns(host_clock); | |
727 | if (hdelta < delta) | |
728 | delta = hdelta; | |
729 | } | |
db1a4972 | 730 | if (active_timers[QEMU_CLOCK_REALTIME]) { |
9c13246a PB |
731 | rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time * 1000000 - |
732 | qemu_get_clock_ns(rt_clock)); | |
db1a4972 PB |
733 | if (rtdelta < delta) |
734 | delta = rtdelta; | |
735 | } | |
736 | ||
db1a4972 PB |
737 | return delta; |
738 | } | |
739 | ||
4c3d45eb PB |
740 | #if defined(__linux__) |
741 | ||
742 | #define RTC_FREQ 1024 | |
743 | ||
db1a4972 PB |
744 | static void enable_sigio_timer(int fd) |
745 | { | |
746 | struct sigaction act; | |
747 | ||
748 | /* timer signal */ | |
749 | sigfillset(&act.sa_mask); | |
750 | act.sa_flags = 0; | |
751 | act.sa_handler = host_alarm_handler; | |
752 | ||
753 | sigaction(SIGIO, &act, NULL); | |
754 | fcntl_setfl(fd, O_ASYNC); | |
755 | fcntl(fd, F_SETOWN, getpid()); | |
756 | } | |
757 | ||
758 | static int hpet_start_timer(struct qemu_alarm_timer *t) | |
759 | { | |
760 | struct hpet_info info; | |
761 | int r, fd; | |
762 | ||
763 | fd = qemu_open("/dev/hpet", O_RDONLY); | |
764 | if (fd < 0) | |
765 | return -1; | |
766 | ||
767 | /* Set frequency */ | |
768 | r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ); | |
769 | if (r < 0) { | |
770 | fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n" | |
771 | "error, but for better emulation accuracy type:\n" | |
772 | "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n"); | |
773 | goto fail; | |
774 | } | |
775 | ||
776 | /* Check capabilities */ | |
777 | r = ioctl(fd, HPET_INFO, &info); | |
778 | if (r < 0) | |
779 | goto fail; | |
780 | ||
781 | /* Enable periodic mode */ | |
782 | r = ioctl(fd, HPET_EPI, 0); | |
783 | if (info.hi_flags && (r < 0)) | |
784 | goto fail; | |
785 | ||
786 | /* Enable interrupt */ | |
787 | r = ioctl(fd, HPET_IE_ON, 0); | |
788 | if (r < 0) | |
789 | goto fail; | |
790 | ||
791 | enable_sigio_timer(fd); | |
792 | t->priv = (void *)(long)fd; | |
793 | ||
794 | return 0; | |
795 | fail: | |
796 | close(fd); | |
797 | return -1; | |
798 | } | |
799 | ||
800 | static void hpet_stop_timer(struct qemu_alarm_timer *t) | |
801 | { | |
802 | int fd = (long)t->priv; | |
803 | ||
804 | close(fd); | |
805 | } | |
806 | ||
807 | static int rtc_start_timer(struct qemu_alarm_timer *t) | |
808 | { | |
809 | int rtc_fd; | |
810 | unsigned long current_rtc_freq = 0; | |
811 | ||
812 | TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY)); | |
813 | if (rtc_fd < 0) | |
814 | return -1; | |
815 | ioctl(rtc_fd, RTC_IRQP_READ, ¤t_rtc_freq); | |
816 | if (current_rtc_freq != RTC_FREQ && | |
817 | ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) { | |
818 | fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n" | |
819 | "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n" | |
820 | "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n"); | |
821 | goto fail; | |
822 | } | |
823 | if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) { | |
824 | fail: | |
825 | close(rtc_fd); | |
826 | return -1; | |
827 | } | |
828 | ||
829 | enable_sigio_timer(rtc_fd); | |
830 | ||
831 | t->priv = (void *)(long)rtc_fd; | |
832 | ||
833 | return 0; | |
834 | } | |
835 | ||
836 | static void rtc_stop_timer(struct qemu_alarm_timer *t) | |
837 | { | |
838 | int rtc_fd = (long)t->priv; | |
839 | ||
840 | close(rtc_fd); | |
841 | } | |
842 | ||
843 | static int dynticks_start_timer(struct qemu_alarm_timer *t) | |
844 | { | |
845 | struct sigevent ev; | |
846 | timer_t host_timer; | |
847 | struct sigaction act; | |
848 | ||
849 | sigfillset(&act.sa_mask); | |
850 | act.sa_flags = 0; | |
851 | act.sa_handler = host_alarm_handler; | |
852 | ||
853 | sigaction(SIGALRM, &act, NULL); | |
854 | ||
855 | /* | |
856 | * Initialize ev struct to 0 to avoid valgrind complaining | |
857 | * about uninitialized data in timer_create call | |
858 | */ | |
859 | memset(&ev, 0, sizeof(ev)); | |
860 | ev.sigev_value.sival_int = 0; | |
861 | ev.sigev_notify = SIGEV_SIGNAL; | |
862 | ev.sigev_signo = SIGALRM; | |
863 | ||
864 | if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) { | |
865 | perror("timer_create"); | |
866 | ||
867 | /* disable dynticks */ | |
868 | fprintf(stderr, "Dynamic Ticks disabled\n"); | |
869 | ||
870 | return -1; | |
871 | } | |
872 | ||
873 | t->priv = (void *)(long)host_timer; | |
874 | ||
875 | return 0; | |
876 | } | |
877 | ||
878 | static void dynticks_stop_timer(struct qemu_alarm_timer *t) | |
879 | { | |
880 | timer_t host_timer = (timer_t)(long)t->priv; | |
881 | ||
882 | timer_delete(host_timer); | |
883 | } | |
884 | ||
885 | static void dynticks_rearm_timer(struct qemu_alarm_timer *t) | |
886 | { | |
887 | timer_t host_timer = (timer_t)(long)t->priv; | |
888 | struct itimerspec timeout; | |
9c13246a PB |
889 | int64_t nearest_delta_ns = INT64_MAX; |
890 | int64_t current_ns; | |
db1a4972 PB |
891 | |
892 | assert(alarm_has_dynticks(t)); | |
893 | if (!active_timers[QEMU_CLOCK_REALTIME] && | |
894 | !active_timers[QEMU_CLOCK_VIRTUAL] && | |
895 | !active_timers[QEMU_CLOCK_HOST]) | |
896 | return; | |
897 | ||
4c3d45eb PB |
898 | nearest_delta_ns = qemu_next_alarm_deadline(); |
899 | if (nearest_delta_ns < MIN_TIMER_REARM_NS) | |
900 | nearest_delta_ns = MIN_TIMER_REARM_NS; | |
db1a4972 PB |
901 | |
902 | /* check whether a timer is already running */ | |
903 | if (timer_gettime(host_timer, &timeout)) { | |
904 | perror("gettime"); | |
905 | fprintf(stderr, "Internal timer error: aborting\n"); | |
906 | exit(1); | |
907 | } | |
9c13246a PB |
908 | current_ns = timeout.it_value.tv_sec * 1000000000LL + timeout.it_value.tv_nsec; |
909 | if (current_ns && current_ns <= nearest_delta_ns) | |
db1a4972 PB |
910 | return; |
911 | ||
912 | timeout.it_interval.tv_sec = 0; | |
913 | timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */ | |
9c13246a PB |
914 | timeout.it_value.tv_sec = nearest_delta_ns / 1000000000; |
915 | timeout.it_value.tv_nsec = nearest_delta_ns % 1000000000; | |
db1a4972 PB |
916 | if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) { |
917 | perror("settime"); | |
918 | fprintf(stderr, "Internal timer error: aborting\n"); | |
919 | exit(1); | |
920 | } | |
921 | } | |
922 | ||
923 | #endif /* defined(__linux__) */ | |
924 | ||
925 | static int unix_start_timer(struct qemu_alarm_timer *t) | |
926 | { | |
927 | struct sigaction act; | |
928 | struct itimerval itv; | |
929 | int err; | |
930 | ||
931 | /* timer signal */ | |
932 | sigfillset(&act.sa_mask); | |
933 | act.sa_flags = 0; | |
934 | act.sa_handler = host_alarm_handler; | |
935 | ||
936 | sigaction(SIGALRM, &act, NULL); | |
937 | ||
938 | itv.it_interval.tv_sec = 0; | |
939 | /* for i386 kernel 2.6 to get 1 ms */ | |
940 | itv.it_interval.tv_usec = 999; | |
941 | itv.it_value.tv_sec = 0; | |
942 | itv.it_value.tv_usec = 10 * 1000; | |
943 | ||
944 | err = setitimer(ITIMER_REAL, &itv, NULL); | |
945 | if (err) | |
946 | return -1; | |
947 | ||
948 | return 0; | |
949 | } | |
950 | ||
951 | static void unix_stop_timer(struct qemu_alarm_timer *t) | |
952 | { | |
953 | struct itimerval itv; | |
954 | ||
955 | memset(&itv, 0, sizeof(itv)); | |
956 | setitimer(ITIMER_REAL, &itv, NULL); | |
957 | } | |
958 | ||
959 | #endif /* !defined(_WIN32) */ | |
960 | ||
961 | ||
962 | #ifdef _WIN32 | |
963 | ||
964 | static int win32_start_timer(struct qemu_alarm_timer *t) | |
965 | { | |
966 | TIMECAPS tc; | |
967 | struct qemu_alarm_win32 *data = t->priv; | |
968 | UINT flags; | |
969 | ||
970 | memset(&tc, 0, sizeof(tc)); | |
971 | timeGetDevCaps(&tc, sizeof(tc)); | |
972 | ||
973 | data->period = tc.wPeriodMin; | |
974 | timeBeginPeriod(data->period); | |
975 | ||
976 | flags = TIME_CALLBACK_FUNCTION; | |
977 | if (alarm_has_dynticks(t)) | |
978 | flags |= TIME_ONESHOT; | |
979 | else | |
980 | flags |= TIME_PERIODIC; | |
981 | ||
982 | data->timerId = timeSetEvent(1, // interval (ms) | |
983 | data->period, // resolution | |
984 | host_alarm_handler, // function | |
985 | (DWORD)t, // parameter | |
986 | flags); | |
987 | ||
988 | if (!data->timerId) { | |
989 | fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n", | |
990 | GetLastError()); | |
991 | timeEndPeriod(data->period); | |
992 | return -1; | |
993 | } | |
994 | ||
995 | return 0; | |
996 | } | |
997 | ||
998 | static void win32_stop_timer(struct qemu_alarm_timer *t) | |
999 | { | |
1000 | struct qemu_alarm_win32 *data = t->priv; | |
1001 | ||
1002 | timeKillEvent(data->timerId); | |
1003 | timeEndPeriod(data->period); | |
1004 | } | |
1005 | ||
1006 | static void win32_rearm_timer(struct qemu_alarm_timer *t) | |
1007 | { | |
1008 | struct qemu_alarm_win32 *data = t->priv; | |
1009 | ||
1010 | assert(alarm_has_dynticks(t)); | |
1011 | if (!active_timers[QEMU_CLOCK_REALTIME] && | |
1012 | !active_timers[QEMU_CLOCK_VIRTUAL] && | |
1013 | !active_timers[QEMU_CLOCK_HOST]) | |
1014 | return; | |
1015 | ||
1016 | timeKillEvent(data->timerId); | |
1017 | ||
1018 | data->timerId = timeSetEvent(1, | |
1019 | data->period, | |
1020 | host_alarm_handler, | |
1021 | (DWORD)t, | |
1022 | TIME_ONESHOT | TIME_CALLBACK_FUNCTION); | |
1023 | ||
1024 | if (!data->timerId) { | |
1025 | fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n", | |
1026 | GetLastError()); | |
1027 | ||
1028 | timeEndPeriod(data->period); | |
1029 | exit(1); | |
1030 | } | |
1031 | } | |
1032 | ||
1033 | #endif /* _WIN32 */ | |
1034 | ||
1035 | static void alarm_timer_on_change_state_rearm(void *opaque, int running, int reason) | |
1036 | { | |
1037 | if (running) | |
1038 | qemu_rearm_alarm_timer((struct qemu_alarm_timer *) opaque); | |
1039 | } | |
1040 | ||
1041 | int init_timer_alarm(void) | |
1042 | { | |
1043 | struct qemu_alarm_timer *t = NULL; | |
1044 | int i, err = -1; | |
1045 | ||
1046 | for (i = 0; alarm_timers[i].name; i++) { | |
1047 | t = &alarm_timers[i]; | |
1048 | ||
1049 | err = t->start(t); | |
1050 | if (!err) | |
1051 | break; | |
1052 | } | |
1053 | ||
1054 | if (err) { | |
1055 | err = -ENOENT; | |
1056 | goto fail; | |
1057 | } | |
1058 | ||
1059 | /* first event is at time 0 */ | |
1060 | t->pending = 1; | |
1061 | alarm_timer = t; | |
1062 | qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm, t); | |
1063 | ||
1064 | return 0; | |
1065 | ||
1066 | fail: | |
1067 | return err; | |
1068 | } | |
1069 | ||
1070 | void quit_timers(void) | |
1071 | { | |
1072 | struct qemu_alarm_timer *t = alarm_timer; | |
1073 | alarm_timer = NULL; | |
1074 | t->stop(t); | |
1075 | } | |
1076 | ||
1077 | int qemu_calculate_timeout(void) | |
1078 | { | |
db1a4972 PB |
1079 | int timeout; |
1080 | ||
225d02cd EI |
1081 | #ifdef CONFIG_IOTHREAD |
1082 | /* When using icount, making forward progress with qemu_icount when the | |
1083 | guest CPU is idle is critical. We only use the static io-thread timeout | |
1084 | for non icount runs. */ | |
1085 | if (!use_icount) { | |
1086 | return 1000; | |
1087 | } | |
1088 | #endif | |
1089 | ||
db1a4972 PB |
1090 | if (!vm_running) |
1091 | timeout = 5000; | |
1092 | else { | |
1093 | /* XXX: use timeout computed from timers */ | |
1094 | int64_t add; | |
1095 | int64_t delta; | |
1096 | /* Advance virtual time to the next event. */ | |
1097 | delta = qemu_icount_delta(); | |
1098 | if (delta > 0) { | |
1099 | /* If virtual time is ahead of real time then just | |
1100 | wait for IO. */ | |
1101 | timeout = (delta + 999999) / 1000000; | |
1102 | } else { | |
1103 | /* Wait for either IO to occur or the next | |
1104 | timer event. */ | |
1105 | add = qemu_next_deadline(); | |
1106 | /* We advance the timer before checking for IO. | |
1107 | Limit the amount we advance so that early IO | |
1108 | activity won't get the guest too far ahead. */ | |
1109 | if (add > 10000000) | |
1110 | add = 10000000; | |
1111 | delta += add; | |
1112 | qemu_icount += qemu_icount_round (add); | |
1113 | timeout = delta / 1000000; | |
1114 | if (timeout < 0) | |
1115 | timeout = 0; | |
1116 | } | |
1117 | } | |
1118 | ||
1119 | return timeout; | |
db1a4972 PB |
1120 | } |
1121 |