]>
Commit | Line | Data |
---|---|---|
8d725fac AF |
1 | /* |
2 | * QEMU float support | |
3 | * | |
4 | * Derived from SoftFloat. | |
5 | */ | |
158142c2 FB |
6 | |
7 | /*============================================================================ | |
8 | ||
9 | This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic | |
10 | Package, Release 2b. | |
11 | ||
12 | Written by John R. Hauser. This work was made possible in part by the | |
13 | International Computer Science Institute, located at Suite 600, 1947 Center | |
14 | Street, Berkeley, California 94704. Funding was partially provided by the | |
15 | National Science Foundation under grant MIP-9311980. The original version | |
16 | of this code was written as part of a project to build a fixed-point vector | |
17 | processor in collaboration with the University of California at Berkeley, | |
18 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
19 | is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ | |
20 | arithmetic/SoftFloat.html'. | |
21 | ||
22 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has | |
23 | been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES | |
24 | RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS | |
25 | AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, | |
26 | COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE | |
27 | EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE | |
28 | INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR | |
29 | OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. | |
30 | ||
31 | Derivative works are acceptable, even for commercial purposes, so long as | |
32 | (1) the source code for the derivative work includes prominent notice that | |
33 | the work is derivative, and (2) the source code includes prominent notice with | |
34 | these four paragraphs for those parts of this code that are retained. | |
35 | ||
36 | =============================================================================*/ | |
37 | ||
2ac8bd03 PM |
38 | /* softfloat (and in particular the code in softfloat-specialize.h) is |
39 | * target-dependent and needs the TARGET_* macros. | |
40 | */ | |
41 | #include "config.h" | |
42 | ||
6b4c305c | 43 | #include "fpu/softfloat.h" |
158142c2 FB |
44 | |
45 | /*---------------------------------------------------------------------------- | |
46 | | Primitive arithmetic functions, including multi-word arithmetic, and | |
47 | | division and square root approximations. (Can be specialized to target if | |
48 | | desired.) | |
49 | *----------------------------------------------------------------------------*/ | |
50 | #include "softfloat-macros.h" | |
51 | ||
52 | /*---------------------------------------------------------------------------- | |
53 | | Functions and definitions to determine: (1) whether tininess for underflow | |
54 | | is detected before or after rounding by default, (2) what (if anything) | |
55 | | happens when exceptions are raised, (3) how signaling NaNs are distinguished | |
56 | | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs | |
57 | | are propagated from function inputs to output. These details are target- | |
58 | | specific. | |
59 | *----------------------------------------------------------------------------*/ | |
60 | #include "softfloat-specialize.h" | |
61 | ||
62 | void set_float_rounding_mode(int val STATUS_PARAM) | |
63 | { | |
64 | STATUS(float_rounding_mode) = val; | |
65 | } | |
66 | ||
1d6bda35 FB |
67 | void set_float_exception_flags(int val STATUS_PARAM) |
68 | { | |
69 | STATUS(float_exception_flags) = val; | |
70 | } | |
71 | ||
158142c2 FB |
72 | void set_floatx80_rounding_precision(int val STATUS_PARAM) |
73 | { | |
74 | STATUS(floatx80_rounding_precision) = val; | |
75 | } | |
158142c2 | 76 | |
bb4d4bb3 PM |
77 | /*---------------------------------------------------------------------------- |
78 | | Returns the fraction bits of the half-precision floating-point value `a'. | |
79 | *----------------------------------------------------------------------------*/ | |
80 | ||
81 | INLINE uint32_t extractFloat16Frac(float16 a) | |
82 | { | |
83 | return float16_val(a) & 0x3ff; | |
84 | } | |
85 | ||
86 | /*---------------------------------------------------------------------------- | |
87 | | Returns the exponent bits of the half-precision floating-point value `a'. | |
88 | *----------------------------------------------------------------------------*/ | |
89 | ||
94a49d86 | 90 | INLINE int_fast16_t extractFloat16Exp(float16 a) |
bb4d4bb3 PM |
91 | { |
92 | return (float16_val(a) >> 10) & 0x1f; | |
93 | } | |
94 | ||
95 | /*---------------------------------------------------------------------------- | |
96 | | Returns the sign bit of the single-precision floating-point value `a'. | |
97 | *----------------------------------------------------------------------------*/ | |
98 | ||
99 | INLINE flag extractFloat16Sign(float16 a) | |
100 | { | |
101 | return float16_val(a)>>15; | |
102 | } | |
103 | ||
158142c2 FB |
104 | /*---------------------------------------------------------------------------- |
105 | | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 | |
106 | | and 7, and returns the properly rounded 32-bit integer corresponding to the | |
107 | | input. If `zSign' is 1, the input is negated before being converted to an | |
108 | | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input | |
109 | | is simply rounded to an integer, with the inexact exception raised if the | |
110 | | input cannot be represented exactly as an integer. However, if the fixed- | |
111 | | point input is too large, the invalid exception is raised and the largest | |
112 | | positive or negative integer is returned. | |
113 | *----------------------------------------------------------------------------*/ | |
114 | ||
bb98fe42 | 115 | static int32 roundAndPackInt32( flag zSign, uint64_t absZ STATUS_PARAM) |
158142c2 FB |
116 | { |
117 | int8 roundingMode; | |
118 | flag roundNearestEven; | |
119 | int8 roundIncrement, roundBits; | |
760e1416 | 120 | int32_t z; |
158142c2 FB |
121 | |
122 | roundingMode = STATUS(float_rounding_mode); | |
123 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
124 | roundIncrement = 0x40; | |
125 | if ( ! roundNearestEven ) { | |
126 | if ( roundingMode == float_round_to_zero ) { | |
127 | roundIncrement = 0; | |
128 | } | |
129 | else { | |
130 | roundIncrement = 0x7F; | |
131 | if ( zSign ) { | |
132 | if ( roundingMode == float_round_up ) roundIncrement = 0; | |
133 | } | |
134 | else { | |
135 | if ( roundingMode == float_round_down ) roundIncrement = 0; | |
136 | } | |
137 | } | |
138 | } | |
139 | roundBits = absZ & 0x7F; | |
140 | absZ = ( absZ + roundIncrement )>>7; | |
141 | absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
142 | z = absZ; | |
143 | if ( zSign ) z = - z; | |
144 | if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { | |
145 | float_raise( float_flag_invalid STATUS_VAR); | |
bb98fe42 | 146 | return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
147 | } |
148 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
149 | return z; | |
150 | ||
151 | } | |
152 | ||
153 | /*---------------------------------------------------------------------------- | |
154 | | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and | |
155 | | `absZ1', with binary point between bits 63 and 64 (between the input words), | |
156 | | and returns the properly rounded 64-bit integer corresponding to the input. | |
157 | | If `zSign' is 1, the input is negated before being converted to an integer. | |
158 | | Ordinarily, the fixed-point input is simply rounded to an integer, with | |
159 | | the inexact exception raised if the input cannot be represented exactly as | |
160 | | an integer. However, if the fixed-point input is too large, the invalid | |
161 | | exception is raised and the largest positive or negative integer is | |
162 | | returned. | |
163 | *----------------------------------------------------------------------------*/ | |
164 | ||
bb98fe42 | 165 | static int64 roundAndPackInt64( flag zSign, uint64_t absZ0, uint64_t absZ1 STATUS_PARAM) |
158142c2 FB |
166 | { |
167 | int8 roundingMode; | |
168 | flag roundNearestEven, increment; | |
760e1416 | 169 | int64_t z; |
158142c2 FB |
170 | |
171 | roundingMode = STATUS(float_rounding_mode); | |
172 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
bb98fe42 | 173 | increment = ( (int64_t) absZ1 < 0 ); |
158142c2 FB |
174 | if ( ! roundNearestEven ) { |
175 | if ( roundingMode == float_round_to_zero ) { | |
176 | increment = 0; | |
177 | } | |
178 | else { | |
179 | if ( zSign ) { | |
180 | increment = ( roundingMode == float_round_down ) && absZ1; | |
181 | } | |
182 | else { | |
183 | increment = ( roundingMode == float_round_up ) && absZ1; | |
184 | } | |
185 | } | |
186 | } | |
187 | if ( increment ) { | |
188 | ++absZ0; | |
189 | if ( absZ0 == 0 ) goto overflow; | |
bb98fe42 | 190 | absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven ); |
158142c2 FB |
191 | } |
192 | z = absZ0; | |
193 | if ( zSign ) z = - z; | |
194 | if ( z && ( ( z < 0 ) ^ zSign ) ) { | |
195 | overflow: | |
196 | float_raise( float_flag_invalid STATUS_VAR); | |
197 | return | |
bb98fe42 | 198 | zSign ? (int64_t) LIT64( 0x8000000000000000 ) |
158142c2 FB |
199 | : LIT64( 0x7FFFFFFFFFFFFFFF ); |
200 | } | |
201 | if ( absZ1 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
202 | return z; | |
203 | ||
204 | } | |
205 | ||
206 | /*---------------------------------------------------------------------------- | |
207 | | Returns the fraction bits of the single-precision floating-point value `a'. | |
208 | *----------------------------------------------------------------------------*/ | |
209 | ||
bb98fe42 | 210 | INLINE uint32_t extractFloat32Frac( float32 a ) |
158142c2 FB |
211 | { |
212 | ||
f090c9d4 | 213 | return float32_val(a) & 0x007FFFFF; |
158142c2 FB |
214 | |
215 | } | |
216 | ||
217 | /*---------------------------------------------------------------------------- | |
218 | | Returns the exponent bits of the single-precision floating-point value `a'. | |
219 | *----------------------------------------------------------------------------*/ | |
220 | ||
94a49d86 | 221 | INLINE int_fast16_t extractFloat32Exp(float32 a) |
158142c2 FB |
222 | { |
223 | ||
f090c9d4 | 224 | return ( float32_val(a)>>23 ) & 0xFF; |
158142c2 FB |
225 | |
226 | } | |
227 | ||
228 | /*---------------------------------------------------------------------------- | |
229 | | Returns the sign bit of the single-precision floating-point value `a'. | |
230 | *----------------------------------------------------------------------------*/ | |
231 | ||
232 | INLINE flag extractFloat32Sign( float32 a ) | |
233 | { | |
234 | ||
f090c9d4 | 235 | return float32_val(a)>>31; |
158142c2 FB |
236 | |
237 | } | |
238 | ||
37d18660 PM |
239 | /*---------------------------------------------------------------------------- |
240 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
241 | | input-denormal exception and return zero. Otherwise just return the value. | |
242 | *----------------------------------------------------------------------------*/ | |
243 | static float32 float32_squash_input_denormal(float32 a STATUS_PARAM) | |
244 | { | |
245 | if (STATUS(flush_inputs_to_zero)) { | |
246 | if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) { | |
247 | float_raise(float_flag_input_denormal STATUS_VAR); | |
248 | return make_float32(float32_val(a) & 0x80000000); | |
249 | } | |
250 | } | |
251 | return a; | |
252 | } | |
253 | ||
158142c2 FB |
254 | /*---------------------------------------------------------------------------- |
255 | | Normalizes the subnormal single-precision floating-point value represented | |
256 | | by the denormalized significand `aSig'. The normalized exponent and | |
257 | | significand are stored at the locations pointed to by `zExpPtr' and | |
258 | | `zSigPtr', respectively. | |
259 | *----------------------------------------------------------------------------*/ | |
260 | ||
261 | static void | |
94a49d86 | 262 | normalizeFloat32Subnormal(uint32_t aSig, int_fast16_t *zExpPtr, uint32_t *zSigPtr) |
158142c2 FB |
263 | { |
264 | int8 shiftCount; | |
265 | ||
266 | shiftCount = countLeadingZeros32( aSig ) - 8; | |
267 | *zSigPtr = aSig<<shiftCount; | |
268 | *zExpPtr = 1 - shiftCount; | |
269 | ||
270 | } | |
271 | ||
272 | /*---------------------------------------------------------------------------- | |
273 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
274 | | single-precision floating-point value, returning the result. After being | |
275 | | shifted into the proper positions, the three fields are simply added | |
276 | | together to form the result. This means that any integer portion of `zSig' | |
277 | | will be added into the exponent. Since a properly normalized significand | |
278 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
279 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
280 | | significand. | |
281 | *----------------------------------------------------------------------------*/ | |
282 | ||
94a49d86 | 283 | INLINE float32 packFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig) |
158142c2 FB |
284 | { |
285 | ||
f090c9d4 | 286 | return make_float32( |
bb98fe42 | 287 | ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig); |
158142c2 FB |
288 | |
289 | } | |
290 | ||
291 | /*---------------------------------------------------------------------------- | |
292 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
293 | | and significand `zSig', and returns the proper single-precision floating- | |
294 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
295 | | value is simply rounded and packed into the single-precision format, with | |
296 | | the inexact exception raised if the abstract input cannot be represented | |
297 | | exactly. However, if the abstract value is too large, the overflow and | |
298 | | inexact exceptions are raised and an infinity or maximal finite value is | |
299 | | returned. If the abstract value is too small, the input value is rounded to | |
300 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
301 | | the abstract input cannot be represented exactly as a subnormal single- | |
302 | | precision floating-point number. | |
303 | | The input significand `zSig' has its binary point between bits 30 | |
304 | | and 29, which is 7 bits to the left of the usual location. This shifted | |
305 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
306 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
307 | | and it must not require rounding. In the usual case that `zSig' is | |
308 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
309 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
310 | | Binary Floating-Point Arithmetic. | |
311 | *----------------------------------------------------------------------------*/ | |
312 | ||
94a49d86 | 313 | static float32 roundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig STATUS_PARAM) |
158142c2 FB |
314 | { |
315 | int8 roundingMode; | |
316 | flag roundNearestEven; | |
317 | int8 roundIncrement, roundBits; | |
318 | flag isTiny; | |
319 | ||
320 | roundingMode = STATUS(float_rounding_mode); | |
321 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
322 | roundIncrement = 0x40; | |
323 | if ( ! roundNearestEven ) { | |
324 | if ( roundingMode == float_round_to_zero ) { | |
325 | roundIncrement = 0; | |
326 | } | |
327 | else { | |
328 | roundIncrement = 0x7F; | |
329 | if ( zSign ) { | |
330 | if ( roundingMode == float_round_up ) roundIncrement = 0; | |
331 | } | |
332 | else { | |
333 | if ( roundingMode == float_round_down ) roundIncrement = 0; | |
334 | } | |
335 | } | |
336 | } | |
337 | roundBits = zSig & 0x7F; | |
bb98fe42 | 338 | if ( 0xFD <= (uint16_t) zExp ) { |
158142c2 FB |
339 | if ( ( 0xFD < zExp ) |
340 | || ( ( zExp == 0xFD ) | |
bb98fe42 | 341 | && ( (int32_t) ( zSig + roundIncrement ) < 0 ) ) |
158142c2 FB |
342 | ) { |
343 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | |
f090c9d4 | 344 | return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 )); |
158142c2 FB |
345 | } |
346 | if ( zExp < 0 ) { | |
e6afc87f PM |
347 | if (STATUS(flush_to_zero)) { |
348 | float_raise(float_flag_output_denormal STATUS_VAR); | |
349 | return packFloat32(zSign, 0, 0); | |
350 | } | |
158142c2 FB |
351 | isTiny = |
352 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
353 | || ( zExp < -1 ) | |
354 | || ( zSig + roundIncrement < 0x80000000 ); | |
355 | shift32RightJamming( zSig, - zExp, &zSig ); | |
356 | zExp = 0; | |
357 | roundBits = zSig & 0x7F; | |
358 | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); | |
359 | } | |
360 | } | |
361 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
362 | zSig = ( zSig + roundIncrement )>>7; | |
363 | zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
364 | if ( zSig == 0 ) zExp = 0; | |
365 | return packFloat32( zSign, zExp, zSig ); | |
366 | ||
367 | } | |
368 | ||
369 | /*---------------------------------------------------------------------------- | |
370 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
371 | | and significand `zSig', and returns the proper single-precision floating- | |
372 | | point value corresponding to the abstract input. This routine is just like | |
373 | | `roundAndPackFloat32' except that `zSig' does not have to be normalized. | |
374 | | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
375 | | floating-point exponent. | |
376 | *----------------------------------------------------------------------------*/ | |
377 | ||
378 | static float32 | |
94a49d86 | 379 | normalizeRoundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig STATUS_PARAM) |
158142c2 FB |
380 | { |
381 | int8 shiftCount; | |
382 | ||
383 | shiftCount = countLeadingZeros32( zSig ) - 1; | |
384 | return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR); | |
385 | ||
386 | } | |
387 | ||
388 | /*---------------------------------------------------------------------------- | |
389 | | Returns the fraction bits of the double-precision floating-point value `a'. | |
390 | *----------------------------------------------------------------------------*/ | |
391 | ||
bb98fe42 | 392 | INLINE uint64_t extractFloat64Frac( float64 a ) |
158142c2 FB |
393 | { |
394 | ||
f090c9d4 | 395 | return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF ); |
158142c2 FB |
396 | |
397 | } | |
398 | ||
399 | /*---------------------------------------------------------------------------- | |
400 | | Returns the exponent bits of the double-precision floating-point value `a'. | |
401 | *----------------------------------------------------------------------------*/ | |
402 | ||
94a49d86 | 403 | INLINE int_fast16_t extractFloat64Exp(float64 a) |
158142c2 FB |
404 | { |
405 | ||
f090c9d4 | 406 | return ( float64_val(a)>>52 ) & 0x7FF; |
158142c2 FB |
407 | |
408 | } | |
409 | ||
410 | /*---------------------------------------------------------------------------- | |
411 | | Returns the sign bit of the double-precision floating-point value `a'. | |
412 | *----------------------------------------------------------------------------*/ | |
413 | ||
414 | INLINE flag extractFloat64Sign( float64 a ) | |
415 | { | |
416 | ||
f090c9d4 | 417 | return float64_val(a)>>63; |
158142c2 FB |
418 | |
419 | } | |
420 | ||
37d18660 PM |
421 | /*---------------------------------------------------------------------------- |
422 | | If `a' is denormal and we are in flush-to-zero mode then set the | |
423 | | input-denormal exception and return zero. Otherwise just return the value. | |
424 | *----------------------------------------------------------------------------*/ | |
425 | static float64 float64_squash_input_denormal(float64 a STATUS_PARAM) | |
426 | { | |
427 | if (STATUS(flush_inputs_to_zero)) { | |
428 | if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) { | |
429 | float_raise(float_flag_input_denormal STATUS_VAR); | |
430 | return make_float64(float64_val(a) & (1ULL << 63)); | |
431 | } | |
432 | } | |
433 | return a; | |
434 | } | |
435 | ||
158142c2 FB |
436 | /*---------------------------------------------------------------------------- |
437 | | Normalizes the subnormal double-precision floating-point value represented | |
438 | | by the denormalized significand `aSig'. The normalized exponent and | |
439 | | significand are stored at the locations pointed to by `zExpPtr' and | |
440 | | `zSigPtr', respectively. | |
441 | *----------------------------------------------------------------------------*/ | |
442 | ||
443 | static void | |
94a49d86 | 444 | normalizeFloat64Subnormal(uint64_t aSig, int_fast16_t *zExpPtr, uint64_t *zSigPtr) |
158142c2 FB |
445 | { |
446 | int8 shiftCount; | |
447 | ||
448 | shiftCount = countLeadingZeros64( aSig ) - 11; | |
449 | *zSigPtr = aSig<<shiftCount; | |
450 | *zExpPtr = 1 - shiftCount; | |
451 | ||
452 | } | |
453 | ||
454 | /*---------------------------------------------------------------------------- | |
455 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
456 | | double-precision floating-point value, returning the result. After being | |
457 | | shifted into the proper positions, the three fields are simply added | |
458 | | together to form the result. This means that any integer portion of `zSig' | |
459 | | will be added into the exponent. Since a properly normalized significand | |
460 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
461 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
462 | | significand. | |
463 | *----------------------------------------------------------------------------*/ | |
464 | ||
94a49d86 | 465 | INLINE float64 packFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig) |
158142c2 FB |
466 | { |
467 | ||
f090c9d4 | 468 | return make_float64( |
bb98fe42 | 469 | ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig); |
158142c2 FB |
470 | |
471 | } | |
472 | ||
473 | /*---------------------------------------------------------------------------- | |
474 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
475 | | and significand `zSig', and returns the proper double-precision floating- | |
476 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
477 | | value is simply rounded and packed into the double-precision format, with | |
478 | | the inexact exception raised if the abstract input cannot be represented | |
479 | | exactly. However, if the abstract value is too large, the overflow and | |
480 | | inexact exceptions are raised and an infinity or maximal finite value is | |
481 | | returned. If the abstract value is too small, the input value is rounded | |
482 | | to a subnormal number, and the underflow and inexact exceptions are raised | |
483 | | if the abstract input cannot be represented exactly as a subnormal double- | |
484 | | precision floating-point number. | |
485 | | The input significand `zSig' has its binary point between bits 62 | |
486 | | and 61, which is 10 bits to the left of the usual location. This shifted | |
487 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
488 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
489 | | and it must not require rounding. In the usual case that `zSig' is | |
490 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
491 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
492 | | Binary Floating-Point Arithmetic. | |
493 | *----------------------------------------------------------------------------*/ | |
494 | ||
94a49d86 | 495 | static float64 roundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig STATUS_PARAM) |
158142c2 FB |
496 | { |
497 | int8 roundingMode; | |
498 | flag roundNearestEven; | |
94a49d86 | 499 | int_fast16_t roundIncrement, roundBits; |
158142c2 FB |
500 | flag isTiny; |
501 | ||
502 | roundingMode = STATUS(float_rounding_mode); | |
503 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
504 | roundIncrement = 0x200; | |
505 | if ( ! roundNearestEven ) { | |
506 | if ( roundingMode == float_round_to_zero ) { | |
507 | roundIncrement = 0; | |
508 | } | |
509 | else { | |
510 | roundIncrement = 0x3FF; | |
511 | if ( zSign ) { | |
512 | if ( roundingMode == float_round_up ) roundIncrement = 0; | |
513 | } | |
514 | else { | |
515 | if ( roundingMode == float_round_down ) roundIncrement = 0; | |
516 | } | |
517 | } | |
518 | } | |
519 | roundBits = zSig & 0x3FF; | |
bb98fe42 | 520 | if ( 0x7FD <= (uint16_t) zExp ) { |
158142c2 FB |
521 | if ( ( 0x7FD < zExp ) |
522 | || ( ( zExp == 0x7FD ) | |
bb98fe42 | 523 | && ( (int64_t) ( zSig + roundIncrement ) < 0 ) ) |
158142c2 FB |
524 | ) { |
525 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | |
f090c9d4 | 526 | return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 )); |
158142c2 FB |
527 | } |
528 | if ( zExp < 0 ) { | |
e6afc87f PM |
529 | if (STATUS(flush_to_zero)) { |
530 | float_raise(float_flag_output_denormal STATUS_VAR); | |
531 | return packFloat64(zSign, 0, 0); | |
532 | } | |
158142c2 FB |
533 | isTiny = |
534 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
535 | || ( zExp < -1 ) | |
536 | || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); | |
537 | shift64RightJamming( zSig, - zExp, &zSig ); | |
538 | zExp = 0; | |
539 | roundBits = zSig & 0x3FF; | |
540 | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); | |
541 | } | |
542 | } | |
543 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
544 | zSig = ( zSig + roundIncrement )>>10; | |
545 | zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); | |
546 | if ( zSig == 0 ) zExp = 0; | |
547 | return packFloat64( zSign, zExp, zSig ); | |
548 | ||
549 | } | |
550 | ||
551 | /*---------------------------------------------------------------------------- | |
552 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
553 | | and significand `zSig', and returns the proper double-precision floating- | |
554 | | point value corresponding to the abstract input. This routine is just like | |
555 | | `roundAndPackFloat64' except that `zSig' does not have to be normalized. | |
556 | | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
557 | | floating-point exponent. | |
558 | *----------------------------------------------------------------------------*/ | |
559 | ||
560 | static float64 | |
94a49d86 | 561 | normalizeRoundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig STATUS_PARAM) |
158142c2 FB |
562 | { |
563 | int8 shiftCount; | |
564 | ||
565 | shiftCount = countLeadingZeros64( zSig ) - 1; | |
566 | return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR); | |
567 | ||
568 | } | |
569 | ||
158142c2 FB |
570 | /*---------------------------------------------------------------------------- |
571 | | Returns the fraction bits of the extended double-precision floating-point | |
572 | | value `a'. | |
573 | *----------------------------------------------------------------------------*/ | |
574 | ||
bb98fe42 | 575 | INLINE uint64_t extractFloatx80Frac( floatx80 a ) |
158142c2 FB |
576 | { |
577 | ||
578 | return a.low; | |
579 | ||
580 | } | |
581 | ||
582 | /*---------------------------------------------------------------------------- | |
583 | | Returns the exponent bits of the extended double-precision floating-point | |
584 | | value `a'. | |
585 | *----------------------------------------------------------------------------*/ | |
586 | ||
587 | INLINE int32 extractFloatx80Exp( floatx80 a ) | |
588 | { | |
589 | ||
590 | return a.high & 0x7FFF; | |
591 | ||
592 | } | |
593 | ||
594 | /*---------------------------------------------------------------------------- | |
595 | | Returns the sign bit of the extended double-precision floating-point value | |
596 | | `a'. | |
597 | *----------------------------------------------------------------------------*/ | |
598 | ||
599 | INLINE flag extractFloatx80Sign( floatx80 a ) | |
600 | { | |
601 | ||
602 | return a.high>>15; | |
603 | ||
604 | } | |
605 | ||
606 | /*---------------------------------------------------------------------------- | |
607 | | Normalizes the subnormal extended double-precision floating-point value | |
608 | | represented by the denormalized significand `aSig'. The normalized exponent | |
609 | | and significand are stored at the locations pointed to by `zExpPtr' and | |
610 | | `zSigPtr', respectively. | |
611 | *----------------------------------------------------------------------------*/ | |
612 | ||
613 | static void | |
bb98fe42 | 614 | normalizeFloatx80Subnormal( uint64_t aSig, int32 *zExpPtr, uint64_t *zSigPtr ) |
158142c2 FB |
615 | { |
616 | int8 shiftCount; | |
617 | ||
618 | shiftCount = countLeadingZeros64( aSig ); | |
619 | *zSigPtr = aSig<<shiftCount; | |
620 | *zExpPtr = 1 - shiftCount; | |
621 | ||
622 | } | |
623 | ||
624 | /*---------------------------------------------------------------------------- | |
625 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an | |
626 | | extended double-precision floating-point value, returning the result. | |
627 | *----------------------------------------------------------------------------*/ | |
628 | ||
bb98fe42 | 629 | INLINE floatx80 packFloatx80( flag zSign, int32 zExp, uint64_t zSig ) |
158142c2 FB |
630 | { |
631 | floatx80 z; | |
632 | ||
633 | z.low = zSig; | |
bb98fe42 | 634 | z.high = ( ( (uint16_t) zSign )<<15 ) + zExp; |
158142c2 FB |
635 | return z; |
636 | ||
637 | } | |
638 | ||
639 | /*---------------------------------------------------------------------------- | |
640 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
641 | | and extended significand formed by the concatenation of `zSig0' and `zSig1', | |
642 | | and returns the proper extended double-precision floating-point value | |
643 | | corresponding to the abstract input. Ordinarily, the abstract value is | |
644 | | rounded and packed into the extended double-precision format, with the | |
645 | | inexact exception raised if the abstract input cannot be represented | |
646 | | exactly. However, if the abstract value is too large, the overflow and | |
647 | | inexact exceptions are raised and an infinity or maximal finite value is | |
648 | | returned. If the abstract value is too small, the input value is rounded to | |
649 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
650 | | the abstract input cannot be represented exactly as a subnormal extended | |
651 | | double-precision floating-point number. | |
652 | | If `roundingPrecision' is 32 or 64, the result is rounded to the same | |
653 | | number of bits as single or double precision, respectively. Otherwise, the | |
654 | | result is rounded to the full precision of the extended double-precision | |
655 | | format. | |
656 | | The input significand must be normalized or smaller. If the input | |
657 | | significand is not normalized, `zExp' must be 0; in that case, the result | |
658 | | returned is a subnormal number, and it must not require rounding. The | |
659 | | handling of underflow and overflow follows the IEC/IEEE Standard for Binary | |
660 | | Floating-Point Arithmetic. | |
661 | *----------------------------------------------------------------------------*/ | |
662 | ||
663 | static floatx80 | |
664 | roundAndPackFloatx80( | |
bb98fe42 | 665 | int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 |
158142c2 FB |
666 | STATUS_PARAM) |
667 | { | |
668 | int8 roundingMode; | |
669 | flag roundNearestEven, increment, isTiny; | |
670 | int64 roundIncrement, roundMask, roundBits; | |
671 | ||
672 | roundingMode = STATUS(float_rounding_mode); | |
673 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
674 | if ( roundingPrecision == 80 ) goto precision80; | |
675 | if ( roundingPrecision == 64 ) { | |
676 | roundIncrement = LIT64( 0x0000000000000400 ); | |
677 | roundMask = LIT64( 0x00000000000007FF ); | |
678 | } | |
679 | else if ( roundingPrecision == 32 ) { | |
680 | roundIncrement = LIT64( 0x0000008000000000 ); | |
681 | roundMask = LIT64( 0x000000FFFFFFFFFF ); | |
682 | } | |
683 | else { | |
684 | goto precision80; | |
685 | } | |
686 | zSig0 |= ( zSig1 != 0 ); | |
687 | if ( ! roundNearestEven ) { | |
688 | if ( roundingMode == float_round_to_zero ) { | |
689 | roundIncrement = 0; | |
690 | } | |
691 | else { | |
692 | roundIncrement = roundMask; | |
693 | if ( zSign ) { | |
694 | if ( roundingMode == float_round_up ) roundIncrement = 0; | |
695 | } | |
696 | else { | |
697 | if ( roundingMode == float_round_down ) roundIncrement = 0; | |
698 | } | |
699 | } | |
700 | } | |
701 | roundBits = zSig0 & roundMask; | |
bb98fe42 | 702 | if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { |
158142c2 FB |
703 | if ( ( 0x7FFE < zExp ) |
704 | || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) | |
705 | ) { | |
706 | goto overflow; | |
707 | } | |
708 | if ( zExp <= 0 ) { | |
e6afc87f PM |
709 | if (STATUS(flush_to_zero)) { |
710 | float_raise(float_flag_output_denormal STATUS_VAR); | |
711 | return packFloatx80(zSign, 0, 0); | |
712 | } | |
158142c2 FB |
713 | isTiny = |
714 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
715 | || ( zExp < 0 ) | |
716 | || ( zSig0 <= zSig0 + roundIncrement ); | |
717 | shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); | |
718 | zExp = 0; | |
719 | roundBits = zSig0 & roundMask; | |
720 | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); | |
721 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
722 | zSig0 += roundIncrement; | |
bb98fe42 | 723 | if ( (int64_t) zSig0 < 0 ) zExp = 1; |
158142c2 FB |
724 | roundIncrement = roundMask + 1; |
725 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
726 | roundMask |= roundIncrement; | |
727 | } | |
728 | zSig0 &= ~ roundMask; | |
729 | return packFloatx80( zSign, zExp, zSig0 ); | |
730 | } | |
731 | } | |
732 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
733 | zSig0 += roundIncrement; | |
734 | if ( zSig0 < roundIncrement ) { | |
735 | ++zExp; | |
736 | zSig0 = LIT64( 0x8000000000000000 ); | |
737 | } | |
738 | roundIncrement = roundMask + 1; | |
739 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
740 | roundMask |= roundIncrement; | |
741 | } | |
742 | zSig0 &= ~ roundMask; | |
743 | if ( zSig0 == 0 ) zExp = 0; | |
744 | return packFloatx80( zSign, zExp, zSig0 ); | |
745 | precision80: | |
bb98fe42 | 746 | increment = ( (int64_t) zSig1 < 0 ); |
158142c2 FB |
747 | if ( ! roundNearestEven ) { |
748 | if ( roundingMode == float_round_to_zero ) { | |
749 | increment = 0; | |
750 | } | |
751 | else { | |
752 | if ( zSign ) { | |
753 | increment = ( roundingMode == float_round_down ) && zSig1; | |
754 | } | |
755 | else { | |
756 | increment = ( roundingMode == float_round_up ) && zSig1; | |
757 | } | |
758 | } | |
759 | } | |
bb98fe42 | 760 | if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { |
158142c2 FB |
761 | if ( ( 0x7FFE < zExp ) |
762 | || ( ( zExp == 0x7FFE ) | |
763 | && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) | |
764 | && increment | |
765 | ) | |
766 | ) { | |
767 | roundMask = 0; | |
768 | overflow: | |
769 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | |
770 | if ( ( roundingMode == float_round_to_zero ) | |
771 | || ( zSign && ( roundingMode == float_round_up ) ) | |
772 | || ( ! zSign && ( roundingMode == float_round_down ) ) | |
773 | ) { | |
774 | return packFloatx80( zSign, 0x7FFE, ~ roundMask ); | |
775 | } | |
776 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
777 | } | |
778 | if ( zExp <= 0 ) { | |
779 | isTiny = | |
780 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
781 | || ( zExp < 0 ) | |
782 | || ! increment | |
783 | || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); | |
784 | shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); | |
785 | zExp = 0; | |
786 | if ( isTiny && zSig1 ) float_raise( float_flag_underflow STATUS_VAR); | |
787 | if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
788 | if ( roundNearestEven ) { | |
bb98fe42 | 789 | increment = ( (int64_t) zSig1 < 0 ); |
158142c2 FB |
790 | } |
791 | else { | |
792 | if ( zSign ) { | |
793 | increment = ( roundingMode == float_round_down ) && zSig1; | |
794 | } | |
795 | else { | |
796 | increment = ( roundingMode == float_round_up ) && zSig1; | |
797 | } | |
798 | } | |
799 | if ( increment ) { | |
800 | ++zSig0; | |
801 | zSig0 &= | |
bb98fe42 AF |
802 | ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); |
803 | if ( (int64_t) zSig0 < 0 ) zExp = 1; | |
158142c2 FB |
804 | } |
805 | return packFloatx80( zSign, zExp, zSig0 ); | |
806 | } | |
807 | } | |
808 | if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
809 | if ( increment ) { | |
810 | ++zSig0; | |
811 | if ( zSig0 == 0 ) { | |
812 | ++zExp; | |
813 | zSig0 = LIT64( 0x8000000000000000 ); | |
814 | } | |
815 | else { | |
bb98fe42 | 816 | zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); |
158142c2 FB |
817 | } |
818 | } | |
819 | else { | |
820 | if ( zSig0 == 0 ) zExp = 0; | |
821 | } | |
822 | return packFloatx80( zSign, zExp, zSig0 ); | |
823 | ||
824 | } | |
825 | ||
826 | /*---------------------------------------------------------------------------- | |
827 | | Takes an abstract floating-point value having sign `zSign', exponent | |
828 | | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', | |
829 | | and returns the proper extended double-precision floating-point value | |
830 | | corresponding to the abstract input. This routine is just like | |
831 | | `roundAndPackFloatx80' except that the input significand does not have to be | |
832 | | normalized. | |
833 | *----------------------------------------------------------------------------*/ | |
834 | ||
835 | static floatx80 | |
836 | normalizeRoundAndPackFloatx80( | |
bb98fe42 | 837 | int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 |
158142c2 FB |
838 | STATUS_PARAM) |
839 | { | |
840 | int8 shiftCount; | |
841 | ||
842 | if ( zSig0 == 0 ) { | |
843 | zSig0 = zSig1; | |
844 | zSig1 = 0; | |
845 | zExp -= 64; | |
846 | } | |
847 | shiftCount = countLeadingZeros64( zSig0 ); | |
848 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
849 | zExp -= shiftCount; | |
850 | return | |
851 | roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 STATUS_VAR); | |
852 | ||
853 | } | |
854 | ||
158142c2 FB |
855 | /*---------------------------------------------------------------------------- |
856 | | Returns the least-significant 64 fraction bits of the quadruple-precision | |
857 | | floating-point value `a'. | |
858 | *----------------------------------------------------------------------------*/ | |
859 | ||
bb98fe42 | 860 | INLINE uint64_t extractFloat128Frac1( float128 a ) |
158142c2 FB |
861 | { |
862 | ||
863 | return a.low; | |
864 | ||
865 | } | |
866 | ||
867 | /*---------------------------------------------------------------------------- | |
868 | | Returns the most-significant 48 fraction bits of the quadruple-precision | |
869 | | floating-point value `a'. | |
870 | *----------------------------------------------------------------------------*/ | |
871 | ||
bb98fe42 | 872 | INLINE uint64_t extractFloat128Frac0( float128 a ) |
158142c2 FB |
873 | { |
874 | ||
875 | return a.high & LIT64( 0x0000FFFFFFFFFFFF ); | |
876 | ||
877 | } | |
878 | ||
879 | /*---------------------------------------------------------------------------- | |
880 | | Returns the exponent bits of the quadruple-precision floating-point value | |
881 | | `a'. | |
882 | *----------------------------------------------------------------------------*/ | |
883 | ||
884 | INLINE int32 extractFloat128Exp( float128 a ) | |
885 | { | |
886 | ||
887 | return ( a.high>>48 ) & 0x7FFF; | |
888 | ||
889 | } | |
890 | ||
891 | /*---------------------------------------------------------------------------- | |
892 | | Returns the sign bit of the quadruple-precision floating-point value `a'. | |
893 | *----------------------------------------------------------------------------*/ | |
894 | ||
895 | INLINE flag extractFloat128Sign( float128 a ) | |
896 | { | |
897 | ||
898 | return a.high>>63; | |
899 | ||
900 | } | |
901 | ||
902 | /*---------------------------------------------------------------------------- | |
903 | | Normalizes the subnormal quadruple-precision floating-point value | |
904 | | represented by the denormalized significand formed by the concatenation of | |
905 | | `aSig0' and `aSig1'. The normalized exponent is stored at the location | |
906 | | pointed to by `zExpPtr'. The most significant 49 bits of the normalized | |
907 | | significand are stored at the location pointed to by `zSig0Ptr', and the | |
908 | | least significant 64 bits of the normalized significand are stored at the | |
909 | | location pointed to by `zSig1Ptr'. | |
910 | *----------------------------------------------------------------------------*/ | |
911 | ||
912 | static void | |
913 | normalizeFloat128Subnormal( | |
bb98fe42 AF |
914 | uint64_t aSig0, |
915 | uint64_t aSig1, | |
158142c2 | 916 | int32 *zExpPtr, |
bb98fe42 AF |
917 | uint64_t *zSig0Ptr, |
918 | uint64_t *zSig1Ptr | |
158142c2 FB |
919 | ) |
920 | { | |
921 | int8 shiftCount; | |
922 | ||
923 | if ( aSig0 == 0 ) { | |
924 | shiftCount = countLeadingZeros64( aSig1 ) - 15; | |
925 | if ( shiftCount < 0 ) { | |
926 | *zSig0Ptr = aSig1>>( - shiftCount ); | |
927 | *zSig1Ptr = aSig1<<( shiftCount & 63 ); | |
928 | } | |
929 | else { | |
930 | *zSig0Ptr = aSig1<<shiftCount; | |
931 | *zSig1Ptr = 0; | |
932 | } | |
933 | *zExpPtr = - shiftCount - 63; | |
934 | } | |
935 | else { | |
936 | shiftCount = countLeadingZeros64( aSig0 ) - 15; | |
937 | shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); | |
938 | *zExpPtr = 1 - shiftCount; | |
939 | } | |
940 | ||
941 | } | |
942 | ||
943 | /*---------------------------------------------------------------------------- | |
944 | | Packs the sign `zSign', the exponent `zExp', and the significand formed | |
945 | | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision | |
946 | | floating-point value, returning the result. After being shifted into the | |
947 | | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply | |
948 | | added together to form the most significant 32 bits of the result. This | |
949 | | means that any integer portion of `zSig0' will be added into the exponent. | |
950 | | Since a properly normalized significand will have an integer portion equal | |
951 | | to 1, the `zExp' input should be 1 less than the desired result exponent | |
952 | | whenever `zSig0' and `zSig1' concatenated form a complete, normalized | |
953 | | significand. | |
954 | *----------------------------------------------------------------------------*/ | |
955 | ||
956 | INLINE float128 | |
bb98fe42 | 957 | packFloat128( flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 ) |
158142c2 FB |
958 | { |
959 | float128 z; | |
960 | ||
961 | z.low = zSig1; | |
bb98fe42 | 962 | z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0; |
158142c2 FB |
963 | return z; |
964 | ||
965 | } | |
966 | ||
967 | /*---------------------------------------------------------------------------- | |
968 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
969 | | and extended significand formed by the concatenation of `zSig0', `zSig1', | |
970 | | and `zSig2', and returns the proper quadruple-precision floating-point value | |
971 | | corresponding to the abstract input. Ordinarily, the abstract value is | |
972 | | simply rounded and packed into the quadruple-precision format, with the | |
973 | | inexact exception raised if the abstract input cannot be represented | |
974 | | exactly. However, if the abstract value is too large, the overflow and | |
975 | | inexact exceptions are raised and an infinity or maximal finite value is | |
976 | | returned. If the abstract value is too small, the input value is rounded to | |
977 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
978 | | the abstract input cannot be represented exactly as a subnormal quadruple- | |
979 | | precision floating-point number. | |
980 | | The input significand must be normalized or smaller. If the input | |
981 | | significand is not normalized, `zExp' must be 0; in that case, the result | |
982 | | returned is a subnormal number, and it must not require rounding. In the | |
983 | | usual case that the input significand is normalized, `zExp' must be 1 less | |
984 | | than the ``true'' floating-point exponent. The handling of underflow and | |
985 | | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
986 | *----------------------------------------------------------------------------*/ | |
987 | ||
988 | static float128 | |
989 | roundAndPackFloat128( | |
bb98fe42 | 990 | flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1, uint64_t zSig2 STATUS_PARAM) |
158142c2 FB |
991 | { |
992 | int8 roundingMode; | |
993 | flag roundNearestEven, increment, isTiny; | |
994 | ||
995 | roundingMode = STATUS(float_rounding_mode); | |
996 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
bb98fe42 | 997 | increment = ( (int64_t) zSig2 < 0 ); |
158142c2 FB |
998 | if ( ! roundNearestEven ) { |
999 | if ( roundingMode == float_round_to_zero ) { | |
1000 | increment = 0; | |
1001 | } | |
1002 | else { | |
1003 | if ( zSign ) { | |
1004 | increment = ( roundingMode == float_round_down ) && zSig2; | |
1005 | } | |
1006 | else { | |
1007 | increment = ( roundingMode == float_round_up ) && zSig2; | |
1008 | } | |
1009 | } | |
1010 | } | |
bb98fe42 | 1011 | if ( 0x7FFD <= (uint32_t) zExp ) { |
158142c2 FB |
1012 | if ( ( 0x7FFD < zExp ) |
1013 | || ( ( zExp == 0x7FFD ) | |
1014 | && eq128( | |
1015 | LIT64( 0x0001FFFFFFFFFFFF ), | |
1016 | LIT64( 0xFFFFFFFFFFFFFFFF ), | |
1017 | zSig0, | |
1018 | zSig1 | |
1019 | ) | |
1020 | && increment | |
1021 | ) | |
1022 | ) { | |
1023 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | |
1024 | if ( ( roundingMode == float_round_to_zero ) | |
1025 | || ( zSign && ( roundingMode == float_round_up ) ) | |
1026 | || ( ! zSign && ( roundingMode == float_round_down ) ) | |
1027 | ) { | |
1028 | return | |
1029 | packFloat128( | |
1030 | zSign, | |
1031 | 0x7FFE, | |
1032 | LIT64( 0x0000FFFFFFFFFFFF ), | |
1033 | LIT64( 0xFFFFFFFFFFFFFFFF ) | |
1034 | ); | |
1035 | } | |
1036 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
1037 | } | |
1038 | if ( zExp < 0 ) { | |
e6afc87f PM |
1039 | if (STATUS(flush_to_zero)) { |
1040 | float_raise(float_flag_output_denormal STATUS_VAR); | |
1041 | return packFloat128(zSign, 0, 0, 0); | |
1042 | } | |
158142c2 FB |
1043 | isTiny = |
1044 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
1045 | || ( zExp < -1 ) | |
1046 | || ! increment | |
1047 | || lt128( | |
1048 | zSig0, | |
1049 | zSig1, | |
1050 | LIT64( 0x0001FFFFFFFFFFFF ), | |
1051 | LIT64( 0xFFFFFFFFFFFFFFFF ) | |
1052 | ); | |
1053 | shift128ExtraRightJamming( | |
1054 | zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); | |
1055 | zExp = 0; | |
1056 | if ( isTiny && zSig2 ) float_raise( float_flag_underflow STATUS_VAR); | |
1057 | if ( roundNearestEven ) { | |
bb98fe42 | 1058 | increment = ( (int64_t) zSig2 < 0 ); |
158142c2 FB |
1059 | } |
1060 | else { | |
1061 | if ( zSign ) { | |
1062 | increment = ( roundingMode == float_round_down ) && zSig2; | |
1063 | } | |
1064 | else { | |
1065 | increment = ( roundingMode == float_round_up ) && zSig2; | |
1066 | } | |
1067 | } | |
1068 | } | |
1069 | } | |
1070 | if ( zSig2 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
1071 | if ( increment ) { | |
1072 | add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); | |
1073 | zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); | |
1074 | } | |
1075 | else { | |
1076 | if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; | |
1077 | } | |
1078 | return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
1079 | ||
1080 | } | |
1081 | ||
1082 | /*---------------------------------------------------------------------------- | |
1083 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
1084 | | and significand formed by the concatenation of `zSig0' and `zSig1', and | |
1085 | | returns the proper quadruple-precision floating-point value corresponding | |
1086 | | to the abstract input. This routine is just like `roundAndPackFloat128' | |
1087 | | except that the input significand has fewer bits and does not have to be | |
1088 | | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- | |
1089 | | point exponent. | |
1090 | *----------------------------------------------------------------------------*/ | |
1091 | ||
1092 | static float128 | |
1093 | normalizeRoundAndPackFloat128( | |
bb98fe42 | 1094 | flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 STATUS_PARAM) |
158142c2 FB |
1095 | { |
1096 | int8 shiftCount; | |
bb98fe42 | 1097 | uint64_t zSig2; |
158142c2 FB |
1098 | |
1099 | if ( zSig0 == 0 ) { | |
1100 | zSig0 = zSig1; | |
1101 | zSig1 = 0; | |
1102 | zExp -= 64; | |
1103 | } | |
1104 | shiftCount = countLeadingZeros64( zSig0 ) - 15; | |
1105 | if ( 0 <= shiftCount ) { | |
1106 | zSig2 = 0; | |
1107 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
1108 | } | |
1109 | else { | |
1110 | shift128ExtraRightJamming( | |
1111 | zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); | |
1112 | } | |
1113 | zExp -= shiftCount; | |
1114 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR); | |
1115 | ||
1116 | } | |
1117 | ||
158142c2 FB |
1118 | /*---------------------------------------------------------------------------- |
1119 | | Returns the result of converting the 32-bit two's complement integer `a' | |
1120 | | to the single-precision floating-point format. The conversion is performed | |
1121 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1122 | *----------------------------------------------------------------------------*/ | |
1123 | ||
1124 | float32 int32_to_float32( int32 a STATUS_PARAM ) | |
1125 | { | |
1126 | flag zSign; | |
1127 | ||
f090c9d4 | 1128 | if ( a == 0 ) return float32_zero; |
bb98fe42 | 1129 | if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); |
158142c2 FB |
1130 | zSign = ( a < 0 ); |
1131 | return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a STATUS_VAR ); | |
1132 | ||
1133 | } | |
1134 | ||
1135 | /*---------------------------------------------------------------------------- | |
1136 | | Returns the result of converting the 32-bit two's complement integer `a' | |
1137 | | to the double-precision floating-point format. The conversion is performed | |
1138 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1139 | *----------------------------------------------------------------------------*/ | |
1140 | ||
1141 | float64 int32_to_float64( int32 a STATUS_PARAM ) | |
1142 | { | |
1143 | flag zSign; | |
1144 | uint32 absA; | |
1145 | int8 shiftCount; | |
bb98fe42 | 1146 | uint64_t zSig; |
158142c2 | 1147 | |
f090c9d4 | 1148 | if ( a == 0 ) return float64_zero; |
158142c2 FB |
1149 | zSign = ( a < 0 ); |
1150 | absA = zSign ? - a : a; | |
1151 | shiftCount = countLeadingZeros32( absA ) + 21; | |
1152 | zSig = absA; | |
1153 | return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount ); | |
1154 | ||
1155 | } | |
1156 | ||
158142c2 FB |
1157 | /*---------------------------------------------------------------------------- |
1158 | | Returns the result of converting the 32-bit two's complement integer `a' | |
1159 | | to the extended double-precision floating-point format. The conversion | |
1160 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1161 | | Arithmetic. | |
1162 | *----------------------------------------------------------------------------*/ | |
1163 | ||
1164 | floatx80 int32_to_floatx80( int32 a STATUS_PARAM ) | |
1165 | { | |
1166 | flag zSign; | |
1167 | uint32 absA; | |
1168 | int8 shiftCount; | |
bb98fe42 | 1169 | uint64_t zSig; |
158142c2 FB |
1170 | |
1171 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
1172 | zSign = ( a < 0 ); | |
1173 | absA = zSign ? - a : a; | |
1174 | shiftCount = countLeadingZeros32( absA ) + 32; | |
1175 | zSig = absA; | |
1176 | return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); | |
1177 | ||
1178 | } | |
1179 | ||
158142c2 FB |
1180 | /*---------------------------------------------------------------------------- |
1181 | | Returns the result of converting the 32-bit two's complement integer `a' to | |
1182 | | the quadruple-precision floating-point format. The conversion is performed | |
1183 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1184 | *----------------------------------------------------------------------------*/ | |
1185 | ||
1186 | float128 int32_to_float128( int32 a STATUS_PARAM ) | |
1187 | { | |
1188 | flag zSign; | |
1189 | uint32 absA; | |
1190 | int8 shiftCount; | |
bb98fe42 | 1191 | uint64_t zSig0; |
158142c2 FB |
1192 | |
1193 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
1194 | zSign = ( a < 0 ); | |
1195 | absA = zSign ? - a : a; | |
1196 | shiftCount = countLeadingZeros32( absA ) + 17; | |
1197 | zSig0 = absA; | |
1198 | return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); | |
1199 | ||
1200 | } | |
1201 | ||
158142c2 FB |
1202 | /*---------------------------------------------------------------------------- |
1203 | | Returns the result of converting the 64-bit two's complement integer `a' | |
1204 | | to the single-precision floating-point format. The conversion is performed | |
1205 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1206 | *----------------------------------------------------------------------------*/ | |
1207 | ||
1208 | float32 int64_to_float32( int64 a STATUS_PARAM ) | |
1209 | { | |
1210 | flag zSign; | |
1211 | uint64 absA; | |
1212 | int8 shiftCount; | |
1213 | ||
f090c9d4 | 1214 | if ( a == 0 ) return float32_zero; |
158142c2 FB |
1215 | zSign = ( a < 0 ); |
1216 | absA = zSign ? - a : a; | |
1217 | shiftCount = countLeadingZeros64( absA ) - 40; | |
1218 | if ( 0 <= shiftCount ) { | |
1219 | return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount ); | |
1220 | } | |
1221 | else { | |
1222 | shiftCount += 7; | |
1223 | if ( shiftCount < 0 ) { | |
1224 | shift64RightJamming( absA, - shiftCount, &absA ); | |
1225 | } | |
1226 | else { | |
1227 | absA <<= shiftCount; | |
1228 | } | |
1229 | return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA STATUS_VAR ); | |
1230 | } | |
1231 | ||
1232 | } | |
1233 | ||
3430b0be | 1234 | float32 uint64_to_float32( uint64 a STATUS_PARAM ) |
75d62a58 JM |
1235 | { |
1236 | int8 shiftCount; | |
1237 | ||
f090c9d4 | 1238 | if ( a == 0 ) return float32_zero; |
75d62a58 JM |
1239 | shiftCount = countLeadingZeros64( a ) - 40; |
1240 | if ( 0 <= shiftCount ) { | |
e744c06f | 1241 | return packFloat32(0, 0x95 - shiftCount, a<<shiftCount); |
75d62a58 JM |
1242 | } |
1243 | else { | |
1244 | shiftCount += 7; | |
1245 | if ( shiftCount < 0 ) { | |
1246 | shift64RightJamming( a, - shiftCount, &a ); | |
1247 | } | |
1248 | else { | |
1249 | a <<= shiftCount; | |
1250 | } | |
e744c06f | 1251 | return roundAndPackFloat32(0, 0x9C - shiftCount, a STATUS_VAR); |
75d62a58 JM |
1252 | } |
1253 | } | |
1254 | ||
158142c2 FB |
1255 | /*---------------------------------------------------------------------------- |
1256 | | Returns the result of converting the 64-bit two's complement integer `a' | |
1257 | | to the double-precision floating-point format. The conversion is performed | |
1258 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1259 | *----------------------------------------------------------------------------*/ | |
1260 | ||
1261 | float64 int64_to_float64( int64 a STATUS_PARAM ) | |
1262 | { | |
1263 | flag zSign; | |
1264 | ||
f090c9d4 | 1265 | if ( a == 0 ) return float64_zero; |
bb98fe42 | 1266 | if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) { |
158142c2 FB |
1267 | return packFloat64( 1, 0x43E, 0 ); |
1268 | } | |
1269 | zSign = ( a < 0 ); | |
1270 | return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a STATUS_VAR ); | |
1271 | ||
1272 | } | |
1273 | ||
17ed2293 | 1274 | float64 uint64_to_float64(uint64 a STATUS_PARAM) |
75d62a58 | 1275 | { |
17ed2293 | 1276 | int exp = 0x43C; |
75d62a58 | 1277 | |
17ed2293 RH |
1278 | if (a == 0) { |
1279 | return float64_zero; | |
1280 | } | |
1281 | if ((int64_t)a < 0) { | |
1282 | shift64RightJamming(a, 1, &a); | |
1283 | exp += 1; | |
1284 | } | |
1285 | return normalizeRoundAndPackFloat64(0, exp, a STATUS_VAR); | |
75d62a58 JM |
1286 | } |
1287 | ||
158142c2 FB |
1288 | /*---------------------------------------------------------------------------- |
1289 | | Returns the result of converting the 64-bit two's complement integer `a' | |
1290 | | to the extended double-precision floating-point format. The conversion | |
1291 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1292 | | Arithmetic. | |
1293 | *----------------------------------------------------------------------------*/ | |
1294 | ||
1295 | floatx80 int64_to_floatx80( int64 a STATUS_PARAM ) | |
1296 | { | |
1297 | flag zSign; | |
1298 | uint64 absA; | |
1299 | int8 shiftCount; | |
1300 | ||
1301 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
1302 | zSign = ( a < 0 ); | |
1303 | absA = zSign ? - a : a; | |
1304 | shiftCount = countLeadingZeros64( absA ); | |
1305 | return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount ); | |
1306 | ||
1307 | } | |
1308 | ||
158142c2 FB |
1309 | /*---------------------------------------------------------------------------- |
1310 | | Returns the result of converting the 64-bit two's complement integer `a' to | |
1311 | | the quadruple-precision floating-point format. The conversion is performed | |
1312 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1313 | *----------------------------------------------------------------------------*/ | |
1314 | ||
1315 | float128 int64_to_float128( int64 a STATUS_PARAM ) | |
1316 | { | |
1317 | flag zSign; | |
1318 | uint64 absA; | |
1319 | int8 shiftCount; | |
1320 | int32 zExp; | |
bb98fe42 | 1321 | uint64_t zSig0, zSig1; |
158142c2 FB |
1322 | |
1323 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
1324 | zSign = ( a < 0 ); | |
1325 | absA = zSign ? - a : a; | |
1326 | shiftCount = countLeadingZeros64( absA ) + 49; | |
1327 | zExp = 0x406E - shiftCount; | |
1328 | if ( 64 <= shiftCount ) { | |
1329 | zSig1 = 0; | |
1330 | zSig0 = absA; | |
1331 | shiftCount -= 64; | |
1332 | } | |
1333 | else { | |
1334 | zSig1 = absA; | |
1335 | zSig0 = 0; | |
1336 | } | |
1337 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
1338 | return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
1339 | ||
1340 | } | |
1341 | ||
1e397ead RH |
1342 | float128 uint64_to_float128(uint64 a STATUS_PARAM) |
1343 | { | |
1344 | if (a == 0) { | |
1345 | return float128_zero; | |
1346 | } | |
1347 | return normalizeRoundAndPackFloat128(0, 0x406E, a, 0 STATUS_VAR); | |
1348 | } | |
1349 | ||
158142c2 FB |
1350 | /*---------------------------------------------------------------------------- |
1351 | | Returns the result of converting the single-precision floating-point value | |
1352 | | `a' to the 32-bit two's complement integer format. The conversion is | |
1353 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1354 | | Arithmetic---which means in particular that the conversion is rounded | |
1355 | | according to the current rounding mode. If `a' is a NaN, the largest | |
1356 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
1357 | | largest integer with the same sign as `a' is returned. | |
1358 | *----------------------------------------------------------------------------*/ | |
1359 | ||
1360 | int32 float32_to_int32( float32 a STATUS_PARAM ) | |
1361 | { | |
1362 | flag aSign; | |
94a49d86 | 1363 | int_fast16_t aExp, shiftCount; |
bb98fe42 AF |
1364 | uint32_t aSig; |
1365 | uint64_t aSig64; | |
158142c2 | 1366 | |
37d18660 | 1367 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
1368 | aSig = extractFloat32Frac( a ); |
1369 | aExp = extractFloat32Exp( a ); | |
1370 | aSign = extractFloat32Sign( a ); | |
1371 | if ( ( aExp == 0xFF ) && aSig ) aSign = 0; | |
1372 | if ( aExp ) aSig |= 0x00800000; | |
1373 | shiftCount = 0xAF - aExp; | |
1374 | aSig64 = aSig; | |
1375 | aSig64 <<= 32; | |
1376 | if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 ); | |
1377 | return roundAndPackInt32( aSign, aSig64 STATUS_VAR ); | |
1378 | ||
1379 | } | |
1380 | ||
1381 | /*---------------------------------------------------------------------------- | |
1382 | | Returns the result of converting the single-precision floating-point value | |
1383 | | `a' to the 32-bit two's complement integer format. The conversion is | |
1384 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1385 | | Arithmetic, except that the conversion is always rounded toward zero. | |
1386 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
1387 | | the conversion overflows, the largest integer with the same sign as `a' is | |
1388 | | returned. | |
1389 | *----------------------------------------------------------------------------*/ | |
1390 | ||
1391 | int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM ) | |
1392 | { | |
1393 | flag aSign; | |
94a49d86 | 1394 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 1395 | uint32_t aSig; |
b3a6a2e0 | 1396 | int32_t z; |
37d18660 | 1397 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
1398 | |
1399 | aSig = extractFloat32Frac( a ); | |
1400 | aExp = extractFloat32Exp( a ); | |
1401 | aSign = extractFloat32Sign( a ); | |
1402 | shiftCount = aExp - 0x9E; | |
1403 | if ( 0 <= shiftCount ) { | |
f090c9d4 | 1404 | if ( float32_val(a) != 0xCF000000 ) { |
158142c2 FB |
1405 | float_raise( float_flag_invalid STATUS_VAR); |
1406 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; | |
1407 | } | |
bb98fe42 | 1408 | return (int32_t) 0x80000000; |
158142c2 FB |
1409 | } |
1410 | else if ( aExp <= 0x7E ) { | |
1411 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
1412 | return 0; | |
1413 | } | |
1414 | aSig = ( aSig | 0x00800000 )<<8; | |
1415 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 1416 | if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) { |
158142c2 FB |
1417 | STATUS(float_exception_flags) |= float_flag_inexact; |
1418 | } | |
1419 | if ( aSign ) z = - z; | |
1420 | return z; | |
1421 | ||
1422 | } | |
1423 | ||
cbcef455 PM |
1424 | /*---------------------------------------------------------------------------- |
1425 | | Returns the result of converting the single-precision floating-point value | |
1426 | | `a' to the 16-bit two's complement integer format. The conversion is | |
1427 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1428 | | Arithmetic, except that the conversion is always rounded toward zero. | |
1429 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
1430 | | the conversion overflows, the largest integer with the same sign as `a' is | |
1431 | | returned. | |
1432 | *----------------------------------------------------------------------------*/ | |
1433 | ||
94a49d86 | 1434 | int_fast16_t float32_to_int16_round_to_zero(float32 a STATUS_PARAM) |
cbcef455 PM |
1435 | { |
1436 | flag aSign; | |
94a49d86 | 1437 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 1438 | uint32_t aSig; |
cbcef455 PM |
1439 | int32 z; |
1440 | ||
1441 | aSig = extractFloat32Frac( a ); | |
1442 | aExp = extractFloat32Exp( a ); | |
1443 | aSign = extractFloat32Sign( a ); | |
1444 | shiftCount = aExp - 0x8E; | |
1445 | if ( 0 <= shiftCount ) { | |
1446 | if ( float32_val(a) != 0xC7000000 ) { | |
1447 | float_raise( float_flag_invalid STATUS_VAR); | |
1448 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { | |
1449 | return 0x7FFF; | |
1450 | } | |
1451 | } | |
bb98fe42 | 1452 | return (int32_t) 0xffff8000; |
cbcef455 PM |
1453 | } |
1454 | else if ( aExp <= 0x7E ) { | |
1455 | if ( aExp | aSig ) { | |
1456 | STATUS(float_exception_flags) |= float_flag_inexact; | |
1457 | } | |
1458 | return 0; | |
1459 | } | |
1460 | shiftCount -= 0x10; | |
1461 | aSig = ( aSig | 0x00800000 )<<8; | |
1462 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 1463 | if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) { |
cbcef455 PM |
1464 | STATUS(float_exception_flags) |= float_flag_inexact; |
1465 | } | |
1466 | if ( aSign ) { | |
1467 | z = - z; | |
1468 | } | |
1469 | return z; | |
1470 | ||
1471 | } | |
1472 | ||
158142c2 FB |
1473 | /*---------------------------------------------------------------------------- |
1474 | | Returns the result of converting the single-precision floating-point value | |
1475 | | `a' to the 64-bit two's complement integer format. The conversion is | |
1476 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1477 | | Arithmetic---which means in particular that the conversion is rounded | |
1478 | | according to the current rounding mode. If `a' is a NaN, the largest | |
1479 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
1480 | | largest integer with the same sign as `a' is returned. | |
1481 | *----------------------------------------------------------------------------*/ | |
1482 | ||
1483 | int64 float32_to_int64( float32 a STATUS_PARAM ) | |
1484 | { | |
1485 | flag aSign; | |
94a49d86 | 1486 | int_fast16_t aExp, shiftCount; |
bb98fe42 AF |
1487 | uint32_t aSig; |
1488 | uint64_t aSig64, aSigExtra; | |
37d18660 | 1489 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
1490 | |
1491 | aSig = extractFloat32Frac( a ); | |
1492 | aExp = extractFloat32Exp( a ); | |
1493 | aSign = extractFloat32Sign( a ); | |
1494 | shiftCount = 0xBE - aExp; | |
1495 | if ( shiftCount < 0 ) { | |
1496 | float_raise( float_flag_invalid STATUS_VAR); | |
1497 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { | |
1498 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
1499 | } | |
bb98fe42 | 1500 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
1501 | } |
1502 | if ( aExp ) aSig |= 0x00800000; | |
1503 | aSig64 = aSig; | |
1504 | aSig64 <<= 40; | |
1505 | shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra ); | |
1506 | return roundAndPackInt64( aSign, aSig64, aSigExtra STATUS_VAR ); | |
1507 | ||
1508 | } | |
1509 | ||
1510 | /*---------------------------------------------------------------------------- | |
1511 | | Returns the result of converting the single-precision floating-point value | |
1512 | | `a' to the 64-bit two's complement integer format. The conversion is | |
1513 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1514 | | Arithmetic, except that the conversion is always rounded toward zero. If | |
1515 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
1516 | | conversion overflows, the largest integer with the same sign as `a' is | |
1517 | | returned. | |
1518 | *----------------------------------------------------------------------------*/ | |
1519 | ||
1520 | int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM ) | |
1521 | { | |
1522 | flag aSign; | |
94a49d86 | 1523 | int_fast16_t aExp, shiftCount; |
bb98fe42 AF |
1524 | uint32_t aSig; |
1525 | uint64_t aSig64; | |
158142c2 | 1526 | int64 z; |
37d18660 | 1527 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
1528 | |
1529 | aSig = extractFloat32Frac( a ); | |
1530 | aExp = extractFloat32Exp( a ); | |
1531 | aSign = extractFloat32Sign( a ); | |
1532 | shiftCount = aExp - 0xBE; | |
1533 | if ( 0 <= shiftCount ) { | |
f090c9d4 | 1534 | if ( float32_val(a) != 0xDF000000 ) { |
158142c2 FB |
1535 | float_raise( float_flag_invalid STATUS_VAR); |
1536 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { | |
1537 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
1538 | } | |
1539 | } | |
bb98fe42 | 1540 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
1541 | } |
1542 | else if ( aExp <= 0x7E ) { | |
1543 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
1544 | return 0; | |
1545 | } | |
1546 | aSig64 = aSig | 0x00800000; | |
1547 | aSig64 <<= 40; | |
1548 | z = aSig64>>( - shiftCount ); | |
bb98fe42 | 1549 | if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) { |
158142c2 FB |
1550 | STATUS(float_exception_flags) |= float_flag_inexact; |
1551 | } | |
1552 | if ( aSign ) z = - z; | |
1553 | return z; | |
1554 | ||
1555 | } | |
1556 | ||
1557 | /*---------------------------------------------------------------------------- | |
1558 | | Returns the result of converting the single-precision floating-point value | |
1559 | | `a' to the double-precision floating-point format. The conversion is | |
1560 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1561 | | Arithmetic. | |
1562 | *----------------------------------------------------------------------------*/ | |
1563 | ||
1564 | float64 float32_to_float64( float32 a STATUS_PARAM ) | |
1565 | { | |
1566 | flag aSign; | |
94a49d86 | 1567 | int_fast16_t aExp; |
bb98fe42 | 1568 | uint32_t aSig; |
37d18660 | 1569 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
1570 | |
1571 | aSig = extractFloat32Frac( a ); | |
1572 | aExp = extractFloat32Exp( a ); | |
1573 | aSign = extractFloat32Sign( a ); | |
1574 | if ( aExp == 0xFF ) { | |
bcd4d9af | 1575 | if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
1576 | return packFloat64( aSign, 0x7FF, 0 ); |
1577 | } | |
1578 | if ( aExp == 0 ) { | |
1579 | if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); | |
1580 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1581 | --aExp; | |
1582 | } | |
bb98fe42 | 1583 | return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 ); |
158142c2 FB |
1584 | |
1585 | } | |
1586 | ||
158142c2 FB |
1587 | /*---------------------------------------------------------------------------- |
1588 | | Returns the result of converting the single-precision floating-point value | |
1589 | | `a' to the extended double-precision floating-point format. The conversion | |
1590 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1591 | | Arithmetic. | |
1592 | *----------------------------------------------------------------------------*/ | |
1593 | ||
1594 | floatx80 float32_to_floatx80( float32 a STATUS_PARAM ) | |
1595 | { | |
1596 | flag aSign; | |
94a49d86 | 1597 | int_fast16_t aExp; |
bb98fe42 | 1598 | uint32_t aSig; |
158142c2 | 1599 | |
37d18660 | 1600 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
1601 | aSig = extractFloat32Frac( a ); |
1602 | aExp = extractFloat32Exp( a ); | |
1603 | aSign = extractFloat32Sign( a ); | |
1604 | if ( aExp == 0xFF ) { | |
bcd4d9af | 1605 | if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
1606 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
1607 | } | |
1608 | if ( aExp == 0 ) { | |
1609 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
1610 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1611 | } | |
1612 | aSig |= 0x00800000; | |
bb98fe42 | 1613 | return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 ); |
158142c2 FB |
1614 | |
1615 | } | |
1616 | ||
158142c2 FB |
1617 | /*---------------------------------------------------------------------------- |
1618 | | Returns the result of converting the single-precision floating-point value | |
1619 | | `a' to the double-precision floating-point format. The conversion is | |
1620 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1621 | | Arithmetic. | |
1622 | *----------------------------------------------------------------------------*/ | |
1623 | ||
1624 | float128 float32_to_float128( float32 a STATUS_PARAM ) | |
1625 | { | |
1626 | flag aSign; | |
94a49d86 | 1627 | int_fast16_t aExp; |
bb98fe42 | 1628 | uint32_t aSig; |
158142c2 | 1629 | |
37d18660 | 1630 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
1631 | aSig = extractFloat32Frac( a ); |
1632 | aExp = extractFloat32Exp( a ); | |
1633 | aSign = extractFloat32Sign( a ); | |
1634 | if ( aExp == 0xFF ) { | |
bcd4d9af | 1635 | if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
1636 | return packFloat128( aSign, 0x7FFF, 0, 0 ); |
1637 | } | |
1638 | if ( aExp == 0 ) { | |
1639 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
1640 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1641 | --aExp; | |
1642 | } | |
bb98fe42 | 1643 | return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 ); |
158142c2 FB |
1644 | |
1645 | } | |
1646 | ||
158142c2 FB |
1647 | /*---------------------------------------------------------------------------- |
1648 | | Rounds the single-precision floating-point value `a' to an integer, and | |
1649 | | returns the result as a single-precision floating-point value. The | |
1650 | | operation is performed according to the IEC/IEEE Standard for Binary | |
1651 | | Floating-Point Arithmetic. | |
1652 | *----------------------------------------------------------------------------*/ | |
1653 | ||
1654 | float32 float32_round_to_int( float32 a STATUS_PARAM) | |
1655 | { | |
1656 | flag aSign; | |
94a49d86 | 1657 | int_fast16_t aExp; |
bb98fe42 | 1658 | uint32_t lastBitMask, roundBitsMask; |
158142c2 | 1659 | int8 roundingMode; |
bb98fe42 | 1660 | uint32_t z; |
37d18660 | 1661 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
1662 | |
1663 | aExp = extractFloat32Exp( a ); | |
1664 | if ( 0x96 <= aExp ) { | |
1665 | if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { | |
1666 | return propagateFloat32NaN( a, a STATUS_VAR ); | |
1667 | } | |
1668 | return a; | |
1669 | } | |
1670 | if ( aExp <= 0x7E ) { | |
bb98fe42 | 1671 | if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a; |
158142c2 FB |
1672 | STATUS(float_exception_flags) |= float_flag_inexact; |
1673 | aSign = extractFloat32Sign( a ); | |
1674 | switch ( STATUS(float_rounding_mode) ) { | |
1675 | case float_round_nearest_even: | |
1676 | if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { | |
1677 | return packFloat32( aSign, 0x7F, 0 ); | |
1678 | } | |
1679 | break; | |
1680 | case float_round_down: | |
f090c9d4 | 1681 | return make_float32(aSign ? 0xBF800000 : 0); |
158142c2 | 1682 | case float_round_up: |
f090c9d4 | 1683 | return make_float32(aSign ? 0x80000000 : 0x3F800000); |
158142c2 FB |
1684 | } |
1685 | return packFloat32( aSign, 0, 0 ); | |
1686 | } | |
1687 | lastBitMask = 1; | |
1688 | lastBitMask <<= 0x96 - aExp; | |
1689 | roundBitsMask = lastBitMask - 1; | |
f090c9d4 | 1690 | z = float32_val(a); |
158142c2 FB |
1691 | roundingMode = STATUS(float_rounding_mode); |
1692 | if ( roundingMode == float_round_nearest_even ) { | |
1693 | z += lastBitMask>>1; | |
1694 | if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; | |
1695 | } | |
1696 | else if ( roundingMode != float_round_to_zero ) { | |
f090c9d4 | 1697 | if ( extractFloat32Sign( make_float32(z) ) ^ ( roundingMode == float_round_up ) ) { |
158142c2 FB |
1698 | z += roundBitsMask; |
1699 | } | |
1700 | } | |
1701 | z &= ~ roundBitsMask; | |
f090c9d4 PB |
1702 | if ( z != float32_val(a) ) STATUS(float_exception_flags) |= float_flag_inexact; |
1703 | return make_float32(z); | |
158142c2 FB |
1704 | |
1705 | } | |
1706 | ||
1707 | /*---------------------------------------------------------------------------- | |
1708 | | Returns the result of adding the absolute values of the single-precision | |
1709 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
1710 | | before being returned. `zSign' is ignored if the result is a NaN. | |
1711 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
1712 | | Floating-Point Arithmetic. | |
1713 | *----------------------------------------------------------------------------*/ | |
1714 | ||
1715 | static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM) | |
1716 | { | |
94a49d86 | 1717 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 1718 | uint32_t aSig, bSig, zSig; |
94a49d86 | 1719 | int_fast16_t expDiff; |
158142c2 FB |
1720 | |
1721 | aSig = extractFloat32Frac( a ); | |
1722 | aExp = extractFloat32Exp( a ); | |
1723 | bSig = extractFloat32Frac( b ); | |
1724 | bExp = extractFloat32Exp( b ); | |
1725 | expDiff = aExp - bExp; | |
1726 | aSig <<= 6; | |
1727 | bSig <<= 6; | |
1728 | if ( 0 < expDiff ) { | |
1729 | if ( aExp == 0xFF ) { | |
1730 | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1731 | return a; | |
1732 | } | |
1733 | if ( bExp == 0 ) { | |
1734 | --expDiff; | |
1735 | } | |
1736 | else { | |
1737 | bSig |= 0x20000000; | |
1738 | } | |
1739 | shift32RightJamming( bSig, expDiff, &bSig ); | |
1740 | zExp = aExp; | |
1741 | } | |
1742 | else if ( expDiff < 0 ) { | |
1743 | if ( bExp == 0xFF ) { | |
1744 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1745 | return packFloat32( zSign, 0xFF, 0 ); | |
1746 | } | |
1747 | if ( aExp == 0 ) { | |
1748 | ++expDiff; | |
1749 | } | |
1750 | else { | |
1751 | aSig |= 0x20000000; | |
1752 | } | |
1753 | shift32RightJamming( aSig, - expDiff, &aSig ); | |
1754 | zExp = bExp; | |
1755 | } | |
1756 | else { | |
1757 | if ( aExp == 0xFF ) { | |
1758 | if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1759 | return a; | |
1760 | } | |
fe76d976 | 1761 | if ( aExp == 0 ) { |
e6afc87f PM |
1762 | if (STATUS(flush_to_zero)) { |
1763 | if (aSig | bSig) { | |
1764 | float_raise(float_flag_output_denormal STATUS_VAR); | |
1765 | } | |
1766 | return packFloat32(zSign, 0, 0); | |
1767 | } | |
fe76d976 PB |
1768 | return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); |
1769 | } | |
158142c2 FB |
1770 | zSig = 0x40000000 + aSig + bSig; |
1771 | zExp = aExp; | |
1772 | goto roundAndPack; | |
1773 | } | |
1774 | aSig |= 0x20000000; | |
1775 | zSig = ( aSig + bSig )<<1; | |
1776 | --zExp; | |
bb98fe42 | 1777 | if ( (int32_t) zSig < 0 ) { |
158142c2 FB |
1778 | zSig = aSig + bSig; |
1779 | ++zExp; | |
1780 | } | |
1781 | roundAndPack: | |
1782 | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | |
1783 | ||
1784 | } | |
1785 | ||
1786 | /*---------------------------------------------------------------------------- | |
1787 | | Returns the result of subtracting the absolute values of the single- | |
1788 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
1789 | | difference is negated before being returned. `zSign' is ignored if the | |
1790 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
1791 | | Standard for Binary Floating-Point Arithmetic. | |
1792 | *----------------------------------------------------------------------------*/ | |
1793 | ||
1794 | static float32 subFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM) | |
1795 | { | |
94a49d86 | 1796 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 1797 | uint32_t aSig, bSig, zSig; |
94a49d86 | 1798 | int_fast16_t expDiff; |
158142c2 FB |
1799 | |
1800 | aSig = extractFloat32Frac( a ); | |
1801 | aExp = extractFloat32Exp( a ); | |
1802 | bSig = extractFloat32Frac( b ); | |
1803 | bExp = extractFloat32Exp( b ); | |
1804 | expDiff = aExp - bExp; | |
1805 | aSig <<= 7; | |
1806 | bSig <<= 7; | |
1807 | if ( 0 < expDiff ) goto aExpBigger; | |
1808 | if ( expDiff < 0 ) goto bExpBigger; | |
1809 | if ( aExp == 0xFF ) { | |
1810 | if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1811 | float_raise( float_flag_invalid STATUS_VAR); | |
1812 | return float32_default_nan; | |
1813 | } | |
1814 | if ( aExp == 0 ) { | |
1815 | aExp = 1; | |
1816 | bExp = 1; | |
1817 | } | |
1818 | if ( bSig < aSig ) goto aBigger; | |
1819 | if ( aSig < bSig ) goto bBigger; | |
1820 | return packFloat32( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); | |
1821 | bExpBigger: | |
1822 | if ( bExp == 0xFF ) { | |
1823 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1824 | return packFloat32( zSign ^ 1, 0xFF, 0 ); | |
1825 | } | |
1826 | if ( aExp == 0 ) { | |
1827 | ++expDiff; | |
1828 | } | |
1829 | else { | |
1830 | aSig |= 0x40000000; | |
1831 | } | |
1832 | shift32RightJamming( aSig, - expDiff, &aSig ); | |
1833 | bSig |= 0x40000000; | |
1834 | bBigger: | |
1835 | zSig = bSig - aSig; | |
1836 | zExp = bExp; | |
1837 | zSign ^= 1; | |
1838 | goto normalizeRoundAndPack; | |
1839 | aExpBigger: | |
1840 | if ( aExp == 0xFF ) { | |
1841 | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1842 | return a; | |
1843 | } | |
1844 | if ( bExp == 0 ) { | |
1845 | --expDiff; | |
1846 | } | |
1847 | else { | |
1848 | bSig |= 0x40000000; | |
1849 | } | |
1850 | shift32RightJamming( bSig, expDiff, &bSig ); | |
1851 | aSig |= 0x40000000; | |
1852 | aBigger: | |
1853 | zSig = aSig - bSig; | |
1854 | zExp = aExp; | |
1855 | normalizeRoundAndPack: | |
1856 | --zExp; | |
1857 | return normalizeRoundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | |
1858 | ||
1859 | } | |
1860 | ||
1861 | /*---------------------------------------------------------------------------- | |
1862 | | Returns the result of adding the single-precision floating-point values `a' | |
1863 | | and `b'. The operation is performed according to the IEC/IEEE Standard for | |
1864 | | Binary Floating-Point Arithmetic. | |
1865 | *----------------------------------------------------------------------------*/ | |
1866 | ||
1867 | float32 float32_add( float32 a, float32 b STATUS_PARAM ) | |
1868 | { | |
1869 | flag aSign, bSign; | |
37d18660 PM |
1870 | a = float32_squash_input_denormal(a STATUS_VAR); |
1871 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
1872 | |
1873 | aSign = extractFloat32Sign( a ); | |
1874 | bSign = extractFloat32Sign( b ); | |
1875 | if ( aSign == bSign ) { | |
1876 | return addFloat32Sigs( a, b, aSign STATUS_VAR); | |
1877 | } | |
1878 | else { | |
1879 | return subFloat32Sigs( a, b, aSign STATUS_VAR ); | |
1880 | } | |
1881 | ||
1882 | } | |
1883 | ||
1884 | /*---------------------------------------------------------------------------- | |
1885 | | Returns the result of subtracting the single-precision floating-point values | |
1886 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
1887 | | for Binary Floating-Point Arithmetic. | |
1888 | *----------------------------------------------------------------------------*/ | |
1889 | ||
1890 | float32 float32_sub( float32 a, float32 b STATUS_PARAM ) | |
1891 | { | |
1892 | flag aSign, bSign; | |
37d18660 PM |
1893 | a = float32_squash_input_denormal(a STATUS_VAR); |
1894 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
1895 | |
1896 | aSign = extractFloat32Sign( a ); | |
1897 | bSign = extractFloat32Sign( b ); | |
1898 | if ( aSign == bSign ) { | |
1899 | return subFloat32Sigs( a, b, aSign STATUS_VAR ); | |
1900 | } | |
1901 | else { | |
1902 | return addFloat32Sigs( a, b, aSign STATUS_VAR ); | |
1903 | } | |
1904 | ||
1905 | } | |
1906 | ||
1907 | /*---------------------------------------------------------------------------- | |
1908 | | Returns the result of multiplying the single-precision floating-point values | |
1909 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
1910 | | for Binary Floating-Point Arithmetic. | |
1911 | *----------------------------------------------------------------------------*/ | |
1912 | ||
1913 | float32 float32_mul( float32 a, float32 b STATUS_PARAM ) | |
1914 | { | |
1915 | flag aSign, bSign, zSign; | |
94a49d86 | 1916 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 AF |
1917 | uint32_t aSig, bSig; |
1918 | uint64_t zSig64; | |
1919 | uint32_t zSig; | |
158142c2 | 1920 | |
37d18660 PM |
1921 | a = float32_squash_input_denormal(a STATUS_VAR); |
1922 | b = float32_squash_input_denormal(b STATUS_VAR); | |
1923 | ||
158142c2 FB |
1924 | aSig = extractFloat32Frac( a ); |
1925 | aExp = extractFloat32Exp( a ); | |
1926 | aSign = extractFloat32Sign( a ); | |
1927 | bSig = extractFloat32Frac( b ); | |
1928 | bExp = extractFloat32Exp( b ); | |
1929 | bSign = extractFloat32Sign( b ); | |
1930 | zSign = aSign ^ bSign; | |
1931 | if ( aExp == 0xFF ) { | |
1932 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | |
1933 | return propagateFloat32NaN( a, b STATUS_VAR ); | |
1934 | } | |
1935 | if ( ( bExp | bSig ) == 0 ) { | |
1936 | float_raise( float_flag_invalid STATUS_VAR); | |
1937 | return float32_default_nan; | |
1938 | } | |
1939 | return packFloat32( zSign, 0xFF, 0 ); | |
1940 | } | |
1941 | if ( bExp == 0xFF ) { | |
1942 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1943 | if ( ( aExp | aSig ) == 0 ) { | |
1944 | float_raise( float_flag_invalid STATUS_VAR); | |
1945 | return float32_default_nan; | |
1946 | } | |
1947 | return packFloat32( zSign, 0xFF, 0 ); | |
1948 | } | |
1949 | if ( aExp == 0 ) { | |
1950 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
1951 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1952 | } | |
1953 | if ( bExp == 0 ) { | |
1954 | if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
1955 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
1956 | } | |
1957 | zExp = aExp + bExp - 0x7F; | |
1958 | aSig = ( aSig | 0x00800000 )<<7; | |
1959 | bSig = ( bSig | 0x00800000 )<<8; | |
bb98fe42 | 1960 | shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 ); |
158142c2 | 1961 | zSig = zSig64; |
bb98fe42 | 1962 | if ( 0 <= (int32_t) ( zSig<<1 ) ) { |
158142c2 FB |
1963 | zSig <<= 1; |
1964 | --zExp; | |
1965 | } | |
1966 | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | |
1967 | ||
1968 | } | |
1969 | ||
1970 | /*---------------------------------------------------------------------------- | |
1971 | | Returns the result of dividing the single-precision floating-point value `a' | |
1972 | | by the corresponding value `b'. The operation is performed according to the | |
1973 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1974 | *----------------------------------------------------------------------------*/ | |
1975 | ||
1976 | float32 float32_div( float32 a, float32 b STATUS_PARAM ) | |
1977 | { | |
1978 | flag aSign, bSign, zSign; | |
94a49d86 | 1979 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 1980 | uint32_t aSig, bSig, zSig; |
37d18660 PM |
1981 | a = float32_squash_input_denormal(a STATUS_VAR); |
1982 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
1983 | |
1984 | aSig = extractFloat32Frac( a ); | |
1985 | aExp = extractFloat32Exp( a ); | |
1986 | aSign = extractFloat32Sign( a ); | |
1987 | bSig = extractFloat32Frac( b ); | |
1988 | bExp = extractFloat32Exp( b ); | |
1989 | bSign = extractFloat32Sign( b ); | |
1990 | zSign = aSign ^ bSign; | |
1991 | if ( aExp == 0xFF ) { | |
1992 | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1993 | if ( bExp == 0xFF ) { | |
1994 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1995 | float_raise( float_flag_invalid STATUS_VAR); | |
1996 | return float32_default_nan; | |
1997 | } | |
1998 | return packFloat32( zSign, 0xFF, 0 ); | |
1999 | } | |
2000 | if ( bExp == 0xFF ) { | |
2001 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
2002 | return packFloat32( zSign, 0, 0 ); | |
2003 | } | |
2004 | if ( bExp == 0 ) { | |
2005 | if ( bSig == 0 ) { | |
2006 | if ( ( aExp | aSig ) == 0 ) { | |
2007 | float_raise( float_flag_invalid STATUS_VAR); | |
2008 | return float32_default_nan; | |
2009 | } | |
2010 | float_raise( float_flag_divbyzero STATUS_VAR); | |
2011 | return packFloat32( zSign, 0xFF, 0 ); | |
2012 | } | |
2013 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
2014 | } | |
2015 | if ( aExp == 0 ) { | |
2016 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
2017 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2018 | } | |
2019 | zExp = aExp - bExp + 0x7D; | |
2020 | aSig = ( aSig | 0x00800000 )<<7; | |
2021 | bSig = ( bSig | 0x00800000 )<<8; | |
2022 | if ( bSig <= ( aSig + aSig ) ) { | |
2023 | aSig >>= 1; | |
2024 | ++zExp; | |
2025 | } | |
bb98fe42 | 2026 | zSig = ( ( (uint64_t) aSig )<<32 ) / bSig; |
158142c2 | 2027 | if ( ( zSig & 0x3F ) == 0 ) { |
bb98fe42 | 2028 | zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 ); |
158142c2 FB |
2029 | } |
2030 | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | |
2031 | ||
2032 | } | |
2033 | ||
2034 | /*---------------------------------------------------------------------------- | |
2035 | | Returns the remainder of the single-precision floating-point value `a' | |
2036 | | with respect to the corresponding value `b'. The operation is performed | |
2037 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2038 | *----------------------------------------------------------------------------*/ | |
2039 | ||
2040 | float32 float32_rem( float32 a, float32 b STATUS_PARAM ) | |
2041 | { | |
ed086f3d | 2042 | flag aSign, zSign; |
94a49d86 | 2043 | int_fast16_t aExp, bExp, expDiff; |
bb98fe42 AF |
2044 | uint32_t aSig, bSig; |
2045 | uint32_t q; | |
2046 | uint64_t aSig64, bSig64, q64; | |
2047 | uint32_t alternateASig; | |
2048 | int32_t sigMean; | |
37d18660 PM |
2049 | a = float32_squash_input_denormal(a STATUS_VAR); |
2050 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
2051 | |
2052 | aSig = extractFloat32Frac( a ); | |
2053 | aExp = extractFloat32Exp( a ); | |
2054 | aSign = extractFloat32Sign( a ); | |
2055 | bSig = extractFloat32Frac( b ); | |
2056 | bExp = extractFloat32Exp( b ); | |
158142c2 FB |
2057 | if ( aExp == 0xFF ) { |
2058 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | |
2059 | return propagateFloat32NaN( a, b STATUS_VAR ); | |
2060 | } | |
2061 | float_raise( float_flag_invalid STATUS_VAR); | |
2062 | return float32_default_nan; | |
2063 | } | |
2064 | if ( bExp == 0xFF ) { | |
2065 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
2066 | return a; | |
2067 | } | |
2068 | if ( bExp == 0 ) { | |
2069 | if ( bSig == 0 ) { | |
2070 | float_raise( float_flag_invalid STATUS_VAR); | |
2071 | return float32_default_nan; | |
2072 | } | |
2073 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
2074 | } | |
2075 | if ( aExp == 0 ) { | |
2076 | if ( aSig == 0 ) return a; | |
2077 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2078 | } | |
2079 | expDiff = aExp - bExp; | |
2080 | aSig |= 0x00800000; | |
2081 | bSig |= 0x00800000; | |
2082 | if ( expDiff < 32 ) { | |
2083 | aSig <<= 8; | |
2084 | bSig <<= 8; | |
2085 | if ( expDiff < 0 ) { | |
2086 | if ( expDiff < -1 ) return a; | |
2087 | aSig >>= 1; | |
2088 | } | |
2089 | q = ( bSig <= aSig ); | |
2090 | if ( q ) aSig -= bSig; | |
2091 | if ( 0 < expDiff ) { | |
bb98fe42 | 2092 | q = ( ( (uint64_t) aSig )<<32 ) / bSig; |
158142c2 FB |
2093 | q >>= 32 - expDiff; |
2094 | bSig >>= 2; | |
2095 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
2096 | } | |
2097 | else { | |
2098 | aSig >>= 2; | |
2099 | bSig >>= 2; | |
2100 | } | |
2101 | } | |
2102 | else { | |
2103 | if ( bSig <= aSig ) aSig -= bSig; | |
bb98fe42 AF |
2104 | aSig64 = ( (uint64_t) aSig )<<40; |
2105 | bSig64 = ( (uint64_t) bSig )<<40; | |
158142c2 FB |
2106 | expDiff -= 64; |
2107 | while ( 0 < expDiff ) { | |
2108 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
2109 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
2110 | aSig64 = - ( ( bSig * q64 )<<38 ); | |
2111 | expDiff -= 62; | |
2112 | } | |
2113 | expDiff += 64; | |
2114 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
2115 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
2116 | q = q64>>( 64 - expDiff ); | |
2117 | bSig <<= 6; | |
2118 | aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; | |
2119 | } | |
2120 | do { | |
2121 | alternateASig = aSig; | |
2122 | ++q; | |
2123 | aSig -= bSig; | |
bb98fe42 | 2124 | } while ( 0 <= (int32_t) aSig ); |
158142c2 FB |
2125 | sigMean = aSig + alternateASig; |
2126 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
2127 | aSig = alternateASig; | |
2128 | } | |
bb98fe42 | 2129 | zSign = ( (int32_t) aSig < 0 ); |
158142c2 FB |
2130 | if ( zSign ) aSig = - aSig; |
2131 | return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig STATUS_VAR ); | |
2132 | ||
2133 | } | |
2134 | ||
369be8f6 PM |
2135 | /*---------------------------------------------------------------------------- |
2136 | | Returns the result of multiplying the single-precision floating-point values | |
2137 | | `a' and `b' then adding 'c', with no intermediate rounding step after the | |
2138 | | multiplication. The operation is performed according to the IEC/IEEE | |
2139 | | Standard for Binary Floating-Point Arithmetic 754-2008. | |
2140 | | The flags argument allows the caller to select negation of the | |
2141 | | addend, the intermediate product, or the final result. (The difference | |
2142 | | between this and having the caller do a separate negation is that negating | |
2143 | | externally will flip the sign bit on NaNs.) | |
2144 | *----------------------------------------------------------------------------*/ | |
2145 | ||
2146 | float32 float32_muladd(float32 a, float32 b, float32 c, int flags STATUS_PARAM) | |
2147 | { | |
2148 | flag aSign, bSign, cSign, zSign; | |
94a49d86 | 2149 | int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff; |
369be8f6 PM |
2150 | uint32_t aSig, bSig, cSig; |
2151 | flag pInf, pZero, pSign; | |
2152 | uint64_t pSig64, cSig64, zSig64; | |
2153 | uint32_t pSig; | |
2154 | int shiftcount; | |
2155 | flag signflip, infzero; | |
2156 | ||
2157 | a = float32_squash_input_denormal(a STATUS_VAR); | |
2158 | b = float32_squash_input_denormal(b STATUS_VAR); | |
2159 | c = float32_squash_input_denormal(c STATUS_VAR); | |
2160 | aSig = extractFloat32Frac(a); | |
2161 | aExp = extractFloat32Exp(a); | |
2162 | aSign = extractFloat32Sign(a); | |
2163 | bSig = extractFloat32Frac(b); | |
2164 | bExp = extractFloat32Exp(b); | |
2165 | bSign = extractFloat32Sign(b); | |
2166 | cSig = extractFloat32Frac(c); | |
2167 | cExp = extractFloat32Exp(c); | |
2168 | cSign = extractFloat32Sign(c); | |
2169 | ||
2170 | infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) || | |
2171 | (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0)); | |
2172 | ||
2173 | /* It is implementation-defined whether the cases of (0,inf,qnan) | |
2174 | * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN | |
2175 | * they return if they do), so we have to hand this information | |
2176 | * off to the target-specific pick-a-NaN routine. | |
2177 | */ | |
2178 | if (((aExp == 0xff) && aSig) || | |
2179 | ((bExp == 0xff) && bSig) || | |
2180 | ((cExp == 0xff) && cSig)) { | |
2181 | return propagateFloat32MulAddNaN(a, b, c, infzero STATUS_VAR); | |
2182 | } | |
2183 | ||
2184 | if (infzero) { | |
2185 | float_raise(float_flag_invalid STATUS_VAR); | |
2186 | return float32_default_nan; | |
2187 | } | |
2188 | ||
2189 | if (flags & float_muladd_negate_c) { | |
2190 | cSign ^= 1; | |
2191 | } | |
2192 | ||
2193 | signflip = (flags & float_muladd_negate_result) ? 1 : 0; | |
2194 | ||
2195 | /* Work out the sign and type of the product */ | |
2196 | pSign = aSign ^ bSign; | |
2197 | if (flags & float_muladd_negate_product) { | |
2198 | pSign ^= 1; | |
2199 | } | |
2200 | pInf = (aExp == 0xff) || (bExp == 0xff); | |
2201 | pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); | |
2202 | ||
2203 | if (cExp == 0xff) { | |
2204 | if (pInf && (pSign ^ cSign)) { | |
2205 | /* addition of opposite-signed infinities => InvalidOperation */ | |
2206 | float_raise(float_flag_invalid STATUS_VAR); | |
2207 | return float32_default_nan; | |
2208 | } | |
2209 | /* Otherwise generate an infinity of the same sign */ | |
2210 | return packFloat32(cSign ^ signflip, 0xff, 0); | |
2211 | } | |
2212 | ||
2213 | if (pInf) { | |
2214 | return packFloat32(pSign ^ signflip, 0xff, 0); | |
2215 | } | |
2216 | ||
2217 | if (pZero) { | |
2218 | if (cExp == 0) { | |
2219 | if (cSig == 0) { | |
2220 | /* Adding two exact zeroes */ | |
2221 | if (pSign == cSign) { | |
2222 | zSign = pSign; | |
2223 | } else if (STATUS(float_rounding_mode) == float_round_down) { | |
2224 | zSign = 1; | |
2225 | } else { | |
2226 | zSign = 0; | |
2227 | } | |
2228 | return packFloat32(zSign ^ signflip, 0, 0); | |
2229 | } | |
2230 | /* Exact zero plus a denorm */ | |
2231 | if (STATUS(flush_to_zero)) { | |
2232 | float_raise(float_flag_output_denormal STATUS_VAR); | |
2233 | return packFloat32(cSign ^ signflip, 0, 0); | |
2234 | } | |
2235 | } | |
2236 | /* Zero plus something non-zero : just return the something */ | |
a6e7c184 | 2237 | return packFloat32(cSign ^ signflip, cExp, cSig); |
369be8f6 PM |
2238 | } |
2239 | ||
2240 | if (aExp == 0) { | |
2241 | normalizeFloat32Subnormal(aSig, &aExp, &aSig); | |
2242 | } | |
2243 | if (bExp == 0) { | |
2244 | normalizeFloat32Subnormal(bSig, &bExp, &bSig); | |
2245 | } | |
2246 | ||
2247 | /* Calculate the actual result a * b + c */ | |
2248 | ||
2249 | /* Multiply first; this is easy. */ | |
2250 | /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f | |
2251 | * because we want the true exponent, not the "one-less-than" | |
2252 | * flavour that roundAndPackFloat32() takes. | |
2253 | */ | |
2254 | pExp = aExp + bExp - 0x7e; | |
2255 | aSig = (aSig | 0x00800000) << 7; | |
2256 | bSig = (bSig | 0x00800000) << 8; | |
2257 | pSig64 = (uint64_t)aSig * bSig; | |
2258 | if ((int64_t)(pSig64 << 1) >= 0) { | |
2259 | pSig64 <<= 1; | |
2260 | pExp--; | |
2261 | } | |
2262 | ||
2263 | zSign = pSign ^ signflip; | |
2264 | ||
2265 | /* Now pSig64 is the significand of the multiply, with the explicit bit in | |
2266 | * position 62. | |
2267 | */ | |
2268 | if (cExp == 0) { | |
2269 | if (!cSig) { | |
2270 | /* Throw out the special case of c being an exact zero now */ | |
2271 | shift64RightJamming(pSig64, 32, &pSig64); | |
2272 | pSig = pSig64; | |
2273 | return roundAndPackFloat32(zSign, pExp - 1, | |
2274 | pSig STATUS_VAR); | |
2275 | } | |
2276 | normalizeFloat32Subnormal(cSig, &cExp, &cSig); | |
2277 | } | |
2278 | ||
2279 | cSig64 = (uint64_t)cSig << (62 - 23); | |
2280 | cSig64 |= LIT64(0x4000000000000000); | |
2281 | expDiff = pExp - cExp; | |
2282 | ||
2283 | if (pSign == cSign) { | |
2284 | /* Addition */ | |
2285 | if (expDiff > 0) { | |
2286 | /* scale c to match p */ | |
2287 | shift64RightJamming(cSig64, expDiff, &cSig64); | |
2288 | zExp = pExp; | |
2289 | } else if (expDiff < 0) { | |
2290 | /* scale p to match c */ | |
2291 | shift64RightJamming(pSig64, -expDiff, &pSig64); | |
2292 | zExp = cExp; | |
2293 | } else { | |
2294 | /* no scaling needed */ | |
2295 | zExp = cExp; | |
2296 | } | |
2297 | /* Add significands and make sure explicit bit ends up in posn 62 */ | |
2298 | zSig64 = pSig64 + cSig64; | |
2299 | if ((int64_t)zSig64 < 0) { | |
2300 | shift64RightJamming(zSig64, 1, &zSig64); | |
2301 | } else { | |
2302 | zExp--; | |
2303 | } | |
2304 | } else { | |
2305 | /* Subtraction */ | |
2306 | if (expDiff > 0) { | |
2307 | shift64RightJamming(cSig64, expDiff, &cSig64); | |
2308 | zSig64 = pSig64 - cSig64; | |
2309 | zExp = pExp; | |
2310 | } else if (expDiff < 0) { | |
2311 | shift64RightJamming(pSig64, -expDiff, &pSig64); | |
2312 | zSig64 = cSig64 - pSig64; | |
2313 | zExp = cExp; | |
2314 | zSign ^= 1; | |
2315 | } else { | |
2316 | zExp = pExp; | |
2317 | if (cSig64 < pSig64) { | |
2318 | zSig64 = pSig64 - cSig64; | |
2319 | } else if (pSig64 < cSig64) { | |
2320 | zSig64 = cSig64 - pSig64; | |
2321 | zSign ^= 1; | |
2322 | } else { | |
2323 | /* Exact zero */ | |
2324 | zSign = signflip; | |
2325 | if (STATUS(float_rounding_mode) == float_round_down) { | |
2326 | zSign ^= 1; | |
2327 | } | |
2328 | return packFloat32(zSign, 0, 0); | |
2329 | } | |
2330 | } | |
2331 | --zExp; | |
2332 | /* Normalize to put the explicit bit back into bit 62. */ | |
2333 | shiftcount = countLeadingZeros64(zSig64) - 1; | |
2334 | zSig64 <<= shiftcount; | |
2335 | zExp -= shiftcount; | |
2336 | } | |
2337 | shift64RightJamming(zSig64, 32, &zSig64); | |
2338 | return roundAndPackFloat32(zSign, zExp, zSig64 STATUS_VAR); | |
2339 | } | |
2340 | ||
2341 | ||
158142c2 FB |
2342 | /*---------------------------------------------------------------------------- |
2343 | | Returns the square root of the single-precision floating-point value `a'. | |
2344 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
2345 | | Floating-Point Arithmetic. | |
2346 | *----------------------------------------------------------------------------*/ | |
2347 | ||
2348 | float32 float32_sqrt( float32 a STATUS_PARAM ) | |
2349 | { | |
2350 | flag aSign; | |
94a49d86 | 2351 | int_fast16_t aExp, zExp; |
bb98fe42 AF |
2352 | uint32_t aSig, zSig; |
2353 | uint64_t rem, term; | |
37d18660 | 2354 | a = float32_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
2355 | |
2356 | aSig = extractFloat32Frac( a ); | |
2357 | aExp = extractFloat32Exp( a ); | |
2358 | aSign = extractFloat32Sign( a ); | |
2359 | if ( aExp == 0xFF ) { | |
f090c9d4 | 2360 | if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR ); |
158142c2 FB |
2361 | if ( ! aSign ) return a; |
2362 | float_raise( float_flag_invalid STATUS_VAR); | |
2363 | return float32_default_nan; | |
2364 | } | |
2365 | if ( aSign ) { | |
2366 | if ( ( aExp | aSig ) == 0 ) return a; | |
2367 | float_raise( float_flag_invalid STATUS_VAR); | |
2368 | return float32_default_nan; | |
2369 | } | |
2370 | if ( aExp == 0 ) { | |
f090c9d4 | 2371 | if ( aSig == 0 ) return float32_zero; |
158142c2 FB |
2372 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); |
2373 | } | |
2374 | zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; | |
2375 | aSig = ( aSig | 0x00800000 )<<8; | |
2376 | zSig = estimateSqrt32( aExp, aSig ) + 2; | |
2377 | if ( ( zSig & 0x7F ) <= 5 ) { | |
2378 | if ( zSig < 2 ) { | |
2379 | zSig = 0x7FFFFFFF; | |
2380 | goto roundAndPack; | |
2381 | } | |
2382 | aSig >>= aExp & 1; | |
bb98fe42 AF |
2383 | term = ( (uint64_t) zSig ) * zSig; |
2384 | rem = ( ( (uint64_t) aSig )<<32 ) - term; | |
2385 | while ( (int64_t) rem < 0 ) { | |
158142c2 | 2386 | --zSig; |
bb98fe42 | 2387 | rem += ( ( (uint64_t) zSig )<<1 ) | 1; |
158142c2 FB |
2388 | } |
2389 | zSig |= ( rem != 0 ); | |
2390 | } | |
2391 | shift32RightJamming( zSig, 1, &zSig ); | |
2392 | roundAndPack: | |
2393 | return roundAndPackFloat32( 0, zExp, zSig STATUS_VAR ); | |
2394 | ||
2395 | } | |
2396 | ||
8229c991 AJ |
2397 | /*---------------------------------------------------------------------------- |
2398 | | Returns the binary exponential of the single-precision floating-point value | |
2399 | | `a'. The operation is performed according to the IEC/IEEE Standard for | |
2400 | | Binary Floating-Point Arithmetic. | |
2401 | | | |
2402 | | Uses the following identities: | |
2403 | | | |
2404 | | 1. ------------------------------------------------------------------------- | |
2405 | | x x*ln(2) | |
2406 | | 2 = e | |
2407 | | | |
2408 | | 2. ------------------------------------------------------------------------- | |
2409 | | 2 3 4 5 n | |
2410 | | x x x x x x x | |
2411 | | e = 1 + --- + --- + --- + --- + --- + ... + --- + ... | |
2412 | | 1! 2! 3! 4! 5! n! | |
2413 | *----------------------------------------------------------------------------*/ | |
2414 | ||
2415 | static const float64 float32_exp2_coefficients[15] = | |
2416 | { | |
d5138cf4 PM |
2417 | const_float64( 0x3ff0000000000000ll ), /* 1 */ |
2418 | const_float64( 0x3fe0000000000000ll ), /* 2 */ | |
2419 | const_float64( 0x3fc5555555555555ll ), /* 3 */ | |
2420 | const_float64( 0x3fa5555555555555ll ), /* 4 */ | |
2421 | const_float64( 0x3f81111111111111ll ), /* 5 */ | |
2422 | const_float64( 0x3f56c16c16c16c17ll ), /* 6 */ | |
2423 | const_float64( 0x3f2a01a01a01a01all ), /* 7 */ | |
2424 | const_float64( 0x3efa01a01a01a01all ), /* 8 */ | |
2425 | const_float64( 0x3ec71de3a556c734ll ), /* 9 */ | |
2426 | const_float64( 0x3e927e4fb7789f5cll ), /* 10 */ | |
2427 | const_float64( 0x3e5ae64567f544e4ll ), /* 11 */ | |
2428 | const_float64( 0x3e21eed8eff8d898ll ), /* 12 */ | |
2429 | const_float64( 0x3de6124613a86d09ll ), /* 13 */ | |
2430 | const_float64( 0x3da93974a8c07c9dll ), /* 14 */ | |
2431 | const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */ | |
8229c991 AJ |
2432 | }; |
2433 | ||
2434 | float32 float32_exp2( float32 a STATUS_PARAM ) | |
2435 | { | |
2436 | flag aSign; | |
94a49d86 | 2437 | int_fast16_t aExp; |
bb98fe42 | 2438 | uint32_t aSig; |
8229c991 AJ |
2439 | float64 r, x, xn; |
2440 | int i; | |
37d18660 | 2441 | a = float32_squash_input_denormal(a STATUS_VAR); |
8229c991 AJ |
2442 | |
2443 | aSig = extractFloat32Frac( a ); | |
2444 | aExp = extractFloat32Exp( a ); | |
2445 | aSign = extractFloat32Sign( a ); | |
2446 | ||
2447 | if ( aExp == 0xFF) { | |
2448 | if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR ); | |
2449 | return (aSign) ? float32_zero : a; | |
2450 | } | |
2451 | if (aExp == 0) { | |
2452 | if (aSig == 0) return float32_one; | |
2453 | } | |
2454 | ||
2455 | float_raise( float_flag_inexact STATUS_VAR); | |
2456 | ||
2457 | /* ******************************* */ | |
2458 | /* using float64 for approximation */ | |
2459 | /* ******************************* */ | |
2460 | x = float32_to_float64(a STATUS_VAR); | |
2461 | x = float64_mul(x, float64_ln2 STATUS_VAR); | |
2462 | ||
2463 | xn = x; | |
2464 | r = float64_one; | |
2465 | for (i = 0 ; i < 15 ; i++) { | |
2466 | float64 f; | |
2467 | ||
2468 | f = float64_mul(xn, float32_exp2_coefficients[i] STATUS_VAR); | |
2469 | r = float64_add(r, f STATUS_VAR); | |
2470 | ||
2471 | xn = float64_mul(xn, x STATUS_VAR); | |
2472 | } | |
2473 | ||
2474 | return float64_to_float32(r, status); | |
2475 | } | |
2476 | ||
374dfc33 AJ |
2477 | /*---------------------------------------------------------------------------- |
2478 | | Returns the binary log of the single-precision floating-point value `a'. | |
2479 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
2480 | | Floating-Point Arithmetic. | |
2481 | *----------------------------------------------------------------------------*/ | |
2482 | float32 float32_log2( float32 a STATUS_PARAM ) | |
2483 | { | |
2484 | flag aSign, zSign; | |
94a49d86 | 2485 | int_fast16_t aExp; |
bb98fe42 | 2486 | uint32_t aSig, zSig, i; |
374dfc33 | 2487 | |
37d18660 | 2488 | a = float32_squash_input_denormal(a STATUS_VAR); |
374dfc33 AJ |
2489 | aSig = extractFloat32Frac( a ); |
2490 | aExp = extractFloat32Exp( a ); | |
2491 | aSign = extractFloat32Sign( a ); | |
2492 | ||
2493 | if ( aExp == 0 ) { | |
2494 | if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 ); | |
2495 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2496 | } | |
2497 | if ( aSign ) { | |
2498 | float_raise( float_flag_invalid STATUS_VAR); | |
2499 | return float32_default_nan; | |
2500 | } | |
2501 | if ( aExp == 0xFF ) { | |
2502 | if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR ); | |
2503 | return a; | |
2504 | } | |
2505 | ||
2506 | aExp -= 0x7F; | |
2507 | aSig |= 0x00800000; | |
2508 | zSign = aExp < 0; | |
2509 | zSig = aExp << 23; | |
2510 | ||
2511 | for (i = 1 << 22; i > 0; i >>= 1) { | |
bb98fe42 | 2512 | aSig = ( (uint64_t)aSig * aSig ) >> 23; |
374dfc33 AJ |
2513 | if ( aSig & 0x01000000 ) { |
2514 | aSig >>= 1; | |
2515 | zSig |= i; | |
2516 | } | |
2517 | } | |
2518 | ||
2519 | if ( zSign ) | |
2520 | zSig = -zSig; | |
2521 | ||
2522 | return normalizeRoundAndPackFloat32( zSign, 0x85, zSig STATUS_VAR ); | |
2523 | } | |
2524 | ||
158142c2 FB |
2525 | /*---------------------------------------------------------------------------- |
2526 | | Returns 1 if the single-precision floating-point value `a' is equal to | |
b689362d AJ |
2527 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
2528 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
2529 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
2530 | *----------------------------------------------------------------------------*/ | |
2531 | ||
b689362d | 2532 | int float32_eq( float32 a, float32 b STATUS_PARAM ) |
158142c2 | 2533 | { |
b689362d | 2534 | uint32_t av, bv; |
37d18660 PM |
2535 | a = float32_squash_input_denormal(a STATUS_VAR); |
2536 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
2537 | |
2538 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2539 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2540 | ) { | |
b689362d | 2541 | float_raise( float_flag_invalid STATUS_VAR); |
158142c2 FB |
2542 | return 0; |
2543 | } | |
b689362d AJ |
2544 | av = float32_val(a); |
2545 | bv = float32_val(b); | |
2546 | return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); | |
158142c2 FB |
2547 | } |
2548 | ||
2549 | /*---------------------------------------------------------------------------- | |
2550 | | Returns 1 if the single-precision floating-point value `a' is less than | |
f5a64251 AJ |
2551 | | or equal to the corresponding value `b', and 0 otherwise. The invalid |
2552 | | exception is raised if either operand is a NaN. The comparison is performed | |
2553 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
2554 | *----------------------------------------------------------------------------*/ |
2555 | ||
750afe93 | 2556 | int float32_le( float32 a, float32 b STATUS_PARAM ) |
158142c2 FB |
2557 | { |
2558 | flag aSign, bSign; | |
bb98fe42 | 2559 | uint32_t av, bv; |
37d18660 PM |
2560 | a = float32_squash_input_denormal(a STATUS_VAR); |
2561 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
2562 | |
2563 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2564 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2565 | ) { | |
2566 | float_raise( float_flag_invalid STATUS_VAR); | |
2567 | return 0; | |
2568 | } | |
2569 | aSign = extractFloat32Sign( a ); | |
2570 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
2571 | av = float32_val(a); |
2572 | bv = float32_val(b); | |
bb98fe42 | 2573 | if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 2574 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
2575 | |
2576 | } | |
2577 | ||
2578 | /*---------------------------------------------------------------------------- | |
2579 | | Returns 1 if the single-precision floating-point value `a' is less than | |
f5a64251 AJ |
2580 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
2581 | | raised if either operand is a NaN. The comparison is performed according | |
2582 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
2583 | *----------------------------------------------------------------------------*/ |
2584 | ||
750afe93 | 2585 | int float32_lt( float32 a, float32 b STATUS_PARAM ) |
158142c2 FB |
2586 | { |
2587 | flag aSign, bSign; | |
bb98fe42 | 2588 | uint32_t av, bv; |
37d18660 PM |
2589 | a = float32_squash_input_denormal(a STATUS_VAR); |
2590 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
2591 | |
2592 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2593 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2594 | ) { | |
2595 | float_raise( float_flag_invalid STATUS_VAR); | |
2596 | return 0; | |
2597 | } | |
2598 | aSign = extractFloat32Sign( a ); | |
2599 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
2600 | av = float32_val(a); |
2601 | bv = float32_val(b); | |
bb98fe42 | 2602 | if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 2603 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
2604 | |
2605 | } | |
2606 | ||
67b7861d AJ |
2607 | /*---------------------------------------------------------------------------- |
2608 | | Returns 1 if the single-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
2609 | | be compared, and 0 otherwise. The invalid exception is raised if either |
2610 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
2611 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
2612 | *----------------------------------------------------------------------------*/ |
2613 | ||
2614 | int float32_unordered( float32 a, float32 b STATUS_PARAM ) | |
2615 | { | |
2616 | a = float32_squash_input_denormal(a STATUS_VAR); | |
2617 | b = float32_squash_input_denormal(b STATUS_VAR); | |
2618 | ||
2619 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2620 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2621 | ) { | |
2622 | float_raise( float_flag_invalid STATUS_VAR); | |
2623 | return 1; | |
2624 | } | |
2625 | return 0; | |
2626 | } | |
b689362d | 2627 | |
158142c2 FB |
2628 | /*---------------------------------------------------------------------------- |
2629 | | Returns 1 if the single-precision floating-point value `a' is equal to | |
f5a64251 AJ |
2630 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
2631 | | exception. The comparison is performed according to the IEC/IEEE Standard | |
2632 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
2633 | *----------------------------------------------------------------------------*/ |
2634 | ||
b689362d | 2635 | int float32_eq_quiet( float32 a, float32 b STATUS_PARAM ) |
158142c2 | 2636 | { |
37d18660 PM |
2637 | a = float32_squash_input_denormal(a STATUS_VAR); |
2638 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
2639 | |
2640 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2641 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2642 | ) { | |
b689362d AJ |
2643 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { |
2644 | float_raise( float_flag_invalid STATUS_VAR); | |
2645 | } | |
158142c2 FB |
2646 | return 0; |
2647 | } | |
b689362d AJ |
2648 | return ( float32_val(a) == float32_val(b) ) || |
2649 | ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 ); | |
158142c2 FB |
2650 | } |
2651 | ||
2652 | /*---------------------------------------------------------------------------- | |
2653 | | Returns 1 if the single-precision floating-point value `a' is less than or | |
2654 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
2655 | | cause an exception. Otherwise, the comparison is performed according to the | |
2656 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2657 | *----------------------------------------------------------------------------*/ | |
2658 | ||
750afe93 | 2659 | int float32_le_quiet( float32 a, float32 b STATUS_PARAM ) |
158142c2 FB |
2660 | { |
2661 | flag aSign, bSign; | |
bb98fe42 | 2662 | uint32_t av, bv; |
37d18660 PM |
2663 | a = float32_squash_input_denormal(a STATUS_VAR); |
2664 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
2665 | |
2666 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2667 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2668 | ) { | |
2669 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
2670 | float_raise( float_flag_invalid STATUS_VAR); | |
2671 | } | |
2672 | return 0; | |
2673 | } | |
2674 | aSign = extractFloat32Sign( a ); | |
2675 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
2676 | av = float32_val(a); |
2677 | bv = float32_val(b); | |
bb98fe42 | 2678 | if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 2679 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
2680 | |
2681 | } | |
2682 | ||
2683 | /*---------------------------------------------------------------------------- | |
2684 | | Returns 1 if the single-precision floating-point value `a' is less than | |
2685 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
2686 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
2687 | | Standard for Binary Floating-Point Arithmetic. | |
2688 | *----------------------------------------------------------------------------*/ | |
2689 | ||
750afe93 | 2690 | int float32_lt_quiet( float32 a, float32 b STATUS_PARAM ) |
158142c2 FB |
2691 | { |
2692 | flag aSign, bSign; | |
bb98fe42 | 2693 | uint32_t av, bv; |
37d18660 PM |
2694 | a = float32_squash_input_denormal(a STATUS_VAR); |
2695 | b = float32_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
2696 | |
2697 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2698 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2699 | ) { | |
2700 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
2701 | float_raise( float_flag_invalid STATUS_VAR); | |
2702 | } | |
2703 | return 0; | |
2704 | } | |
2705 | aSign = extractFloat32Sign( a ); | |
2706 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
2707 | av = float32_val(a); |
2708 | bv = float32_val(b); | |
bb98fe42 | 2709 | if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 2710 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
2711 | |
2712 | } | |
2713 | ||
67b7861d AJ |
2714 | /*---------------------------------------------------------------------------- |
2715 | | Returns 1 if the single-precision floating-point values `a' and `b' cannot | |
2716 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
2717 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
2718 | | Floating-Point Arithmetic. | |
2719 | *----------------------------------------------------------------------------*/ | |
2720 | ||
2721 | int float32_unordered_quiet( float32 a, float32 b STATUS_PARAM ) | |
2722 | { | |
2723 | a = float32_squash_input_denormal(a STATUS_VAR); | |
2724 | b = float32_squash_input_denormal(b STATUS_VAR); | |
2725 | ||
2726 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2727 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2728 | ) { | |
2729 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
2730 | float_raise( float_flag_invalid STATUS_VAR); | |
2731 | } | |
2732 | return 1; | |
2733 | } | |
2734 | return 0; | |
2735 | } | |
2736 | ||
158142c2 FB |
2737 | /*---------------------------------------------------------------------------- |
2738 | | Returns the result of converting the double-precision floating-point value | |
2739 | | `a' to the 32-bit two's complement integer format. The conversion is | |
2740 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2741 | | Arithmetic---which means in particular that the conversion is rounded | |
2742 | | according to the current rounding mode. If `a' is a NaN, the largest | |
2743 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
2744 | | largest integer with the same sign as `a' is returned. | |
2745 | *----------------------------------------------------------------------------*/ | |
2746 | ||
2747 | int32 float64_to_int32( float64 a STATUS_PARAM ) | |
2748 | { | |
2749 | flag aSign; | |
94a49d86 | 2750 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 2751 | uint64_t aSig; |
37d18660 | 2752 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
2753 | |
2754 | aSig = extractFloat64Frac( a ); | |
2755 | aExp = extractFloat64Exp( a ); | |
2756 | aSign = extractFloat64Sign( a ); | |
2757 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
2758 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
2759 | shiftCount = 0x42C - aExp; | |
2760 | if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); | |
2761 | return roundAndPackInt32( aSign, aSig STATUS_VAR ); | |
2762 | ||
2763 | } | |
2764 | ||
2765 | /*---------------------------------------------------------------------------- | |
2766 | | Returns the result of converting the double-precision floating-point value | |
2767 | | `a' to the 32-bit two's complement integer format. The conversion is | |
2768 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2769 | | Arithmetic, except that the conversion is always rounded toward zero. | |
2770 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
2771 | | the conversion overflows, the largest integer with the same sign as `a' is | |
2772 | | returned. | |
2773 | *----------------------------------------------------------------------------*/ | |
2774 | ||
2775 | int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM ) | |
2776 | { | |
2777 | flag aSign; | |
94a49d86 | 2778 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 2779 | uint64_t aSig, savedASig; |
b3a6a2e0 | 2780 | int32_t z; |
37d18660 | 2781 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
2782 | |
2783 | aSig = extractFloat64Frac( a ); | |
2784 | aExp = extractFloat64Exp( a ); | |
2785 | aSign = extractFloat64Sign( a ); | |
2786 | if ( 0x41E < aExp ) { | |
2787 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
2788 | goto invalid; | |
2789 | } | |
2790 | else if ( aExp < 0x3FF ) { | |
2791 | if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
2792 | return 0; | |
2793 | } | |
2794 | aSig |= LIT64( 0x0010000000000000 ); | |
2795 | shiftCount = 0x433 - aExp; | |
2796 | savedASig = aSig; | |
2797 | aSig >>= shiftCount; | |
2798 | z = aSig; | |
2799 | if ( aSign ) z = - z; | |
2800 | if ( ( z < 0 ) ^ aSign ) { | |
2801 | invalid: | |
2802 | float_raise( float_flag_invalid STATUS_VAR); | |
bb98fe42 | 2803 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
2804 | } |
2805 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
2806 | STATUS(float_exception_flags) |= float_flag_inexact; | |
2807 | } | |
2808 | return z; | |
2809 | ||
2810 | } | |
2811 | ||
cbcef455 PM |
2812 | /*---------------------------------------------------------------------------- |
2813 | | Returns the result of converting the double-precision floating-point value | |
2814 | | `a' to the 16-bit two's complement integer format. The conversion is | |
2815 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2816 | | Arithmetic, except that the conversion is always rounded toward zero. | |
2817 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
2818 | | the conversion overflows, the largest integer with the same sign as `a' is | |
2819 | | returned. | |
2820 | *----------------------------------------------------------------------------*/ | |
2821 | ||
94a49d86 | 2822 | int_fast16_t float64_to_int16_round_to_zero(float64 a STATUS_PARAM) |
cbcef455 PM |
2823 | { |
2824 | flag aSign; | |
94a49d86 | 2825 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 2826 | uint64_t aSig, savedASig; |
cbcef455 PM |
2827 | int32 z; |
2828 | ||
2829 | aSig = extractFloat64Frac( a ); | |
2830 | aExp = extractFloat64Exp( a ); | |
2831 | aSign = extractFloat64Sign( a ); | |
2832 | if ( 0x40E < aExp ) { | |
2833 | if ( ( aExp == 0x7FF ) && aSig ) { | |
2834 | aSign = 0; | |
2835 | } | |
2836 | goto invalid; | |
2837 | } | |
2838 | else if ( aExp < 0x3FF ) { | |
2839 | if ( aExp || aSig ) { | |
2840 | STATUS(float_exception_flags) |= float_flag_inexact; | |
2841 | } | |
2842 | return 0; | |
2843 | } | |
2844 | aSig |= LIT64( 0x0010000000000000 ); | |
2845 | shiftCount = 0x433 - aExp; | |
2846 | savedASig = aSig; | |
2847 | aSig >>= shiftCount; | |
2848 | z = aSig; | |
2849 | if ( aSign ) { | |
2850 | z = - z; | |
2851 | } | |
2852 | if ( ( (int16_t)z < 0 ) ^ aSign ) { | |
2853 | invalid: | |
2854 | float_raise( float_flag_invalid STATUS_VAR); | |
bb98fe42 | 2855 | return aSign ? (int32_t) 0xffff8000 : 0x7FFF; |
cbcef455 PM |
2856 | } |
2857 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
2858 | STATUS(float_exception_flags) |= float_flag_inexact; | |
2859 | } | |
2860 | return z; | |
2861 | } | |
2862 | ||
158142c2 FB |
2863 | /*---------------------------------------------------------------------------- |
2864 | | Returns the result of converting the double-precision floating-point value | |
2865 | | `a' to the 64-bit two's complement integer format. The conversion is | |
2866 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2867 | | Arithmetic---which means in particular that the conversion is rounded | |
2868 | | according to the current rounding mode. If `a' is a NaN, the largest | |
2869 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
2870 | | largest integer with the same sign as `a' is returned. | |
2871 | *----------------------------------------------------------------------------*/ | |
2872 | ||
2873 | int64 float64_to_int64( float64 a STATUS_PARAM ) | |
2874 | { | |
2875 | flag aSign; | |
94a49d86 | 2876 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 2877 | uint64_t aSig, aSigExtra; |
37d18660 | 2878 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
2879 | |
2880 | aSig = extractFloat64Frac( a ); | |
2881 | aExp = extractFloat64Exp( a ); | |
2882 | aSign = extractFloat64Sign( a ); | |
2883 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
2884 | shiftCount = 0x433 - aExp; | |
2885 | if ( shiftCount <= 0 ) { | |
2886 | if ( 0x43E < aExp ) { | |
2887 | float_raise( float_flag_invalid STATUS_VAR); | |
2888 | if ( ! aSign | |
2889 | || ( ( aExp == 0x7FF ) | |
2890 | && ( aSig != LIT64( 0x0010000000000000 ) ) ) | |
2891 | ) { | |
2892 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
2893 | } | |
bb98fe42 | 2894 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
2895 | } |
2896 | aSigExtra = 0; | |
2897 | aSig <<= - shiftCount; | |
2898 | } | |
2899 | else { | |
2900 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | |
2901 | } | |
2902 | return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR ); | |
2903 | ||
2904 | } | |
2905 | ||
2906 | /*---------------------------------------------------------------------------- | |
2907 | | Returns the result of converting the double-precision floating-point value | |
2908 | | `a' to the 64-bit two's complement integer format. The conversion is | |
2909 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2910 | | Arithmetic, except that the conversion is always rounded toward zero. | |
2911 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
2912 | | the conversion overflows, the largest integer with the same sign as `a' is | |
2913 | | returned. | |
2914 | *----------------------------------------------------------------------------*/ | |
2915 | ||
2916 | int64 float64_to_int64_round_to_zero( float64 a STATUS_PARAM ) | |
2917 | { | |
2918 | flag aSign; | |
94a49d86 | 2919 | int_fast16_t aExp, shiftCount; |
bb98fe42 | 2920 | uint64_t aSig; |
158142c2 | 2921 | int64 z; |
37d18660 | 2922 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
2923 | |
2924 | aSig = extractFloat64Frac( a ); | |
2925 | aExp = extractFloat64Exp( a ); | |
2926 | aSign = extractFloat64Sign( a ); | |
2927 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
2928 | shiftCount = aExp - 0x433; | |
2929 | if ( 0 <= shiftCount ) { | |
2930 | if ( 0x43E <= aExp ) { | |
f090c9d4 | 2931 | if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) { |
158142c2 FB |
2932 | float_raise( float_flag_invalid STATUS_VAR); |
2933 | if ( ! aSign | |
2934 | || ( ( aExp == 0x7FF ) | |
2935 | && ( aSig != LIT64( 0x0010000000000000 ) ) ) | |
2936 | ) { | |
2937 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
2938 | } | |
2939 | } | |
bb98fe42 | 2940 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
2941 | } |
2942 | z = aSig<<shiftCount; | |
2943 | } | |
2944 | else { | |
2945 | if ( aExp < 0x3FE ) { | |
2946 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
2947 | return 0; | |
2948 | } | |
2949 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 2950 | if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { |
158142c2 FB |
2951 | STATUS(float_exception_flags) |= float_flag_inexact; |
2952 | } | |
2953 | } | |
2954 | if ( aSign ) z = - z; | |
2955 | return z; | |
2956 | ||
2957 | } | |
2958 | ||
2959 | /*---------------------------------------------------------------------------- | |
2960 | | Returns the result of converting the double-precision floating-point value | |
2961 | | `a' to the single-precision floating-point format. The conversion is | |
2962 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2963 | | Arithmetic. | |
2964 | *----------------------------------------------------------------------------*/ | |
2965 | ||
2966 | float32 float64_to_float32( float64 a STATUS_PARAM ) | |
2967 | { | |
2968 | flag aSign; | |
94a49d86 | 2969 | int_fast16_t aExp; |
bb98fe42 AF |
2970 | uint64_t aSig; |
2971 | uint32_t zSig; | |
37d18660 | 2972 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
2973 | |
2974 | aSig = extractFloat64Frac( a ); | |
2975 | aExp = extractFloat64Exp( a ); | |
2976 | aSign = extractFloat64Sign( a ); | |
2977 | if ( aExp == 0x7FF ) { | |
bcd4d9af | 2978 | if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
2979 | return packFloat32( aSign, 0xFF, 0 ); |
2980 | } | |
2981 | shift64RightJamming( aSig, 22, &aSig ); | |
2982 | zSig = aSig; | |
2983 | if ( aExp || zSig ) { | |
2984 | zSig |= 0x40000000; | |
2985 | aExp -= 0x381; | |
2986 | } | |
2987 | return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR ); | |
2988 | ||
2989 | } | |
2990 | ||
60011498 PB |
2991 | |
2992 | /*---------------------------------------------------------------------------- | |
2993 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
2994 | | half-precision floating-point value, returning the result. After being | |
2995 | | shifted into the proper positions, the three fields are simply added | |
2996 | | together to form the result. This means that any integer portion of `zSig' | |
2997 | | will be added into the exponent. Since a properly normalized significand | |
2998 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
2999 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
3000 | | significand. | |
3001 | *----------------------------------------------------------------------------*/ | |
94a49d86 | 3002 | static float16 packFloat16(flag zSign, int_fast16_t zExp, uint16_t zSig) |
60011498 | 3003 | { |
bb4d4bb3 | 3004 | return make_float16( |
bb98fe42 | 3005 | (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig); |
60011498 PB |
3006 | } |
3007 | ||
3008 | /* Half precision floats come in two formats: standard IEEE and "ARM" format. | |
3009 | The latter gains extra exponent range by omitting the NaN/Inf encodings. */ | |
bb4d4bb3 PM |
3010 | |
3011 | float32 float16_to_float32(float16 a, flag ieee STATUS_PARAM) | |
60011498 PB |
3012 | { |
3013 | flag aSign; | |
94a49d86 | 3014 | int_fast16_t aExp; |
bb98fe42 | 3015 | uint32_t aSig; |
60011498 | 3016 | |
bb4d4bb3 PM |
3017 | aSign = extractFloat16Sign(a); |
3018 | aExp = extractFloat16Exp(a); | |
3019 | aSig = extractFloat16Frac(a); | |
60011498 PB |
3020 | |
3021 | if (aExp == 0x1f && ieee) { | |
3022 | if (aSig) { | |
f591e1be | 3023 | return commonNaNToFloat32(float16ToCommonNaN(a STATUS_VAR) STATUS_VAR); |
60011498 | 3024 | } |
4be8eeac | 3025 | return packFloat32(aSign, 0xff, 0); |
60011498 PB |
3026 | } |
3027 | if (aExp == 0) { | |
3028 | int8 shiftCount; | |
3029 | ||
3030 | if (aSig == 0) { | |
3031 | return packFloat32(aSign, 0, 0); | |
3032 | } | |
3033 | ||
3034 | shiftCount = countLeadingZeros32( aSig ) - 21; | |
3035 | aSig = aSig << shiftCount; | |
3036 | aExp = -shiftCount; | |
3037 | } | |
3038 | return packFloat32( aSign, aExp + 0x70, aSig << 13); | |
3039 | } | |
3040 | ||
bb4d4bb3 | 3041 | float16 float32_to_float16(float32 a, flag ieee STATUS_PARAM) |
60011498 PB |
3042 | { |
3043 | flag aSign; | |
94a49d86 | 3044 | int_fast16_t aExp; |
bb98fe42 AF |
3045 | uint32_t aSig; |
3046 | uint32_t mask; | |
3047 | uint32_t increment; | |
60011498 | 3048 | int8 roundingMode; |
37d18660 | 3049 | a = float32_squash_input_denormal(a STATUS_VAR); |
60011498 PB |
3050 | |
3051 | aSig = extractFloat32Frac( a ); | |
3052 | aExp = extractFloat32Exp( a ); | |
3053 | aSign = extractFloat32Sign( a ); | |
3054 | if ( aExp == 0xFF ) { | |
3055 | if (aSig) { | |
600e30d2 PM |
3056 | /* Input is a NaN */ |
3057 | float16 r = commonNaNToFloat16( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); | |
3058 | if (!ieee) { | |
3059 | return packFloat16(aSign, 0, 0); | |
3060 | } | |
3061 | return r; | |
60011498 | 3062 | } |
600e30d2 PM |
3063 | /* Infinity */ |
3064 | if (!ieee) { | |
3065 | float_raise(float_flag_invalid STATUS_VAR); | |
3066 | return packFloat16(aSign, 0x1f, 0x3ff); | |
3067 | } | |
3068 | return packFloat16(aSign, 0x1f, 0); | |
60011498 | 3069 | } |
600e30d2 | 3070 | if (aExp == 0 && aSig == 0) { |
60011498 PB |
3071 | return packFloat16(aSign, 0, 0); |
3072 | } | |
3073 | /* Decimal point between bits 22 and 23. */ | |
3074 | aSig |= 0x00800000; | |
3075 | aExp -= 0x7f; | |
3076 | if (aExp < -14) { | |
600e30d2 PM |
3077 | mask = 0x00ffffff; |
3078 | if (aExp >= -24) { | |
3079 | mask >>= 25 + aExp; | |
60011498 PB |
3080 | } |
3081 | } else { | |
3082 | mask = 0x00001fff; | |
3083 | } | |
3084 | if (aSig & mask) { | |
3085 | float_raise( float_flag_underflow STATUS_VAR ); | |
3086 | roundingMode = STATUS(float_rounding_mode); | |
3087 | switch (roundingMode) { | |
3088 | case float_round_nearest_even: | |
3089 | increment = (mask + 1) >> 1; | |
3090 | if ((aSig & mask) == increment) { | |
3091 | increment = aSig & (increment << 1); | |
3092 | } | |
3093 | break; | |
3094 | case float_round_up: | |
3095 | increment = aSign ? 0 : mask; | |
3096 | break; | |
3097 | case float_round_down: | |
3098 | increment = aSign ? mask : 0; | |
3099 | break; | |
3100 | default: /* round_to_zero */ | |
3101 | increment = 0; | |
3102 | break; | |
3103 | } | |
3104 | aSig += increment; | |
3105 | if (aSig >= 0x01000000) { | |
3106 | aSig >>= 1; | |
3107 | aExp++; | |
3108 | } | |
3109 | } else if (aExp < -14 | |
3110 | && STATUS(float_detect_tininess) == float_tininess_before_rounding) { | |
3111 | float_raise( float_flag_underflow STATUS_VAR); | |
3112 | } | |
3113 | ||
3114 | if (ieee) { | |
3115 | if (aExp > 15) { | |
3116 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | |
3117 | return packFloat16(aSign, 0x1f, 0); | |
3118 | } | |
3119 | } else { | |
3120 | if (aExp > 16) { | |
600e30d2 | 3121 | float_raise(float_flag_invalid | float_flag_inexact STATUS_VAR); |
60011498 PB |
3122 | return packFloat16(aSign, 0x1f, 0x3ff); |
3123 | } | |
3124 | } | |
3125 | if (aExp < -24) { | |
3126 | return packFloat16(aSign, 0, 0); | |
3127 | } | |
3128 | if (aExp < -14) { | |
3129 | aSig >>= -14 - aExp; | |
3130 | aExp = -14; | |
3131 | } | |
3132 | return packFloat16(aSign, aExp + 14, aSig >> 13); | |
3133 | } | |
3134 | ||
158142c2 FB |
3135 | /*---------------------------------------------------------------------------- |
3136 | | Returns the result of converting the double-precision floating-point value | |
3137 | | `a' to the extended double-precision floating-point format. The conversion | |
3138 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3139 | | Arithmetic. | |
3140 | *----------------------------------------------------------------------------*/ | |
3141 | ||
3142 | floatx80 float64_to_floatx80( float64 a STATUS_PARAM ) | |
3143 | { | |
3144 | flag aSign; | |
94a49d86 | 3145 | int_fast16_t aExp; |
bb98fe42 | 3146 | uint64_t aSig; |
158142c2 | 3147 | |
37d18660 | 3148 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
3149 | aSig = extractFloat64Frac( a ); |
3150 | aExp = extractFloat64Exp( a ); | |
3151 | aSign = extractFloat64Sign( a ); | |
3152 | if ( aExp == 0x7FF ) { | |
bcd4d9af | 3153 | if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
3154 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
3155 | } | |
3156 | if ( aExp == 0 ) { | |
3157 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
3158 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3159 | } | |
3160 | return | |
3161 | packFloatx80( | |
3162 | aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); | |
3163 | ||
3164 | } | |
3165 | ||
158142c2 FB |
3166 | /*---------------------------------------------------------------------------- |
3167 | | Returns the result of converting the double-precision floating-point value | |
3168 | | `a' to the quadruple-precision floating-point format. The conversion is | |
3169 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3170 | | Arithmetic. | |
3171 | *----------------------------------------------------------------------------*/ | |
3172 | ||
3173 | float128 float64_to_float128( float64 a STATUS_PARAM ) | |
3174 | { | |
3175 | flag aSign; | |
94a49d86 | 3176 | int_fast16_t aExp; |
bb98fe42 | 3177 | uint64_t aSig, zSig0, zSig1; |
158142c2 | 3178 | |
37d18660 | 3179 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
3180 | aSig = extractFloat64Frac( a ); |
3181 | aExp = extractFloat64Exp( a ); | |
3182 | aSign = extractFloat64Sign( a ); | |
3183 | if ( aExp == 0x7FF ) { | |
bcd4d9af | 3184 | if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
3185 | return packFloat128( aSign, 0x7FFF, 0, 0 ); |
3186 | } | |
3187 | if ( aExp == 0 ) { | |
3188 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
3189 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3190 | --aExp; | |
3191 | } | |
3192 | shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); | |
3193 | return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); | |
3194 | ||
3195 | } | |
3196 | ||
158142c2 FB |
3197 | /*---------------------------------------------------------------------------- |
3198 | | Rounds the double-precision floating-point value `a' to an integer, and | |
3199 | | returns the result as a double-precision floating-point value. The | |
3200 | | operation is performed according to the IEC/IEEE Standard for Binary | |
3201 | | Floating-Point Arithmetic. | |
3202 | *----------------------------------------------------------------------------*/ | |
3203 | ||
3204 | float64 float64_round_to_int( float64 a STATUS_PARAM ) | |
3205 | { | |
3206 | flag aSign; | |
94a49d86 | 3207 | int_fast16_t aExp; |
bb98fe42 | 3208 | uint64_t lastBitMask, roundBitsMask; |
158142c2 | 3209 | int8 roundingMode; |
bb98fe42 | 3210 | uint64_t z; |
37d18660 | 3211 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
3212 | |
3213 | aExp = extractFloat64Exp( a ); | |
3214 | if ( 0x433 <= aExp ) { | |
3215 | if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { | |
3216 | return propagateFloat64NaN( a, a STATUS_VAR ); | |
3217 | } | |
3218 | return a; | |
3219 | } | |
3220 | if ( aExp < 0x3FF ) { | |
bb98fe42 | 3221 | if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a; |
158142c2 FB |
3222 | STATUS(float_exception_flags) |= float_flag_inexact; |
3223 | aSign = extractFloat64Sign( a ); | |
3224 | switch ( STATUS(float_rounding_mode) ) { | |
3225 | case float_round_nearest_even: | |
3226 | if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { | |
3227 | return packFloat64( aSign, 0x3FF, 0 ); | |
3228 | } | |
3229 | break; | |
3230 | case float_round_down: | |
f090c9d4 | 3231 | return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0); |
158142c2 | 3232 | case float_round_up: |
f090c9d4 PB |
3233 | return make_float64( |
3234 | aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 )); | |
158142c2 FB |
3235 | } |
3236 | return packFloat64( aSign, 0, 0 ); | |
3237 | } | |
3238 | lastBitMask = 1; | |
3239 | lastBitMask <<= 0x433 - aExp; | |
3240 | roundBitsMask = lastBitMask - 1; | |
f090c9d4 | 3241 | z = float64_val(a); |
158142c2 FB |
3242 | roundingMode = STATUS(float_rounding_mode); |
3243 | if ( roundingMode == float_round_nearest_even ) { | |
3244 | z += lastBitMask>>1; | |
3245 | if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; | |
3246 | } | |
3247 | else if ( roundingMode != float_round_to_zero ) { | |
f090c9d4 | 3248 | if ( extractFloat64Sign( make_float64(z) ) ^ ( roundingMode == float_round_up ) ) { |
158142c2 FB |
3249 | z += roundBitsMask; |
3250 | } | |
3251 | } | |
3252 | z &= ~ roundBitsMask; | |
f090c9d4 PB |
3253 | if ( z != float64_val(a) ) |
3254 | STATUS(float_exception_flags) |= float_flag_inexact; | |
3255 | return make_float64(z); | |
158142c2 FB |
3256 | |
3257 | } | |
3258 | ||
e6e5906b PB |
3259 | float64 float64_trunc_to_int( float64 a STATUS_PARAM) |
3260 | { | |
3261 | int oldmode; | |
3262 | float64 res; | |
3263 | oldmode = STATUS(float_rounding_mode); | |
3264 | STATUS(float_rounding_mode) = float_round_to_zero; | |
3265 | res = float64_round_to_int(a STATUS_VAR); | |
3266 | STATUS(float_rounding_mode) = oldmode; | |
3267 | return res; | |
3268 | } | |
3269 | ||
158142c2 FB |
3270 | /*---------------------------------------------------------------------------- |
3271 | | Returns the result of adding the absolute values of the double-precision | |
3272 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
3273 | | before being returned. `zSign' is ignored if the result is a NaN. | |
3274 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
3275 | | Floating-Point Arithmetic. | |
3276 | *----------------------------------------------------------------------------*/ | |
3277 | ||
3278 | static float64 addFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM ) | |
3279 | { | |
94a49d86 | 3280 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 3281 | uint64_t aSig, bSig, zSig; |
94a49d86 | 3282 | int_fast16_t expDiff; |
158142c2 FB |
3283 | |
3284 | aSig = extractFloat64Frac( a ); | |
3285 | aExp = extractFloat64Exp( a ); | |
3286 | bSig = extractFloat64Frac( b ); | |
3287 | bExp = extractFloat64Exp( b ); | |
3288 | expDiff = aExp - bExp; | |
3289 | aSig <<= 9; | |
3290 | bSig <<= 9; | |
3291 | if ( 0 < expDiff ) { | |
3292 | if ( aExp == 0x7FF ) { | |
3293 | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3294 | return a; | |
3295 | } | |
3296 | if ( bExp == 0 ) { | |
3297 | --expDiff; | |
3298 | } | |
3299 | else { | |
3300 | bSig |= LIT64( 0x2000000000000000 ); | |
3301 | } | |
3302 | shift64RightJamming( bSig, expDiff, &bSig ); | |
3303 | zExp = aExp; | |
3304 | } | |
3305 | else if ( expDiff < 0 ) { | |
3306 | if ( bExp == 0x7FF ) { | |
3307 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3308 | return packFloat64( zSign, 0x7FF, 0 ); | |
3309 | } | |
3310 | if ( aExp == 0 ) { | |
3311 | ++expDiff; | |
3312 | } | |
3313 | else { | |
3314 | aSig |= LIT64( 0x2000000000000000 ); | |
3315 | } | |
3316 | shift64RightJamming( aSig, - expDiff, &aSig ); | |
3317 | zExp = bExp; | |
3318 | } | |
3319 | else { | |
3320 | if ( aExp == 0x7FF ) { | |
3321 | if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3322 | return a; | |
3323 | } | |
fe76d976 | 3324 | if ( aExp == 0 ) { |
e6afc87f PM |
3325 | if (STATUS(flush_to_zero)) { |
3326 | if (aSig | bSig) { | |
3327 | float_raise(float_flag_output_denormal STATUS_VAR); | |
3328 | } | |
3329 | return packFloat64(zSign, 0, 0); | |
3330 | } | |
fe76d976 PB |
3331 | return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); |
3332 | } | |
158142c2 FB |
3333 | zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; |
3334 | zExp = aExp; | |
3335 | goto roundAndPack; | |
3336 | } | |
3337 | aSig |= LIT64( 0x2000000000000000 ); | |
3338 | zSig = ( aSig + bSig )<<1; | |
3339 | --zExp; | |
bb98fe42 | 3340 | if ( (int64_t) zSig < 0 ) { |
158142c2 FB |
3341 | zSig = aSig + bSig; |
3342 | ++zExp; | |
3343 | } | |
3344 | roundAndPack: | |
3345 | return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); | |
3346 | ||
3347 | } | |
3348 | ||
3349 | /*---------------------------------------------------------------------------- | |
3350 | | Returns the result of subtracting the absolute values of the double- | |
3351 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
3352 | | difference is negated before being returned. `zSign' is ignored if the | |
3353 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
3354 | | Standard for Binary Floating-Point Arithmetic. | |
3355 | *----------------------------------------------------------------------------*/ | |
3356 | ||
3357 | static float64 subFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM ) | |
3358 | { | |
94a49d86 | 3359 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 3360 | uint64_t aSig, bSig, zSig; |
94a49d86 | 3361 | int_fast16_t expDiff; |
158142c2 FB |
3362 | |
3363 | aSig = extractFloat64Frac( a ); | |
3364 | aExp = extractFloat64Exp( a ); | |
3365 | bSig = extractFloat64Frac( b ); | |
3366 | bExp = extractFloat64Exp( b ); | |
3367 | expDiff = aExp - bExp; | |
3368 | aSig <<= 10; | |
3369 | bSig <<= 10; | |
3370 | if ( 0 < expDiff ) goto aExpBigger; | |
3371 | if ( expDiff < 0 ) goto bExpBigger; | |
3372 | if ( aExp == 0x7FF ) { | |
3373 | if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3374 | float_raise( float_flag_invalid STATUS_VAR); | |
3375 | return float64_default_nan; | |
3376 | } | |
3377 | if ( aExp == 0 ) { | |
3378 | aExp = 1; | |
3379 | bExp = 1; | |
3380 | } | |
3381 | if ( bSig < aSig ) goto aBigger; | |
3382 | if ( aSig < bSig ) goto bBigger; | |
3383 | return packFloat64( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); | |
3384 | bExpBigger: | |
3385 | if ( bExp == 0x7FF ) { | |
3386 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3387 | return packFloat64( zSign ^ 1, 0x7FF, 0 ); | |
3388 | } | |
3389 | if ( aExp == 0 ) { | |
3390 | ++expDiff; | |
3391 | } | |
3392 | else { | |
3393 | aSig |= LIT64( 0x4000000000000000 ); | |
3394 | } | |
3395 | shift64RightJamming( aSig, - expDiff, &aSig ); | |
3396 | bSig |= LIT64( 0x4000000000000000 ); | |
3397 | bBigger: | |
3398 | zSig = bSig - aSig; | |
3399 | zExp = bExp; | |
3400 | zSign ^= 1; | |
3401 | goto normalizeRoundAndPack; | |
3402 | aExpBigger: | |
3403 | if ( aExp == 0x7FF ) { | |
3404 | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3405 | return a; | |
3406 | } | |
3407 | if ( bExp == 0 ) { | |
3408 | --expDiff; | |
3409 | } | |
3410 | else { | |
3411 | bSig |= LIT64( 0x4000000000000000 ); | |
3412 | } | |
3413 | shift64RightJamming( bSig, expDiff, &bSig ); | |
3414 | aSig |= LIT64( 0x4000000000000000 ); | |
3415 | aBigger: | |
3416 | zSig = aSig - bSig; | |
3417 | zExp = aExp; | |
3418 | normalizeRoundAndPack: | |
3419 | --zExp; | |
3420 | return normalizeRoundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); | |
3421 | ||
3422 | } | |
3423 | ||
3424 | /*---------------------------------------------------------------------------- | |
3425 | | Returns the result of adding the double-precision floating-point values `a' | |
3426 | | and `b'. The operation is performed according to the IEC/IEEE Standard for | |
3427 | | Binary Floating-Point Arithmetic. | |
3428 | *----------------------------------------------------------------------------*/ | |
3429 | ||
3430 | float64 float64_add( float64 a, float64 b STATUS_PARAM ) | |
3431 | { | |
3432 | flag aSign, bSign; | |
37d18660 PM |
3433 | a = float64_squash_input_denormal(a STATUS_VAR); |
3434 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
3435 | |
3436 | aSign = extractFloat64Sign( a ); | |
3437 | bSign = extractFloat64Sign( b ); | |
3438 | if ( aSign == bSign ) { | |
3439 | return addFloat64Sigs( a, b, aSign STATUS_VAR ); | |
3440 | } | |
3441 | else { | |
3442 | return subFloat64Sigs( a, b, aSign STATUS_VAR ); | |
3443 | } | |
3444 | ||
3445 | } | |
3446 | ||
3447 | /*---------------------------------------------------------------------------- | |
3448 | | Returns the result of subtracting the double-precision floating-point values | |
3449 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
3450 | | for Binary Floating-Point Arithmetic. | |
3451 | *----------------------------------------------------------------------------*/ | |
3452 | ||
3453 | float64 float64_sub( float64 a, float64 b STATUS_PARAM ) | |
3454 | { | |
3455 | flag aSign, bSign; | |
37d18660 PM |
3456 | a = float64_squash_input_denormal(a STATUS_VAR); |
3457 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
3458 | |
3459 | aSign = extractFloat64Sign( a ); | |
3460 | bSign = extractFloat64Sign( b ); | |
3461 | if ( aSign == bSign ) { | |
3462 | return subFloat64Sigs( a, b, aSign STATUS_VAR ); | |
3463 | } | |
3464 | else { | |
3465 | return addFloat64Sigs( a, b, aSign STATUS_VAR ); | |
3466 | } | |
3467 | ||
3468 | } | |
3469 | ||
3470 | /*---------------------------------------------------------------------------- | |
3471 | | Returns the result of multiplying the double-precision floating-point values | |
3472 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
3473 | | for Binary Floating-Point Arithmetic. | |
3474 | *----------------------------------------------------------------------------*/ | |
3475 | ||
3476 | float64 float64_mul( float64 a, float64 b STATUS_PARAM ) | |
3477 | { | |
3478 | flag aSign, bSign, zSign; | |
94a49d86 | 3479 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 | 3480 | uint64_t aSig, bSig, zSig0, zSig1; |
158142c2 | 3481 | |
37d18660 PM |
3482 | a = float64_squash_input_denormal(a STATUS_VAR); |
3483 | b = float64_squash_input_denormal(b STATUS_VAR); | |
3484 | ||
158142c2 FB |
3485 | aSig = extractFloat64Frac( a ); |
3486 | aExp = extractFloat64Exp( a ); | |
3487 | aSign = extractFloat64Sign( a ); | |
3488 | bSig = extractFloat64Frac( b ); | |
3489 | bExp = extractFloat64Exp( b ); | |
3490 | bSign = extractFloat64Sign( b ); | |
3491 | zSign = aSign ^ bSign; | |
3492 | if ( aExp == 0x7FF ) { | |
3493 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | |
3494 | return propagateFloat64NaN( a, b STATUS_VAR ); | |
3495 | } | |
3496 | if ( ( bExp | bSig ) == 0 ) { | |
3497 | float_raise( float_flag_invalid STATUS_VAR); | |
3498 | return float64_default_nan; | |
3499 | } | |
3500 | return packFloat64( zSign, 0x7FF, 0 ); | |
3501 | } | |
3502 | if ( bExp == 0x7FF ) { | |
3503 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3504 | if ( ( aExp | aSig ) == 0 ) { | |
3505 | float_raise( float_flag_invalid STATUS_VAR); | |
3506 | return float64_default_nan; | |
3507 | } | |
3508 | return packFloat64( zSign, 0x7FF, 0 ); | |
3509 | } | |
3510 | if ( aExp == 0 ) { | |
3511 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
3512 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3513 | } | |
3514 | if ( bExp == 0 ) { | |
3515 | if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
3516 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
3517 | } | |
3518 | zExp = aExp + bExp - 0x3FF; | |
3519 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | |
3520 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
3521 | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | |
3522 | zSig0 |= ( zSig1 != 0 ); | |
bb98fe42 | 3523 | if ( 0 <= (int64_t) ( zSig0<<1 ) ) { |
158142c2 FB |
3524 | zSig0 <<= 1; |
3525 | --zExp; | |
3526 | } | |
3527 | return roundAndPackFloat64( zSign, zExp, zSig0 STATUS_VAR ); | |
3528 | ||
3529 | } | |
3530 | ||
3531 | /*---------------------------------------------------------------------------- | |
3532 | | Returns the result of dividing the double-precision floating-point value `a' | |
3533 | | by the corresponding value `b'. The operation is performed according to | |
3534 | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3535 | *----------------------------------------------------------------------------*/ | |
3536 | ||
3537 | float64 float64_div( float64 a, float64 b STATUS_PARAM ) | |
3538 | { | |
3539 | flag aSign, bSign, zSign; | |
94a49d86 | 3540 | int_fast16_t aExp, bExp, zExp; |
bb98fe42 AF |
3541 | uint64_t aSig, bSig, zSig; |
3542 | uint64_t rem0, rem1; | |
3543 | uint64_t term0, term1; | |
37d18660 PM |
3544 | a = float64_squash_input_denormal(a STATUS_VAR); |
3545 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
3546 | |
3547 | aSig = extractFloat64Frac( a ); | |
3548 | aExp = extractFloat64Exp( a ); | |
3549 | aSign = extractFloat64Sign( a ); | |
3550 | bSig = extractFloat64Frac( b ); | |
3551 | bExp = extractFloat64Exp( b ); | |
3552 | bSign = extractFloat64Sign( b ); | |
3553 | zSign = aSign ^ bSign; | |
3554 | if ( aExp == 0x7FF ) { | |
3555 | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3556 | if ( bExp == 0x7FF ) { | |
3557 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3558 | float_raise( float_flag_invalid STATUS_VAR); | |
3559 | return float64_default_nan; | |
3560 | } | |
3561 | return packFloat64( zSign, 0x7FF, 0 ); | |
3562 | } | |
3563 | if ( bExp == 0x7FF ) { | |
3564 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3565 | return packFloat64( zSign, 0, 0 ); | |
3566 | } | |
3567 | if ( bExp == 0 ) { | |
3568 | if ( bSig == 0 ) { | |
3569 | if ( ( aExp | aSig ) == 0 ) { | |
3570 | float_raise( float_flag_invalid STATUS_VAR); | |
3571 | return float64_default_nan; | |
3572 | } | |
3573 | float_raise( float_flag_divbyzero STATUS_VAR); | |
3574 | return packFloat64( zSign, 0x7FF, 0 ); | |
3575 | } | |
3576 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
3577 | } | |
3578 | if ( aExp == 0 ) { | |
3579 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
3580 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3581 | } | |
3582 | zExp = aExp - bExp + 0x3FD; | |
3583 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | |
3584 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
3585 | if ( bSig <= ( aSig + aSig ) ) { | |
3586 | aSig >>= 1; | |
3587 | ++zExp; | |
3588 | } | |
3589 | zSig = estimateDiv128To64( aSig, 0, bSig ); | |
3590 | if ( ( zSig & 0x1FF ) <= 2 ) { | |
3591 | mul64To128( bSig, zSig, &term0, &term1 ); | |
3592 | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 3593 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
3594 | --zSig; |
3595 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | |
3596 | } | |
3597 | zSig |= ( rem1 != 0 ); | |
3598 | } | |
3599 | return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); | |
3600 | ||
3601 | } | |
3602 | ||
3603 | /*---------------------------------------------------------------------------- | |
3604 | | Returns the remainder of the double-precision floating-point value `a' | |
3605 | | with respect to the corresponding value `b'. The operation is performed | |
3606 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3607 | *----------------------------------------------------------------------------*/ | |
3608 | ||
3609 | float64 float64_rem( float64 a, float64 b STATUS_PARAM ) | |
3610 | { | |
ed086f3d | 3611 | flag aSign, zSign; |
94a49d86 | 3612 | int_fast16_t aExp, bExp, expDiff; |
bb98fe42 AF |
3613 | uint64_t aSig, bSig; |
3614 | uint64_t q, alternateASig; | |
3615 | int64_t sigMean; | |
158142c2 | 3616 | |
37d18660 PM |
3617 | a = float64_squash_input_denormal(a STATUS_VAR); |
3618 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
3619 | aSig = extractFloat64Frac( a ); |
3620 | aExp = extractFloat64Exp( a ); | |
3621 | aSign = extractFloat64Sign( a ); | |
3622 | bSig = extractFloat64Frac( b ); | |
3623 | bExp = extractFloat64Exp( b ); | |
158142c2 FB |
3624 | if ( aExp == 0x7FF ) { |
3625 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | |
3626 | return propagateFloat64NaN( a, b STATUS_VAR ); | |
3627 | } | |
3628 | float_raise( float_flag_invalid STATUS_VAR); | |
3629 | return float64_default_nan; | |
3630 | } | |
3631 | if ( bExp == 0x7FF ) { | |
3632 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
3633 | return a; | |
3634 | } | |
3635 | if ( bExp == 0 ) { | |
3636 | if ( bSig == 0 ) { | |
3637 | float_raise( float_flag_invalid STATUS_VAR); | |
3638 | return float64_default_nan; | |
3639 | } | |
3640 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
3641 | } | |
3642 | if ( aExp == 0 ) { | |
3643 | if ( aSig == 0 ) return a; | |
3644 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3645 | } | |
3646 | expDiff = aExp - bExp; | |
3647 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; | |
3648 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
3649 | if ( expDiff < 0 ) { | |
3650 | if ( expDiff < -1 ) return a; | |
3651 | aSig >>= 1; | |
3652 | } | |
3653 | q = ( bSig <= aSig ); | |
3654 | if ( q ) aSig -= bSig; | |
3655 | expDiff -= 64; | |
3656 | while ( 0 < expDiff ) { | |
3657 | q = estimateDiv128To64( aSig, 0, bSig ); | |
3658 | q = ( 2 < q ) ? q - 2 : 0; | |
3659 | aSig = - ( ( bSig>>2 ) * q ); | |
3660 | expDiff -= 62; | |
3661 | } | |
3662 | expDiff += 64; | |
3663 | if ( 0 < expDiff ) { | |
3664 | q = estimateDiv128To64( aSig, 0, bSig ); | |
3665 | q = ( 2 < q ) ? q - 2 : 0; | |
3666 | q >>= 64 - expDiff; | |
3667 | bSig >>= 2; | |
3668 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
3669 | } | |
3670 | else { | |
3671 | aSig >>= 2; | |
3672 | bSig >>= 2; | |
3673 | } | |
3674 | do { | |
3675 | alternateASig = aSig; | |
3676 | ++q; | |
3677 | aSig -= bSig; | |
bb98fe42 | 3678 | } while ( 0 <= (int64_t) aSig ); |
158142c2 FB |
3679 | sigMean = aSig + alternateASig; |
3680 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
3681 | aSig = alternateASig; | |
3682 | } | |
bb98fe42 | 3683 | zSign = ( (int64_t) aSig < 0 ); |
158142c2 FB |
3684 | if ( zSign ) aSig = - aSig; |
3685 | return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig STATUS_VAR ); | |
3686 | ||
3687 | } | |
3688 | ||
369be8f6 PM |
3689 | /*---------------------------------------------------------------------------- |
3690 | | Returns the result of multiplying the double-precision floating-point values | |
3691 | | `a' and `b' then adding 'c', with no intermediate rounding step after the | |
3692 | | multiplication. The operation is performed according to the IEC/IEEE | |
3693 | | Standard for Binary Floating-Point Arithmetic 754-2008. | |
3694 | | The flags argument allows the caller to select negation of the | |
3695 | | addend, the intermediate product, or the final result. (The difference | |
3696 | | between this and having the caller do a separate negation is that negating | |
3697 | | externally will flip the sign bit on NaNs.) | |
3698 | *----------------------------------------------------------------------------*/ | |
3699 | ||
3700 | float64 float64_muladd(float64 a, float64 b, float64 c, int flags STATUS_PARAM) | |
3701 | { | |
3702 | flag aSign, bSign, cSign, zSign; | |
94a49d86 | 3703 | int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff; |
369be8f6 PM |
3704 | uint64_t aSig, bSig, cSig; |
3705 | flag pInf, pZero, pSign; | |
3706 | uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1; | |
3707 | int shiftcount; | |
3708 | flag signflip, infzero; | |
3709 | ||
3710 | a = float64_squash_input_denormal(a STATUS_VAR); | |
3711 | b = float64_squash_input_denormal(b STATUS_VAR); | |
3712 | c = float64_squash_input_denormal(c STATUS_VAR); | |
3713 | aSig = extractFloat64Frac(a); | |
3714 | aExp = extractFloat64Exp(a); | |
3715 | aSign = extractFloat64Sign(a); | |
3716 | bSig = extractFloat64Frac(b); | |
3717 | bExp = extractFloat64Exp(b); | |
3718 | bSign = extractFloat64Sign(b); | |
3719 | cSig = extractFloat64Frac(c); | |
3720 | cExp = extractFloat64Exp(c); | |
3721 | cSign = extractFloat64Sign(c); | |
3722 | ||
3723 | infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) || | |
3724 | (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0)); | |
3725 | ||
3726 | /* It is implementation-defined whether the cases of (0,inf,qnan) | |
3727 | * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN | |
3728 | * they return if they do), so we have to hand this information | |
3729 | * off to the target-specific pick-a-NaN routine. | |
3730 | */ | |
3731 | if (((aExp == 0x7ff) && aSig) || | |
3732 | ((bExp == 0x7ff) && bSig) || | |
3733 | ((cExp == 0x7ff) && cSig)) { | |
3734 | return propagateFloat64MulAddNaN(a, b, c, infzero STATUS_VAR); | |
3735 | } | |
3736 | ||
3737 | if (infzero) { | |
3738 | float_raise(float_flag_invalid STATUS_VAR); | |
3739 | return float64_default_nan; | |
3740 | } | |
3741 | ||
3742 | if (flags & float_muladd_negate_c) { | |
3743 | cSign ^= 1; | |
3744 | } | |
3745 | ||
3746 | signflip = (flags & float_muladd_negate_result) ? 1 : 0; | |
3747 | ||
3748 | /* Work out the sign and type of the product */ | |
3749 | pSign = aSign ^ bSign; | |
3750 | if (flags & float_muladd_negate_product) { | |
3751 | pSign ^= 1; | |
3752 | } | |
3753 | pInf = (aExp == 0x7ff) || (bExp == 0x7ff); | |
3754 | pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); | |
3755 | ||
3756 | if (cExp == 0x7ff) { | |
3757 | if (pInf && (pSign ^ cSign)) { | |
3758 | /* addition of opposite-signed infinities => InvalidOperation */ | |
3759 | float_raise(float_flag_invalid STATUS_VAR); | |
3760 | return float64_default_nan; | |
3761 | } | |
3762 | /* Otherwise generate an infinity of the same sign */ | |
3763 | return packFloat64(cSign ^ signflip, 0x7ff, 0); | |
3764 | } | |
3765 | ||
3766 | if (pInf) { | |
3767 | return packFloat64(pSign ^ signflip, 0x7ff, 0); | |
3768 | } | |
3769 | ||
3770 | if (pZero) { | |
3771 | if (cExp == 0) { | |
3772 | if (cSig == 0) { | |
3773 | /* Adding two exact zeroes */ | |
3774 | if (pSign == cSign) { | |
3775 | zSign = pSign; | |
3776 | } else if (STATUS(float_rounding_mode) == float_round_down) { | |
3777 | zSign = 1; | |
3778 | } else { | |
3779 | zSign = 0; | |
3780 | } | |
3781 | return packFloat64(zSign ^ signflip, 0, 0); | |
3782 | } | |
3783 | /* Exact zero plus a denorm */ | |
3784 | if (STATUS(flush_to_zero)) { | |
3785 | float_raise(float_flag_output_denormal STATUS_VAR); | |
3786 | return packFloat64(cSign ^ signflip, 0, 0); | |
3787 | } | |
3788 | } | |
3789 | /* Zero plus something non-zero : just return the something */ | |
a6e7c184 | 3790 | return packFloat64(cSign ^ signflip, cExp, cSig); |
369be8f6 PM |
3791 | } |
3792 | ||
3793 | if (aExp == 0) { | |
3794 | normalizeFloat64Subnormal(aSig, &aExp, &aSig); | |
3795 | } | |
3796 | if (bExp == 0) { | |
3797 | normalizeFloat64Subnormal(bSig, &bExp, &bSig); | |
3798 | } | |
3799 | ||
3800 | /* Calculate the actual result a * b + c */ | |
3801 | ||
3802 | /* Multiply first; this is easy. */ | |
3803 | /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff | |
3804 | * because we want the true exponent, not the "one-less-than" | |
3805 | * flavour that roundAndPackFloat64() takes. | |
3806 | */ | |
3807 | pExp = aExp + bExp - 0x3fe; | |
3808 | aSig = (aSig | LIT64(0x0010000000000000))<<10; | |
3809 | bSig = (bSig | LIT64(0x0010000000000000))<<11; | |
3810 | mul64To128(aSig, bSig, &pSig0, &pSig1); | |
3811 | if ((int64_t)(pSig0 << 1) >= 0) { | |
3812 | shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1); | |
3813 | pExp--; | |
3814 | } | |
3815 | ||
3816 | zSign = pSign ^ signflip; | |
3817 | ||
3818 | /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit | |
3819 | * bit in position 126. | |
3820 | */ | |
3821 | if (cExp == 0) { | |
3822 | if (!cSig) { | |
3823 | /* Throw out the special case of c being an exact zero now */ | |
3824 | shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1); | |
3825 | return roundAndPackFloat64(zSign, pExp - 1, | |
3826 | pSig1 STATUS_VAR); | |
3827 | } | |
3828 | normalizeFloat64Subnormal(cSig, &cExp, &cSig); | |
3829 | } | |
3830 | ||
3831 | /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the | |
3832 | * significand of the addend, with the explicit bit in position 126. | |
3833 | */ | |
3834 | cSig0 = cSig << (126 - 64 - 52); | |
3835 | cSig1 = 0; | |
3836 | cSig0 |= LIT64(0x4000000000000000); | |
3837 | expDiff = pExp - cExp; | |
3838 | ||
3839 | if (pSign == cSign) { | |
3840 | /* Addition */ | |
3841 | if (expDiff > 0) { | |
3842 | /* scale c to match p */ | |
3843 | shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); | |
3844 | zExp = pExp; | |
3845 | } else if (expDiff < 0) { | |
3846 | /* scale p to match c */ | |
3847 | shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); | |
3848 | zExp = cExp; | |
3849 | } else { | |
3850 | /* no scaling needed */ | |
3851 | zExp = cExp; | |
3852 | } | |
3853 | /* Add significands and make sure explicit bit ends up in posn 126 */ | |
3854 | add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | |
3855 | if ((int64_t)zSig0 < 0) { | |
3856 | shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1); | |
3857 | } else { | |
3858 | zExp--; | |
3859 | } | |
3860 | shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1); | |
3861 | return roundAndPackFloat64(zSign, zExp, zSig1 STATUS_VAR); | |
3862 | } else { | |
3863 | /* Subtraction */ | |
3864 | if (expDiff > 0) { | |
3865 | shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); | |
3866 | sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | |
3867 | zExp = pExp; | |
3868 | } else if (expDiff < 0) { | |
3869 | shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); | |
3870 | sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); | |
3871 | zExp = cExp; | |
3872 | zSign ^= 1; | |
3873 | } else { | |
3874 | zExp = pExp; | |
3875 | if (lt128(cSig0, cSig1, pSig0, pSig1)) { | |
3876 | sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); | |
3877 | } else if (lt128(pSig0, pSig1, cSig0, cSig1)) { | |
3878 | sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); | |
3879 | zSign ^= 1; | |
3880 | } else { | |
3881 | /* Exact zero */ | |
3882 | zSign = signflip; | |
3883 | if (STATUS(float_rounding_mode) == float_round_down) { | |
3884 | zSign ^= 1; | |
3885 | } | |
3886 | return packFloat64(zSign, 0, 0); | |
3887 | } | |
3888 | } | |
3889 | --zExp; | |
3890 | /* Do the equivalent of normalizeRoundAndPackFloat64() but | |
3891 | * starting with the significand in a pair of uint64_t. | |
3892 | */ | |
3893 | if (zSig0) { | |
3894 | shiftcount = countLeadingZeros64(zSig0) - 1; | |
3895 | shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1); | |
3896 | if (zSig1) { | |
3897 | zSig0 |= 1; | |
3898 | } | |
3899 | zExp -= shiftcount; | |
3900 | } else { | |
e3d142d0 PM |
3901 | shiftcount = countLeadingZeros64(zSig1); |
3902 | if (shiftcount == 0) { | |
3903 | zSig0 = (zSig1 >> 1) | (zSig1 & 1); | |
3904 | zExp -= 63; | |
3905 | } else { | |
3906 | shiftcount--; | |
3907 | zSig0 = zSig1 << shiftcount; | |
3908 | zExp -= (shiftcount + 64); | |
3909 | } | |
369be8f6 PM |
3910 | } |
3911 | return roundAndPackFloat64(zSign, zExp, zSig0 STATUS_VAR); | |
3912 | } | |
3913 | } | |
3914 | ||
158142c2 FB |
3915 | /*---------------------------------------------------------------------------- |
3916 | | Returns the square root of the double-precision floating-point value `a'. | |
3917 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
3918 | | Floating-Point Arithmetic. | |
3919 | *----------------------------------------------------------------------------*/ | |
3920 | ||
3921 | float64 float64_sqrt( float64 a STATUS_PARAM ) | |
3922 | { | |
3923 | flag aSign; | |
94a49d86 | 3924 | int_fast16_t aExp, zExp; |
bb98fe42 AF |
3925 | uint64_t aSig, zSig, doubleZSig; |
3926 | uint64_t rem0, rem1, term0, term1; | |
37d18660 | 3927 | a = float64_squash_input_denormal(a STATUS_VAR); |
158142c2 FB |
3928 | |
3929 | aSig = extractFloat64Frac( a ); | |
3930 | aExp = extractFloat64Exp( a ); | |
3931 | aSign = extractFloat64Sign( a ); | |
3932 | if ( aExp == 0x7FF ) { | |
3933 | if ( aSig ) return propagateFloat64NaN( a, a STATUS_VAR ); | |
3934 | if ( ! aSign ) return a; | |
3935 | float_raise( float_flag_invalid STATUS_VAR); | |
3936 | return float64_default_nan; | |
3937 | } | |
3938 | if ( aSign ) { | |
3939 | if ( ( aExp | aSig ) == 0 ) return a; | |
3940 | float_raise( float_flag_invalid STATUS_VAR); | |
3941 | return float64_default_nan; | |
3942 | } | |
3943 | if ( aExp == 0 ) { | |
f090c9d4 | 3944 | if ( aSig == 0 ) return float64_zero; |
158142c2 FB |
3945 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); |
3946 | } | |
3947 | zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; | |
3948 | aSig |= LIT64( 0x0010000000000000 ); | |
3949 | zSig = estimateSqrt32( aExp, aSig>>21 ); | |
3950 | aSig <<= 9 - ( aExp & 1 ); | |
3951 | zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 ); | |
3952 | if ( ( zSig & 0x1FF ) <= 5 ) { | |
3953 | doubleZSig = zSig<<1; | |
3954 | mul64To128( zSig, zSig, &term0, &term1 ); | |
3955 | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 3956 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
3957 | --zSig; |
3958 | doubleZSig -= 2; | |
3959 | add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 ); | |
3960 | } | |
3961 | zSig |= ( ( rem0 | rem1 ) != 0 ); | |
3962 | } | |
3963 | return roundAndPackFloat64( 0, zExp, zSig STATUS_VAR ); | |
3964 | ||
3965 | } | |
3966 | ||
374dfc33 AJ |
3967 | /*---------------------------------------------------------------------------- |
3968 | | Returns the binary log of the double-precision floating-point value `a'. | |
3969 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
3970 | | Floating-Point Arithmetic. | |
3971 | *----------------------------------------------------------------------------*/ | |
3972 | float64 float64_log2( float64 a STATUS_PARAM ) | |
3973 | { | |
3974 | flag aSign, zSign; | |
94a49d86 | 3975 | int_fast16_t aExp; |
bb98fe42 | 3976 | uint64_t aSig, aSig0, aSig1, zSig, i; |
37d18660 | 3977 | a = float64_squash_input_denormal(a STATUS_VAR); |
374dfc33 AJ |
3978 | |
3979 | aSig = extractFloat64Frac( a ); | |
3980 | aExp = extractFloat64Exp( a ); | |
3981 | aSign = extractFloat64Sign( a ); | |
3982 | ||
3983 | if ( aExp == 0 ) { | |
3984 | if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 ); | |
3985 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3986 | } | |
3987 | if ( aSign ) { | |
3988 | float_raise( float_flag_invalid STATUS_VAR); | |
3989 | return float64_default_nan; | |
3990 | } | |
3991 | if ( aExp == 0x7FF ) { | |
3992 | if ( aSig ) return propagateFloat64NaN( a, float64_zero STATUS_VAR ); | |
3993 | return a; | |
3994 | } | |
3995 | ||
3996 | aExp -= 0x3FF; | |
3997 | aSig |= LIT64( 0x0010000000000000 ); | |
3998 | zSign = aExp < 0; | |
bb98fe42 | 3999 | zSig = (uint64_t)aExp << 52; |
374dfc33 AJ |
4000 | for (i = 1LL << 51; i > 0; i >>= 1) { |
4001 | mul64To128( aSig, aSig, &aSig0, &aSig1 ); | |
4002 | aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 ); | |
4003 | if ( aSig & LIT64( 0x0020000000000000 ) ) { | |
4004 | aSig >>= 1; | |
4005 | zSig |= i; | |
4006 | } | |
4007 | } | |
4008 | ||
4009 | if ( zSign ) | |
4010 | zSig = -zSig; | |
4011 | return normalizeRoundAndPackFloat64( zSign, 0x408, zSig STATUS_VAR ); | |
4012 | } | |
4013 | ||
158142c2 FB |
4014 | /*---------------------------------------------------------------------------- |
4015 | | Returns 1 if the double-precision floating-point value `a' is equal to the | |
b689362d AJ |
4016 | | corresponding value `b', and 0 otherwise. The invalid exception is raised |
4017 | | if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
4018 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
4019 | *----------------------------------------------------------------------------*/ | |
4020 | ||
b689362d | 4021 | int float64_eq( float64 a, float64 b STATUS_PARAM ) |
158142c2 | 4022 | { |
bb98fe42 | 4023 | uint64_t av, bv; |
37d18660 PM |
4024 | a = float64_squash_input_denormal(a STATUS_VAR); |
4025 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
4026 | |
4027 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4028 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4029 | ) { | |
b689362d | 4030 | float_raise( float_flag_invalid STATUS_VAR); |
158142c2 FB |
4031 | return 0; |
4032 | } | |
f090c9d4 | 4033 | av = float64_val(a); |
a1b91bb4 | 4034 | bv = float64_val(b); |
bb98fe42 | 4035 | return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
158142c2 FB |
4036 | |
4037 | } | |
4038 | ||
4039 | /*---------------------------------------------------------------------------- | |
4040 | | Returns 1 if the double-precision floating-point value `a' is less than or | |
f5a64251 AJ |
4041 | | equal to the corresponding value `b', and 0 otherwise. The invalid |
4042 | | exception is raised if either operand is a NaN. The comparison is performed | |
4043 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4044 | *----------------------------------------------------------------------------*/ |
4045 | ||
750afe93 | 4046 | int float64_le( float64 a, float64 b STATUS_PARAM ) |
158142c2 FB |
4047 | { |
4048 | flag aSign, bSign; | |
bb98fe42 | 4049 | uint64_t av, bv; |
37d18660 PM |
4050 | a = float64_squash_input_denormal(a STATUS_VAR); |
4051 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
4052 | |
4053 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4054 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4055 | ) { | |
4056 | float_raise( float_flag_invalid STATUS_VAR); | |
4057 | return 0; | |
4058 | } | |
4059 | aSign = extractFloat64Sign( a ); | |
4060 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4061 | av = float64_val(a); |
a1b91bb4 | 4062 | bv = float64_val(b); |
bb98fe42 | 4063 | if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 4064 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4065 | |
4066 | } | |
4067 | ||
4068 | /*---------------------------------------------------------------------------- | |
4069 | | Returns 1 if the double-precision floating-point value `a' is less than | |
f5a64251 AJ |
4070 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
4071 | | raised if either operand is a NaN. The comparison is performed according | |
4072 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4073 | *----------------------------------------------------------------------------*/ |
4074 | ||
750afe93 | 4075 | int float64_lt( float64 a, float64 b STATUS_PARAM ) |
158142c2 FB |
4076 | { |
4077 | flag aSign, bSign; | |
bb98fe42 | 4078 | uint64_t av, bv; |
158142c2 | 4079 | |
37d18660 PM |
4080 | a = float64_squash_input_denormal(a STATUS_VAR); |
4081 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
4082 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
4083 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4084 | ) { | |
4085 | float_raise( float_flag_invalid STATUS_VAR); | |
4086 | return 0; | |
4087 | } | |
4088 | aSign = extractFloat64Sign( a ); | |
4089 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4090 | av = float64_val(a); |
a1b91bb4 | 4091 | bv = float64_val(b); |
bb98fe42 | 4092 | if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 4093 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4094 | |
4095 | } | |
4096 | ||
67b7861d AJ |
4097 | /*---------------------------------------------------------------------------- |
4098 | | Returns 1 if the double-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
4099 | | be compared, and 0 otherwise. The invalid exception is raised if either |
4100 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
4101 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
4102 | *----------------------------------------------------------------------------*/ |
4103 | ||
4104 | int float64_unordered( float64 a, float64 b STATUS_PARAM ) | |
4105 | { | |
4106 | a = float64_squash_input_denormal(a STATUS_VAR); | |
4107 | b = float64_squash_input_denormal(b STATUS_VAR); | |
4108 | ||
4109 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4110 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4111 | ) { | |
4112 | float_raise( float_flag_invalid STATUS_VAR); | |
4113 | return 1; | |
4114 | } | |
4115 | return 0; | |
4116 | } | |
4117 | ||
158142c2 FB |
4118 | /*---------------------------------------------------------------------------- |
4119 | | Returns 1 if the double-precision floating-point value `a' is equal to the | |
f5a64251 AJ |
4120 | | corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
4121 | | exception.The comparison is performed according to the IEC/IEEE Standard | |
4122 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
4123 | *----------------------------------------------------------------------------*/ |
4124 | ||
b689362d | 4125 | int float64_eq_quiet( float64 a, float64 b STATUS_PARAM ) |
158142c2 | 4126 | { |
bb98fe42 | 4127 | uint64_t av, bv; |
37d18660 PM |
4128 | a = float64_squash_input_denormal(a STATUS_VAR); |
4129 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
4130 | |
4131 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4132 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4133 | ) { | |
b689362d AJ |
4134 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { |
4135 | float_raise( float_flag_invalid STATUS_VAR); | |
4136 | } | |
158142c2 FB |
4137 | return 0; |
4138 | } | |
f090c9d4 | 4139 | av = float64_val(a); |
a1b91bb4 | 4140 | bv = float64_val(b); |
bb98fe42 | 4141 | return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
158142c2 FB |
4142 | |
4143 | } | |
4144 | ||
4145 | /*---------------------------------------------------------------------------- | |
4146 | | Returns 1 if the double-precision floating-point value `a' is less than or | |
4147 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
4148 | | cause an exception. Otherwise, the comparison is performed according to the | |
4149 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4150 | *----------------------------------------------------------------------------*/ | |
4151 | ||
750afe93 | 4152 | int float64_le_quiet( float64 a, float64 b STATUS_PARAM ) |
158142c2 FB |
4153 | { |
4154 | flag aSign, bSign; | |
bb98fe42 | 4155 | uint64_t av, bv; |
37d18660 PM |
4156 | a = float64_squash_input_denormal(a STATUS_VAR); |
4157 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
4158 | |
4159 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4160 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4161 | ) { | |
4162 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
4163 | float_raise( float_flag_invalid STATUS_VAR); | |
4164 | } | |
4165 | return 0; | |
4166 | } | |
4167 | aSign = extractFloat64Sign( a ); | |
4168 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4169 | av = float64_val(a); |
a1b91bb4 | 4170 | bv = float64_val(b); |
bb98fe42 | 4171 | if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
f090c9d4 | 4172 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4173 | |
4174 | } | |
4175 | ||
4176 | /*---------------------------------------------------------------------------- | |
4177 | | Returns 1 if the double-precision floating-point value `a' is less than | |
4178 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
4179 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
4180 | | Standard for Binary Floating-Point Arithmetic. | |
4181 | *----------------------------------------------------------------------------*/ | |
4182 | ||
750afe93 | 4183 | int float64_lt_quiet( float64 a, float64 b STATUS_PARAM ) |
158142c2 FB |
4184 | { |
4185 | flag aSign, bSign; | |
bb98fe42 | 4186 | uint64_t av, bv; |
37d18660 PM |
4187 | a = float64_squash_input_denormal(a STATUS_VAR); |
4188 | b = float64_squash_input_denormal(b STATUS_VAR); | |
158142c2 FB |
4189 | |
4190 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4191 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4192 | ) { | |
4193 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
4194 | float_raise( float_flag_invalid STATUS_VAR); | |
4195 | } | |
4196 | return 0; | |
4197 | } | |
4198 | aSign = extractFloat64Sign( a ); | |
4199 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 4200 | av = float64_val(a); |
a1b91bb4 | 4201 | bv = float64_val(b); |
bb98fe42 | 4202 | if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); |
f090c9d4 | 4203 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
158142c2 FB |
4204 | |
4205 | } | |
4206 | ||
67b7861d AJ |
4207 | /*---------------------------------------------------------------------------- |
4208 | | Returns 1 if the double-precision floating-point values `a' and `b' cannot | |
4209 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
4210 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
4211 | | Floating-Point Arithmetic. | |
4212 | *----------------------------------------------------------------------------*/ | |
4213 | ||
4214 | int float64_unordered_quiet( float64 a, float64 b STATUS_PARAM ) | |
4215 | { | |
4216 | a = float64_squash_input_denormal(a STATUS_VAR); | |
4217 | b = float64_squash_input_denormal(b STATUS_VAR); | |
4218 | ||
4219 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
4220 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
4221 | ) { | |
4222 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
4223 | float_raise( float_flag_invalid STATUS_VAR); | |
4224 | } | |
4225 | return 1; | |
4226 | } | |
4227 | return 0; | |
4228 | } | |
4229 | ||
158142c2 FB |
4230 | /*---------------------------------------------------------------------------- |
4231 | | Returns the result of converting the extended double-precision floating- | |
4232 | | point value `a' to the 32-bit two's complement integer format. The | |
4233 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4234 | | Floating-Point Arithmetic---which means in particular that the conversion | |
4235 | | is rounded according to the current rounding mode. If `a' is a NaN, the | |
4236 | | largest positive integer is returned. Otherwise, if the conversion | |
4237 | | overflows, the largest integer with the same sign as `a' is returned. | |
4238 | *----------------------------------------------------------------------------*/ | |
4239 | ||
4240 | int32 floatx80_to_int32( floatx80 a STATUS_PARAM ) | |
4241 | { | |
4242 | flag aSign; | |
4243 | int32 aExp, shiftCount; | |
bb98fe42 | 4244 | uint64_t aSig; |
158142c2 FB |
4245 | |
4246 | aSig = extractFloatx80Frac( a ); | |
4247 | aExp = extractFloatx80Exp( a ); | |
4248 | aSign = extractFloatx80Sign( a ); | |
bb98fe42 | 4249 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; |
158142c2 FB |
4250 | shiftCount = 0x4037 - aExp; |
4251 | if ( shiftCount <= 0 ) shiftCount = 1; | |
4252 | shift64RightJamming( aSig, shiftCount, &aSig ); | |
4253 | return roundAndPackInt32( aSign, aSig STATUS_VAR ); | |
4254 | ||
4255 | } | |
4256 | ||
4257 | /*---------------------------------------------------------------------------- | |
4258 | | Returns the result of converting the extended double-precision floating- | |
4259 | | point value `a' to the 32-bit two's complement integer format. The | |
4260 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4261 | | Floating-Point Arithmetic, except that the conversion is always rounded | |
4262 | | toward zero. If `a' is a NaN, the largest positive integer is returned. | |
4263 | | Otherwise, if the conversion overflows, the largest integer with the same | |
4264 | | sign as `a' is returned. | |
4265 | *----------------------------------------------------------------------------*/ | |
4266 | ||
4267 | int32 floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM ) | |
4268 | { | |
4269 | flag aSign; | |
4270 | int32 aExp, shiftCount; | |
bb98fe42 | 4271 | uint64_t aSig, savedASig; |
b3a6a2e0 | 4272 | int32_t z; |
158142c2 FB |
4273 | |
4274 | aSig = extractFloatx80Frac( a ); | |
4275 | aExp = extractFloatx80Exp( a ); | |
4276 | aSign = extractFloatx80Sign( a ); | |
4277 | if ( 0x401E < aExp ) { | |
bb98fe42 | 4278 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; |
158142c2 FB |
4279 | goto invalid; |
4280 | } | |
4281 | else if ( aExp < 0x3FFF ) { | |
4282 | if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
4283 | return 0; | |
4284 | } | |
4285 | shiftCount = 0x403E - aExp; | |
4286 | savedASig = aSig; | |
4287 | aSig >>= shiftCount; | |
4288 | z = aSig; | |
4289 | if ( aSign ) z = - z; | |
4290 | if ( ( z < 0 ) ^ aSign ) { | |
4291 | invalid: | |
4292 | float_raise( float_flag_invalid STATUS_VAR); | |
bb98fe42 | 4293 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
4294 | } |
4295 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
4296 | STATUS(float_exception_flags) |= float_flag_inexact; | |
4297 | } | |
4298 | return z; | |
4299 | ||
4300 | } | |
4301 | ||
4302 | /*---------------------------------------------------------------------------- | |
4303 | | Returns the result of converting the extended double-precision floating- | |
4304 | | point value `a' to the 64-bit two's complement integer format. The | |
4305 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4306 | | Floating-Point Arithmetic---which means in particular that the conversion | |
4307 | | is rounded according to the current rounding mode. If `a' is a NaN, | |
4308 | | the largest positive integer is returned. Otherwise, if the conversion | |
4309 | | overflows, the largest integer with the same sign as `a' is returned. | |
4310 | *----------------------------------------------------------------------------*/ | |
4311 | ||
4312 | int64 floatx80_to_int64( floatx80 a STATUS_PARAM ) | |
4313 | { | |
4314 | flag aSign; | |
4315 | int32 aExp, shiftCount; | |
bb98fe42 | 4316 | uint64_t aSig, aSigExtra; |
158142c2 FB |
4317 | |
4318 | aSig = extractFloatx80Frac( a ); | |
4319 | aExp = extractFloatx80Exp( a ); | |
4320 | aSign = extractFloatx80Sign( a ); | |
4321 | shiftCount = 0x403E - aExp; | |
4322 | if ( shiftCount <= 0 ) { | |
4323 | if ( shiftCount ) { | |
4324 | float_raise( float_flag_invalid STATUS_VAR); | |
4325 | if ( ! aSign | |
4326 | || ( ( aExp == 0x7FFF ) | |
4327 | && ( aSig != LIT64( 0x8000000000000000 ) ) ) | |
4328 | ) { | |
4329 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4330 | } | |
bb98fe42 | 4331 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
4332 | } |
4333 | aSigExtra = 0; | |
4334 | } | |
4335 | else { | |
4336 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | |
4337 | } | |
4338 | return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR ); | |
4339 | ||
4340 | } | |
4341 | ||
4342 | /*---------------------------------------------------------------------------- | |
4343 | | Returns the result of converting the extended double-precision floating- | |
4344 | | point value `a' to the 64-bit two's complement integer format. The | |
4345 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4346 | | Floating-Point Arithmetic, except that the conversion is always rounded | |
4347 | | toward zero. If `a' is a NaN, the largest positive integer is returned. | |
4348 | | Otherwise, if the conversion overflows, the largest integer with the same | |
4349 | | sign as `a' is returned. | |
4350 | *----------------------------------------------------------------------------*/ | |
4351 | ||
4352 | int64 floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM ) | |
4353 | { | |
4354 | flag aSign; | |
4355 | int32 aExp, shiftCount; | |
bb98fe42 | 4356 | uint64_t aSig; |
158142c2 FB |
4357 | int64 z; |
4358 | ||
4359 | aSig = extractFloatx80Frac( a ); | |
4360 | aExp = extractFloatx80Exp( a ); | |
4361 | aSign = extractFloatx80Sign( a ); | |
4362 | shiftCount = aExp - 0x403E; | |
4363 | if ( 0 <= shiftCount ) { | |
4364 | aSig &= LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4365 | if ( ( a.high != 0xC03E ) || aSig ) { | |
4366 | float_raise( float_flag_invalid STATUS_VAR); | |
4367 | if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) { | |
4368 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4369 | } | |
4370 | } | |
bb98fe42 | 4371 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
4372 | } |
4373 | else if ( aExp < 0x3FFF ) { | |
4374 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
4375 | return 0; | |
4376 | } | |
4377 | z = aSig>>( - shiftCount ); | |
bb98fe42 | 4378 | if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { |
158142c2 FB |
4379 | STATUS(float_exception_flags) |= float_flag_inexact; |
4380 | } | |
4381 | if ( aSign ) z = - z; | |
4382 | return z; | |
4383 | ||
4384 | } | |
4385 | ||
4386 | /*---------------------------------------------------------------------------- | |
4387 | | Returns the result of converting the extended double-precision floating- | |
4388 | | point value `a' to the single-precision floating-point format. The | |
4389 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4390 | | Floating-Point Arithmetic. | |
4391 | *----------------------------------------------------------------------------*/ | |
4392 | ||
4393 | float32 floatx80_to_float32( floatx80 a STATUS_PARAM ) | |
4394 | { | |
4395 | flag aSign; | |
4396 | int32 aExp; | |
bb98fe42 | 4397 | uint64_t aSig; |
158142c2 FB |
4398 | |
4399 | aSig = extractFloatx80Frac( a ); | |
4400 | aExp = extractFloatx80Exp( a ); | |
4401 | aSign = extractFloatx80Sign( a ); | |
4402 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4403 | if ( (uint64_t) ( aSig<<1 ) ) { |
bcd4d9af | 4404 | return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
4405 | } |
4406 | return packFloat32( aSign, 0xFF, 0 ); | |
4407 | } | |
4408 | shift64RightJamming( aSig, 33, &aSig ); | |
4409 | if ( aExp || aSig ) aExp -= 0x3F81; | |
4410 | return roundAndPackFloat32( aSign, aExp, aSig STATUS_VAR ); | |
4411 | ||
4412 | } | |
4413 | ||
4414 | /*---------------------------------------------------------------------------- | |
4415 | | Returns the result of converting the extended double-precision floating- | |
4416 | | point value `a' to the double-precision floating-point format. The | |
4417 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4418 | | Floating-Point Arithmetic. | |
4419 | *----------------------------------------------------------------------------*/ | |
4420 | ||
4421 | float64 floatx80_to_float64( floatx80 a STATUS_PARAM ) | |
4422 | { | |
4423 | flag aSign; | |
4424 | int32 aExp; | |
bb98fe42 | 4425 | uint64_t aSig, zSig; |
158142c2 FB |
4426 | |
4427 | aSig = extractFloatx80Frac( a ); | |
4428 | aExp = extractFloatx80Exp( a ); | |
4429 | aSign = extractFloatx80Sign( a ); | |
4430 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4431 | if ( (uint64_t) ( aSig<<1 ) ) { |
bcd4d9af | 4432 | return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
4433 | } |
4434 | return packFloat64( aSign, 0x7FF, 0 ); | |
4435 | } | |
4436 | shift64RightJamming( aSig, 1, &zSig ); | |
4437 | if ( aExp || aSig ) aExp -= 0x3C01; | |
4438 | return roundAndPackFloat64( aSign, aExp, zSig STATUS_VAR ); | |
4439 | ||
4440 | } | |
4441 | ||
158142c2 FB |
4442 | /*---------------------------------------------------------------------------- |
4443 | | Returns the result of converting the extended double-precision floating- | |
4444 | | point value `a' to the quadruple-precision floating-point format. The | |
4445 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4446 | | Floating-Point Arithmetic. | |
4447 | *----------------------------------------------------------------------------*/ | |
4448 | ||
4449 | float128 floatx80_to_float128( floatx80 a STATUS_PARAM ) | |
4450 | { | |
4451 | flag aSign; | |
94a49d86 | 4452 | int_fast16_t aExp; |
bb98fe42 | 4453 | uint64_t aSig, zSig0, zSig1; |
158142c2 FB |
4454 | |
4455 | aSig = extractFloatx80Frac( a ); | |
4456 | aExp = extractFloatx80Exp( a ); | |
4457 | aSign = extractFloatx80Sign( a ); | |
bb98fe42 | 4458 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) { |
bcd4d9af | 4459 | return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
4460 | } |
4461 | shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); | |
4462 | return packFloat128( aSign, aExp, zSig0, zSig1 ); | |
4463 | ||
4464 | } | |
4465 | ||
158142c2 FB |
4466 | /*---------------------------------------------------------------------------- |
4467 | | Rounds the extended double-precision floating-point value `a' to an integer, | |
4468 | | and returns the result as an extended quadruple-precision floating-point | |
4469 | | value. The operation is performed according to the IEC/IEEE Standard for | |
4470 | | Binary Floating-Point Arithmetic. | |
4471 | *----------------------------------------------------------------------------*/ | |
4472 | ||
4473 | floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM ) | |
4474 | { | |
4475 | flag aSign; | |
4476 | int32 aExp; | |
bb98fe42 | 4477 | uint64_t lastBitMask, roundBitsMask; |
158142c2 FB |
4478 | int8 roundingMode; |
4479 | floatx80 z; | |
4480 | ||
4481 | aExp = extractFloatx80Exp( a ); | |
4482 | if ( 0x403E <= aExp ) { | |
bb98fe42 | 4483 | if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) { |
158142c2 FB |
4484 | return propagateFloatx80NaN( a, a STATUS_VAR ); |
4485 | } | |
4486 | return a; | |
4487 | } | |
4488 | if ( aExp < 0x3FFF ) { | |
4489 | if ( ( aExp == 0 ) | |
bb98fe42 | 4490 | && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { |
158142c2 FB |
4491 | return a; |
4492 | } | |
4493 | STATUS(float_exception_flags) |= float_flag_inexact; | |
4494 | aSign = extractFloatx80Sign( a ); | |
4495 | switch ( STATUS(float_rounding_mode) ) { | |
4496 | case float_round_nearest_even: | |
bb98fe42 | 4497 | if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) |
158142c2 FB |
4498 | ) { |
4499 | return | |
4500 | packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
4501 | } | |
4502 | break; | |
4503 | case float_round_down: | |
4504 | return | |
4505 | aSign ? | |
4506 | packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) | |
4507 | : packFloatx80( 0, 0, 0 ); | |
4508 | case float_round_up: | |
4509 | return | |
4510 | aSign ? packFloatx80( 1, 0, 0 ) | |
4511 | : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
4512 | } | |
4513 | return packFloatx80( aSign, 0, 0 ); | |
4514 | } | |
4515 | lastBitMask = 1; | |
4516 | lastBitMask <<= 0x403E - aExp; | |
4517 | roundBitsMask = lastBitMask - 1; | |
4518 | z = a; | |
4519 | roundingMode = STATUS(float_rounding_mode); | |
4520 | if ( roundingMode == float_round_nearest_even ) { | |
4521 | z.low += lastBitMask>>1; | |
4522 | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | |
4523 | } | |
4524 | else if ( roundingMode != float_round_to_zero ) { | |
4525 | if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) { | |
4526 | z.low += roundBitsMask; | |
4527 | } | |
4528 | } | |
4529 | z.low &= ~ roundBitsMask; | |
4530 | if ( z.low == 0 ) { | |
4531 | ++z.high; | |
4532 | z.low = LIT64( 0x8000000000000000 ); | |
4533 | } | |
4534 | if ( z.low != a.low ) STATUS(float_exception_flags) |= float_flag_inexact; | |
4535 | return z; | |
4536 | ||
4537 | } | |
4538 | ||
4539 | /*---------------------------------------------------------------------------- | |
4540 | | Returns the result of adding the absolute values of the extended double- | |
4541 | | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is | |
4542 | | negated before being returned. `zSign' is ignored if the result is a NaN. | |
4543 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
4544 | | Floating-Point Arithmetic. | |
4545 | *----------------------------------------------------------------------------*/ | |
4546 | ||
4547 | static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM) | |
4548 | { | |
4549 | int32 aExp, bExp, zExp; | |
bb98fe42 | 4550 | uint64_t aSig, bSig, zSig0, zSig1; |
158142c2 FB |
4551 | int32 expDiff; |
4552 | ||
4553 | aSig = extractFloatx80Frac( a ); | |
4554 | aExp = extractFloatx80Exp( a ); | |
4555 | bSig = extractFloatx80Frac( b ); | |
4556 | bExp = extractFloatx80Exp( b ); | |
4557 | expDiff = aExp - bExp; | |
4558 | if ( 0 < expDiff ) { | |
4559 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4560 | if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 FB |
4561 | return a; |
4562 | } | |
4563 | if ( bExp == 0 ) --expDiff; | |
4564 | shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
4565 | zExp = aExp; | |
4566 | } | |
4567 | else if ( expDiff < 0 ) { | |
4568 | if ( bExp == 0x7FFF ) { | |
bb98fe42 | 4569 | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 FB |
4570 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
4571 | } | |
4572 | if ( aExp == 0 ) ++expDiff; | |
4573 | shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
4574 | zExp = bExp; | |
4575 | } | |
4576 | else { | |
4577 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4578 | if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { |
158142c2 FB |
4579 | return propagateFloatx80NaN( a, b STATUS_VAR ); |
4580 | } | |
4581 | return a; | |
4582 | } | |
4583 | zSig1 = 0; | |
4584 | zSig0 = aSig + bSig; | |
4585 | if ( aExp == 0 ) { | |
4586 | normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); | |
4587 | goto roundAndPack; | |
4588 | } | |
4589 | zExp = aExp; | |
4590 | goto shiftRight1; | |
4591 | } | |
4592 | zSig0 = aSig + bSig; | |
bb98fe42 | 4593 | if ( (int64_t) zSig0 < 0 ) goto roundAndPack; |
158142c2 FB |
4594 | shiftRight1: |
4595 | shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); | |
4596 | zSig0 |= LIT64( 0x8000000000000000 ); | |
4597 | ++zExp; | |
4598 | roundAndPack: | |
4599 | return | |
4600 | roundAndPackFloatx80( | |
4601 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | |
4602 | ||
4603 | } | |
4604 | ||
4605 | /*---------------------------------------------------------------------------- | |
4606 | | Returns the result of subtracting the absolute values of the extended | |
4607 | | double-precision floating-point values `a' and `b'. If `zSign' is 1, the | |
4608 | | difference is negated before being returned. `zSign' is ignored if the | |
4609 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
4610 | | Standard for Binary Floating-Point Arithmetic. | |
4611 | *----------------------------------------------------------------------------*/ | |
4612 | ||
4613 | static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM ) | |
4614 | { | |
4615 | int32 aExp, bExp, zExp; | |
bb98fe42 | 4616 | uint64_t aSig, bSig, zSig0, zSig1; |
158142c2 FB |
4617 | int32 expDiff; |
4618 | floatx80 z; | |
4619 | ||
4620 | aSig = extractFloatx80Frac( a ); | |
4621 | aExp = extractFloatx80Exp( a ); | |
4622 | bSig = extractFloatx80Frac( b ); | |
4623 | bExp = extractFloatx80Exp( b ); | |
4624 | expDiff = aExp - bExp; | |
4625 | if ( 0 < expDiff ) goto aExpBigger; | |
4626 | if ( expDiff < 0 ) goto bExpBigger; | |
4627 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4628 | if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { |
158142c2 FB |
4629 | return propagateFloatx80NaN( a, b STATUS_VAR ); |
4630 | } | |
4631 | float_raise( float_flag_invalid STATUS_VAR); | |
4632 | z.low = floatx80_default_nan_low; | |
4633 | z.high = floatx80_default_nan_high; | |
4634 | return z; | |
4635 | } | |
4636 | if ( aExp == 0 ) { | |
4637 | aExp = 1; | |
4638 | bExp = 1; | |
4639 | } | |
4640 | zSig1 = 0; | |
4641 | if ( bSig < aSig ) goto aBigger; | |
4642 | if ( aSig < bSig ) goto bBigger; | |
4643 | return packFloatx80( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); | |
4644 | bExpBigger: | |
4645 | if ( bExp == 0x7FFF ) { | |
bb98fe42 | 4646 | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 FB |
4647 | return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
4648 | } | |
4649 | if ( aExp == 0 ) ++expDiff; | |
4650 | shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
4651 | bBigger: | |
4652 | sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); | |
4653 | zExp = bExp; | |
4654 | zSign ^= 1; | |
4655 | goto normalizeRoundAndPack; | |
4656 | aExpBigger: | |
4657 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4658 | if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 FB |
4659 | return a; |
4660 | } | |
4661 | if ( bExp == 0 ) --expDiff; | |
4662 | shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
4663 | aBigger: | |
4664 | sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); | |
4665 | zExp = aExp; | |
4666 | normalizeRoundAndPack: | |
4667 | return | |
4668 | normalizeRoundAndPackFloatx80( | |
4669 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | |
4670 | ||
4671 | } | |
4672 | ||
4673 | /*---------------------------------------------------------------------------- | |
4674 | | Returns the result of adding the extended double-precision floating-point | |
4675 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
4676 | | Standard for Binary Floating-Point Arithmetic. | |
4677 | *----------------------------------------------------------------------------*/ | |
4678 | ||
4679 | floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM ) | |
4680 | { | |
4681 | flag aSign, bSign; | |
4682 | ||
4683 | aSign = extractFloatx80Sign( a ); | |
4684 | bSign = extractFloatx80Sign( b ); | |
4685 | if ( aSign == bSign ) { | |
4686 | return addFloatx80Sigs( a, b, aSign STATUS_VAR ); | |
4687 | } | |
4688 | else { | |
4689 | return subFloatx80Sigs( a, b, aSign STATUS_VAR ); | |
4690 | } | |
4691 | ||
4692 | } | |
4693 | ||
4694 | /*---------------------------------------------------------------------------- | |
4695 | | Returns the result of subtracting the extended double-precision floating- | |
4696 | | point values `a' and `b'. The operation is performed according to the | |
4697 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4698 | *----------------------------------------------------------------------------*/ | |
4699 | ||
4700 | floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM ) | |
4701 | { | |
4702 | flag aSign, bSign; | |
4703 | ||
4704 | aSign = extractFloatx80Sign( a ); | |
4705 | bSign = extractFloatx80Sign( b ); | |
4706 | if ( aSign == bSign ) { | |
4707 | return subFloatx80Sigs( a, b, aSign STATUS_VAR ); | |
4708 | } | |
4709 | else { | |
4710 | return addFloatx80Sigs( a, b, aSign STATUS_VAR ); | |
4711 | } | |
4712 | ||
4713 | } | |
4714 | ||
4715 | /*---------------------------------------------------------------------------- | |
4716 | | Returns the result of multiplying the extended double-precision floating- | |
4717 | | point values `a' and `b'. The operation is performed according to the | |
4718 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4719 | *----------------------------------------------------------------------------*/ | |
4720 | ||
4721 | floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM ) | |
4722 | { | |
4723 | flag aSign, bSign, zSign; | |
4724 | int32 aExp, bExp, zExp; | |
bb98fe42 | 4725 | uint64_t aSig, bSig, zSig0, zSig1; |
158142c2 FB |
4726 | floatx80 z; |
4727 | ||
4728 | aSig = extractFloatx80Frac( a ); | |
4729 | aExp = extractFloatx80Exp( a ); | |
4730 | aSign = extractFloatx80Sign( a ); | |
4731 | bSig = extractFloatx80Frac( b ); | |
4732 | bExp = extractFloatx80Exp( b ); | |
4733 | bSign = extractFloatx80Sign( b ); | |
4734 | zSign = aSign ^ bSign; | |
4735 | if ( aExp == 0x7FFF ) { | |
bb98fe42 AF |
4736 | if ( (uint64_t) ( aSig<<1 ) |
4737 | || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { | |
158142c2 FB |
4738 | return propagateFloatx80NaN( a, b STATUS_VAR ); |
4739 | } | |
4740 | if ( ( bExp | bSig ) == 0 ) goto invalid; | |
4741 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
4742 | } | |
4743 | if ( bExp == 0x7FFF ) { | |
bb98fe42 | 4744 | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 FB |
4745 | if ( ( aExp | aSig ) == 0 ) { |
4746 | invalid: | |
4747 | float_raise( float_flag_invalid STATUS_VAR); | |
4748 | z.low = floatx80_default_nan_low; | |
4749 | z.high = floatx80_default_nan_high; | |
4750 | return z; | |
4751 | } | |
4752 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
4753 | } | |
4754 | if ( aExp == 0 ) { | |
4755 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
4756 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
4757 | } | |
4758 | if ( bExp == 0 ) { | |
4759 | if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
4760 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
4761 | } | |
4762 | zExp = aExp + bExp - 0x3FFE; | |
4763 | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | |
bb98fe42 | 4764 | if ( 0 < (int64_t) zSig0 ) { |
158142c2 FB |
4765 | shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); |
4766 | --zExp; | |
4767 | } | |
4768 | return | |
4769 | roundAndPackFloatx80( | |
4770 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | |
4771 | ||
4772 | } | |
4773 | ||
4774 | /*---------------------------------------------------------------------------- | |
4775 | | Returns the result of dividing the extended double-precision floating-point | |
4776 | | value `a' by the corresponding value `b'. The operation is performed | |
4777 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4778 | *----------------------------------------------------------------------------*/ | |
4779 | ||
4780 | floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM ) | |
4781 | { | |
4782 | flag aSign, bSign, zSign; | |
4783 | int32 aExp, bExp, zExp; | |
bb98fe42 AF |
4784 | uint64_t aSig, bSig, zSig0, zSig1; |
4785 | uint64_t rem0, rem1, rem2, term0, term1, term2; | |
158142c2 FB |
4786 | floatx80 z; |
4787 | ||
4788 | aSig = extractFloatx80Frac( a ); | |
4789 | aExp = extractFloatx80Exp( a ); | |
4790 | aSign = extractFloatx80Sign( a ); | |
4791 | bSig = extractFloatx80Frac( b ); | |
4792 | bExp = extractFloatx80Exp( b ); | |
4793 | bSign = extractFloatx80Sign( b ); | |
4794 | zSign = aSign ^ bSign; | |
4795 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4796 | if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 | 4797 | if ( bExp == 0x7FFF ) { |
bb98fe42 | 4798 | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 FB |
4799 | goto invalid; |
4800 | } | |
4801 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
4802 | } | |
4803 | if ( bExp == 0x7FFF ) { | |
bb98fe42 | 4804 | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 FB |
4805 | return packFloatx80( zSign, 0, 0 ); |
4806 | } | |
4807 | if ( bExp == 0 ) { | |
4808 | if ( bSig == 0 ) { | |
4809 | if ( ( aExp | aSig ) == 0 ) { | |
4810 | invalid: | |
4811 | float_raise( float_flag_invalid STATUS_VAR); | |
4812 | z.low = floatx80_default_nan_low; | |
4813 | z.high = floatx80_default_nan_high; | |
4814 | return z; | |
4815 | } | |
4816 | float_raise( float_flag_divbyzero STATUS_VAR); | |
4817 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
4818 | } | |
4819 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
4820 | } | |
4821 | if ( aExp == 0 ) { | |
4822 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
4823 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
4824 | } | |
4825 | zExp = aExp - bExp + 0x3FFE; | |
4826 | rem1 = 0; | |
4827 | if ( bSig <= aSig ) { | |
4828 | shift128Right( aSig, 0, 1, &aSig, &rem1 ); | |
4829 | ++zExp; | |
4830 | } | |
4831 | zSig0 = estimateDiv128To64( aSig, rem1, bSig ); | |
4832 | mul64To128( bSig, zSig0, &term0, &term1 ); | |
4833 | sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 4834 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
4835 | --zSig0; |
4836 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | |
4837 | } | |
4838 | zSig1 = estimateDiv128To64( rem1, 0, bSig ); | |
bb98fe42 | 4839 | if ( (uint64_t) ( zSig1<<1 ) <= 8 ) { |
158142c2 FB |
4840 | mul64To128( bSig, zSig1, &term1, &term2 ); |
4841 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
bb98fe42 | 4842 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
4843 | --zSig1; |
4844 | add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); | |
4845 | } | |
4846 | zSig1 |= ( ( rem1 | rem2 ) != 0 ); | |
4847 | } | |
4848 | return | |
4849 | roundAndPackFloatx80( | |
4850 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | |
4851 | ||
4852 | } | |
4853 | ||
4854 | /*---------------------------------------------------------------------------- | |
4855 | | Returns the remainder of the extended double-precision floating-point value | |
4856 | | `a' with respect to the corresponding value `b'. The operation is performed | |
4857 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4858 | *----------------------------------------------------------------------------*/ | |
4859 | ||
4860 | floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM ) | |
4861 | { | |
ed086f3d | 4862 | flag aSign, zSign; |
158142c2 | 4863 | int32 aExp, bExp, expDiff; |
bb98fe42 AF |
4864 | uint64_t aSig0, aSig1, bSig; |
4865 | uint64_t q, term0, term1, alternateASig0, alternateASig1; | |
158142c2 FB |
4866 | floatx80 z; |
4867 | ||
4868 | aSig0 = extractFloatx80Frac( a ); | |
4869 | aExp = extractFloatx80Exp( a ); | |
4870 | aSign = extractFloatx80Sign( a ); | |
4871 | bSig = extractFloatx80Frac( b ); | |
4872 | bExp = extractFloatx80Exp( b ); | |
158142c2 | 4873 | if ( aExp == 0x7FFF ) { |
bb98fe42 AF |
4874 | if ( (uint64_t) ( aSig0<<1 ) |
4875 | || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { | |
158142c2 FB |
4876 | return propagateFloatx80NaN( a, b STATUS_VAR ); |
4877 | } | |
4878 | goto invalid; | |
4879 | } | |
4880 | if ( bExp == 0x7FFF ) { | |
bb98fe42 | 4881 | if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); |
158142c2 FB |
4882 | return a; |
4883 | } | |
4884 | if ( bExp == 0 ) { | |
4885 | if ( bSig == 0 ) { | |
4886 | invalid: | |
4887 | float_raise( float_flag_invalid STATUS_VAR); | |
4888 | z.low = floatx80_default_nan_low; | |
4889 | z.high = floatx80_default_nan_high; | |
4890 | return z; | |
4891 | } | |
4892 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
4893 | } | |
4894 | if ( aExp == 0 ) { | |
bb98fe42 | 4895 | if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a; |
158142c2 FB |
4896 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); |
4897 | } | |
4898 | bSig |= LIT64( 0x8000000000000000 ); | |
4899 | zSign = aSign; | |
4900 | expDiff = aExp - bExp; | |
4901 | aSig1 = 0; | |
4902 | if ( expDiff < 0 ) { | |
4903 | if ( expDiff < -1 ) return a; | |
4904 | shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); | |
4905 | expDiff = 0; | |
4906 | } | |
4907 | q = ( bSig <= aSig0 ); | |
4908 | if ( q ) aSig0 -= bSig; | |
4909 | expDiff -= 64; | |
4910 | while ( 0 < expDiff ) { | |
4911 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
4912 | q = ( 2 < q ) ? q - 2 : 0; | |
4913 | mul64To128( bSig, q, &term0, &term1 ); | |
4914 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
4915 | shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); | |
4916 | expDiff -= 62; | |
4917 | } | |
4918 | expDiff += 64; | |
4919 | if ( 0 < expDiff ) { | |
4920 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
4921 | q = ( 2 < q ) ? q - 2 : 0; | |
4922 | q >>= 64 - expDiff; | |
4923 | mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); | |
4924 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
4925 | shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); | |
4926 | while ( le128( term0, term1, aSig0, aSig1 ) ) { | |
4927 | ++q; | |
4928 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
4929 | } | |
4930 | } | |
4931 | else { | |
4932 | term1 = 0; | |
4933 | term0 = bSig; | |
4934 | } | |
4935 | sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); | |
4936 | if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
4937 | || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
4938 | && ( q & 1 ) ) | |
4939 | ) { | |
4940 | aSig0 = alternateASig0; | |
4941 | aSig1 = alternateASig1; | |
4942 | zSign = ! zSign; | |
4943 | } | |
4944 | return | |
4945 | normalizeRoundAndPackFloatx80( | |
4946 | 80, zSign, bExp + expDiff, aSig0, aSig1 STATUS_VAR ); | |
4947 | ||
4948 | } | |
4949 | ||
4950 | /*---------------------------------------------------------------------------- | |
4951 | | Returns the square root of the extended double-precision floating-point | |
4952 | | value `a'. The operation is performed according to the IEC/IEEE Standard | |
4953 | | for Binary Floating-Point Arithmetic. | |
4954 | *----------------------------------------------------------------------------*/ | |
4955 | ||
4956 | floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM ) | |
4957 | { | |
4958 | flag aSign; | |
4959 | int32 aExp, zExp; | |
bb98fe42 AF |
4960 | uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0; |
4961 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 FB |
4962 | floatx80 z; |
4963 | ||
4964 | aSig0 = extractFloatx80Frac( a ); | |
4965 | aExp = extractFloatx80Exp( a ); | |
4966 | aSign = extractFloatx80Sign( a ); | |
4967 | if ( aExp == 0x7FFF ) { | |
bb98fe42 | 4968 | if ( (uint64_t) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a STATUS_VAR ); |
158142c2 FB |
4969 | if ( ! aSign ) return a; |
4970 | goto invalid; | |
4971 | } | |
4972 | if ( aSign ) { | |
4973 | if ( ( aExp | aSig0 ) == 0 ) return a; | |
4974 | invalid: | |
4975 | float_raise( float_flag_invalid STATUS_VAR); | |
4976 | z.low = floatx80_default_nan_low; | |
4977 | z.high = floatx80_default_nan_high; | |
4978 | return z; | |
4979 | } | |
4980 | if ( aExp == 0 ) { | |
4981 | if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); | |
4982 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | |
4983 | } | |
4984 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; | |
4985 | zSig0 = estimateSqrt32( aExp, aSig0>>32 ); | |
4986 | shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); | |
4987 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
4988 | doubleZSig0 = zSig0<<1; | |
4989 | mul64To128( zSig0, zSig0, &term0, &term1 ); | |
4990 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 4991 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
4992 | --zSig0; |
4993 | doubleZSig0 -= 2; | |
4994 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
4995 | } | |
4996 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
4997 | if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { | |
4998 | if ( zSig1 == 0 ) zSig1 = 1; | |
4999 | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
5000 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
5001 | mul64To128( zSig1, zSig1, &term2, &term3 ); | |
5002 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 5003 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
5004 | --zSig1; |
5005 | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
5006 | term3 |= 1; | |
5007 | term2 |= doubleZSig0; | |
5008 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
5009 | } | |
5010 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
5011 | } | |
5012 | shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); | |
5013 | zSig0 |= doubleZSig0; | |
5014 | return | |
5015 | roundAndPackFloatx80( | |
5016 | STATUS(floatx80_rounding_precision), 0, zExp, zSig0, zSig1 STATUS_VAR ); | |
5017 | ||
5018 | } | |
5019 | ||
5020 | /*---------------------------------------------------------------------------- | |
b689362d AJ |
5021 | | Returns 1 if the extended double-precision floating-point value `a' is equal |
5022 | | to the corresponding value `b', and 0 otherwise. The invalid exception is | |
5023 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
5024 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5025 | *----------------------------------------------------------------------------*/ |
5026 | ||
b689362d | 5027 | int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
5028 | { |
5029 | ||
5030 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5031 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5032 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5033 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 5034 | ) { |
b689362d | 5035 | float_raise( float_flag_invalid STATUS_VAR); |
158142c2 FB |
5036 | return 0; |
5037 | } | |
5038 | return | |
5039 | ( a.low == b.low ) | |
5040 | && ( ( a.high == b.high ) | |
5041 | || ( ( a.low == 0 ) | |
bb98fe42 | 5042 | && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
5043 | ); |
5044 | ||
5045 | } | |
5046 | ||
5047 | /*---------------------------------------------------------------------------- | |
5048 | | Returns 1 if the extended double-precision floating-point value `a' is | |
5049 | | less than or equal to the corresponding value `b', and 0 otherwise. The | |
f5a64251 AJ |
5050 | | invalid exception is raised if either operand is a NaN. The comparison is |
5051 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5052 | | Arithmetic. | |
158142c2 FB |
5053 | *----------------------------------------------------------------------------*/ |
5054 | ||
750afe93 | 5055 | int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
5056 | { |
5057 | flag aSign, bSign; | |
5058 | ||
5059 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5060 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5061 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5062 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 FB |
5063 | ) { |
5064 | float_raise( float_flag_invalid STATUS_VAR); | |
5065 | return 0; | |
5066 | } | |
5067 | aSign = extractFloatx80Sign( a ); | |
5068 | bSign = extractFloatx80Sign( b ); | |
5069 | if ( aSign != bSign ) { | |
5070 | return | |
5071 | aSign | |
bb98fe42 | 5072 | || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5073 | == 0 ); |
5074 | } | |
5075 | return | |
5076 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
5077 | : le128( a.high, a.low, b.high, b.low ); | |
5078 | ||
5079 | } | |
5080 | ||
5081 | /*---------------------------------------------------------------------------- | |
5082 | | Returns 1 if the extended double-precision floating-point value `a' is | |
f5a64251 AJ |
5083 | | less than the corresponding value `b', and 0 otherwise. The invalid |
5084 | | exception is raised if either operand is a NaN. The comparison is performed | |
5085 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5086 | *----------------------------------------------------------------------------*/ |
5087 | ||
750afe93 | 5088 | int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
5089 | { |
5090 | flag aSign, bSign; | |
5091 | ||
5092 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5093 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5094 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5095 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 FB |
5096 | ) { |
5097 | float_raise( float_flag_invalid STATUS_VAR); | |
5098 | return 0; | |
5099 | } | |
5100 | aSign = extractFloatx80Sign( a ); | |
5101 | bSign = extractFloatx80Sign( b ); | |
5102 | if ( aSign != bSign ) { | |
5103 | return | |
5104 | aSign | |
bb98fe42 | 5105 | && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5106 | != 0 ); |
5107 | } | |
5108 | return | |
5109 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
5110 | : lt128( a.high, a.low, b.high, b.low ); | |
5111 | ||
5112 | } | |
5113 | ||
67b7861d AJ |
5114 | /*---------------------------------------------------------------------------- |
5115 | | Returns 1 if the extended double-precision floating-point values `a' and `b' | |
f5a64251 AJ |
5116 | | cannot be compared, and 0 otherwise. The invalid exception is raised if |
5117 | | either operand is a NaN. The comparison is performed according to the | |
5118 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
5119 | *----------------------------------------------------------------------------*/ |
5120 | int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM ) | |
5121 | { | |
5122 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
5123 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | |
5124 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
5125 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | |
5126 | ) { | |
5127 | float_raise( float_flag_invalid STATUS_VAR); | |
5128 | return 1; | |
5129 | } | |
5130 | return 0; | |
5131 | } | |
5132 | ||
158142c2 | 5133 | /*---------------------------------------------------------------------------- |
b689362d | 5134 | | Returns 1 if the extended double-precision floating-point value `a' is |
f5a64251 AJ |
5135 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not |
5136 | | cause an exception. The comparison is performed according to the IEC/IEEE | |
5137 | | Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
5138 | *----------------------------------------------------------------------------*/ |
5139 | ||
b689362d | 5140 | int floatx80_eq_quiet( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
5141 | { |
5142 | ||
5143 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5144 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5145 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5146 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 | 5147 | ) { |
b689362d AJ |
5148 | if ( floatx80_is_signaling_nan( a ) |
5149 | || floatx80_is_signaling_nan( b ) ) { | |
5150 | float_raise( float_flag_invalid STATUS_VAR); | |
5151 | } | |
158142c2 FB |
5152 | return 0; |
5153 | } | |
5154 | return | |
5155 | ( a.low == b.low ) | |
5156 | && ( ( a.high == b.high ) | |
5157 | || ( ( a.low == 0 ) | |
bb98fe42 | 5158 | && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
5159 | ); |
5160 | ||
5161 | } | |
5162 | ||
5163 | /*---------------------------------------------------------------------------- | |
5164 | | Returns 1 if the extended double-precision floating-point value `a' is less | |
5165 | | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs | |
5166 | | do not cause an exception. Otherwise, the comparison is performed according | |
5167 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5168 | *----------------------------------------------------------------------------*/ | |
5169 | ||
750afe93 | 5170 | int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
5171 | { |
5172 | flag aSign, bSign; | |
5173 | ||
5174 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5175 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5176 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5177 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 FB |
5178 | ) { |
5179 | if ( floatx80_is_signaling_nan( a ) | |
5180 | || floatx80_is_signaling_nan( b ) ) { | |
5181 | float_raise( float_flag_invalid STATUS_VAR); | |
5182 | } | |
5183 | return 0; | |
5184 | } | |
5185 | aSign = extractFloatx80Sign( a ); | |
5186 | bSign = extractFloatx80Sign( b ); | |
5187 | if ( aSign != bSign ) { | |
5188 | return | |
5189 | aSign | |
bb98fe42 | 5190 | || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5191 | == 0 ); |
5192 | } | |
5193 | return | |
5194 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
5195 | : le128( a.high, a.low, b.high, b.low ); | |
5196 | ||
5197 | } | |
5198 | ||
5199 | /*---------------------------------------------------------------------------- | |
5200 | | Returns 1 if the extended double-precision floating-point value `a' is less | |
5201 | | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause | |
5202 | | an exception. Otherwise, the comparison is performed according to the | |
5203 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5204 | *----------------------------------------------------------------------------*/ | |
5205 | ||
750afe93 | 5206 | int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
5207 | { |
5208 | flag aSign, bSign; | |
5209 | ||
5210 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
bb98fe42 | 5211 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
158142c2 | 5212 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
bb98fe42 | 5213 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
158142c2 FB |
5214 | ) { |
5215 | if ( floatx80_is_signaling_nan( a ) | |
5216 | || floatx80_is_signaling_nan( b ) ) { | |
5217 | float_raise( float_flag_invalid STATUS_VAR); | |
5218 | } | |
5219 | return 0; | |
5220 | } | |
5221 | aSign = extractFloatx80Sign( a ); | |
5222 | bSign = extractFloatx80Sign( b ); | |
5223 | if ( aSign != bSign ) { | |
5224 | return | |
5225 | aSign | |
bb98fe42 | 5226 | && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
5227 | != 0 ); |
5228 | } | |
5229 | return | |
5230 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
5231 | : lt128( a.high, a.low, b.high, b.low ); | |
5232 | ||
5233 | } | |
5234 | ||
67b7861d AJ |
5235 | /*---------------------------------------------------------------------------- |
5236 | | Returns 1 if the extended double-precision floating-point values `a' and `b' | |
5237 | | cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception. | |
5238 | | The comparison is performed according to the IEC/IEEE Standard for Binary | |
5239 | | Floating-Point Arithmetic. | |
5240 | *----------------------------------------------------------------------------*/ | |
5241 | int floatx80_unordered_quiet( floatx80 a, floatx80 b STATUS_PARAM ) | |
5242 | { | |
5243 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
5244 | && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) | |
5245 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
5246 | && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) | |
5247 | ) { | |
5248 | if ( floatx80_is_signaling_nan( a ) | |
5249 | || floatx80_is_signaling_nan( b ) ) { | |
5250 | float_raise( float_flag_invalid STATUS_VAR); | |
5251 | } | |
5252 | return 1; | |
5253 | } | |
5254 | return 0; | |
5255 | } | |
5256 | ||
158142c2 FB |
5257 | /*---------------------------------------------------------------------------- |
5258 | | Returns the result of converting the quadruple-precision floating-point | |
5259 | | value `a' to the 32-bit two's complement integer format. The conversion | |
5260 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5261 | | Arithmetic---which means in particular that the conversion is rounded | |
5262 | | according to the current rounding mode. If `a' is a NaN, the largest | |
5263 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
5264 | | largest integer with the same sign as `a' is returned. | |
5265 | *----------------------------------------------------------------------------*/ | |
5266 | ||
5267 | int32 float128_to_int32( float128 a STATUS_PARAM ) | |
5268 | { | |
5269 | flag aSign; | |
5270 | int32 aExp, shiftCount; | |
bb98fe42 | 5271 | uint64_t aSig0, aSig1; |
158142c2 FB |
5272 | |
5273 | aSig1 = extractFloat128Frac1( a ); | |
5274 | aSig0 = extractFloat128Frac0( a ); | |
5275 | aExp = extractFloat128Exp( a ); | |
5276 | aSign = extractFloat128Sign( a ); | |
5277 | if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; | |
5278 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
5279 | aSig0 |= ( aSig1 != 0 ); | |
5280 | shiftCount = 0x4028 - aExp; | |
5281 | if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); | |
5282 | return roundAndPackInt32( aSign, aSig0 STATUS_VAR ); | |
5283 | ||
5284 | } | |
5285 | ||
5286 | /*---------------------------------------------------------------------------- | |
5287 | | Returns the result of converting the quadruple-precision floating-point | |
5288 | | value `a' to the 32-bit two's complement integer format. The conversion | |
5289 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5290 | | Arithmetic, except that the conversion is always rounded toward zero. If | |
5291 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
5292 | | conversion overflows, the largest integer with the same sign as `a' is | |
5293 | | returned. | |
5294 | *----------------------------------------------------------------------------*/ | |
5295 | ||
5296 | int32 float128_to_int32_round_to_zero( float128 a STATUS_PARAM ) | |
5297 | { | |
5298 | flag aSign; | |
5299 | int32 aExp, shiftCount; | |
bb98fe42 | 5300 | uint64_t aSig0, aSig1, savedASig; |
b3a6a2e0 | 5301 | int32_t z; |
158142c2 FB |
5302 | |
5303 | aSig1 = extractFloat128Frac1( a ); | |
5304 | aSig0 = extractFloat128Frac0( a ); | |
5305 | aExp = extractFloat128Exp( a ); | |
5306 | aSign = extractFloat128Sign( a ); | |
5307 | aSig0 |= ( aSig1 != 0 ); | |
5308 | if ( 0x401E < aExp ) { | |
5309 | if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; | |
5310 | goto invalid; | |
5311 | } | |
5312 | else if ( aExp < 0x3FFF ) { | |
5313 | if ( aExp || aSig0 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
5314 | return 0; | |
5315 | } | |
5316 | aSig0 |= LIT64( 0x0001000000000000 ); | |
5317 | shiftCount = 0x402F - aExp; | |
5318 | savedASig = aSig0; | |
5319 | aSig0 >>= shiftCount; | |
5320 | z = aSig0; | |
5321 | if ( aSign ) z = - z; | |
5322 | if ( ( z < 0 ) ^ aSign ) { | |
5323 | invalid: | |
5324 | float_raise( float_flag_invalid STATUS_VAR); | |
bb98fe42 | 5325 | return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
158142c2 FB |
5326 | } |
5327 | if ( ( aSig0<<shiftCount ) != savedASig ) { | |
5328 | STATUS(float_exception_flags) |= float_flag_inexact; | |
5329 | } | |
5330 | return z; | |
5331 | ||
5332 | } | |
5333 | ||
5334 | /*---------------------------------------------------------------------------- | |
5335 | | Returns the result of converting the quadruple-precision floating-point | |
5336 | | value `a' to the 64-bit two's complement integer format. The conversion | |
5337 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5338 | | Arithmetic---which means in particular that the conversion is rounded | |
5339 | | according to the current rounding mode. If `a' is a NaN, the largest | |
5340 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
5341 | | largest integer with the same sign as `a' is returned. | |
5342 | *----------------------------------------------------------------------------*/ | |
5343 | ||
5344 | int64 float128_to_int64( float128 a STATUS_PARAM ) | |
5345 | { | |
5346 | flag aSign; | |
5347 | int32 aExp, shiftCount; | |
bb98fe42 | 5348 | uint64_t aSig0, aSig1; |
158142c2 FB |
5349 | |
5350 | aSig1 = extractFloat128Frac1( a ); | |
5351 | aSig0 = extractFloat128Frac0( a ); | |
5352 | aExp = extractFloat128Exp( a ); | |
5353 | aSign = extractFloat128Sign( a ); | |
5354 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
5355 | shiftCount = 0x402F - aExp; | |
5356 | if ( shiftCount <= 0 ) { | |
5357 | if ( 0x403E < aExp ) { | |
5358 | float_raise( float_flag_invalid STATUS_VAR); | |
5359 | if ( ! aSign | |
5360 | || ( ( aExp == 0x7FFF ) | |
5361 | && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) ) | |
5362 | ) | |
5363 | ) { | |
5364 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
5365 | } | |
bb98fe42 | 5366 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
5367 | } |
5368 | shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 ); | |
5369 | } | |
5370 | else { | |
5371 | shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 ); | |
5372 | } | |
5373 | return roundAndPackInt64( aSign, aSig0, aSig1 STATUS_VAR ); | |
5374 | ||
5375 | } | |
5376 | ||
5377 | /*---------------------------------------------------------------------------- | |
5378 | | Returns the result of converting the quadruple-precision floating-point | |
5379 | | value `a' to the 64-bit two's complement integer format. The conversion | |
5380 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5381 | | Arithmetic, except that the conversion is always rounded toward zero. | |
5382 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
5383 | | the conversion overflows, the largest integer with the same sign as `a' is | |
5384 | | returned. | |
5385 | *----------------------------------------------------------------------------*/ | |
5386 | ||
5387 | int64 float128_to_int64_round_to_zero( float128 a STATUS_PARAM ) | |
5388 | { | |
5389 | flag aSign; | |
5390 | int32 aExp, shiftCount; | |
bb98fe42 | 5391 | uint64_t aSig0, aSig1; |
158142c2 FB |
5392 | int64 z; |
5393 | ||
5394 | aSig1 = extractFloat128Frac1( a ); | |
5395 | aSig0 = extractFloat128Frac0( a ); | |
5396 | aExp = extractFloat128Exp( a ); | |
5397 | aSign = extractFloat128Sign( a ); | |
5398 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
5399 | shiftCount = aExp - 0x402F; | |
5400 | if ( 0 < shiftCount ) { | |
5401 | if ( 0x403E <= aExp ) { | |
5402 | aSig0 &= LIT64( 0x0000FFFFFFFFFFFF ); | |
5403 | if ( ( a.high == LIT64( 0xC03E000000000000 ) ) | |
5404 | && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) { | |
5405 | if ( aSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
5406 | } | |
5407 | else { | |
5408 | float_raise( float_flag_invalid STATUS_VAR); | |
5409 | if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) { | |
5410 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
5411 | } | |
5412 | } | |
bb98fe42 | 5413 | return (int64_t) LIT64( 0x8000000000000000 ); |
158142c2 FB |
5414 | } |
5415 | z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) ); | |
bb98fe42 | 5416 | if ( (uint64_t) ( aSig1<<shiftCount ) ) { |
158142c2 FB |
5417 | STATUS(float_exception_flags) |= float_flag_inexact; |
5418 | } | |
5419 | } | |
5420 | else { | |
5421 | if ( aExp < 0x3FFF ) { | |
5422 | if ( aExp | aSig0 | aSig1 ) { | |
5423 | STATUS(float_exception_flags) |= float_flag_inexact; | |
5424 | } | |
5425 | return 0; | |
5426 | } | |
5427 | z = aSig0>>( - shiftCount ); | |
5428 | if ( aSig1 | |
bb98fe42 | 5429 | || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) { |
158142c2 FB |
5430 | STATUS(float_exception_flags) |= float_flag_inexact; |
5431 | } | |
5432 | } | |
5433 | if ( aSign ) z = - z; | |
5434 | return z; | |
5435 | ||
5436 | } | |
5437 | ||
5438 | /*---------------------------------------------------------------------------- | |
5439 | | Returns the result of converting the quadruple-precision floating-point | |
5440 | | value `a' to the single-precision floating-point format. The conversion | |
5441 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5442 | | Arithmetic. | |
5443 | *----------------------------------------------------------------------------*/ | |
5444 | ||
5445 | float32 float128_to_float32( float128 a STATUS_PARAM ) | |
5446 | { | |
5447 | flag aSign; | |
5448 | int32 aExp; | |
bb98fe42 AF |
5449 | uint64_t aSig0, aSig1; |
5450 | uint32_t zSig; | |
158142c2 FB |
5451 | |
5452 | aSig1 = extractFloat128Frac1( a ); | |
5453 | aSig0 = extractFloat128Frac0( a ); | |
5454 | aExp = extractFloat128Exp( a ); | |
5455 | aSign = extractFloat128Sign( a ); | |
5456 | if ( aExp == 0x7FFF ) { | |
5457 | if ( aSig0 | aSig1 ) { | |
bcd4d9af | 5458 | return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
5459 | } |
5460 | return packFloat32( aSign, 0xFF, 0 ); | |
5461 | } | |
5462 | aSig0 |= ( aSig1 != 0 ); | |
5463 | shift64RightJamming( aSig0, 18, &aSig0 ); | |
5464 | zSig = aSig0; | |
5465 | if ( aExp || zSig ) { | |
5466 | zSig |= 0x40000000; | |
5467 | aExp -= 0x3F81; | |
5468 | } | |
5469 | return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR ); | |
5470 | ||
5471 | } | |
5472 | ||
5473 | /*---------------------------------------------------------------------------- | |
5474 | | Returns the result of converting the quadruple-precision floating-point | |
5475 | | value `a' to the double-precision floating-point format. The conversion | |
5476 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5477 | | Arithmetic. | |
5478 | *----------------------------------------------------------------------------*/ | |
5479 | ||
5480 | float64 float128_to_float64( float128 a STATUS_PARAM ) | |
5481 | { | |
5482 | flag aSign; | |
5483 | int32 aExp; | |
bb98fe42 | 5484 | uint64_t aSig0, aSig1; |
158142c2 FB |
5485 | |
5486 | aSig1 = extractFloat128Frac1( a ); | |
5487 | aSig0 = extractFloat128Frac0( a ); | |
5488 | aExp = extractFloat128Exp( a ); | |
5489 | aSign = extractFloat128Sign( a ); | |
5490 | if ( aExp == 0x7FFF ) { | |
5491 | if ( aSig0 | aSig1 ) { | |
bcd4d9af | 5492 | return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
5493 | } |
5494 | return packFloat64( aSign, 0x7FF, 0 ); | |
5495 | } | |
5496 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
5497 | aSig0 |= ( aSig1 != 0 ); | |
5498 | if ( aExp || aSig0 ) { | |
5499 | aSig0 |= LIT64( 0x4000000000000000 ); | |
5500 | aExp -= 0x3C01; | |
5501 | } | |
5502 | return roundAndPackFloat64( aSign, aExp, aSig0 STATUS_VAR ); | |
5503 | ||
5504 | } | |
5505 | ||
158142c2 FB |
5506 | /*---------------------------------------------------------------------------- |
5507 | | Returns the result of converting the quadruple-precision floating-point | |
5508 | | value `a' to the extended double-precision floating-point format. The | |
5509 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
5510 | | Floating-Point Arithmetic. | |
5511 | *----------------------------------------------------------------------------*/ | |
5512 | ||
5513 | floatx80 float128_to_floatx80( float128 a STATUS_PARAM ) | |
5514 | { | |
5515 | flag aSign; | |
5516 | int32 aExp; | |
bb98fe42 | 5517 | uint64_t aSig0, aSig1; |
158142c2 FB |
5518 | |
5519 | aSig1 = extractFloat128Frac1( a ); | |
5520 | aSig0 = extractFloat128Frac0( a ); | |
5521 | aExp = extractFloat128Exp( a ); | |
5522 | aSign = extractFloat128Sign( a ); | |
5523 | if ( aExp == 0x7FFF ) { | |
5524 | if ( aSig0 | aSig1 ) { | |
bcd4d9af | 5525 | return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); |
158142c2 FB |
5526 | } |
5527 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
5528 | } | |
5529 | if ( aExp == 0 ) { | |
5530 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); | |
5531 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
5532 | } | |
5533 | else { | |
5534 | aSig0 |= LIT64( 0x0001000000000000 ); | |
5535 | } | |
5536 | shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); | |
5537 | return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 STATUS_VAR ); | |
5538 | ||
5539 | } | |
5540 | ||
158142c2 FB |
5541 | /*---------------------------------------------------------------------------- |
5542 | | Rounds the quadruple-precision floating-point value `a' to an integer, and | |
5543 | | returns the result as a quadruple-precision floating-point value. The | |
5544 | | operation is performed according to the IEC/IEEE Standard for Binary | |
5545 | | Floating-Point Arithmetic. | |
5546 | *----------------------------------------------------------------------------*/ | |
5547 | ||
5548 | float128 float128_round_to_int( float128 a STATUS_PARAM ) | |
5549 | { | |
5550 | flag aSign; | |
5551 | int32 aExp; | |
bb98fe42 | 5552 | uint64_t lastBitMask, roundBitsMask; |
158142c2 FB |
5553 | int8 roundingMode; |
5554 | float128 z; | |
5555 | ||
5556 | aExp = extractFloat128Exp( a ); | |
5557 | if ( 0x402F <= aExp ) { | |
5558 | if ( 0x406F <= aExp ) { | |
5559 | if ( ( aExp == 0x7FFF ) | |
5560 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) | |
5561 | ) { | |
5562 | return propagateFloat128NaN( a, a STATUS_VAR ); | |
5563 | } | |
5564 | return a; | |
5565 | } | |
5566 | lastBitMask = 1; | |
5567 | lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; | |
5568 | roundBitsMask = lastBitMask - 1; | |
5569 | z = a; | |
5570 | roundingMode = STATUS(float_rounding_mode); | |
5571 | if ( roundingMode == float_round_nearest_even ) { | |
5572 | if ( lastBitMask ) { | |
5573 | add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); | |
5574 | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | |
5575 | } | |
5576 | else { | |
bb98fe42 | 5577 | if ( (int64_t) z.low < 0 ) { |
158142c2 | 5578 | ++z.high; |
bb98fe42 | 5579 | if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1; |
158142c2 FB |
5580 | } |
5581 | } | |
5582 | } | |
5583 | else if ( roundingMode != float_round_to_zero ) { | |
5584 | if ( extractFloat128Sign( z ) | |
5585 | ^ ( roundingMode == float_round_up ) ) { | |
5586 | add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low ); | |
5587 | } | |
5588 | } | |
5589 | z.low &= ~ roundBitsMask; | |
5590 | } | |
5591 | else { | |
5592 | if ( aExp < 0x3FFF ) { | |
bb98fe42 | 5593 | if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a; |
158142c2 FB |
5594 | STATUS(float_exception_flags) |= float_flag_inexact; |
5595 | aSign = extractFloat128Sign( a ); | |
5596 | switch ( STATUS(float_rounding_mode) ) { | |
5597 | case float_round_nearest_even: | |
5598 | if ( ( aExp == 0x3FFE ) | |
5599 | && ( extractFloat128Frac0( a ) | |
5600 | | extractFloat128Frac1( a ) ) | |
5601 | ) { | |
5602 | return packFloat128( aSign, 0x3FFF, 0, 0 ); | |
5603 | } | |
5604 | break; | |
5605 | case float_round_down: | |
5606 | return | |
5607 | aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) | |
5608 | : packFloat128( 0, 0, 0, 0 ); | |
5609 | case float_round_up: | |
5610 | return | |
5611 | aSign ? packFloat128( 1, 0, 0, 0 ) | |
5612 | : packFloat128( 0, 0x3FFF, 0, 0 ); | |
5613 | } | |
5614 | return packFloat128( aSign, 0, 0, 0 ); | |
5615 | } | |
5616 | lastBitMask = 1; | |
5617 | lastBitMask <<= 0x402F - aExp; | |
5618 | roundBitsMask = lastBitMask - 1; | |
5619 | z.low = 0; | |
5620 | z.high = a.high; | |
5621 | roundingMode = STATUS(float_rounding_mode); | |
5622 | if ( roundingMode == float_round_nearest_even ) { | |
5623 | z.high += lastBitMask>>1; | |
5624 | if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { | |
5625 | z.high &= ~ lastBitMask; | |
5626 | } | |
5627 | } | |
5628 | else if ( roundingMode != float_round_to_zero ) { | |
5629 | if ( extractFloat128Sign( z ) | |
5630 | ^ ( roundingMode == float_round_up ) ) { | |
5631 | z.high |= ( a.low != 0 ); | |
5632 | z.high += roundBitsMask; | |
5633 | } | |
5634 | } | |
5635 | z.high &= ~ roundBitsMask; | |
5636 | } | |
5637 | if ( ( z.low != a.low ) || ( z.high != a.high ) ) { | |
5638 | STATUS(float_exception_flags) |= float_flag_inexact; | |
5639 | } | |
5640 | return z; | |
5641 | ||
5642 | } | |
5643 | ||
5644 | /*---------------------------------------------------------------------------- | |
5645 | | Returns the result of adding the absolute values of the quadruple-precision | |
5646 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
5647 | | before being returned. `zSign' is ignored if the result is a NaN. | |
5648 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
5649 | | Floating-Point Arithmetic. | |
5650 | *----------------------------------------------------------------------------*/ | |
5651 | ||
5652 | static float128 addFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM) | |
5653 | { | |
5654 | int32 aExp, bExp, zExp; | |
bb98fe42 | 5655 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; |
158142c2 FB |
5656 | int32 expDiff; |
5657 | ||
5658 | aSig1 = extractFloat128Frac1( a ); | |
5659 | aSig0 = extractFloat128Frac0( a ); | |
5660 | aExp = extractFloat128Exp( a ); | |
5661 | bSig1 = extractFloat128Frac1( b ); | |
5662 | bSig0 = extractFloat128Frac0( b ); | |
5663 | bExp = extractFloat128Exp( b ); | |
5664 | expDiff = aExp - bExp; | |
5665 | if ( 0 < expDiff ) { | |
5666 | if ( aExp == 0x7FFF ) { | |
5667 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
5668 | return a; | |
5669 | } | |
5670 | if ( bExp == 0 ) { | |
5671 | --expDiff; | |
5672 | } | |
5673 | else { | |
5674 | bSig0 |= LIT64( 0x0001000000000000 ); | |
5675 | } | |
5676 | shift128ExtraRightJamming( | |
5677 | bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); | |
5678 | zExp = aExp; | |
5679 | } | |
5680 | else if ( expDiff < 0 ) { | |
5681 | if ( bExp == 0x7FFF ) { | |
5682 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
5683 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
5684 | } | |
5685 | if ( aExp == 0 ) { | |
5686 | ++expDiff; | |
5687 | } | |
5688 | else { | |
5689 | aSig0 |= LIT64( 0x0001000000000000 ); | |
5690 | } | |
5691 | shift128ExtraRightJamming( | |
5692 | aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); | |
5693 | zExp = bExp; | |
5694 | } | |
5695 | else { | |
5696 | if ( aExp == 0x7FFF ) { | |
5697 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
5698 | return propagateFloat128NaN( a, b STATUS_VAR ); | |
5699 | } | |
5700 | return a; | |
5701 | } | |
5702 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
fe76d976 | 5703 | if ( aExp == 0 ) { |
e6afc87f PM |
5704 | if (STATUS(flush_to_zero)) { |
5705 | if (zSig0 | zSig1) { | |
5706 | float_raise(float_flag_output_denormal STATUS_VAR); | |
5707 | } | |
5708 | return packFloat128(zSign, 0, 0, 0); | |
5709 | } | |
fe76d976 PB |
5710 | return packFloat128( zSign, 0, zSig0, zSig1 ); |
5711 | } | |
158142c2 FB |
5712 | zSig2 = 0; |
5713 | zSig0 |= LIT64( 0x0002000000000000 ); | |
5714 | zExp = aExp; | |
5715 | goto shiftRight1; | |
5716 | } | |
5717 | aSig0 |= LIT64( 0x0001000000000000 ); | |
5718 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
5719 | --zExp; | |
5720 | if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; | |
5721 | ++zExp; | |
5722 | shiftRight1: | |
5723 | shift128ExtraRightJamming( | |
5724 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
5725 | roundAndPack: | |
5726 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | |
5727 | ||
5728 | } | |
5729 | ||
5730 | /*---------------------------------------------------------------------------- | |
5731 | | Returns the result of subtracting the absolute values of the quadruple- | |
5732 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
5733 | | difference is negated before being returned. `zSign' is ignored if the | |
5734 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
5735 | | Standard for Binary Floating-Point Arithmetic. | |
5736 | *----------------------------------------------------------------------------*/ | |
5737 | ||
5738 | static float128 subFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM) | |
5739 | { | |
5740 | int32 aExp, bExp, zExp; | |
bb98fe42 | 5741 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; |
158142c2 FB |
5742 | int32 expDiff; |
5743 | float128 z; | |
5744 | ||
5745 | aSig1 = extractFloat128Frac1( a ); | |
5746 | aSig0 = extractFloat128Frac0( a ); | |
5747 | aExp = extractFloat128Exp( a ); | |
5748 | bSig1 = extractFloat128Frac1( b ); | |
5749 | bSig0 = extractFloat128Frac0( b ); | |
5750 | bExp = extractFloat128Exp( b ); | |
5751 | expDiff = aExp - bExp; | |
5752 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
5753 | shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); | |
5754 | if ( 0 < expDiff ) goto aExpBigger; | |
5755 | if ( expDiff < 0 ) goto bExpBigger; | |
5756 | if ( aExp == 0x7FFF ) { | |
5757 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
5758 | return propagateFloat128NaN( a, b STATUS_VAR ); | |
5759 | } | |
5760 | float_raise( float_flag_invalid STATUS_VAR); | |
5761 | z.low = float128_default_nan_low; | |
5762 | z.high = float128_default_nan_high; | |
5763 | return z; | |
5764 | } | |
5765 | if ( aExp == 0 ) { | |
5766 | aExp = 1; | |
5767 | bExp = 1; | |
5768 | } | |
5769 | if ( bSig0 < aSig0 ) goto aBigger; | |
5770 | if ( aSig0 < bSig0 ) goto bBigger; | |
5771 | if ( bSig1 < aSig1 ) goto aBigger; | |
5772 | if ( aSig1 < bSig1 ) goto bBigger; | |
5773 | return packFloat128( STATUS(float_rounding_mode) == float_round_down, 0, 0, 0 ); | |
5774 | bExpBigger: | |
5775 | if ( bExp == 0x7FFF ) { | |
5776 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
5777 | return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); | |
5778 | } | |
5779 | if ( aExp == 0 ) { | |
5780 | ++expDiff; | |
5781 | } | |
5782 | else { | |
5783 | aSig0 |= LIT64( 0x4000000000000000 ); | |
5784 | } | |
5785 | shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
5786 | bSig0 |= LIT64( 0x4000000000000000 ); | |
5787 | bBigger: | |
5788 | sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
5789 | zExp = bExp; | |
5790 | zSign ^= 1; | |
5791 | goto normalizeRoundAndPack; | |
5792 | aExpBigger: | |
5793 | if ( aExp == 0x7FFF ) { | |
5794 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
5795 | return a; | |
5796 | } | |
5797 | if ( bExp == 0 ) { | |
5798 | --expDiff; | |
5799 | } | |
5800 | else { | |
5801 | bSig0 |= LIT64( 0x4000000000000000 ); | |
5802 | } | |
5803 | shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); | |
5804 | aSig0 |= LIT64( 0x4000000000000000 ); | |
5805 | aBigger: | |
5806 | sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
5807 | zExp = aExp; | |
5808 | normalizeRoundAndPack: | |
5809 | --zExp; | |
5810 | return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 STATUS_VAR ); | |
5811 | ||
5812 | } | |
5813 | ||
5814 | /*---------------------------------------------------------------------------- | |
5815 | | Returns the result of adding the quadruple-precision floating-point values | |
5816 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
5817 | | for Binary Floating-Point Arithmetic. | |
5818 | *----------------------------------------------------------------------------*/ | |
5819 | ||
5820 | float128 float128_add( float128 a, float128 b STATUS_PARAM ) | |
5821 | { | |
5822 | flag aSign, bSign; | |
5823 | ||
5824 | aSign = extractFloat128Sign( a ); | |
5825 | bSign = extractFloat128Sign( b ); | |
5826 | if ( aSign == bSign ) { | |
5827 | return addFloat128Sigs( a, b, aSign STATUS_VAR ); | |
5828 | } | |
5829 | else { | |
5830 | return subFloat128Sigs( a, b, aSign STATUS_VAR ); | |
5831 | } | |
5832 | ||
5833 | } | |
5834 | ||
5835 | /*---------------------------------------------------------------------------- | |
5836 | | Returns the result of subtracting the quadruple-precision floating-point | |
5837 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
5838 | | Standard for Binary Floating-Point Arithmetic. | |
5839 | *----------------------------------------------------------------------------*/ | |
5840 | ||
5841 | float128 float128_sub( float128 a, float128 b STATUS_PARAM ) | |
5842 | { | |
5843 | flag aSign, bSign; | |
5844 | ||
5845 | aSign = extractFloat128Sign( a ); | |
5846 | bSign = extractFloat128Sign( b ); | |
5847 | if ( aSign == bSign ) { | |
5848 | return subFloat128Sigs( a, b, aSign STATUS_VAR ); | |
5849 | } | |
5850 | else { | |
5851 | return addFloat128Sigs( a, b, aSign STATUS_VAR ); | |
5852 | } | |
5853 | ||
5854 | } | |
5855 | ||
5856 | /*---------------------------------------------------------------------------- | |
5857 | | Returns the result of multiplying the quadruple-precision floating-point | |
5858 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
5859 | | Standard for Binary Floating-Point Arithmetic. | |
5860 | *----------------------------------------------------------------------------*/ | |
5861 | ||
5862 | float128 float128_mul( float128 a, float128 b STATUS_PARAM ) | |
5863 | { | |
5864 | flag aSign, bSign, zSign; | |
5865 | int32 aExp, bExp, zExp; | |
bb98fe42 | 5866 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; |
158142c2 FB |
5867 | float128 z; |
5868 | ||
5869 | aSig1 = extractFloat128Frac1( a ); | |
5870 | aSig0 = extractFloat128Frac0( a ); | |
5871 | aExp = extractFloat128Exp( a ); | |
5872 | aSign = extractFloat128Sign( a ); | |
5873 | bSig1 = extractFloat128Frac1( b ); | |
5874 | bSig0 = extractFloat128Frac0( b ); | |
5875 | bExp = extractFloat128Exp( b ); | |
5876 | bSign = extractFloat128Sign( b ); | |
5877 | zSign = aSign ^ bSign; | |
5878 | if ( aExp == 0x7FFF ) { | |
5879 | if ( ( aSig0 | aSig1 ) | |
5880 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
5881 | return propagateFloat128NaN( a, b STATUS_VAR ); | |
5882 | } | |
5883 | if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; | |
5884 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
5885 | } | |
5886 | if ( bExp == 0x7FFF ) { | |
5887 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
5888 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { | |
5889 | invalid: | |
5890 | float_raise( float_flag_invalid STATUS_VAR); | |
5891 | z.low = float128_default_nan_low; | |
5892 | z.high = float128_default_nan_high; | |
5893 | return z; | |
5894 | } | |
5895 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
5896 | } | |
5897 | if ( aExp == 0 ) { | |
5898 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
5899 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
5900 | } | |
5901 | if ( bExp == 0 ) { | |
5902 | if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
5903 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
5904 | } | |
5905 | zExp = aExp + bExp - 0x4000; | |
5906 | aSig0 |= LIT64( 0x0001000000000000 ); | |
5907 | shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); | |
5908 | mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); | |
5909 | add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
5910 | zSig2 |= ( zSig3 != 0 ); | |
5911 | if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { | |
5912 | shift128ExtraRightJamming( | |
5913 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
5914 | ++zExp; | |
5915 | } | |
5916 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | |
5917 | ||
5918 | } | |
5919 | ||
5920 | /*---------------------------------------------------------------------------- | |
5921 | | Returns the result of dividing the quadruple-precision floating-point value | |
5922 | | `a' by the corresponding value `b'. The operation is performed according to | |
5923 | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5924 | *----------------------------------------------------------------------------*/ | |
5925 | ||
5926 | float128 float128_div( float128 a, float128 b STATUS_PARAM ) | |
5927 | { | |
5928 | flag aSign, bSign, zSign; | |
5929 | int32 aExp, bExp, zExp; | |
bb98fe42 AF |
5930 | uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; |
5931 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 FB |
5932 | float128 z; |
5933 | ||
5934 | aSig1 = extractFloat128Frac1( a ); | |
5935 | aSig0 = extractFloat128Frac0( a ); | |
5936 | aExp = extractFloat128Exp( a ); | |
5937 | aSign = extractFloat128Sign( a ); | |
5938 | bSig1 = extractFloat128Frac1( b ); | |
5939 | bSig0 = extractFloat128Frac0( b ); | |
5940 | bExp = extractFloat128Exp( b ); | |
5941 | bSign = extractFloat128Sign( b ); | |
5942 | zSign = aSign ^ bSign; | |
5943 | if ( aExp == 0x7FFF ) { | |
5944 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
5945 | if ( bExp == 0x7FFF ) { | |
5946 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
5947 | goto invalid; | |
5948 | } | |
5949 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
5950 | } | |
5951 | if ( bExp == 0x7FFF ) { | |
5952 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
5953 | return packFloat128( zSign, 0, 0, 0 ); | |
5954 | } | |
5955 | if ( bExp == 0 ) { | |
5956 | if ( ( bSig0 | bSig1 ) == 0 ) { | |
5957 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { | |
5958 | invalid: | |
5959 | float_raise( float_flag_invalid STATUS_VAR); | |
5960 | z.low = float128_default_nan_low; | |
5961 | z.high = float128_default_nan_high; | |
5962 | return z; | |
5963 | } | |
5964 | float_raise( float_flag_divbyzero STATUS_VAR); | |
5965 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
5966 | } | |
5967 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
5968 | } | |
5969 | if ( aExp == 0 ) { | |
5970 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
5971 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
5972 | } | |
5973 | zExp = aExp - bExp + 0x3FFD; | |
5974 | shortShift128Left( | |
5975 | aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); | |
5976 | shortShift128Left( | |
5977 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
5978 | if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { | |
5979 | shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); | |
5980 | ++zExp; | |
5981 | } | |
5982 | zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
5983 | mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); | |
5984 | sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); | |
bb98fe42 | 5985 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
5986 | --zSig0; |
5987 | add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); | |
5988 | } | |
5989 | zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); | |
5990 | if ( ( zSig1 & 0x3FFF ) <= 4 ) { | |
5991 | mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); | |
5992 | sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 5993 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
5994 | --zSig1; |
5995 | add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); | |
5996 | } | |
5997 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
5998 | } | |
5999 | shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); | |
6000 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | |
6001 | ||
6002 | } | |
6003 | ||
6004 | /*---------------------------------------------------------------------------- | |
6005 | | Returns the remainder of the quadruple-precision floating-point value `a' | |
6006 | | with respect to the corresponding value `b'. The operation is performed | |
6007 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6008 | *----------------------------------------------------------------------------*/ | |
6009 | ||
6010 | float128 float128_rem( float128 a, float128 b STATUS_PARAM ) | |
6011 | { | |
ed086f3d | 6012 | flag aSign, zSign; |
158142c2 | 6013 | int32 aExp, bExp, expDiff; |
bb98fe42 AF |
6014 | uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; |
6015 | uint64_t allZero, alternateASig0, alternateASig1, sigMean1; | |
6016 | int64_t sigMean0; | |
158142c2 FB |
6017 | float128 z; |
6018 | ||
6019 | aSig1 = extractFloat128Frac1( a ); | |
6020 | aSig0 = extractFloat128Frac0( a ); | |
6021 | aExp = extractFloat128Exp( a ); | |
6022 | aSign = extractFloat128Sign( a ); | |
6023 | bSig1 = extractFloat128Frac1( b ); | |
6024 | bSig0 = extractFloat128Frac0( b ); | |
6025 | bExp = extractFloat128Exp( b ); | |
158142c2 FB |
6026 | if ( aExp == 0x7FFF ) { |
6027 | if ( ( aSig0 | aSig1 ) | |
6028 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
6029 | return propagateFloat128NaN( a, b STATUS_VAR ); | |
6030 | } | |
6031 | goto invalid; | |
6032 | } | |
6033 | if ( bExp == 0x7FFF ) { | |
6034 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
6035 | return a; | |
6036 | } | |
6037 | if ( bExp == 0 ) { | |
6038 | if ( ( bSig0 | bSig1 ) == 0 ) { | |
6039 | invalid: | |
6040 | float_raise( float_flag_invalid STATUS_VAR); | |
6041 | z.low = float128_default_nan_low; | |
6042 | z.high = float128_default_nan_high; | |
6043 | return z; | |
6044 | } | |
6045 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
6046 | } | |
6047 | if ( aExp == 0 ) { | |
6048 | if ( ( aSig0 | aSig1 ) == 0 ) return a; | |
6049 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6050 | } | |
6051 | expDiff = aExp - bExp; | |
6052 | if ( expDiff < -1 ) return a; | |
6053 | shortShift128Left( | |
6054 | aSig0 | LIT64( 0x0001000000000000 ), | |
6055 | aSig1, | |
6056 | 15 - ( expDiff < 0 ), | |
6057 | &aSig0, | |
6058 | &aSig1 | |
6059 | ); | |
6060 | shortShift128Left( | |
6061 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
6062 | q = le128( bSig0, bSig1, aSig0, aSig1 ); | |
6063 | if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
6064 | expDiff -= 64; | |
6065 | while ( 0 < expDiff ) { | |
6066 | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
6067 | q = ( 4 < q ) ? q - 4 : 0; | |
6068 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
6069 | shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); | |
6070 | shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); | |
6071 | sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); | |
6072 | expDiff -= 61; | |
6073 | } | |
6074 | if ( -64 < expDiff ) { | |
6075 | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
6076 | q = ( 4 < q ) ? q - 4 : 0; | |
6077 | q >>= - expDiff; | |
6078 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
6079 | expDiff += 52; | |
6080 | if ( expDiff < 0 ) { | |
6081 | shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
6082 | } | |
6083 | else { | |
6084 | shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); | |
6085 | } | |
6086 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
6087 | sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); | |
6088 | } | |
6089 | else { | |
6090 | shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); | |
6091 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
6092 | } | |
6093 | do { | |
6094 | alternateASig0 = aSig0; | |
6095 | alternateASig1 = aSig1; | |
6096 | ++q; | |
6097 | sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
bb98fe42 | 6098 | } while ( 0 <= (int64_t) aSig0 ); |
158142c2 | 6099 | add128( |
bb98fe42 | 6100 | aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 ); |
158142c2 FB |
6101 | if ( ( sigMean0 < 0 ) |
6102 | || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { | |
6103 | aSig0 = alternateASig0; | |
6104 | aSig1 = alternateASig1; | |
6105 | } | |
bb98fe42 | 6106 | zSign = ( (int64_t) aSig0 < 0 ); |
158142c2 FB |
6107 | if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); |
6108 | return | |
6109 | normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 STATUS_VAR ); | |
6110 | ||
6111 | } | |
6112 | ||
6113 | /*---------------------------------------------------------------------------- | |
6114 | | Returns the square root of the quadruple-precision floating-point value `a'. | |
6115 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
6116 | | Floating-Point Arithmetic. | |
6117 | *----------------------------------------------------------------------------*/ | |
6118 | ||
6119 | float128 float128_sqrt( float128 a STATUS_PARAM ) | |
6120 | { | |
6121 | flag aSign; | |
6122 | int32 aExp, zExp; | |
bb98fe42 AF |
6123 | uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; |
6124 | uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
158142c2 FB |
6125 | float128 z; |
6126 | ||
6127 | aSig1 = extractFloat128Frac1( a ); | |
6128 | aSig0 = extractFloat128Frac0( a ); | |
6129 | aExp = extractFloat128Exp( a ); | |
6130 | aSign = extractFloat128Sign( a ); | |
6131 | if ( aExp == 0x7FFF ) { | |
6132 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a STATUS_VAR ); | |
6133 | if ( ! aSign ) return a; | |
6134 | goto invalid; | |
6135 | } | |
6136 | if ( aSign ) { | |
6137 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; | |
6138 | invalid: | |
6139 | float_raise( float_flag_invalid STATUS_VAR); | |
6140 | z.low = float128_default_nan_low; | |
6141 | z.high = float128_default_nan_high; | |
6142 | return z; | |
6143 | } | |
6144 | if ( aExp == 0 ) { | |
6145 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
6146 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
6147 | } | |
6148 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; | |
6149 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6150 | zSig0 = estimateSqrt32( aExp, aSig0>>17 ); | |
6151 | shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); | |
6152 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
6153 | doubleZSig0 = zSig0<<1; | |
6154 | mul64To128( zSig0, zSig0, &term0, &term1 ); | |
6155 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
bb98fe42 | 6156 | while ( (int64_t) rem0 < 0 ) { |
158142c2 FB |
6157 | --zSig0; |
6158 | doubleZSig0 -= 2; | |
6159 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
6160 | } | |
6161 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
6162 | if ( ( zSig1 & 0x1FFF ) <= 5 ) { | |
6163 | if ( zSig1 == 0 ) zSig1 = 1; | |
6164 | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
6165 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
6166 | mul64To128( zSig1, zSig1, &term2, &term3 ); | |
6167 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
bb98fe42 | 6168 | while ( (int64_t) rem1 < 0 ) { |
158142c2 FB |
6169 | --zSig1; |
6170 | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
6171 | term3 |= 1; | |
6172 | term2 |= doubleZSig0; | |
6173 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
6174 | } | |
6175 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
6176 | } | |
6177 | shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); | |
6178 | return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | |
6179 | ||
6180 | } | |
6181 | ||
6182 | /*---------------------------------------------------------------------------- | |
6183 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
b689362d AJ |
6184 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
6185 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
158142c2 FB |
6186 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
6187 | *----------------------------------------------------------------------------*/ | |
6188 | ||
b689362d | 6189 | int float128_eq( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
6190 | { |
6191 | ||
6192 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6193 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6194 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6195 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6196 | ) { | |
b689362d | 6197 | float_raise( float_flag_invalid STATUS_VAR); |
158142c2 FB |
6198 | return 0; |
6199 | } | |
6200 | return | |
6201 | ( a.low == b.low ) | |
6202 | && ( ( a.high == b.high ) | |
6203 | || ( ( a.low == 0 ) | |
bb98fe42 | 6204 | && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
6205 | ); |
6206 | ||
6207 | } | |
6208 | ||
6209 | /*---------------------------------------------------------------------------- | |
6210 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
f5a64251 AJ |
6211 | | or equal to the corresponding value `b', and 0 otherwise. The invalid |
6212 | | exception is raised if either operand is a NaN. The comparison is performed | |
6213 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
6214 | *----------------------------------------------------------------------------*/ |
6215 | ||
750afe93 | 6216 | int float128_le( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
6217 | { |
6218 | flag aSign, bSign; | |
6219 | ||
6220 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6221 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6222 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6223 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6224 | ) { | |
6225 | float_raise( float_flag_invalid STATUS_VAR); | |
6226 | return 0; | |
6227 | } | |
6228 | aSign = extractFloat128Sign( a ); | |
6229 | bSign = extractFloat128Sign( b ); | |
6230 | if ( aSign != bSign ) { | |
6231 | return | |
6232 | aSign | |
bb98fe42 | 6233 | || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6234 | == 0 ); |
6235 | } | |
6236 | return | |
6237 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
6238 | : le128( a.high, a.low, b.high, b.low ); | |
6239 | ||
6240 | } | |
6241 | ||
6242 | /*---------------------------------------------------------------------------- | |
6243 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
f5a64251 AJ |
6244 | | the corresponding value `b', and 0 otherwise. The invalid exception is |
6245 | | raised if either operand is a NaN. The comparison is performed according | |
6246 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
158142c2 FB |
6247 | *----------------------------------------------------------------------------*/ |
6248 | ||
750afe93 | 6249 | int float128_lt( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
6250 | { |
6251 | flag aSign, bSign; | |
6252 | ||
6253 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6254 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6255 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6256 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6257 | ) { | |
6258 | float_raise( float_flag_invalid STATUS_VAR); | |
6259 | return 0; | |
6260 | } | |
6261 | aSign = extractFloat128Sign( a ); | |
6262 | bSign = extractFloat128Sign( b ); | |
6263 | if ( aSign != bSign ) { | |
6264 | return | |
6265 | aSign | |
bb98fe42 | 6266 | && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6267 | != 0 ); |
6268 | } | |
6269 | return | |
6270 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
6271 | : lt128( a.high, a.low, b.high, b.low ); | |
6272 | ||
6273 | } | |
6274 | ||
67b7861d AJ |
6275 | /*---------------------------------------------------------------------------- |
6276 | | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot | |
f5a64251 AJ |
6277 | | be compared, and 0 otherwise. The invalid exception is raised if either |
6278 | | operand is a NaN. The comparison is performed according to the IEC/IEEE | |
6279 | | Standard for Binary Floating-Point Arithmetic. | |
67b7861d AJ |
6280 | *----------------------------------------------------------------------------*/ |
6281 | ||
6282 | int float128_unordered( float128 a, float128 b STATUS_PARAM ) | |
6283 | { | |
6284 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6285 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6286 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6287 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6288 | ) { | |
6289 | float_raise( float_flag_invalid STATUS_VAR); | |
6290 | return 1; | |
6291 | } | |
6292 | return 0; | |
6293 | } | |
6294 | ||
158142c2 FB |
6295 | /*---------------------------------------------------------------------------- |
6296 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
f5a64251 AJ |
6297 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
6298 | | exception. The comparison is performed according to the IEC/IEEE Standard | |
6299 | | for Binary Floating-Point Arithmetic. | |
158142c2 FB |
6300 | *----------------------------------------------------------------------------*/ |
6301 | ||
b689362d | 6302 | int float128_eq_quiet( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
6303 | { |
6304 | ||
6305 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6306 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6307 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6308 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6309 | ) { | |
b689362d AJ |
6310 | if ( float128_is_signaling_nan( a ) |
6311 | || float128_is_signaling_nan( b ) ) { | |
6312 | float_raise( float_flag_invalid STATUS_VAR); | |
6313 | } | |
158142c2 FB |
6314 | return 0; |
6315 | } | |
6316 | return | |
6317 | ( a.low == b.low ) | |
6318 | && ( ( a.high == b.high ) | |
6319 | || ( ( a.low == 0 ) | |
bb98fe42 | 6320 | && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
158142c2 FB |
6321 | ); |
6322 | ||
6323 | } | |
6324 | ||
6325 | /*---------------------------------------------------------------------------- | |
6326 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
6327 | | or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
6328 | | cause an exception. Otherwise, the comparison is performed according to the | |
6329 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
6330 | *----------------------------------------------------------------------------*/ | |
6331 | ||
750afe93 | 6332 | int float128_le_quiet( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
6333 | { |
6334 | flag aSign, bSign; | |
6335 | ||
6336 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6337 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6338 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6339 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6340 | ) { | |
6341 | if ( float128_is_signaling_nan( a ) | |
6342 | || float128_is_signaling_nan( b ) ) { | |
6343 | float_raise( float_flag_invalid STATUS_VAR); | |
6344 | } | |
6345 | return 0; | |
6346 | } | |
6347 | aSign = extractFloat128Sign( a ); | |
6348 | bSign = extractFloat128Sign( b ); | |
6349 | if ( aSign != bSign ) { | |
6350 | return | |
6351 | aSign | |
bb98fe42 | 6352 | || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6353 | == 0 ); |
6354 | } | |
6355 | return | |
6356 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
6357 | : le128( a.high, a.low, b.high, b.low ); | |
6358 | ||
6359 | } | |
6360 | ||
6361 | /*---------------------------------------------------------------------------- | |
6362 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
6363 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
6364 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
6365 | | Standard for Binary Floating-Point Arithmetic. | |
6366 | *----------------------------------------------------------------------------*/ | |
6367 | ||
750afe93 | 6368 | int float128_lt_quiet( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
6369 | { |
6370 | flag aSign, bSign; | |
6371 | ||
6372 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6373 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6374 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6375 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6376 | ) { | |
6377 | if ( float128_is_signaling_nan( a ) | |
6378 | || float128_is_signaling_nan( b ) ) { | |
6379 | float_raise( float_flag_invalid STATUS_VAR); | |
6380 | } | |
6381 | return 0; | |
6382 | } | |
6383 | aSign = extractFloat128Sign( a ); | |
6384 | bSign = extractFloat128Sign( b ); | |
6385 | if ( aSign != bSign ) { | |
6386 | return | |
6387 | aSign | |
bb98fe42 | 6388 | && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
158142c2 FB |
6389 | != 0 ); |
6390 | } | |
6391 | return | |
6392 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
6393 | : lt128( a.high, a.low, b.high, b.low ); | |
6394 | ||
6395 | } | |
6396 | ||
67b7861d AJ |
6397 | /*---------------------------------------------------------------------------- |
6398 | | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot | |
6399 | | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The | |
6400 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
6401 | | Floating-Point Arithmetic. | |
6402 | *----------------------------------------------------------------------------*/ | |
6403 | ||
6404 | int float128_unordered_quiet( float128 a, float128 b STATUS_PARAM ) | |
6405 | { | |
6406 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
6407 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
6408 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
6409 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
6410 | ) { | |
6411 | if ( float128_is_signaling_nan( a ) | |
6412 | || float128_is_signaling_nan( b ) ) { | |
6413 | float_raise( float_flag_invalid STATUS_VAR); | |
6414 | } | |
6415 | return 1; | |
6416 | } | |
6417 | return 0; | |
6418 | } | |
6419 | ||
1d6bda35 | 6420 | /* misc functions */ |
9f8d2a09 | 6421 | float32 uint32_to_float32( uint32 a STATUS_PARAM ) |
1d6bda35 FB |
6422 | { |
6423 | return int64_to_float32(a STATUS_VAR); | |
6424 | } | |
6425 | ||
9f8d2a09 | 6426 | float64 uint32_to_float64( uint32 a STATUS_PARAM ) |
1d6bda35 FB |
6427 | { |
6428 | return int64_to_float64(a STATUS_VAR); | |
6429 | } | |
6430 | ||
9f8d2a09 | 6431 | uint32 float32_to_uint32( float32 a STATUS_PARAM ) |
1d6bda35 FB |
6432 | { |
6433 | int64_t v; | |
9f8d2a09 | 6434 | uint32 res; |
1d6bda35 FB |
6435 | |
6436 | v = float32_to_int64(a STATUS_VAR); | |
6437 | if (v < 0) { | |
6438 | res = 0; | |
6439 | float_raise( float_flag_invalid STATUS_VAR); | |
6440 | } else if (v > 0xffffffff) { | |
6441 | res = 0xffffffff; | |
6442 | float_raise( float_flag_invalid STATUS_VAR); | |
6443 | } else { | |
6444 | res = v; | |
6445 | } | |
6446 | return res; | |
6447 | } | |
6448 | ||
9f8d2a09 | 6449 | uint32 float32_to_uint32_round_to_zero( float32 a STATUS_PARAM ) |
1d6bda35 FB |
6450 | { |
6451 | int64_t v; | |
9f8d2a09 | 6452 | uint32 res; |
1d6bda35 FB |
6453 | |
6454 | v = float32_to_int64_round_to_zero(a STATUS_VAR); | |
6455 | if (v < 0) { | |
6456 | res = 0; | |
6457 | float_raise( float_flag_invalid STATUS_VAR); | |
6458 | } else if (v > 0xffffffff) { | |
6459 | res = 0xffffffff; | |
6460 | float_raise( float_flag_invalid STATUS_VAR); | |
6461 | } else { | |
6462 | res = v; | |
6463 | } | |
6464 | return res; | |
6465 | } | |
6466 | ||
5aea4c58 | 6467 | uint_fast16_t float32_to_uint16_round_to_zero(float32 a STATUS_PARAM) |
cbcef455 PM |
6468 | { |
6469 | int64_t v; | |
5aea4c58 | 6470 | uint_fast16_t res; |
cbcef455 PM |
6471 | |
6472 | v = float32_to_int64_round_to_zero(a STATUS_VAR); | |
6473 | if (v < 0) { | |
6474 | res = 0; | |
6475 | float_raise( float_flag_invalid STATUS_VAR); | |
6476 | } else if (v > 0xffff) { | |
6477 | res = 0xffff; | |
6478 | float_raise( float_flag_invalid STATUS_VAR); | |
6479 | } else { | |
6480 | res = v; | |
6481 | } | |
6482 | return res; | |
6483 | } | |
6484 | ||
9f8d2a09 | 6485 | uint32 float64_to_uint32( float64 a STATUS_PARAM ) |
1d6bda35 FB |
6486 | { |
6487 | int64_t v; | |
9f8d2a09 | 6488 | uint32 res; |
1d6bda35 FB |
6489 | |
6490 | v = float64_to_int64(a STATUS_VAR); | |
6491 | if (v < 0) { | |
6492 | res = 0; | |
6493 | float_raise( float_flag_invalid STATUS_VAR); | |
6494 | } else if (v > 0xffffffff) { | |
6495 | res = 0xffffffff; | |
6496 | float_raise( float_flag_invalid STATUS_VAR); | |
6497 | } else { | |
6498 | res = v; | |
6499 | } | |
6500 | return res; | |
6501 | } | |
6502 | ||
9f8d2a09 | 6503 | uint32 float64_to_uint32_round_to_zero( float64 a STATUS_PARAM ) |
1d6bda35 FB |
6504 | { |
6505 | int64_t v; | |
9f8d2a09 | 6506 | uint32 res; |
1d6bda35 FB |
6507 | |
6508 | v = float64_to_int64_round_to_zero(a STATUS_VAR); | |
6509 | if (v < 0) { | |
6510 | res = 0; | |
6511 | float_raise( float_flag_invalid STATUS_VAR); | |
6512 | } else if (v > 0xffffffff) { | |
6513 | res = 0xffffffff; | |
6514 | float_raise( float_flag_invalid STATUS_VAR); | |
6515 | } else { | |
6516 | res = v; | |
6517 | } | |
6518 | return res; | |
6519 | } | |
6520 | ||
5aea4c58 | 6521 | uint_fast16_t float64_to_uint16_round_to_zero(float64 a STATUS_PARAM) |
cbcef455 PM |
6522 | { |
6523 | int64_t v; | |
5aea4c58 | 6524 | uint_fast16_t res; |
cbcef455 PM |
6525 | |
6526 | v = float64_to_int64_round_to_zero(a STATUS_VAR); | |
6527 | if (v < 0) { | |
6528 | res = 0; | |
6529 | float_raise( float_flag_invalid STATUS_VAR); | |
6530 | } else if (v > 0xffff) { | |
6531 | res = 0xffff; | |
6532 | float_raise( float_flag_invalid STATUS_VAR); | |
6533 | } else { | |
6534 | res = v; | |
6535 | } | |
6536 | return res; | |
6537 | } | |
6538 | ||
f090c9d4 | 6539 | /* FIXME: This looks broken. */ |
75d62a58 JM |
6540 | uint64_t float64_to_uint64 (float64 a STATUS_PARAM) |
6541 | { | |
6542 | int64_t v; | |
6543 | ||
f090c9d4 PB |
6544 | v = float64_val(int64_to_float64(INT64_MIN STATUS_VAR)); |
6545 | v += float64_val(a); | |
6546 | v = float64_to_int64(make_float64(v) STATUS_VAR); | |
75d62a58 JM |
6547 | |
6548 | return v - INT64_MIN; | |
6549 | } | |
6550 | ||
6551 | uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM) | |
6552 | { | |
6553 | int64_t v; | |
6554 | ||
f090c9d4 PB |
6555 | v = float64_val(int64_to_float64(INT64_MIN STATUS_VAR)); |
6556 | v += float64_val(a); | |
6557 | v = float64_to_int64_round_to_zero(make_float64(v) STATUS_VAR); | |
75d62a58 JM |
6558 | |
6559 | return v - INT64_MIN; | |
6560 | } | |
6561 | ||
1d6bda35 | 6562 | #define COMPARE(s, nan_exp) \ |
750afe93 | 6563 | INLINE int float ## s ## _compare_internal( float ## s a, float ## s b, \ |
1d6bda35 FB |
6564 | int is_quiet STATUS_PARAM ) \ |
6565 | { \ | |
6566 | flag aSign, bSign; \ | |
bb98fe42 | 6567 | uint ## s ## _t av, bv; \ |
37d18660 PM |
6568 | a = float ## s ## _squash_input_denormal(a STATUS_VAR); \ |
6569 | b = float ## s ## _squash_input_denormal(b STATUS_VAR); \ | |
1d6bda35 FB |
6570 | \ |
6571 | if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \ | |
6572 | extractFloat ## s ## Frac( a ) ) || \ | |
6573 | ( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \ | |
6574 | extractFloat ## s ## Frac( b ) )) { \ | |
6575 | if (!is_quiet || \ | |
6576 | float ## s ## _is_signaling_nan( a ) || \ | |
6577 | float ## s ## _is_signaling_nan( b ) ) { \ | |
6578 | float_raise( float_flag_invalid STATUS_VAR); \ | |
6579 | } \ | |
6580 | return float_relation_unordered; \ | |
6581 | } \ | |
6582 | aSign = extractFloat ## s ## Sign( a ); \ | |
6583 | bSign = extractFloat ## s ## Sign( b ); \ | |
f090c9d4 | 6584 | av = float ## s ## _val(a); \ |
cd8a2533 | 6585 | bv = float ## s ## _val(b); \ |
1d6bda35 | 6586 | if ( aSign != bSign ) { \ |
bb98fe42 | 6587 | if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) { \ |
1d6bda35 FB |
6588 | /* zero case */ \ |
6589 | return float_relation_equal; \ | |
6590 | } else { \ | |
6591 | return 1 - (2 * aSign); \ | |
6592 | } \ | |
6593 | } else { \ | |
f090c9d4 | 6594 | if (av == bv) { \ |
1d6bda35 FB |
6595 | return float_relation_equal; \ |
6596 | } else { \ | |
f090c9d4 | 6597 | return 1 - 2 * (aSign ^ ( av < bv )); \ |
1d6bda35 FB |
6598 | } \ |
6599 | } \ | |
6600 | } \ | |
6601 | \ | |
750afe93 | 6602 | int float ## s ## _compare( float ## s a, float ## s b STATUS_PARAM ) \ |
1d6bda35 FB |
6603 | { \ |
6604 | return float ## s ## _compare_internal(a, b, 0 STATUS_VAR); \ | |
6605 | } \ | |
6606 | \ | |
750afe93 | 6607 | int float ## s ## _compare_quiet( float ## s a, float ## s b STATUS_PARAM ) \ |
1d6bda35 FB |
6608 | { \ |
6609 | return float ## s ## _compare_internal(a, b, 1 STATUS_VAR); \ | |
6610 | } | |
6611 | ||
6612 | COMPARE(32, 0xff) | |
6613 | COMPARE(64, 0x7ff) | |
9ee6e8bb | 6614 | |
f6714d36 AJ |
6615 | INLINE int floatx80_compare_internal( floatx80 a, floatx80 b, |
6616 | int is_quiet STATUS_PARAM ) | |
6617 | { | |
6618 | flag aSign, bSign; | |
6619 | ||
6620 | if (( ( extractFloatx80Exp( a ) == 0x7fff ) && | |
6621 | ( extractFloatx80Frac( a )<<1 ) ) || | |
6622 | ( ( extractFloatx80Exp( b ) == 0x7fff ) && | |
6623 | ( extractFloatx80Frac( b )<<1 ) )) { | |
6624 | if (!is_quiet || | |
6625 | floatx80_is_signaling_nan( a ) || | |
6626 | floatx80_is_signaling_nan( b ) ) { | |
6627 | float_raise( float_flag_invalid STATUS_VAR); | |
6628 | } | |
6629 | return float_relation_unordered; | |
6630 | } | |
6631 | aSign = extractFloatx80Sign( a ); | |
6632 | bSign = extractFloatx80Sign( b ); | |
6633 | if ( aSign != bSign ) { | |
6634 | ||
6635 | if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) && | |
6636 | ( ( a.low | b.low ) == 0 ) ) { | |
6637 | /* zero case */ | |
6638 | return float_relation_equal; | |
6639 | } else { | |
6640 | return 1 - (2 * aSign); | |
6641 | } | |
6642 | } else { | |
6643 | if (a.low == b.low && a.high == b.high) { | |
6644 | return float_relation_equal; | |
6645 | } else { | |
6646 | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); | |
6647 | } | |
6648 | } | |
6649 | } | |
6650 | ||
6651 | int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM ) | |
6652 | { | |
6653 | return floatx80_compare_internal(a, b, 0 STATUS_VAR); | |
6654 | } | |
6655 | ||
6656 | int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM ) | |
6657 | { | |
6658 | return floatx80_compare_internal(a, b, 1 STATUS_VAR); | |
6659 | } | |
6660 | ||
1f587329 BS |
6661 | INLINE int float128_compare_internal( float128 a, float128 b, |
6662 | int is_quiet STATUS_PARAM ) | |
6663 | { | |
6664 | flag aSign, bSign; | |
6665 | ||
6666 | if (( ( extractFloat128Exp( a ) == 0x7fff ) && | |
6667 | ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || | |
6668 | ( ( extractFloat128Exp( b ) == 0x7fff ) && | |
6669 | ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) { | |
6670 | if (!is_quiet || | |
6671 | float128_is_signaling_nan( a ) || | |
6672 | float128_is_signaling_nan( b ) ) { | |
6673 | float_raise( float_flag_invalid STATUS_VAR); | |
6674 | } | |
6675 | return float_relation_unordered; | |
6676 | } | |
6677 | aSign = extractFloat128Sign( a ); | |
6678 | bSign = extractFloat128Sign( b ); | |
6679 | if ( aSign != bSign ) { | |
6680 | if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) { | |
6681 | /* zero case */ | |
6682 | return float_relation_equal; | |
6683 | } else { | |
6684 | return 1 - (2 * aSign); | |
6685 | } | |
6686 | } else { | |
6687 | if (a.low == b.low && a.high == b.high) { | |
6688 | return float_relation_equal; | |
6689 | } else { | |
6690 | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); | |
6691 | } | |
6692 | } | |
6693 | } | |
6694 | ||
6695 | int float128_compare( float128 a, float128 b STATUS_PARAM ) | |
6696 | { | |
6697 | return float128_compare_internal(a, b, 0 STATUS_VAR); | |
6698 | } | |
6699 | ||
6700 | int float128_compare_quiet( float128 a, float128 b STATUS_PARAM ) | |
6701 | { | |
6702 | return float128_compare_internal(a, b, 1 STATUS_VAR); | |
6703 | } | |
6704 | ||
274f1b04 PM |
6705 | /* min() and max() functions. These can't be implemented as |
6706 | * 'compare and pick one input' because that would mishandle | |
6707 | * NaNs and +0 vs -0. | |
6708 | */ | |
6709 | #define MINMAX(s, nan_exp) \ | |
6710 | INLINE float ## s float ## s ## _minmax(float ## s a, float ## s b, \ | |
6711 | int ismin STATUS_PARAM ) \ | |
6712 | { \ | |
6713 | flag aSign, bSign; \ | |
6714 | uint ## s ## _t av, bv; \ | |
6715 | a = float ## s ## _squash_input_denormal(a STATUS_VAR); \ | |
6716 | b = float ## s ## _squash_input_denormal(b STATUS_VAR); \ | |
6717 | if (float ## s ## _is_any_nan(a) || \ | |
6718 | float ## s ## _is_any_nan(b)) { \ | |
6719 | return propagateFloat ## s ## NaN(a, b STATUS_VAR); \ | |
6720 | } \ | |
6721 | aSign = extractFloat ## s ## Sign(a); \ | |
6722 | bSign = extractFloat ## s ## Sign(b); \ | |
6723 | av = float ## s ## _val(a); \ | |
6724 | bv = float ## s ## _val(b); \ | |
6725 | if (aSign != bSign) { \ | |
6726 | if (ismin) { \ | |
6727 | return aSign ? a : b; \ | |
6728 | } else { \ | |
6729 | return aSign ? b : a; \ | |
6730 | } \ | |
6731 | } else { \ | |
6732 | if (ismin) { \ | |
6733 | return (aSign ^ (av < bv)) ? a : b; \ | |
6734 | } else { \ | |
6735 | return (aSign ^ (av < bv)) ? b : a; \ | |
6736 | } \ | |
6737 | } \ | |
6738 | } \ | |
6739 | \ | |
6740 | float ## s float ## s ## _min(float ## s a, float ## s b STATUS_PARAM) \ | |
6741 | { \ | |
6742 | return float ## s ## _minmax(a, b, 1 STATUS_VAR); \ | |
6743 | } \ | |
6744 | \ | |
6745 | float ## s float ## s ## _max(float ## s a, float ## s b STATUS_PARAM) \ | |
6746 | { \ | |
6747 | return float ## s ## _minmax(a, b, 0 STATUS_VAR); \ | |
6748 | } | |
6749 | ||
6750 | MINMAX(32, 0xff) | |
6751 | MINMAX(64, 0x7ff) | |
6752 | ||
6753 | ||
9ee6e8bb PB |
6754 | /* Multiply A by 2 raised to the power N. */ |
6755 | float32 float32_scalbn( float32 a, int n STATUS_PARAM ) | |
6756 | { | |
6757 | flag aSign; | |
326b9e98 | 6758 | int16_t aExp; |
bb98fe42 | 6759 | uint32_t aSig; |
9ee6e8bb | 6760 | |
37d18660 | 6761 | a = float32_squash_input_denormal(a STATUS_VAR); |
9ee6e8bb PB |
6762 | aSig = extractFloat32Frac( a ); |
6763 | aExp = extractFloat32Exp( a ); | |
6764 | aSign = extractFloat32Sign( a ); | |
6765 | ||
6766 | if ( aExp == 0xFF ) { | |
326b9e98 AJ |
6767 | if ( aSig ) { |
6768 | return propagateFloat32NaN( a, a STATUS_VAR ); | |
6769 | } | |
9ee6e8bb PB |
6770 | return a; |
6771 | } | |
69397542 PB |
6772 | if ( aExp != 0 ) |
6773 | aSig |= 0x00800000; | |
6774 | else if ( aSig == 0 ) | |
6775 | return a; | |
6776 | ||
326b9e98 AJ |
6777 | if (n > 0x200) { |
6778 | n = 0x200; | |
6779 | } else if (n < -0x200) { | |
6780 | n = -0x200; | |
6781 | } | |
6782 | ||
69397542 PB |
6783 | aExp += n - 1; |
6784 | aSig <<= 7; | |
6785 | return normalizeRoundAndPackFloat32( aSign, aExp, aSig STATUS_VAR ); | |
9ee6e8bb PB |
6786 | } |
6787 | ||
6788 | float64 float64_scalbn( float64 a, int n STATUS_PARAM ) | |
6789 | { | |
6790 | flag aSign; | |
326b9e98 | 6791 | int16_t aExp; |
bb98fe42 | 6792 | uint64_t aSig; |
9ee6e8bb | 6793 | |
37d18660 | 6794 | a = float64_squash_input_denormal(a STATUS_VAR); |
9ee6e8bb PB |
6795 | aSig = extractFloat64Frac( a ); |
6796 | aExp = extractFloat64Exp( a ); | |
6797 | aSign = extractFloat64Sign( a ); | |
6798 | ||
6799 | if ( aExp == 0x7FF ) { | |
326b9e98 AJ |
6800 | if ( aSig ) { |
6801 | return propagateFloat64NaN( a, a STATUS_VAR ); | |
6802 | } | |
9ee6e8bb PB |
6803 | return a; |
6804 | } | |
69397542 PB |
6805 | if ( aExp != 0 ) |
6806 | aSig |= LIT64( 0x0010000000000000 ); | |
6807 | else if ( aSig == 0 ) | |
6808 | return a; | |
6809 | ||
326b9e98 AJ |
6810 | if (n > 0x1000) { |
6811 | n = 0x1000; | |
6812 | } else if (n < -0x1000) { | |
6813 | n = -0x1000; | |
6814 | } | |
6815 | ||
69397542 PB |
6816 | aExp += n - 1; |
6817 | aSig <<= 10; | |
6818 | return normalizeRoundAndPackFloat64( aSign, aExp, aSig STATUS_VAR ); | |
9ee6e8bb PB |
6819 | } |
6820 | ||
9ee6e8bb PB |
6821 | floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM ) |
6822 | { | |
6823 | flag aSign; | |
326b9e98 | 6824 | int32_t aExp; |
bb98fe42 | 6825 | uint64_t aSig; |
9ee6e8bb PB |
6826 | |
6827 | aSig = extractFloatx80Frac( a ); | |
6828 | aExp = extractFloatx80Exp( a ); | |
6829 | aSign = extractFloatx80Sign( a ); | |
6830 | ||
326b9e98 AJ |
6831 | if ( aExp == 0x7FFF ) { |
6832 | if ( aSig<<1 ) { | |
6833 | return propagateFloatx80NaN( a, a STATUS_VAR ); | |
6834 | } | |
9ee6e8bb PB |
6835 | return a; |
6836 | } | |
326b9e98 | 6837 | |
69397542 PB |
6838 | if (aExp == 0 && aSig == 0) |
6839 | return a; | |
6840 | ||
326b9e98 AJ |
6841 | if (n > 0x10000) { |
6842 | n = 0x10000; | |
6843 | } else if (n < -0x10000) { | |
6844 | n = -0x10000; | |
6845 | } | |
6846 | ||
9ee6e8bb | 6847 | aExp += n; |
69397542 PB |
6848 | return normalizeRoundAndPackFloatx80( STATUS(floatx80_rounding_precision), |
6849 | aSign, aExp, aSig, 0 STATUS_VAR ); | |
9ee6e8bb | 6850 | } |
9ee6e8bb | 6851 | |
9ee6e8bb PB |
6852 | float128 float128_scalbn( float128 a, int n STATUS_PARAM ) |
6853 | { | |
6854 | flag aSign; | |
326b9e98 | 6855 | int32_t aExp; |
bb98fe42 | 6856 | uint64_t aSig0, aSig1; |
9ee6e8bb PB |
6857 | |
6858 | aSig1 = extractFloat128Frac1( a ); | |
6859 | aSig0 = extractFloat128Frac0( a ); | |
6860 | aExp = extractFloat128Exp( a ); | |
6861 | aSign = extractFloat128Sign( a ); | |
6862 | if ( aExp == 0x7FFF ) { | |
326b9e98 AJ |
6863 | if ( aSig0 | aSig1 ) { |
6864 | return propagateFloat128NaN( a, a STATUS_VAR ); | |
6865 | } | |
9ee6e8bb PB |
6866 | return a; |
6867 | } | |
69397542 PB |
6868 | if ( aExp != 0 ) |
6869 | aSig0 |= LIT64( 0x0001000000000000 ); | |
6870 | else if ( aSig0 == 0 && aSig1 == 0 ) | |
6871 | return a; | |
6872 | ||
326b9e98 AJ |
6873 | if (n > 0x10000) { |
6874 | n = 0x10000; | |
6875 | } else if (n < -0x10000) { | |
6876 | n = -0x10000; | |
6877 | } | |
6878 | ||
69397542 PB |
6879 | aExp += n - 1; |
6880 | return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1 | |
6881 | STATUS_VAR ); | |
9ee6e8bb PB |
6882 | |
6883 | } |