]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
fd6ce8f6 | 2 | * virtual page mapping and translated block handling |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
fad6cb1a | 18 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA |
54936004 | 19 | */ |
67b915a5 | 20 | #include "config.h" |
d5a8f07c | 21 | #ifdef _WIN32 |
4fddf62a | 22 | #define WIN32_LEAN_AND_MEAN |
d5a8f07c FB |
23 | #include <windows.h> |
24 | #else | |
a98d49b1 | 25 | #include <sys/types.h> |
d5a8f07c FB |
26 | #include <sys/mman.h> |
27 | #endif | |
54936004 FB |
28 | #include <stdlib.h> |
29 | #include <stdio.h> | |
30 | #include <stdarg.h> | |
31 | #include <string.h> | |
32 | #include <errno.h> | |
33 | #include <unistd.h> | |
34 | #include <inttypes.h> | |
35 | ||
6180a181 FB |
36 | #include "cpu.h" |
37 | #include "exec-all.h" | |
ca10f867 | 38 | #include "qemu-common.h" |
b67d9a52 | 39 | #include "tcg.h" |
b3c7724c | 40 | #include "hw/hw.h" |
74576198 | 41 | #include "osdep.h" |
7ba1e619 | 42 | #include "kvm.h" |
53a5960a PB |
43 | #if defined(CONFIG_USER_ONLY) |
44 | #include <qemu.h> | |
45 | #endif | |
54936004 | 46 | |
fd6ce8f6 | 47 | //#define DEBUG_TB_INVALIDATE |
66e85a21 | 48 | //#define DEBUG_FLUSH |
9fa3e853 | 49 | //#define DEBUG_TLB |
67d3b957 | 50 | //#define DEBUG_UNASSIGNED |
fd6ce8f6 FB |
51 | |
52 | /* make various TB consistency checks */ | |
5fafdf24 TS |
53 | //#define DEBUG_TB_CHECK |
54 | //#define DEBUG_TLB_CHECK | |
fd6ce8f6 | 55 | |
1196be37 | 56 | //#define DEBUG_IOPORT |
db7b5426 | 57 | //#define DEBUG_SUBPAGE |
1196be37 | 58 | |
99773bd4 PB |
59 | #if !defined(CONFIG_USER_ONLY) |
60 | /* TB consistency checks only implemented for usermode emulation. */ | |
61 | #undef DEBUG_TB_CHECK | |
62 | #endif | |
63 | ||
9fa3e853 FB |
64 | #define SMC_BITMAP_USE_THRESHOLD 10 |
65 | ||
66 | #define MMAP_AREA_START 0x00000000 | |
67 | #define MMAP_AREA_END 0xa8000000 | |
fd6ce8f6 | 68 | |
108c49b8 FB |
69 | #if defined(TARGET_SPARC64) |
70 | #define TARGET_PHYS_ADDR_SPACE_BITS 41 | |
5dcb6b91 BS |
71 | #elif defined(TARGET_SPARC) |
72 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
bedb69ea JM |
73 | #elif defined(TARGET_ALPHA) |
74 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
75 | #define TARGET_VIRT_ADDR_SPACE_BITS 42 | |
108c49b8 FB |
76 | #elif defined(TARGET_PPC64) |
77 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
00f82b8a AJ |
78 | #elif defined(TARGET_X86_64) && !defined(USE_KQEMU) |
79 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
80 | #elif defined(TARGET_I386) && !defined(USE_KQEMU) | |
81 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
108c49b8 FB |
82 | #else |
83 | /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */ | |
84 | #define TARGET_PHYS_ADDR_SPACE_BITS 32 | |
85 | #endif | |
86 | ||
bdaf78e0 | 87 | static TranslationBlock *tbs; |
26a5f13b | 88 | int code_gen_max_blocks; |
9fa3e853 | 89 | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; |
bdaf78e0 | 90 | static int nb_tbs; |
eb51d102 FB |
91 | /* any access to the tbs or the page table must use this lock */ |
92 | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED; | |
fd6ce8f6 | 93 | |
141ac468 BS |
94 | #if defined(__arm__) || defined(__sparc_v9__) |
95 | /* The prologue must be reachable with a direct jump. ARM and Sparc64 | |
96 | have limited branch ranges (possibly also PPC) so place it in a | |
d03d860b BS |
97 | section close to code segment. */ |
98 | #define code_gen_section \ | |
99 | __attribute__((__section__(".gen_code"))) \ | |
100 | __attribute__((aligned (32))) | |
101 | #else | |
102 | #define code_gen_section \ | |
103 | __attribute__((aligned (32))) | |
104 | #endif | |
105 | ||
106 | uint8_t code_gen_prologue[1024] code_gen_section; | |
bdaf78e0 BS |
107 | static uint8_t *code_gen_buffer; |
108 | static unsigned long code_gen_buffer_size; | |
26a5f13b | 109 | /* threshold to flush the translated code buffer */ |
bdaf78e0 | 110 | static unsigned long code_gen_buffer_max_size; |
fd6ce8f6 FB |
111 | uint8_t *code_gen_ptr; |
112 | ||
e2eef170 | 113 | #if !defined(CONFIG_USER_ONLY) |
00f82b8a | 114 | ram_addr_t phys_ram_size; |
9fa3e853 FB |
115 | int phys_ram_fd; |
116 | uint8_t *phys_ram_base; | |
1ccde1cb | 117 | uint8_t *phys_ram_dirty; |
74576198 | 118 | static int in_migration; |
e9a1ab19 | 119 | static ram_addr_t phys_ram_alloc_offset = 0; |
e2eef170 | 120 | #endif |
9fa3e853 | 121 | |
6a00d601 FB |
122 | CPUState *first_cpu; |
123 | /* current CPU in the current thread. It is only valid inside | |
124 | cpu_exec() */ | |
5fafdf24 | 125 | CPUState *cpu_single_env; |
2e70f6ef | 126 | /* 0 = Do not count executed instructions. |
bf20dc07 | 127 | 1 = Precise instruction counting. |
2e70f6ef PB |
128 | 2 = Adaptive rate instruction counting. */ |
129 | int use_icount = 0; | |
130 | /* Current instruction counter. While executing translated code this may | |
131 | include some instructions that have not yet been executed. */ | |
132 | int64_t qemu_icount; | |
6a00d601 | 133 | |
54936004 | 134 | typedef struct PageDesc { |
92e873b9 | 135 | /* list of TBs intersecting this ram page */ |
fd6ce8f6 | 136 | TranslationBlock *first_tb; |
9fa3e853 FB |
137 | /* in order to optimize self modifying code, we count the number |
138 | of lookups we do to a given page to use a bitmap */ | |
139 | unsigned int code_write_count; | |
140 | uint8_t *code_bitmap; | |
141 | #if defined(CONFIG_USER_ONLY) | |
142 | unsigned long flags; | |
143 | #endif | |
54936004 FB |
144 | } PageDesc; |
145 | ||
92e873b9 | 146 | typedef struct PhysPageDesc { |
0f459d16 | 147 | /* offset in host memory of the page + io_index in the low bits */ |
00f82b8a | 148 | ram_addr_t phys_offset; |
8da3ff18 | 149 | ram_addr_t region_offset; |
92e873b9 FB |
150 | } PhysPageDesc; |
151 | ||
54936004 | 152 | #define L2_BITS 10 |
bedb69ea JM |
153 | #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS) |
154 | /* XXX: this is a temporary hack for alpha target. | |
155 | * In the future, this is to be replaced by a multi-level table | |
156 | * to actually be able to handle the complete 64 bits address space. | |
157 | */ | |
158 | #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS) | |
159 | #else | |
03875444 | 160 | #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS) |
bedb69ea | 161 | #endif |
54936004 FB |
162 | |
163 | #define L1_SIZE (1 << L1_BITS) | |
164 | #define L2_SIZE (1 << L2_BITS) | |
165 | ||
83fb7adf FB |
166 | unsigned long qemu_real_host_page_size; |
167 | unsigned long qemu_host_page_bits; | |
168 | unsigned long qemu_host_page_size; | |
169 | unsigned long qemu_host_page_mask; | |
54936004 | 170 | |
92e873b9 | 171 | /* XXX: for system emulation, it could just be an array */ |
54936004 | 172 | static PageDesc *l1_map[L1_SIZE]; |
bdaf78e0 | 173 | static PhysPageDesc **l1_phys_map; |
54936004 | 174 | |
e2eef170 PB |
175 | #if !defined(CONFIG_USER_ONLY) |
176 | static void io_mem_init(void); | |
177 | ||
33417e70 | 178 | /* io memory support */ |
33417e70 FB |
179 | CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; |
180 | CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; | |
a4193c8a | 181 | void *io_mem_opaque[IO_MEM_NB_ENTRIES]; |
88715657 | 182 | char io_mem_used[IO_MEM_NB_ENTRIES]; |
6658ffb8 PB |
183 | static int io_mem_watch; |
184 | #endif | |
33417e70 | 185 | |
34865134 | 186 | /* log support */ |
d9b630fd | 187 | static const char *logfilename = "/tmp/qemu.log"; |
34865134 FB |
188 | FILE *logfile; |
189 | int loglevel; | |
e735b91c | 190 | static int log_append = 0; |
34865134 | 191 | |
e3db7226 FB |
192 | /* statistics */ |
193 | static int tlb_flush_count; | |
194 | static int tb_flush_count; | |
195 | static int tb_phys_invalidate_count; | |
196 | ||
db7b5426 BS |
197 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
198 | typedef struct subpage_t { | |
199 | target_phys_addr_t base; | |
3ee89922 BS |
200 | CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4]; |
201 | CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4]; | |
202 | void *opaque[TARGET_PAGE_SIZE][2][4]; | |
8da3ff18 | 203 | ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4]; |
db7b5426 BS |
204 | } subpage_t; |
205 | ||
7cb69cae FB |
206 | #ifdef _WIN32 |
207 | static void map_exec(void *addr, long size) | |
208 | { | |
209 | DWORD old_protect; | |
210 | VirtualProtect(addr, size, | |
211 | PAGE_EXECUTE_READWRITE, &old_protect); | |
212 | ||
213 | } | |
214 | #else | |
215 | static void map_exec(void *addr, long size) | |
216 | { | |
4369415f | 217 | unsigned long start, end, page_size; |
7cb69cae | 218 | |
4369415f | 219 | page_size = getpagesize(); |
7cb69cae | 220 | start = (unsigned long)addr; |
4369415f | 221 | start &= ~(page_size - 1); |
7cb69cae FB |
222 | |
223 | end = (unsigned long)addr + size; | |
4369415f FB |
224 | end += page_size - 1; |
225 | end &= ~(page_size - 1); | |
7cb69cae FB |
226 | |
227 | mprotect((void *)start, end - start, | |
228 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
229 | } | |
230 | #endif | |
231 | ||
b346ff46 | 232 | static void page_init(void) |
54936004 | 233 | { |
83fb7adf | 234 | /* NOTE: we can always suppose that qemu_host_page_size >= |
54936004 | 235 | TARGET_PAGE_SIZE */ |
c2b48b69 AL |
236 | #ifdef _WIN32 |
237 | { | |
238 | SYSTEM_INFO system_info; | |
239 | ||
240 | GetSystemInfo(&system_info); | |
241 | qemu_real_host_page_size = system_info.dwPageSize; | |
242 | } | |
243 | #else | |
244 | qemu_real_host_page_size = getpagesize(); | |
245 | #endif | |
83fb7adf FB |
246 | if (qemu_host_page_size == 0) |
247 | qemu_host_page_size = qemu_real_host_page_size; | |
248 | if (qemu_host_page_size < TARGET_PAGE_SIZE) | |
249 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
250 | qemu_host_page_bits = 0; | |
251 | while ((1 << qemu_host_page_bits) < qemu_host_page_size) | |
252 | qemu_host_page_bits++; | |
253 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |
108c49b8 FB |
254 | l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *)); |
255 | memset(l1_phys_map, 0, L1_SIZE * sizeof(void *)); | |
50a9569b AZ |
256 | |
257 | #if !defined(_WIN32) && defined(CONFIG_USER_ONLY) | |
258 | { | |
259 | long long startaddr, endaddr; | |
260 | FILE *f; | |
261 | int n; | |
262 | ||
c8a706fe | 263 | mmap_lock(); |
0776590d | 264 | last_brk = (unsigned long)sbrk(0); |
50a9569b AZ |
265 | f = fopen("/proc/self/maps", "r"); |
266 | if (f) { | |
267 | do { | |
268 | n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr); | |
269 | if (n == 2) { | |
e0b8d65a BS |
270 | startaddr = MIN(startaddr, |
271 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
272 | endaddr = MIN(endaddr, | |
273 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
b5fc909e | 274 | page_set_flags(startaddr & TARGET_PAGE_MASK, |
50a9569b AZ |
275 | TARGET_PAGE_ALIGN(endaddr), |
276 | PAGE_RESERVED); | |
277 | } | |
278 | } while (!feof(f)); | |
279 | fclose(f); | |
280 | } | |
c8a706fe | 281 | mmap_unlock(); |
50a9569b AZ |
282 | } |
283 | #endif | |
54936004 FB |
284 | } |
285 | ||
434929bf | 286 | static inline PageDesc **page_l1_map(target_ulong index) |
54936004 | 287 | { |
17e2377a PB |
288 | #if TARGET_LONG_BITS > 32 |
289 | /* Host memory outside guest VM. For 32-bit targets we have already | |
290 | excluded high addresses. */ | |
d8173e0f | 291 | if (index > ((target_ulong)L2_SIZE * L1_SIZE)) |
17e2377a PB |
292 | return NULL; |
293 | #endif | |
434929bf AL |
294 | return &l1_map[index >> L2_BITS]; |
295 | } | |
296 | ||
297 | static inline PageDesc *page_find_alloc(target_ulong index) | |
298 | { | |
299 | PageDesc **lp, *p; | |
300 | lp = page_l1_map(index); | |
301 | if (!lp) | |
302 | return NULL; | |
303 | ||
54936004 FB |
304 | p = *lp; |
305 | if (!p) { | |
306 | /* allocate if not found */ | |
17e2377a | 307 | #if defined(CONFIG_USER_ONLY) |
17e2377a PB |
308 | size_t len = sizeof(PageDesc) * L2_SIZE; |
309 | /* Don't use qemu_malloc because it may recurse. */ | |
310 | p = mmap(0, len, PROT_READ | PROT_WRITE, | |
311 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
54936004 | 312 | *lp = p; |
fb1c2cd7 AJ |
313 | if (h2g_valid(p)) { |
314 | unsigned long addr = h2g(p); | |
17e2377a PB |
315 | page_set_flags(addr & TARGET_PAGE_MASK, |
316 | TARGET_PAGE_ALIGN(addr + len), | |
317 | PAGE_RESERVED); | |
318 | } | |
319 | #else | |
320 | p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE); | |
321 | *lp = p; | |
322 | #endif | |
54936004 FB |
323 | } |
324 | return p + (index & (L2_SIZE - 1)); | |
325 | } | |
326 | ||
00f82b8a | 327 | static inline PageDesc *page_find(target_ulong index) |
54936004 | 328 | { |
434929bf AL |
329 | PageDesc **lp, *p; |
330 | lp = page_l1_map(index); | |
331 | if (!lp) | |
332 | return NULL; | |
54936004 | 333 | |
434929bf | 334 | p = *lp; |
54936004 FB |
335 | if (!p) |
336 | return 0; | |
fd6ce8f6 FB |
337 | return p + (index & (L2_SIZE - 1)); |
338 | } | |
339 | ||
108c49b8 | 340 | static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc) |
92e873b9 | 341 | { |
108c49b8 | 342 | void **lp, **p; |
e3f4e2a4 | 343 | PhysPageDesc *pd; |
92e873b9 | 344 | |
108c49b8 FB |
345 | p = (void **)l1_phys_map; |
346 | #if TARGET_PHYS_ADDR_SPACE_BITS > 32 | |
347 | ||
348 | #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS) | |
349 | #error unsupported TARGET_PHYS_ADDR_SPACE_BITS | |
350 | #endif | |
351 | lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1)); | |
92e873b9 FB |
352 | p = *lp; |
353 | if (!p) { | |
354 | /* allocate if not found */ | |
108c49b8 FB |
355 | if (!alloc) |
356 | return NULL; | |
357 | p = qemu_vmalloc(sizeof(void *) * L1_SIZE); | |
358 | memset(p, 0, sizeof(void *) * L1_SIZE); | |
359 | *lp = p; | |
360 | } | |
361 | #endif | |
362 | lp = p + ((index >> L2_BITS) & (L1_SIZE - 1)); | |
e3f4e2a4 PB |
363 | pd = *lp; |
364 | if (!pd) { | |
365 | int i; | |
108c49b8 FB |
366 | /* allocate if not found */ |
367 | if (!alloc) | |
368 | return NULL; | |
e3f4e2a4 PB |
369 | pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE); |
370 | *lp = pd; | |
67c4d23c | 371 | for (i = 0; i < L2_SIZE; i++) { |
e3f4e2a4 | 372 | pd[i].phys_offset = IO_MEM_UNASSIGNED; |
67c4d23c PB |
373 | pd[i].region_offset = (index + i) << TARGET_PAGE_BITS; |
374 | } | |
92e873b9 | 375 | } |
e3f4e2a4 | 376 | return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1)); |
92e873b9 FB |
377 | } |
378 | ||
108c49b8 | 379 | static inline PhysPageDesc *phys_page_find(target_phys_addr_t index) |
92e873b9 | 380 | { |
108c49b8 | 381 | return phys_page_find_alloc(index, 0); |
92e873b9 FB |
382 | } |
383 | ||
9fa3e853 | 384 | #if !defined(CONFIG_USER_ONLY) |
6a00d601 | 385 | static void tlb_protect_code(ram_addr_t ram_addr); |
5fafdf24 | 386 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 387 | target_ulong vaddr); |
c8a706fe PB |
388 | #define mmap_lock() do { } while(0) |
389 | #define mmap_unlock() do { } while(0) | |
9fa3e853 | 390 | #endif |
fd6ce8f6 | 391 | |
4369415f FB |
392 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024) |
393 | ||
394 | #if defined(CONFIG_USER_ONLY) | |
395 | /* Currently it is not recommanded to allocate big chunks of data in | |
396 | user mode. It will change when a dedicated libc will be used */ | |
397 | #define USE_STATIC_CODE_GEN_BUFFER | |
398 | #endif | |
399 | ||
400 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
401 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]; | |
402 | #endif | |
403 | ||
8fcd3692 | 404 | static void code_gen_alloc(unsigned long tb_size) |
26a5f13b | 405 | { |
4369415f FB |
406 | #ifdef USE_STATIC_CODE_GEN_BUFFER |
407 | code_gen_buffer = static_code_gen_buffer; | |
408 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
409 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
410 | #else | |
26a5f13b FB |
411 | code_gen_buffer_size = tb_size; |
412 | if (code_gen_buffer_size == 0) { | |
4369415f FB |
413 | #if defined(CONFIG_USER_ONLY) |
414 | /* in user mode, phys_ram_size is not meaningful */ | |
415 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
416 | #else | |
26a5f13b | 417 | /* XXX: needs ajustments */ |
174a9a1f | 418 | code_gen_buffer_size = (unsigned long)(phys_ram_size / 4); |
4369415f | 419 | #endif |
26a5f13b FB |
420 | } |
421 | if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE) | |
422 | code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE; | |
423 | /* The code gen buffer location may have constraints depending on | |
424 | the host cpu and OS */ | |
425 | #if defined(__linux__) | |
426 | { | |
427 | int flags; | |
141ac468 BS |
428 | void *start = NULL; |
429 | ||
26a5f13b FB |
430 | flags = MAP_PRIVATE | MAP_ANONYMOUS; |
431 | #if defined(__x86_64__) | |
432 | flags |= MAP_32BIT; | |
433 | /* Cannot map more than that */ | |
434 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
435 | code_gen_buffer_size = (800 * 1024 * 1024); | |
141ac468 BS |
436 | #elif defined(__sparc_v9__) |
437 | // Map the buffer below 2G, so we can use direct calls and branches | |
438 | flags |= MAP_FIXED; | |
439 | start = (void *) 0x60000000UL; | |
440 | if (code_gen_buffer_size > (512 * 1024 * 1024)) | |
441 | code_gen_buffer_size = (512 * 1024 * 1024); | |
1cb0661e | 442 | #elif defined(__arm__) |
63d41246 | 443 | /* Map the buffer below 32M, so we can use direct calls and branches */ |
1cb0661e AZ |
444 | flags |= MAP_FIXED; |
445 | start = (void *) 0x01000000UL; | |
446 | if (code_gen_buffer_size > 16 * 1024 * 1024) | |
447 | code_gen_buffer_size = 16 * 1024 * 1024; | |
26a5f13b | 448 | #endif |
141ac468 BS |
449 | code_gen_buffer = mmap(start, code_gen_buffer_size, |
450 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
26a5f13b FB |
451 | flags, -1, 0); |
452 | if (code_gen_buffer == MAP_FAILED) { | |
453 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
454 | exit(1); | |
455 | } | |
456 | } | |
06e67a82 AL |
457 | #elif defined(__FreeBSD__) |
458 | { | |
459 | int flags; | |
460 | void *addr = NULL; | |
461 | flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
462 | #if defined(__x86_64__) | |
463 | /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume | |
464 | * 0x40000000 is free */ | |
465 | flags |= MAP_FIXED; | |
466 | addr = (void *)0x40000000; | |
467 | /* Cannot map more than that */ | |
468 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
469 | code_gen_buffer_size = (800 * 1024 * 1024); | |
470 | #endif | |
471 | code_gen_buffer = mmap(addr, code_gen_buffer_size, | |
472 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
473 | flags, -1, 0); | |
474 | if (code_gen_buffer == MAP_FAILED) { | |
475 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
476 | exit(1); | |
477 | } | |
478 | } | |
26a5f13b FB |
479 | #else |
480 | code_gen_buffer = qemu_malloc(code_gen_buffer_size); | |
26a5f13b FB |
481 | map_exec(code_gen_buffer, code_gen_buffer_size); |
482 | #endif | |
4369415f | 483 | #endif /* !USE_STATIC_CODE_GEN_BUFFER */ |
26a5f13b FB |
484 | map_exec(code_gen_prologue, sizeof(code_gen_prologue)); |
485 | code_gen_buffer_max_size = code_gen_buffer_size - | |
486 | code_gen_max_block_size(); | |
487 | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; | |
488 | tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock)); | |
489 | } | |
490 | ||
491 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
492 | (in bytes) allocated to the translation buffer. Zero means default | |
493 | size. */ | |
494 | void cpu_exec_init_all(unsigned long tb_size) | |
495 | { | |
26a5f13b FB |
496 | cpu_gen_init(); |
497 | code_gen_alloc(tb_size); | |
498 | code_gen_ptr = code_gen_buffer; | |
4369415f | 499 | page_init(); |
e2eef170 | 500 | #if !defined(CONFIG_USER_ONLY) |
26a5f13b | 501 | io_mem_init(); |
e2eef170 | 502 | #endif |
26a5f13b FB |
503 | } |
504 | ||
9656f324 PB |
505 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
506 | ||
507 | #define CPU_COMMON_SAVE_VERSION 1 | |
508 | ||
509 | static void cpu_common_save(QEMUFile *f, void *opaque) | |
510 | { | |
511 | CPUState *env = opaque; | |
512 | ||
513 | qemu_put_be32s(f, &env->halted); | |
514 | qemu_put_be32s(f, &env->interrupt_request); | |
515 | } | |
516 | ||
517 | static int cpu_common_load(QEMUFile *f, void *opaque, int version_id) | |
518 | { | |
519 | CPUState *env = opaque; | |
520 | ||
521 | if (version_id != CPU_COMMON_SAVE_VERSION) | |
522 | return -EINVAL; | |
523 | ||
524 | qemu_get_be32s(f, &env->halted); | |
75f482ae | 525 | qemu_get_be32s(f, &env->interrupt_request); |
9656f324 PB |
526 | tlb_flush(env, 1); |
527 | ||
528 | return 0; | |
529 | } | |
530 | #endif | |
531 | ||
6a00d601 | 532 | void cpu_exec_init(CPUState *env) |
fd6ce8f6 | 533 | { |
6a00d601 FB |
534 | CPUState **penv; |
535 | int cpu_index; | |
536 | ||
6a00d601 FB |
537 | env->next_cpu = NULL; |
538 | penv = &first_cpu; | |
539 | cpu_index = 0; | |
540 | while (*penv != NULL) { | |
541 | penv = (CPUState **)&(*penv)->next_cpu; | |
542 | cpu_index++; | |
543 | } | |
544 | env->cpu_index = cpu_index; | |
c0ce998e AL |
545 | TAILQ_INIT(&env->breakpoints); |
546 | TAILQ_INIT(&env->watchpoints); | |
6a00d601 | 547 | *penv = env; |
b3c7724c | 548 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
9656f324 PB |
549 | register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION, |
550 | cpu_common_save, cpu_common_load, env); | |
b3c7724c PB |
551 | register_savevm("cpu", cpu_index, CPU_SAVE_VERSION, |
552 | cpu_save, cpu_load, env); | |
553 | #endif | |
fd6ce8f6 FB |
554 | } |
555 | ||
9fa3e853 FB |
556 | static inline void invalidate_page_bitmap(PageDesc *p) |
557 | { | |
558 | if (p->code_bitmap) { | |
59817ccb | 559 | qemu_free(p->code_bitmap); |
9fa3e853 FB |
560 | p->code_bitmap = NULL; |
561 | } | |
562 | p->code_write_count = 0; | |
563 | } | |
564 | ||
fd6ce8f6 FB |
565 | /* set to NULL all the 'first_tb' fields in all PageDescs */ |
566 | static void page_flush_tb(void) | |
567 | { | |
568 | int i, j; | |
569 | PageDesc *p; | |
570 | ||
571 | for(i = 0; i < L1_SIZE; i++) { | |
572 | p = l1_map[i]; | |
573 | if (p) { | |
9fa3e853 FB |
574 | for(j = 0; j < L2_SIZE; j++) { |
575 | p->first_tb = NULL; | |
576 | invalidate_page_bitmap(p); | |
577 | p++; | |
578 | } | |
fd6ce8f6 FB |
579 | } |
580 | } | |
581 | } | |
582 | ||
583 | /* flush all the translation blocks */ | |
d4e8164f | 584 | /* XXX: tb_flush is currently not thread safe */ |
6a00d601 | 585 | void tb_flush(CPUState *env1) |
fd6ce8f6 | 586 | { |
6a00d601 | 587 | CPUState *env; |
0124311e | 588 | #if defined(DEBUG_FLUSH) |
ab3d1727 BS |
589 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", |
590 | (unsigned long)(code_gen_ptr - code_gen_buffer), | |
591 | nb_tbs, nb_tbs > 0 ? | |
592 | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0); | |
fd6ce8f6 | 593 | #endif |
26a5f13b | 594 | if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size) |
a208e54a PB |
595 | cpu_abort(env1, "Internal error: code buffer overflow\n"); |
596 | ||
fd6ce8f6 | 597 | nb_tbs = 0; |
3b46e624 | 598 | |
6a00d601 FB |
599 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
600 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
601 | } | |
9fa3e853 | 602 | |
8a8a608f | 603 | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); |
fd6ce8f6 | 604 | page_flush_tb(); |
9fa3e853 | 605 | |
fd6ce8f6 | 606 | code_gen_ptr = code_gen_buffer; |
d4e8164f FB |
607 | /* XXX: flush processor icache at this point if cache flush is |
608 | expensive */ | |
e3db7226 | 609 | tb_flush_count++; |
fd6ce8f6 FB |
610 | } |
611 | ||
612 | #ifdef DEBUG_TB_CHECK | |
613 | ||
bc98a7ef | 614 | static void tb_invalidate_check(target_ulong address) |
fd6ce8f6 FB |
615 | { |
616 | TranslationBlock *tb; | |
617 | int i; | |
618 | address &= TARGET_PAGE_MASK; | |
99773bd4 PB |
619 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
620 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
621 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || |
622 | address >= tb->pc + tb->size)) { | |
623 | printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n", | |
99773bd4 | 624 | address, (long)tb->pc, tb->size); |
fd6ce8f6 FB |
625 | } |
626 | } | |
627 | } | |
628 | } | |
629 | ||
630 | /* verify that all the pages have correct rights for code */ | |
631 | static void tb_page_check(void) | |
632 | { | |
633 | TranslationBlock *tb; | |
634 | int i, flags1, flags2; | |
3b46e624 | 635 | |
99773bd4 PB |
636 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
637 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
638 | flags1 = page_get_flags(tb->pc); |
639 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
640 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
641 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
99773bd4 | 642 | (long)tb->pc, tb->size, flags1, flags2); |
fd6ce8f6 FB |
643 | } |
644 | } | |
645 | } | |
646 | } | |
647 | ||
bdaf78e0 | 648 | static void tb_jmp_check(TranslationBlock *tb) |
d4e8164f FB |
649 | { |
650 | TranslationBlock *tb1; | |
651 | unsigned int n1; | |
652 | ||
653 | /* suppress any remaining jumps to this TB */ | |
654 | tb1 = tb->jmp_first; | |
655 | for(;;) { | |
656 | n1 = (long)tb1 & 3; | |
657 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
658 | if (n1 == 2) | |
659 | break; | |
660 | tb1 = tb1->jmp_next[n1]; | |
661 | } | |
662 | /* check end of list */ | |
663 | if (tb1 != tb) { | |
664 | printf("ERROR: jmp_list from 0x%08lx\n", (long)tb); | |
665 | } | |
666 | } | |
667 | ||
fd6ce8f6 FB |
668 | #endif |
669 | ||
670 | /* invalidate one TB */ | |
671 | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb, | |
672 | int next_offset) | |
673 | { | |
674 | TranslationBlock *tb1; | |
675 | for(;;) { | |
676 | tb1 = *ptb; | |
677 | if (tb1 == tb) { | |
678 | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset); | |
679 | break; | |
680 | } | |
681 | ptb = (TranslationBlock **)((char *)tb1 + next_offset); | |
682 | } | |
683 | } | |
684 | ||
9fa3e853 FB |
685 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) |
686 | { | |
687 | TranslationBlock *tb1; | |
688 | unsigned int n1; | |
689 | ||
690 | for(;;) { | |
691 | tb1 = *ptb; | |
692 | n1 = (long)tb1 & 3; | |
693 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
694 | if (tb1 == tb) { | |
695 | *ptb = tb1->page_next[n1]; | |
696 | break; | |
697 | } | |
698 | ptb = &tb1->page_next[n1]; | |
699 | } | |
700 | } | |
701 | ||
d4e8164f FB |
702 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) |
703 | { | |
704 | TranslationBlock *tb1, **ptb; | |
705 | unsigned int n1; | |
706 | ||
707 | ptb = &tb->jmp_next[n]; | |
708 | tb1 = *ptb; | |
709 | if (tb1) { | |
710 | /* find tb(n) in circular list */ | |
711 | for(;;) { | |
712 | tb1 = *ptb; | |
713 | n1 = (long)tb1 & 3; | |
714 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
715 | if (n1 == n && tb1 == tb) | |
716 | break; | |
717 | if (n1 == 2) { | |
718 | ptb = &tb1->jmp_first; | |
719 | } else { | |
720 | ptb = &tb1->jmp_next[n1]; | |
721 | } | |
722 | } | |
723 | /* now we can suppress tb(n) from the list */ | |
724 | *ptb = tb->jmp_next[n]; | |
725 | ||
726 | tb->jmp_next[n] = NULL; | |
727 | } | |
728 | } | |
729 | ||
730 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
731 | another TB */ | |
732 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
733 | { | |
734 | tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n])); | |
735 | } | |
736 | ||
2e70f6ef | 737 | void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr) |
fd6ce8f6 | 738 | { |
6a00d601 | 739 | CPUState *env; |
8a40a180 | 740 | PageDesc *p; |
d4e8164f | 741 | unsigned int h, n1; |
00f82b8a | 742 | target_phys_addr_t phys_pc; |
8a40a180 | 743 | TranslationBlock *tb1, *tb2; |
3b46e624 | 744 | |
8a40a180 FB |
745 | /* remove the TB from the hash list */ |
746 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
747 | h = tb_phys_hash_func(phys_pc); | |
5fafdf24 | 748 | tb_remove(&tb_phys_hash[h], tb, |
8a40a180 FB |
749 | offsetof(TranslationBlock, phys_hash_next)); |
750 | ||
751 | /* remove the TB from the page list */ | |
752 | if (tb->page_addr[0] != page_addr) { | |
753 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
754 | tb_page_remove(&p->first_tb, tb); | |
755 | invalidate_page_bitmap(p); | |
756 | } | |
757 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
758 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
759 | tb_page_remove(&p->first_tb, tb); | |
760 | invalidate_page_bitmap(p); | |
761 | } | |
762 | ||
36bdbe54 | 763 | tb_invalidated_flag = 1; |
59817ccb | 764 | |
fd6ce8f6 | 765 | /* remove the TB from the hash list */ |
8a40a180 | 766 | h = tb_jmp_cache_hash_func(tb->pc); |
6a00d601 FB |
767 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
768 | if (env->tb_jmp_cache[h] == tb) | |
769 | env->tb_jmp_cache[h] = NULL; | |
770 | } | |
d4e8164f FB |
771 | |
772 | /* suppress this TB from the two jump lists */ | |
773 | tb_jmp_remove(tb, 0); | |
774 | tb_jmp_remove(tb, 1); | |
775 | ||
776 | /* suppress any remaining jumps to this TB */ | |
777 | tb1 = tb->jmp_first; | |
778 | for(;;) { | |
779 | n1 = (long)tb1 & 3; | |
780 | if (n1 == 2) | |
781 | break; | |
782 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
783 | tb2 = tb1->jmp_next[n1]; | |
784 | tb_reset_jump(tb1, n1); | |
785 | tb1->jmp_next[n1] = NULL; | |
786 | tb1 = tb2; | |
787 | } | |
788 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */ | |
9fa3e853 | 789 | |
e3db7226 | 790 | tb_phys_invalidate_count++; |
9fa3e853 FB |
791 | } |
792 | ||
793 | static inline void set_bits(uint8_t *tab, int start, int len) | |
794 | { | |
795 | int end, mask, end1; | |
796 | ||
797 | end = start + len; | |
798 | tab += start >> 3; | |
799 | mask = 0xff << (start & 7); | |
800 | if ((start & ~7) == (end & ~7)) { | |
801 | if (start < end) { | |
802 | mask &= ~(0xff << (end & 7)); | |
803 | *tab |= mask; | |
804 | } | |
805 | } else { | |
806 | *tab++ |= mask; | |
807 | start = (start + 8) & ~7; | |
808 | end1 = end & ~7; | |
809 | while (start < end1) { | |
810 | *tab++ = 0xff; | |
811 | start += 8; | |
812 | } | |
813 | if (start < end) { | |
814 | mask = ~(0xff << (end & 7)); | |
815 | *tab |= mask; | |
816 | } | |
817 | } | |
818 | } | |
819 | ||
820 | static void build_page_bitmap(PageDesc *p) | |
821 | { | |
822 | int n, tb_start, tb_end; | |
823 | TranslationBlock *tb; | |
3b46e624 | 824 | |
b2a7081a | 825 | p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8); |
9fa3e853 FB |
826 | |
827 | tb = p->first_tb; | |
828 | while (tb != NULL) { | |
829 | n = (long)tb & 3; | |
830 | tb = (TranslationBlock *)((long)tb & ~3); | |
831 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
832 | if (n == 0) { | |
833 | /* NOTE: tb_end may be after the end of the page, but | |
834 | it is not a problem */ | |
835 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
836 | tb_end = tb_start + tb->size; | |
837 | if (tb_end > TARGET_PAGE_SIZE) | |
838 | tb_end = TARGET_PAGE_SIZE; | |
839 | } else { | |
840 | tb_start = 0; | |
841 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
842 | } | |
843 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |
844 | tb = tb->page_next[n]; | |
845 | } | |
846 | } | |
847 | ||
2e70f6ef PB |
848 | TranslationBlock *tb_gen_code(CPUState *env, |
849 | target_ulong pc, target_ulong cs_base, | |
850 | int flags, int cflags) | |
d720b93d FB |
851 | { |
852 | TranslationBlock *tb; | |
853 | uint8_t *tc_ptr; | |
854 | target_ulong phys_pc, phys_page2, virt_page2; | |
855 | int code_gen_size; | |
856 | ||
c27004ec FB |
857 | phys_pc = get_phys_addr_code(env, pc); |
858 | tb = tb_alloc(pc); | |
d720b93d FB |
859 | if (!tb) { |
860 | /* flush must be done */ | |
861 | tb_flush(env); | |
862 | /* cannot fail at this point */ | |
c27004ec | 863 | tb = tb_alloc(pc); |
2e70f6ef PB |
864 | /* Don't forget to invalidate previous TB info. */ |
865 | tb_invalidated_flag = 1; | |
d720b93d FB |
866 | } |
867 | tc_ptr = code_gen_ptr; | |
868 | tb->tc_ptr = tc_ptr; | |
869 | tb->cs_base = cs_base; | |
870 | tb->flags = flags; | |
871 | tb->cflags = cflags; | |
d07bde88 | 872 | cpu_gen_code(env, tb, &code_gen_size); |
d720b93d | 873 | code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); |
3b46e624 | 874 | |
d720b93d | 875 | /* check next page if needed */ |
c27004ec | 876 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; |
d720b93d | 877 | phys_page2 = -1; |
c27004ec | 878 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { |
d720b93d FB |
879 | phys_page2 = get_phys_addr_code(env, virt_page2); |
880 | } | |
881 | tb_link_phys(tb, phys_pc, phys_page2); | |
2e70f6ef | 882 | return tb; |
d720b93d | 883 | } |
3b46e624 | 884 | |
9fa3e853 FB |
885 | /* invalidate all TBs which intersect with the target physical page |
886 | starting in range [start;end[. NOTE: start and end must refer to | |
d720b93d FB |
887 | the same physical page. 'is_cpu_write_access' should be true if called |
888 | from a real cpu write access: the virtual CPU will exit the current | |
889 | TB if code is modified inside this TB. */ | |
00f82b8a | 890 | void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, |
d720b93d FB |
891 | int is_cpu_write_access) |
892 | { | |
6b917547 | 893 | TranslationBlock *tb, *tb_next, *saved_tb; |
d720b93d | 894 | CPUState *env = cpu_single_env; |
9fa3e853 | 895 | target_ulong tb_start, tb_end; |
6b917547 AL |
896 | PageDesc *p; |
897 | int n; | |
898 | #ifdef TARGET_HAS_PRECISE_SMC | |
899 | int current_tb_not_found = is_cpu_write_access; | |
900 | TranslationBlock *current_tb = NULL; | |
901 | int current_tb_modified = 0; | |
902 | target_ulong current_pc = 0; | |
903 | target_ulong current_cs_base = 0; | |
904 | int current_flags = 0; | |
905 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
906 | |
907 | p = page_find(start >> TARGET_PAGE_BITS); | |
5fafdf24 | 908 | if (!p) |
9fa3e853 | 909 | return; |
5fafdf24 | 910 | if (!p->code_bitmap && |
d720b93d FB |
911 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && |
912 | is_cpu_write_access) { | |
9fa3e853 FB |
913 | /* build code bitmap */ |
914 | build_page_bitmap(p); | |
915 | } | |
916 | ||
917 | /* we remove all the TBs in the range [start, end[ */ | |
918 | /* XXX: see if in some cases it could be faster to invalidate all the code */ | |
919 | tb = p->first_tb; | |
920 | while (tb != NULL) { | |
921 | n = (long)tb & 3; | |
922 | tb = (TranslationBlock *)((long)tb & ~3); | |
923 | tb_next = tb->page_next[n]; | |
924 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
925 | if (n == 0) { | |
926 | /* NOTE: tb_end may be after the end of the page, but | |
927 | it is not a problem */ | |
928 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
929 | tb_end = tb_start + tb->size; | |
930 | } else { | |
931 | tb_start = tb->page_addr[1]; | |
932 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
933 | } | |
934 | if (!(tb_end <= start || tb_start >= end)) { | |
d720b93d FB |
935 | #ifdef TARGET_HAS_PRECISE_SMC |
936 | if (current_tb_not_found) { | |
937 | current_tb_not_found = 0; | |
938 | current_tb = NULL; | |
2e70f6ef | 939 | if (env->mem_io_pc) { |
d720b93d | 940 | /* now we have a real cpu fault */ |
2e70f6ef | 941 | current_tb = tb_find_pc(env->mem_io_pc); |
d720b93d FB |
942 | } |
943 | } | |
944 | if (current_tb == tb && | |
2e70f6ef | 945 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
946 | /* If we are modifying the current TB, we must stop |
947 | its execution. We could be more precise by checking | |
948 | that the modification is after the current PC, but it | |
949 | would require a specialized function to partially | |
950 | restore the CPU state */ | |
3b46e624 | 951 | |
d720b93d | 952 | current_tb_modified = 1; |
5fafdf24 | 953 | cpu_restore_state(current_tb, env, |
2e70f6ef | 954 | env->mem_io_pc, NULL); |
6b917547 AL |
955 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
956 | ¤t_flags); | |
d720b93d FB |
957 | } |
958 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
6f5a9f7e FB |
959 | /* we need to do that to handle the case where a signal |
960 | occurs while doing tb_phys_invalidate() */ | |
961 | saved_tb = NULL; | |
962 | if (env) { | |
963 | saved_tb = env->current_tb; | |
964 | env->current_tb = NULL; | |
965 | } | |
9fa3e853 | 966 | tb_phys_invalidate(tb, -1); |
6f5a9f7e FB |
967 | if (env) { |
968 | env->current_tb = saved_tb; | |
969 | if (env->interrupt_request && env->current_tb) | |
970 | cpu_interrupt(env, env->interrupt_request); | |
971 | } | |
9fa3e853 FB |
972 | } |
973 | tb = tb_next; | |
974 | } | |
975 | #if !defined(CONFIG_USER_ONLY) | |
976 | /* if no code remaining, no need to continue to use slow writes */ | |
977 | if (!p->first_tb) { | |
978 | invalidate_page_bitmap(p); | |
d720b93d | 979 | if (is_cpu_write_access) { |
2e70f6ef | 980 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); |
d720b93d FB |
981 | } |
982 | } | |
983 | #endif | |
984 | #ifdef TARGET_HAS_PRECISE_SMC | |
985 | if (current_tb_modified) { | |
986 | /* we generate a block containing just the instruction | |
987 | modifying the memory. It will ensure that it cannot modify | |
988 | itself */ | |
ea1c1802 | 989 | env->current_tb = NULL; |
2e70f6ef | 990 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d | 991 | cpu_resume_from_signal(env, NULL); |
9fa3e853 | 992 | } |
fd6ce8f6 | 993 | #endif |
9fa3e853 | 994 | } |
fd6ce8f6 | 995 | |
9fa3e853 | 996 | /* len must be <= 8 and start must be a multiple of len */ |
00f82b8a | 997 | static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len) |
9fa3e853 FB |
998 | { |
999 | PageDesc *p; | |
1000 | int offset, b; | |
59817ccb | 1001 | #if 0 |
a4193c8a | 1002 | if (1) { |
93fcfe39 AL |
1003 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", |
1004 | cpu_single_env->mem_io_vaddr, len, | |
1005 | cpu_single_env->eip, | |
1006 | cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base); | |
59817ccb FB |
1007 | } |
1008 | #endif | |
9fa3e853 | 1009 | p = page_find(start >> TARGET_PAGE_BITS); |
5fafdf24 | 1010 | if (!p) |
9fa3e853 FB |
1011 | return; |
1012 | if (p->code_bitmap) { | |
1013 | offset = start & ~TARGET_PAGE_MASK; | |
1014 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |
1015 | if (b & ((1 << len) - 1)) | |
1016 | goto do_invalidate; | |
1017 | } else { | |
1018 | do_invalidate: | |
d720b93d | 1019 | tb_invalidate_phys_page_range(start, start + len, 1); |
9fa3e853 FB |
1020 | } |
1021 | } | |
1022 | ||
9fa3e853 | 1023 | #if !defined(CONFIG_SOFTMMU) |
00f82b8a | 1024 | static void tb_invalidate_phys_page(target_phys_addr_t addr, |
d720b93d | 1025 | unsigned long pc, void *puc) |
9fa3e853 | 1026 | { |
6b917547 | 1027 | TranslationBlock *tb; |
9fa3e853 | 1028 | PageDesc *p; |
6b917547 | 1029 | int n; |
d720b93d | 1030 | #ifdef TARGET_HAS_PRECISE_SMC |
6b917547 | 1031 | TranslationBlock *current_tb = NULL; |
d720b93d | 1032 | CPUState *env = cpu_single_env; |
6b917547 AL |
1033 | int current_tb_modified = 0; |
1034 | target_ulong current_pc = 0; | |
1035 | target_ulong current_cs_base = 0; | |
1036 | int current_flags = 0; | |
d720b93d | 1037 | #endif |
9fa3e853 FB |
1038 | |
1039 | addr &= TARGET_PAGE_MASK; | |
1040 | p = page_find(addr >> TARGET_PAGE_BITS); | |
5fafdf24 | 1041 | if (!p) |
9fa3e853 FB |
1042 | return; |
1043 | tb = p->first_tb; | |
d720b93d FB |
1044 | #ifdef TARGET_HAS_PRECISE_SMC |
1045 | if (tb && pc != 0) { | |
1046 | current_tb = tb_find_pc(pc); | |
1047 | } | |
1048 | #endif | |
9fa3e853 FB |
1049 | while (tb != NULL) { |
1050 | n = (long)tb & 3; | |
1051 | tb = (TranslationBlock *)((long)tb & ~3); | |
d720b93d FB |
1052 | #ifdef TARGET_HAS_PRECISE_SMC |
1053 | if (current_tb == tb && | |
2e70f6ef | 1054 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
1055 | /* If we are modifying the current TB, we must stop |
1056 | its execution. We could be more precise by checking | |
1057 | that the modification is after the current PC, but it | |
1058 | would require a specialized function to partially | |
1059 | restore the CPU state */ | |
3b46e624 | 1060 | |
d720b93d FB |
1061 | current_tb_modified = 1; |
1062 | cpu_restore_state(current_tb, env, pc, puc); | |
6b917547 AL |
1063 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1064 | ¤t_flags); | |
d720b93d FB |
1065 | } |
1066 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
1067 | tb_phys_invalidate(tb, addr); |
1068 | tb = tb->page_next[n]; | |
1069 | } | |
fd6ce8f6 | 1070 | p->first_tb = NULL; |
d720b93d FB |
1071 | #ifdef TARGET_HAS_PRECISE_SMC |
1072 | if (current_tb_modified) { | |
1073 | /* we generate a block containing just the instruction | |
1074 | modifying the memory. It will ensure that it cannot modify | |
1075 | itself */ | |
ea1c1802 | 1076 | env->current_tb = NULL; |
2e70f6ef | 1077 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d FB |
1078 | cpu_resume_from_signal(env, puc); |
1079 | } | |
1080 | #endif | |
fd6ce8f6 | 1081 | } |
9fa3e853 | 1082 | #endif |
fd6ce8f6 FB |
1083 | |
1084 | /* add the tb in the target page and protect it if necessary */ | |
5fafdf24 | 1085 | static inline void tb_alloc_page(TranslationBlock *tb, |
53a5960a | 1086 | unsigned int n, target_ulong page_addr) |
fd6ce8f6 FB |
1087 | { |
1088 | PageDesc *p; | |
9fa3e853 FB |
1089 | TranslationBlock *last_first_tb; |
1090 | ||
1091 | tb->page_addr[n] = page_addr; | |
3a7d929e | 1092 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1093 | tb->page_next[n] = p->first_tb; |
1094 | last_first_tb = p->first_tb; | |
1095 | p->first_tb = (TranslationBlock *)((long)tb | n); | |
1096 | invalidate_page_bitmap(p); | |
fd6ce8f6 | 1097 | |
107db443 | 1098 | #if defined(TARGET_HAS_SMC) || 1 |
d720b93d | 1099 | |
9fa3e853 | 1100 | #if defined(CONFIG_USER_ONLY) |
fd6ce8f6 | 1101 | if (p->flags & PAGE_WRITE) { |
53a5960a PB |
1102 | target_ulong addr; |
1103 | PageDesc *p2; | |
9fa3e853 FB |
1104 | int prot; |
1105 | ||
fd6ce8f6 FB |
1106 | /* force the host page as non writable (writes will have a |
1107 | page fault + mprotect overhead) */ | |
53a5960a | 1108 | page_addr &= qemu_host_page_mask; |
fd6ce8f6 | 1109 | prot = 0; |
53a5960a PB |
1110 | for(addr = page_addr; addr < page_addr + qemu_host_page_size; |
1111 | addr += TARGET_PAGE_SIZE) { | |
1112 | ||
1113 | p2 = page_find (addr >> TARGET_PAGE_BITS); | |
1114 | if (!p2) | |
1115 | continue; | |
1116 | prot |= p2->flags; | |
1117 | p2->flags &= ~PAGE_WRITE; | |
1118 | page_get_flags(addr); | |
1119 | } | |
5fafdf24 | 1120 | mprotect(g2h(page_addr), qemu_host_page_size, |
fd6ce8f6 FB |
1121 | (prot & PAGE_BITS) & ~PAGE_WRITE); |
1122 | #ifdef DEBUG_TB_INVALIDATE | |
ab3d1727 | 1123 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", |
53a5960a | 1124 | page_addr); |
fd6ce8f6 | 1125 | #endif |
fd6ce8f6 | 1126 | } |
9fa3e853 FB |
1127 | #else |
1128 | /* if some code is already present, then the pages are already | |
1129 | protected. So we handle the case where only the first TB is | |
1130 | allocated in a physical page */ | |
1131 | if (!last_first_tb) { | |
6a00d601 | 1132 | tlb_protect_code(page_addr); |
9fa3e853 FB |
1133 | } |
1134 | #endif | |
d720b93d FB |
1135 | |
1136 | #endif /* TARGET_HAS_SMC */ | |
fd6ce8f6 FB |
1137 | } |
1138 | ||
1139 | /* Allocate a new translation block. Flush the translation buffer if | |
1140 | too many translation blocks or too much generated code. */ | |
c27004ec | 1141 | TranslationBlock *tb_alloc(target_ulong pc) |
fd6ce8f6 FB |
1142 | { |
1143 | TranslationBlock *tb; | |
fd6ce8f6 | 1144 | |
26a5f13b FB |
1145 | if (nb_tbs >= code_gen_max_blocks || |
1146 | (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size) | |
d4e8164f | 1147 | return NULL; |
fd6ce8f6 FB |
1148 | tb = &tbs[nb_tbs++]; |
1149 | tb->pc = pc; | |
b448f2f3 | 1150 | tb->cflags = 0; |
d4e8164f FB |
1151 | return tb; |
1152 | } | |
1153 | ||
2e70f6ef PB |
1154 | void tb_free(TranslationBlock *tb) |
1155 | { | |
bf20dc07 | 1156 | /* In practice this is mostly used for single use temporary TB |
2e70f6ef PB |
1157 | Ignore the hard cases and just back up if this TB happens to |
1158 | be the last one generated. */ | |
1159 | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) { | |
1160 | code_gen_ptr = tb->tc_ptr; | |
1161 | nb_tbs--; | |
1162 | } | |
1163 | } | |
1164 | ||
9fa3e853 FB |
1165 | /* add a new TB and link it to the physical page tables. phys_page2 is |
1166 | (-1) to indicate that only one page contains the TB. */ | |
5fafdf24 | 1167 | void tb_link_phys(TranslationBlock *tb, |
9fa3e853 | 1168 | target_ulong phys_pc, target_ulong phys_page2) |
d4e8164f | 1169 | { |
9fa3e853 FB |
1170 | unsigned int h; |
1171 | TranslationBlock **ptb; | |
1172 | ||
c8a706fe PB |
1173 | /* Grab the mmap lock to stop another thread invalidating this TB |
1174 | before we are done. */ | |
1175 | mmap_lock(); | |
9fa3e853 FB |
1176 | /* add in the physical hash table */ |
1177 | h = tb_phys_hash_func(phys_pc); | |
1178 | ptb = &tb_phys_hash[h]; | |
1179 | tb->phys_hash_next = *ptb; | |
1180 | *ptb = tb; | |
fd6ce8f6 FB |
1181 | |
1182 | /* add in the page list */ | |
9fa3e853 FB |
1183 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); |
1184 | if (phys_page2 != -1) | |
1185 | tb_alloc_page(tb, 1, phys_page2); | |
1186 | else | |
1187 | tb->page_addr[1] = -1; | |
9fa3e853 | 1188 | |
d4e8164f FB |
1189 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); |
1190 | tb->jmp_next[0] = NULL; | |
1191 | tb->jmp_next[1] = NULL; | |
1192 | ||
1193 | /* init original jump addresses */ | |
1194 | if (tb->tb_next_offset[0] != 0xffff) | |
1195 | tb_reset_jump(tb, 0); | |
1196 | if (tb->tb_next_offset[1] != 0xffff) | |
1197 | tb_reset_jump(tb, 1); | |
8a40a180 FB |
1198 | |
1199 | #ifdef DEBUG_TB_CHECK | |
1200 | tb_page_check(); | |
1201 | #endif | |
c8a706fe | 1202 | mmap_unlock(); |
fd6ce8f6 FB |
1203 | } |
1204 | ||
9fa3e853 FB |
1205 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < |
1206 | tb[1].tc_ptr. Return NULL if not found */ | |
1207 | TranslationBlock *tb_find_pc(unsigned long tc_ptr) | |
fd6ce8f6 | 1208 | { |
9fa3e853 FB |
1209 | int m_min, m_max, m; |
1210 | unsigned long v; | |
1211 | TranslationBlock *tb; | |
a513fe19 FB |
1212 | |
1213 | if (nb_tbs <= 0) | |
1214 | return NULL; | |
1215 | if (tc_ptr < (unsigned long)code_gen_buffer || | |
1216 | tc_ptr >= (unsigned long)code_gen_ptr) | |
1217 | return NULL; | |
1218 | /* binary search (cf Knuth) */ | |
1219 | m_min = 0; | |
1220 | m_max = nb_tbs - 1; | |
1221 | while (m_min <= m_max) { | |
1222 | m = (m_min + m_max) >> 1; | |
1223 | tb = &tbs[m]; | |
1224 | v = (unsigned long)tb->tc_ptr; | |
1225 | if (v == tc_ptr) | |
1226 | return tb; | |
1227 | else if (tc_ptr < v) { | |
1228 | m_max = m - 1; | |
1229 | } else { | |
1230 | m_min = m + 1; | |
1231 | } | |
5fafdf24 | 1232 | } |
a513fe19 FB |
1233 | return &tbs[m_max]; |
1234 | } | |
7501267e | 1235 | |
ea041c0e FB |
1236 | static void tb_reset_jump_recursive(TranslationBlock *tb); |
1237 | ||
1238 | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) | |
1239 | { | |
1240 | TranslationBlock *tb1, *tb_next, **ptb; | |
1241 | unsigned int n1; | |
1242 | ||
1243 | tb1 = tb->jmp_next[n]; | |
1244 | if (tb1 != NULL) { | |
1245 | /* find head of list */ | |
1246 | for(;;) { | |
1247 | n1 = (long)tb1 & 3; | |
1248 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1249 | if (n1 == 2) | |
1250 | break; | |
1251 | tb1 = tb1->jmp_next[n1]; | |
1252 | } | |
1253 | /* we are now sure now that tb jumps to tb1 */ | |
1254 | tb_next = tb1; | |
1255 | ||
1256 | /* remove tb from the jmp_first list */ | |
1257 | ptb = &tb_next->jmp_first; | |
1258 | for(;;) { | |
1259 | tb1 = *ptb; | |
1260 | n1 = (long)tb1 & 3; | |
1261 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1262 | if (n1 == n && tb1 == tb) | |
1263 | break; | |
1264 | ptb = &tb1->jmp_next[n1]; | |
1265 | } | |
1266 | *ptb = tb->jmp_next[n]; | |
1267 | tb->jmp_next[n] = NULL; | |
3b46e624 | 1268 | |
ea041c0e FB |
1269 | /* suppress the jump to next tb in generated code */ |
1270 | tb_reset_jump(tb, n); | |
1271 | ||
0124311e | 1272 | /* suppress jumps in the tb on which we could have jumped */ |
ea041c0e FB |
1273 | tb_reset_jump_recursive(tb_next); |
1274 | } | |
1275 | } | |
1276 | ||
1277 | static void tb_reset_jump_recursive(TranslationBlock *tb) | |
1278 | { | |
1279 | tb_reset_jump_recursive2(tb, 0); | |
1280 | tb_reset_jump_recursive2(tb, 1); | |
1281 | } | |
1282 | ||
1fddef4b | 1283 | #if defined(TARGET_HAS_ICE) |
d720b93d FB |
1284 | static void breakpoint_invalidate(CPUState *env, target_ulong pc) |
1285 | { | |
9b3c35e0 JM |
1286 | target_phys_addr_t addr; |
1287 | target_ulong pd; | |
c2f07f81 PB |
1288 | ram_addr_t ram_addr; |
1289 | PhysPageDesc *p; | |
d720b93d | 1290 | |
c2f07f81 PB |
1291 | addr = cpu_get_phys_page_debug(env, pc); |
1292 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
1293 | if (!p) { | |
1294 | pd = IO_MEM_UNASSIGNED; | |
1295 | } else { | |
1296 | pd = p->phys_offset; | |
1297 | } | |
1298 | ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK); | |
706cd4b5 | 1299 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
d720b93d | 1300 | } |
c27004ec | 1301 | #endif |
d720b93d | 1302 | |
6658ffb8 | 1303 | /* Add a watchpoint. */ |
a1d1bb31 AL |
1304 | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, |
1305 | int flags, CPUWatchpoint **watchpoint) | |
6658ffb8 | 1306 | { |
b4051334 | 1307 | target_ulong len_mask = ~(len - 1); |
c0ce998e | 1308 | CPUWatchpoint *wp; |
6658ffb8 | 1309 | |
b4051334 AL |
1310 | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ |
1311 | if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) { | |
1312 | fprintf(stderr, "qemu: tried to set invalid watchpoint at " | |
1313 | TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len); | |
1314 | return -EINVAL; | |
1315 | } | |
a1d1bb31 | 1316 | wp = qemu_malloc(sizeof(*wp)); |
a1d1bb31 AL |
1317 | |
1318 | wp->vaddr = addr; | |
b4051334 | 1319 | wp->len_mask = len_mask; |
a1d1bb31 AL |
1320 | wp->flags = flags; |
1321 | ||
2dc9f411 | 1322 | /* keep all GDB-injected watchpoints in front */ |
c0ce998e AL |
1323 | if (flags & BP_GDB) |
1324 | TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry); | |
1325 | else | |
1326 | TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry); | |
6658ffb8 | 1327 | |
6658ffb8 | 1328 | tlb_flush_page(env, addr); |
a1d1bb31 AL |
1329 | |
1330 | if (watchpoint) | |
1331 | *watchpoint = wp; | |
1332 | return 0; | |
6658ffb8 PB |
1333 | } |
1334 | ||
a1d1bb31 AL |
1335 | /* Remove a specific watchpoint. */ |
1336 | int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len, | |
1337 | int flags) | |
6658ffb8 | 1338 | { |
b4051334 | 1339 | target_ulong len_mask = ~(len - 1); |
a1d1bb31 | 1340 | CPUWatchpoint *wp; |
6658ffb8 | 1341 | |
c0ce998e | 1342 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
b4051334 | 1343 | if (addr == wp->vaddr && len_mask == wp->len_mask |
6e140f28 | 1344 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
a1d1bb31 | 1345 | cpu_watchpoint_remove_by_ref(env, wp); |
6658ffb8 PB |
1346 | return 0; |
1347 | } | |
1348 | } | |
a1d1bb31 | 1349 | return -ENOENT; |
6658ffb8 PB |
1350 | } |
1351 | ||
a1d1bb31 AL |
1352 | /* Remove a specific watchpoint by reference. */ |
1353 | void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint) | |
1354 | { | |
c0ce998e | 1355 | TAILQ_REMOVE(&env->watchpoints, watchpoint, entry); |
7d03f82f | 1356 | |
a1d1bb31 AL |
1357 | tlb_flush_page(env, watchpoint->vaddr); |
1358 | ||
1359 | qemu_free(watchpoint); | |
1360 | } | |
1361 | ||
1362 | /* Remove all matching watchpoints. */ | |
1363 | void cpu_watchpoint_remove_all(CPUState *env, int mask) | |
1364 | { | |
c0ce998e | 1365 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 1366 | |
c0ce998e | 1367 | TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) { |
a1d1bb31 AL |
1368 | if (wp->flags & mask) |
1369 | cpu_watchpoint_remove_by_ref(env, wp); | |
c0ce998e | 1370 | } |
7d03f82f EI |
1371 | } |
1372 | ||
a1d1bb31 AL |
1373 | /* Add a breakpoint. */ |
1374 | int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags, | |
1375 | CPUBreakpoint **breakpoint) | |
4c3a88a2 | 1376 | { |
1fddef4b | 1377 | #if defined(TARGET_HAS_ICE) |
c0ce998e | 1378 | CPUBreakpoint *bp; |
3b46e624 | 1379 | |
a1d1bb31 | 1380 | bp = qemu_malloc(sizeof(*bp)); |
4c3a88a2 | 1381 | |
a1d1bb31 AL |
1382 | bp->pc = pc; |
1383 | bp->flags = flags; | |
1384 | ||
2dc9f411 | 1385 | /* keep all GDB-injected breakpoints in front */ |
c0ce998e AL |
1386 | if (flags & BP_GDB) |
1387 | TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry); | |
1388 | else | |
1389 | TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry); | |
3b46e624 | 1390 | |
d720b93d | 1391 | breakpoint_invalidate(env, pc); |
a1d1bb31 AL |
1392 | |
1393 | if (breakpoint) | |
1394 | *breakpoint = bp; | |
4c3a88a2 FB |
1395 | return 0; |
1396 | #else | |
a1d1bb31 | 1397 | return -ENOSYS; |
4c3a88a2 FB |
1398 | #endif |
1399 | } | |
1400 | ||
a1d1bb31 AL |
1401 | /* Remove a specific breakpoint. */ |
1402 | int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags) | |
1403 | { | |
7d03f82f | 1404 | #if defined(TARGET_HAS_ICE) |
a1d1bb31 AL |
1405 | CPUBreakpoint *bp; |
1406 | ||
c0ce998e | 1407 | TAILQ_FOREACH(bp, &env->breakpoints, entry) { |
a1d1bb31 AL |
1408 | if (bp->pc == pc && bp->flags == flags) { |
1409 | cpu_breakpoint_remove_by_ref(env, bp); | |
1410 | return 0; | |
1411 | } | |
7d03f82f | 1412 | } |
a1d1bb31 AL |
1413 | return -ENOENT; |
1414 | #else | |
1415 | return -ENOSYS; | |
7d03f82f EI |
1416 | #endif |
1417 | } | |
1418 | ||
a1d1bb31 AL |
1419 | /* Remove a specific breakpoint by reference. */ |
1420 | void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint) | |
4c3a88a2 | 1421 | { |
1fddef4b | 1422 | #if defined(TARGET_HAS_ICE) |
c0ce998e | 1423 | TAILQ_REMOVE(&env->breakpoints, breakpoint, entry); |
d720b93d | 1424 | |
a1d1bb31 AL |
1425 | breakpoint_invalidate(env, breakpoint->pc); |
1426 | ||
1427 | qemu_free(breakpoint); | |
1428 | #endif | |
1429 | } | |
1430 | ||
1431 | /* Remove all matching breakpoints. */ | |
1432 | void cpu_breakpoint_remove_all(CPUState *env, int mask) | |
1433 | { | |
1434 | #if defined(TARGET_HAS_ICE) | |
c0ce998e | 1435 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 1436 | |
c0ce998e | 1437 | TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) { |
a1d1bb31 AL |
1438 | if (bp->flags & mask) |
1439 | cpu_breakpoint_remove_by_ref(env, bp); | |
c0ce998e | 1440 | } |
4c3a88a2 FB |
1441 | #endif |
1442 | } | |
1443 | ||
c33a346e FB |
1444 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
1445 | CPU loop after each instruction */ | |
1446 | void cpu_single_step(CPUState *env, int enabled) | |
1447 | { | |
1fddef4b | 1448 | #if defined(TARGET_HAS_ICE) |
c33a346e FB |
1449 | if (env->singlestep_enabled != enabled) { |
1450 | env->singlestep_enabled = enabled; | |
1451 | /* must flush all the translated code to avoid inconsistancies */ | |
9fa3e853 | 1452 | /* XXX: only flush what is necessary */ |
0124311e | 1453 | tb_flush(env); |
c33a346e FB |
1454 | } |
1455 | #endif | |
1456 | } | |
1457 | ||
34865134 FB |
1458 | /* enable or disable low levels log */ |
1459 | void cpu_set_log(int log_flags) | |
1460 | { | |
1461 | loglevel = log_flags; | |
1462 | if (loglevel && !logfile) { | |
11fcfab4 | 1463 | logfile = fopen(logfilename, log_append ? "a" : "w"); |
34865134 FB |
1464 | if (!logfile) { |
1465 | perror(logfilename); | |
1466 | _exit(1); | |
1467 | } | |
9fa3e853 FB |
1468 | #if !defined(CONFIG_SOFTMMU) |
1469 | /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ | |
1470 | { | |
b55266b5 | 1471 | static char logfile_buf[4096]; |
9fa3e853 FB |
1472 | setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); |
1473 | } | |
1474 | #else | |
34865134 | 1475 | setvbuf(logfile, NULL, _IOLBF, 0); |
9fa3e853 | 1476 | #endif |
e735b91c PB |
1477 | log_append = 1; |
1478 | } | |
1479 | if (!loglevel && logfile) { | |
1480 | fclose(logfile); | |
1481 | logfile = NULL; | |
34865134 FB |
1482 | } |
1483 | } | |
1484 | ||
1485 | void cpu_set_log_filename(const char *filename) | |
1486 | { | |
1487 | logfilename = strdup(filename); | |
e735b91c PB |
1488 | if (logfile) { |
1489 | fclose(logfile); | |
1490 | logfile = NULL; | |
1491 | } | |
1492 | cpu_set_log(loglevel); | |
34865134 | 1493 | } |
c33a346e | 1494 | |
0124311e | 1495 | /* mask must never be zero, except for A20 change call */ |
68a79315 | 1496 | void cpu_interrupt(CPUState *env, int mask) |
ea041c0e | 1497 | { |
d5975363 | 1498 | #if !defined(USE_NPTL) |
ea041c0e | 1499 | TranslationBlock *tb; |
15a51156 | 1500 | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; |
d5975363 | 1501 | #endif |
2e70f6ef | 1502 | int old_mask; |
59817ccb | 1503 | |
2e70f6ef | 1504 | old_mask = env->interrupt_request; |
d5975363 | 1505 | /* FIXME: This is probably not threadsafe. A different thread could |
bf20dc07 | 1506 | be in the middle of a read-modify-write operation. */ |
68a79315 | 1507 | env->interrupt_request |= mask; |
d5975363 PB |
1508 | #if defined(USE_NPTL) |
1509 | /* FIXME: TB unchaining isn't SMP safe. For now just ignore the | |
1510 | problem and hope the cpu will stop of its own accord. For userspace | |
1511 | emulation this often isn't actually as bad as it sounds. Often | |
1512 | signals are used primarily to interrupt blocking syscalls. */ | |
1513 | #else | |
2e70f6ef | 1514 | if (use_icount) { |
266910c4 | 1515 | env->icount_decr.u16.high = 0xffff; |
2e70f6ef PB |
1516 | #ifndef CONFIG_USER_ONLY |
1517 | /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means | |
1518 | an async event happened and we need to process it. */ | |
1519 | if (!can_do_io(env) | |
1520 | && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) { | |
1521 | cpu_abort(env, "Raised interrupt while not in I/O function"); | |
1522 | } | |
1523 | #endif | |
1524 | } else { | |
1525 | tb = env->current_tb; | |
1526 | /* if the cpu is currently executing code, we must unlink it and | |
1527 | all the potentially executing TB */ | |
1528 | if (tb && !testandset(&interrupt_lock)) { | |
1529 | env->current_tb = NULL; | |
1530 | tb_reset_jump_recursive(tb); | |
1531 | resetlock(&interrupt_lock); | |
1532 | } | |
ea041c0e | 1533 | } |
d5975363 | 1534 | #endif |
ea041c0e FB |
1535 | } |
1536 | ||
b54ad049 FB |
1537 | void cpu_reset_interrupt(CPUState *env, int mask) |
1538 | { | |
1539 | env->interrupt_request &= ~mask; | |
1540 | } | |
1541 | ||
c7cd6a37 | 1542 | const CPULogItem cpu_log_items[] = { |
5fafdf24 | 1543 | { CPU_LOG_TB_OUT_ASM, "out_asm", |
f193c797 FB |
1544 | "show generated host assembly code for each compiled TB" }, |
1545 | { CPU_LOG_TB_IN_ASM, "in_asm", | |
1546 | "show target assembly code for each compiled TB" }, | |
5fafdf24 | 1547 | { CPU_LOG_TB_OP, "op", |
57fec1fe | 1548 | "show micro ops for each compiled TB" }, |
f193c797 | 1549 | { CPU_LOG_TB_OP_OPT, "op_opt", |
e01a1157 BS |
1550 | "show micro ops " |
1551 | #ifdef TARGET_I386 | |
1552 | "before eflags optimization and " | |
f193c797 | 1553 | #endif |
e01a1157 | 1554 | "after liveness analysis" }, |
f193c797 FB |
1555 | { CPU_LOG_INT, "int", |
1556 | "show interrupts/exceptions in short format" }, | |
1557 | { CPU_LOG_EXEC, "exec", | |
1558 | "show trace before each executed TB (lots of logs)" }, | |
9fddaa0c | 1559 | { CPU_LOG_TB_CPU, "cpu", |
e91c8a77 | 1560 | "show CPU state before block translation" }, |
f193c797 FB |
1561 | #ifdef TARGET_I386 |
1562 | { CPU_LOG_PCALL, "pcall", | |
1563 | "show protected mode far calls/returns/exceptions" }, | |
eca1bdf4 AL |
1564 | { CPU_LOG_RESET, "cpu_reset", |
1565 | "show CPU state before CPU resets" }, | |
f193c797 | 1566 | #endif |
8e3a9fd2 | 1567 | #ifdef DEBUG_IOPORT |
fd872598 FB |
1568 | { CPU_LOG_IOPORT, "ioport", |
1569 | "show all i/o ports accesses" }, | |
8e3a9fd2 | 1570 | #endif |
f193c797 FB |
1571 | { 0, NULL, NULL }, |
1572 | }; | |
1573 | ||
1574 | static int cmp1(const char *s1, int n, const char *s2) | |
1575 | { | |
1576 | if (strlen(s2) != n) | |
1577 | return 0; | |
1578 | return memcmp(s1, s2, n) == 0; | |
1579 | } | |
3b46e624 | 1580 | |
f193c797 FB |
1581 | /* takes a comma separated list of log masks. Return 0 if error. */ |
1582 | int cpu_str_to_log_mask(const char *str) | |
1583 | { | |
c7cd6a37 | 1584 | const CPULogItem *item; |
f193c797 FB |
1585 | int mask; |
1586 | const char *p, *p1; | |
1587 | ||
1588 | p = str; | |
1589 | mask = 0; | |
1590 | for(;;) { | |
1591 | p1 = strchr(p, ','); | |
1592 | if (!p1) | |
1593 | p1 = p + strlen(p); | |
8e3a9fd2 FB |
1594 | if(cmp1(p,p1-p,"all")) { |
1595 | for(item = cpu_log_items; item->mask != 0; item++) { | |
1596 | mask |= item->mask; | |
1597 | } | |
1598 | } else { | |
f193c797 FB |
1599 | for(item = cpu_log_items; item->mask != 0; item++) { |
1600 | if (cmp1(p, p1 - p, item->name)) | |
1601 | goto found; | |
1602 | } | |
1603 | return 0; | |
8e3a9fd2 | 1604 | } |
f193c797 FB |
1605 | found: |
1606 | mask |= item->mask; | |
1607 | if (*p1 != ',') | |
1608 | break; | |
1609 | p = p1 + 1; | |
1610 | } | |
1611 | return mask; | |
1612 | } | |
ea041c0e | 1613 | |
7501267e FB |
1614 | void cpu_abort(CPUState *env, const char *fmt, ...) |
1615 | { | |
1616 | va_list ap; | |
493ae1f0 | 1617 | va_list ap2; |
7501267e FB |
1618 | |
1619 | va_start(ap, fmt); | |
493ae1f0 | 1620 | va_copy(ap2, ap); |
7501267e FB |
1621 | fprintf(stderr, "qemu: fatal: "); |
1622 | vfprintf(stderr, fmt, ap); | |
1623 | fprintf(stderr, "\n"); | |
1624 | #ifdef TARGET_I386 | |
7fe48483 FB |
1625 | cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); |
1626 | #else | |
1627 | cpu_dump_state(env, stderr, fprintf, 0); | |
7501267e | 1628 | #endif |
93fcfe39 AL |
1629 | if (qemu_log_enabled()) { |
1630 | qemu_log("qemu: fatal: "); | |
1631 | qemu_log_vprintf(fmt, ap2); | |
1632 | qemu_log("\n"); | |
f9373291 | 1633 | #ifdef TARGET_I386 |
93fcfe39 | 1634 | log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP); |
f9373291 | 1635 | #else |
93fcfe39 | 1636 | log_cpu_state(env, 0); |
f9373291 | 1637 | #endif |
31b1a7b4 | 1638 | qemu_log_flush(); |
93fcfe39 | 1639 | qemu_log_close(); |
924edcae | 1640 | } |
493ae1f0 | 1641 | va_end(ap2); |
f9373291 | 1642 | va_end(ap); |
7501267e FB |
1643 | abort(); |
1644 | } | |
1645 | ||
c5be9f08 TS |
1646 | CPUState *cpu_copy(CPUState *env) |
1647 | { | |
01ba9816 | 1648 | CPUState *new_env = cpu_init(env->cpu_model_str); |
c5be9f08 TS |
1649 | CPUState *next_cpu = new_env->next_cpu; |
1650 | int cpu_index = new_env->cpu_index; | |
5a38f081 AL |
1651 | #if defined(TARGET_HAS_ICE) |
1652 | CPUBreakpoint *bp; | |
1653 | CPUWatchpoint *wp; | |
1654 | #endif | |
1655 | ||
c5be9f08 | 1656 | memcpy(new_env, env, sizeof(CPUState)); |
5a38f081 AL |
1657 | |
1658 | /* Preserve chaining and index. */ | |
c5be9f08 TS |
1659 | new_env->next_cpu = next_cpu; |
1660 | new_env->cpu_index = cpu_index; | |
5a38f081 AL |
1661 | |
1662 | /* Clone all break/watchpoints. | |
1663 | Note: Once we support ptrace with hw-debug register access, make sure | |
1664 | BP_CPU break/watchpoints are handled correctly on clone. */ | |
1665 | TAILQ_INIT(&env->breakpoints); | |
1666 | TAILQ_INIT(&env->watchpoints); | |
1667 | #if defined(TARGET_HAS_ICE) | |
1668 | TAILQ_FOREACH(bp, &env->breakpoints, entry) { | |
1669 | cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL); | |
1670 | } | |
1671 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
1672 | cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1, | |
1673 | wp->flags, NULL); | |
1674 | } | |
1675 | #endif | |
1676 | ||
c5be9f08 TS |
1677 | return new_env; |
1678 | } | |
1679 | ||
0124311e FB |
1680 | #if !defined(CONFIG_USER_ONLY) |
1681 | ||
5c751e99 EI |
1682 | static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr) |
1683 | { | |
1684 | unsigned int i; | |
1685 | ||
1686 | /* Discard jump cache entries for any tb which might potentially | |
1687 | overlap the flushed page. */ | |
1688 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
1689 | memset (&env->tb_jmp_cache[i], 0, | |
1690 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1691 | ||
1692 | i = tb_jmp_cache_hash_page(addr); | |
1693 | memset (&env->tb_jmp_cache[i], 0, | |
1694 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1695 | } | |
1696 | ||
ee8b7021 FB |
1697 | /* NOTE: if flush_global is true, also flush global entries (not |
1698 | implemented yet) */ | |
1699 | void tlb_flush(CPUState *env, int flush_global) | |
33417e70 | 1700 | { |
33417e70 | 1701 | int i; |
0124311e | 1702 | |
9fa3e853 FB |
1703 | #if defined(DEBUG_TLB) |
1704 | printf("tlb_flush:\n"); | |
1705 | #endif | |
0124311e FB |
1706 | /* must reset current TB so that interrupts cannot modify the |
1707 | links while we are modifying them */ | |
1708 | env->current_tb = NULL; | |
1709 | ||
33417e70 | 1710 | for(i = 0; i < CPU_TLB_SIZE; i++) { |
84b7b8e7 FB |
1711 | env->tlb_table[0][i].addr_read = -1; |
1712 | env->tlb_table[0][i].addr_write = -1; | |
1713 | env->tlb_table[0][i].addr_code = -1; | |
1714 | env->tlb_table[1][i].addr_read = -1; | |
1715 | env->tlb_table[1][i].addr_write = -1; | |
1716 | env->tlb_table[1][i].addr_code = -1; | |
6fa4cea9 JM |
1717 | #if (NB_MMU_MODES >= 3) |
1718 | env->tlb_table[2][i].addr_read = -1; | |
1719 | env->tlb_table[2][i].addr_write = -1; | |
1720 | env->tlb_table[2][i].addr_code = -1; | |
1721 | #if (NB_MMU_MODES == 4) | |
1722 | env->tlb_table[3][i].addr_read = -1; | |
1723 | env->tlb_table[3][i].addr_write = -1; | |
1724 | env->tlb_table[3][i].addr_code = -1; | |
1725 | #endif | |
1726 | #endif | |
33417e70 | 1727 | } |
9fa3e853 | 1728 | |
8a40a180 | 1729 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); |
9fa3e853 | 1730 | |
0a962c02 FB |
1731 | #ifdef USE_KQEMU |
1732 | if (env->kqemu_enabled) { | |
1733 | kqemu_flush(env, flush_global); | |
1734 | } | |
9fa3e853 | 1735 | #endif |
e3db7226 | 1736 | tlb_flush_count++; |
33417e70 FB |
1737 | } |
1738 | ||
274da6b2 | 1739 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) |
61382a50 | 1740 | { |
5fafdf24 | 1741 | if (addr == (tlb_entry->addr_read & |
84b7b8e7 | 1742 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1743 | addr == (tlb_entry->addr_write & |
84b7b8e7 | 1744 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1745 | addr == (tlb_entry->addr_code & |
84b7b8e7 FB |
1746 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
1747 | tlb_entry->addr_read = -1; | |
1748 | tlb_entry->addr_write = -1; | |
1749 | tlb_entry->addr_code = -1; | |
1750 | } | |
61382a50 FB |
1751 | } |
1752 | ||
2e12669a | 1753 | void tlb_flush_page(CPUState *env, target_ulong addr) |
33417e70 | 1754 | { |
8a40a180 | 1755 | int i; |
0124311e | 1756 | |
9fa3e853 | 1757 | #if defined(DEBUG_TLB) |
108c49b8 | 1758 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); |
9fa3e853 | 1759 | #endif |
0124311e FB |
1760 | /* must reset current TB so that interrupts cannot modify the |
1761 | links while we are modifying them */ | |
1762 | env->current_tb = NULL; | |
61382a50 FB |
1763 | |
1764 | addr &= TARGET_PAGE_MASK; | |
1765 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
84b7b8e7 FB |
1766 | tlb_flush_entry(&env->tlb_table[0][i], addr); |
1767 | tlb_flush_entry(&env->tlb_table[1][i], addr); | |
6fa4cea9 JM |
1768 | #if (NB_MMU_MODES >= 3) |
1769 | tlb_flush_entry(&env->tlb_table[2][i], addr); | |
1770 | #if (NB_MMU_MODES == 4) | |
1771 | tlb_flush_entry(&env->tlb_table[3][i], addr); | |
1772 | #endif | |
1773 | #endif | |
0124311e | 1774 | |
5c751e99 | 1775 | tlb_flush_jmp_cache(env, addr); |
9fa3e853 | 1776 | |
0a962c02 FB |
1777 | #ifdef USE_KQEMU |
1778 | if (env->kqemu_enabled) { | |
1779 | kqemu_flush_page(env, addr); | |
1780 | } | |
1781 | #endif | |
9fa3e853 FB |
1782 | } |
1783 | ||
9fa3e853 FB |
1784 | /* update the TLBs so that writes to code in the virtual page 'addr' |
1785 | can be detected */ | |
6a00d601 | 1786 | static void tlb_protect_code(ram_addr_t ram_addr) |
9fa3e853 | 1787 | { |
5fafdf24 | 1788 | cpu_physical_memory_reset_dirty(ram_addr, |
6a00d601 FB |
1789 | ram_addr + TARGET_PAGE_SIZE, |
1790 | CODE_DIRTY_FLAG); | |
9fa3e853 FB |
1791 | } |
1792 | ||
9fa3e853 | 1793 | /* update the TLB so that writes in physical page 'phys_addr' are no longer |
3a7d929e | 1794 | tested for self modifying code */ |
5fafdf24 | 1795 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 1796 | target_ulong vaddr) |
9fa3e853 | 1797 | { |
3a7d929e | 1798 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG; |
1ccde1cb FB |
1799 | } |
1800 | ||
5fafdf24 | 1801 | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, |
1ccde1cb FB |
1802 | unsigned long start, unsigned long length) |
1803 | { | |
1804 | unsigned long addr; | |
84b7b8e7 FB |
1805 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
1806 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | |
1ccde1cb | 1807 | if ((addr - start) < length) { |
0f459d16 | 1808 | tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY; |
1ccde1cb FB |
1809 | } |
1810 | } | |
1811 | } | |
1812 | ||
3a7d929e | 1813 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, |
0a962c02 | 1814 | int dirty_flags) |
1ccde1cb FB |
1815 | { |
1816 | CPUState *env; | |
4f2ac237 | 1817 | unsigned long length, start1; |
0a962c02 FB |
1818 | int i, mask, len; |
1819 | uint8_t *p; | |
1ccde1cb FB |
1820 | |
1821 | start &= TARGET_PAGE_MASK; | |
1822 | end = TARGET_PAGE_ALIGN(end); | |
1823 | ||
1824 | length = end - start; | |
1825 | if (length == 0) | |
1826 | return; | |
0a962c02 | 1827 | len = length >> TARGET_PAGE_BITS; |
3a7d929e | 1828 | #ifdef USE_KQEMU |
6a00d601 FB |
1829 | /* XXX: should not depend on cpu context */ |
1830 | env = first_cpu; | |
3a7d929e | 1831 | if (env->kqemu_enabled) { |
f23db169 FB |
1832 | ram_addr_t addr; |
1833 | addr = start; | |
1834 | for(i = 0; i < len; i++) { | |
1835 | kqemu_set_notdirty(env, addr); | |
1836 | addr += TARGET_PAGE_SIZE; | |
1837 | } | |
3a7d929e FB |
1838 | } |
1839 | #endif | |
f23db169 FB |
1840 | mask = ~dirty_flags; |
1841 | p = phys_ram_dirty + (start >> TARGET_PAGE_BITS); | |
1842 | for(i = 0; i < len; i++) | |
1843 | p[i] &= mask; | |
1844 | ||
1ccde1cb FB |
1845 | /* we modify the TLB cache so that the dirty bit will be set again |
1846 | when accessing the range */ | |
59817ccb | 1847 | start1 = start + (unsigned long)phys_ram_base; |
6a00d601 FB |
1848 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
1849 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
84b7b8e7 | 1850 | tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length); |
6a00d601 | 1851 | for(i = 0; i < CPU_TLB_SIZE; i++) |
84b7b8e7 | 1852 | tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length); |
6fa4cea9 JM |
1853 | #if (NB_MMU_MODES >= 3) |
1854 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1855 | tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length); | |
1856 | #if (NB_MMU_MODES == 4) | |
1857 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1858 | tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length); | |
1859 | #endif | |
1860 | #endif | |
6a00d601 | 1861 | } |
1ccde1cb FB |
1862 | } |
1863 | ||
74576198 AL |
1864 | int cpu_physical_memory_set_dirty_tracking(int enable) |
1865 | { | |
1866 | in_migration = enable; | |
1867 | return 0; | |
1868 | } | |
1869 | ||
1870 | int cpu_physical_memory_get_dirty_tracking(void) | |
1871 | { | |
1872 | return in_migration; | |
1873 | } | |
1874 | ||
2bec46dc AL |
1875 | void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr) |
1876 | { | |
1877 | if (kvm_enabled()) | |
1878 | kvm_physical_sync_dirty_bitmap(start_addr, end_addr); | |
1879 | } | |
1880 | ||
3a7d929e FB |
1881 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) |
1882 | { | |
1883 | ram_addr_t ram_addr; | |
1884 | ||
84b7b8e7 | 1885 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
5fafdf24 | 1886 | ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + |
3a7d929e FB |
1887 | tlb_entry->addend - (unsigned long)phys_ram_base; |
1888 | if (!cpu_physical_memory_is_dirty(ram_addr)) { | |
0f459d16 | 1889 | tlb_entry->addr_write |= TLB_NOTDIRTY; |
3a7d929e FB |
1890 | } |
1891 | } | |
1892 | } | |
1893 | ||
1894 | /* update the TLB according to the current state of the dirty bits */ | |
1895 | void cpu_tlb_update_dirty(CPUState *env) | |
1896 | { | |
1897 | int i; | |
1898 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
84b7b8e7 | 1899 | tlb_update_dirty(&env->tlb_table[0][i]); |
3a7d929e | 1900 | for(i = 0; i < CPU_TLB_SIZE; i++) |
84b7b8e7 | 1901 | tlb_update_dirty(&env->tlb_table[1][i]); |
6fa4cea9 JM |
1902 | #if (NB_MMU_MODES >= 3) |
1903 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1904 | tlb_update_dirty(&env->tlb_table[2][i]); | |
1905 | #if (NB_MMU_MODES == 4) | |
1906 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1907 | tlb_update_dirty(&env->tlb_table[3][i]); | |
1908 | #endif | |
1909 | #endif | |
3a7d929e FB |
1910 | } |
1911 | ||
0f459d16 | 1912 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) |
1ccde1cb | 1913 | { |
0f459d16 PB |
1914 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) |
1915 | tlb_entry->addr_write = vaddr; | |
1ccde1cb FB |
1916 | } |
1917 | ||
0f459d16 PB |
1918 | /* update the TLB corresponding to virtual page vaddr |
1919 | so that it is no longer dirty */ | |
1920 | static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr) | |
1ccde1cb | 1921 | { |
1ccde1cb FB |
1922 | int i; |
1923 | ||
0f459d16 | 1924 | vaddr &= TARGET_PAGE_MASK; |
1ccde1cb | 1925 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
0f459d16 PB |
1926 | tlb_set_dirty1(&env->tlb_table[0][i], vaddr); |
1927 | tlb_set_dirty1(&env->tlb_table[1][i], vaddr); | |
6fa4cea9 | 1928 | #if (NB_MMU_MODES >= 3) |
0f459d16 | 1929 | tlb_set_dirty1(&env->tlb_table[2][i], vaddr); |
6fa4cea9 | 1930 | #if (NB_MMU_MODES == 4) |
0f459d16 | 1931 | tlb_set_dirty1(&env->tlb_table[3][i], vaddr); |
6fa4cea9 JM |
1932 | #endif |
1933 | #endif | |
9fa3e853 FB |
1934 | } |
1935 | ||
59817ccb FB |
1936 | /* add a new TLB entry. At most one entry for a given virtual address |
1937 | is permitted. Return 0 if OK or 2 if the page could not be mapped | |
1938 | (can only happen in non SOFTMMU mode for I/O pages or pages | |
1939 | conflicting with the host address space). */ | |
5fafdf24 TS |
1940 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
1941 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 1942 | int mmu_idx, int is_softmmu) |
9fa3e853 | 1943 | { |
92e873b9 | 1944 | PhysPageDesc *p; |
4f2ac237 | 1945 | unsigned long pd; |
9fa3e853 | 1946 | unsigned int index; |
4f2ac237 | 1947 | target_ulong address; |
0f459d16 | 1948 | target_ulong code_address; |
108c49b8 | 1949 | target_phys_addr_t addend; |
9fa3e853 | 1950 | int ret; |
84b7b8e7 | 1951 | CPUTLBEntry *te; |
a1d1bb31 | 1952 | CPUWatchpoint *wp; |
0f459d16 | 1953 | target_phys_addr_t iotlb; |
9fa3e853 | 1954 | |
92e873b9 | 1955 | p = phys_page_find(paddr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1956 | if (!p) { |
1957 | pd = IO_MEM_UNASSIGNED; | |
9fa3e853 FB |
1958 | } else { |
1959 | pd = p->phys_offset; | |
9fa3e853 FB |
1960 | } |
1961 | #if defined(DEBUG_TLB) | |
6ebbf390 JM |
1962 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n", |
1963 | vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd); | |
9fa3e853 FB |
1964 | #endif |
1965 | ||
1966 | ret = 0; | |
0f459d16 PB |
1967 | address = vaddr; |
1968 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { | |
1969 | /* IO memory case (romd handled later) */ | |
1970 | address |= TLB_MMIO; | |
1971 | } | |
1972 | addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK); | |
1973 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) { | |
1974 | /* Normal RAM. */ | |
1975 | iotlb = pd & TARGET_PAGE_MASK; | |
1976 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM) | |
1977 | iotlb |= IO_MEM_NOTDIRTY; | |
1978 | else | |
1979 | iotlb |= IO_MEM_ROM; | |
1980 | } else { | |
1981 | /* IO handlers are currently passed a phsical address. | |
1982 | It would be nice to pass an offset from the base address | |
1983 | of that region. This would avoid having to special case RAM, | |
1984 | and avoid full address decoding in every device. | |
1985 | We can't use the high bits of pd for this because | |
1986 | IO_MEM_ROMD uses these as a ram address. */ | |
8da3ff18 PB |
1987 | iotlb = (pd & ~TARGET_PAGE_MASK); |
1988 | if (p) { | |
8da3ff18 PB |
1989 | iotlb += p->region_offset; |
1990 | } else { | |
1991 | iotlb += paddr; | |
1992 | } | |
0f459d16 PB |
1993 | } |
1994 | ||
1995 | code_address = address; | |
1996 | /* Make accesses to pages with watchpoints go via the | |
1997 | watchpoint trap routines. */ | |
c0ce998e | 1998 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
a1d1bb31 | 1999 | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) { |
0f459d16 PB |
2000 | iotlb = io_mem_watch + paddr; |
2001 | /* TODO: The memory case can be optimized by not trapping | |
2002 | reads of pages with a write breakpoint. */ | |
2003 | address |= TLB_MMIO; | |
6658ffb8 | 2004 | } |
0f459d16 | 2005 | } |
d79acba4 | 2006 | |
0f459d16 PB |
2007 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
2008 | env->iotlb[mmu_idx][index] = iotlb - vaddr; | |
2009 | te = &env->tlb_table[mmu_idx][index]; | |
2010 | te->addend = addend - vaddr; | |
2011 | if (prot & PAGE_READ) { | |
2012 | te->addr_read = address; | |
2013 | } else { | |
2014 | te->addr_read = -1; | |
2015 | } | |
5c751e99 | 2016 | |
0f459d16 PB |
2017 | if (prot & PAGE_EXEC) { |
2018 | te->addr_code = code_address; | |
2019 | } else { | |
2020 | te->addr_code = -1; | |
2021 | } | |
2022 | if (prot & PAGE_WRITE) { | |
2023 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || | |
2024 | (pd & IO_MEM_ROMD)) { | |
2025 | /* Write access calls the I/O callback. */ | |
2026 | te->addr_write = address | TLB_MMIO; | |
2027 | } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && | |
2028 | !cpu_physical_memory_is_dirty(pd)) { | |
2029 | te->addr_write = address | TLB_NOTDIRTY; | |
9fa3e853 | 2030 | } else { |
0f459d16 | 2031 | te->addr_write = address; |
9fa3e853 | 2032 | } |
0f459d16 PB |
2033 | } else { |
2034 | te->addr_write = -1; | |
9fa3e853 | 2035 | } |
9fa3e853 FB |
2036 | return ret; |
2037 | } | |
2038 | ||
0124311e FB |
2039 | #else |
2040 | ||
ee8b7021 | 2041 | void tlb_flush(CPUState *env, int flush_global) |
0124311e FB |
2042 | { |
2043 | } | |
2044 | ||
2e12669a | 2045 | void tlb_flush_page(CPUState *env, target_ulong addr) |
0124311e FB |
2046 | { |
2047 | } | |
2048 | ||
5fafdf24 TS |
2049 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
2050 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 2051 | int mmu_idx, int is_softmmu) |
9fa3e853 FB |
2052 | { |
2053 | return 0; | |
2054 | } | |
0124311e | 2055 | |
9fa3e853 FB |
2056 | /* dump memory mappings */ |
2057 | void page_dump(FILE *f) | |
33417e70 | 2058 | { |
9fa3e853 FB |
2059 | unsigned long start, end; |
2060 | int i, j, prot, prot1; | |
2061 | PageDesc *p; | |
33417e70 | 2062 | |
9fa3e853 FB |
2063 | fprintf(f, "%-8s %-8s %-8s %s\n", |
2064 | "start", "end", "size", "prot"); | |
2065 | start = -1; | |
2066 | end = -1; | |
2067 | prot = 0; | |
2068 | for(i = 0; i <= L1_SIZE; i++) { | |
2069 | if (i < L1_SIZE) | |
2070 | p = l1_map[i]; | |
2071 | else | |
2072 | p = NULL; | |
2073 | for(j = 0;j < L2_SIZE; j++) { | |
2074 | if (!p) | |
2075 | prot1 = 0; | |
2076 | else | |
2077 | prot1 = p[j].flags; | |
2078 | if (prot1 != prot) { | |
2079 | end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS); | |
2080 | if (start != -1) { | |
2081 | fprintf(f, "%08lx-%08lx %08lx %c%c%c\n", | |
5fafdf24 | 2082 | start, end, end - start, |
9fa3e853 FB |
2083 | prot & PAGE_READ ? 'r' : '-', |
2084 | prot & PAGE_WRITE ? 'w' : '-', | |
2085 | prot & PAGE_EXEC ? 'x' : '-'); | |
2086 | } | |
2087 | if (prot1 != 0) | |
2088 | start = end; | |
2089 | else | |
2090 | start = -1; | |
2091 | prot = prot1; | |
2092 | } | |
2093 | if (!p) | |
2094 | break; | |
2095 | } | |
33417e70 | 2096 | } |
33417e70 FB |
2097 | } |
2098 | ||
53a5960a | 2099 | int page_get_flags(target_ulong address) |
33417e70 | 2100 | { |
9fa3e853 FB |
2101 | PageDesc *p; |
2102 | ||
2103 | p = page_find(address >> TARGET_PAGE_BITS); | |
33417e70 | 2104 | if (!p) |
9fa3e853 FB |
2105 | return 0; |
2106 | return p->flags; | |
2107 | } | |
2108 | ||
2109 | /* modify the flags of a page and invalidate the code if | |
2110 | necessary. The flag PAGE_WRITE_ORG is positionned automatically | |
2111 | depending on PAGE_WRITE */ | |
53a5960a | 2112 | void page_set_flags(target_ulong start, target_ulong end, int flags) |
9fa3e853 FB |
2113 | { |
2114 | PageDesc *p; | |
53a5960a | 2115 | target_ulong addr; |
9fa3e853 | 2116 | |
c8a706fe | 2117 | /* mmap_lock should already be held. */ |
9fa3e853 FB |
2118 | start = start & TARGET_PAGE_MASK; |
2119 | end = TARGET_PAGE_ALIGN(end); | |
2120 | if (flags & PAGE_WRITE) | |
2121 | flags |= PAGE_WRITE_ORG; | |
9fa3e853 FB |
2122 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2123 | p = page_find_alloc(addr >> TARGET_PAGE_BITS); | |
17e2377a PB |
2124 | /* We may be called for host regions that are outside guest |
2125 | address space. */ | |
2126 | if (!p) | |
2127 | return; | |
9fa3e853 FB |
2128 | /* if the write protection is set, then we invalidate the code |
2129 | inside */ | |
5fafdf24 | 2130 | if (!(p->flags & PAGE_WRITE) && |
9fa3e853 FB |
2131 | (flags & PAGE_WRITE) && |
2132 | p->first_tb) { | |
d720b93d | 2133 | tb_invalidate_phys_page(addr, 0, NULL); |
9fa3e853 FB |
2134 | } |
2135 | p->flags = flags; | |
2136 | } | |
33417e70 FB |
2137 | } |
2138 | ||
3d97b40b TS |
2139 | int page_check_range(target_ulong start, target_ulong len, int flags) |
2140 | { | |
2141 | PageDesc *p; | |
2142 | target_ulong end; | |
2143 | target_ulong addr; | |
2144 | ||
55f280c9 AZ |
2145 | if (start + len < start) |
2146 | /* we've wrapped around */ | |
2147 | return -1; | |
2148 | ||
3d97b40b TS |
2149 | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */ |
2150 | start = start & TARGET_PAGE_MASK; | |
2151 | ||
3d97b40b TS |
2152 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2153 | p = page_find(addr >> TARGET_PAGE_BITS); | |
2154 | if( !p ) | |
2155 | return -1; | |
2156 | if( !(p->flags & PAGE_VALID) ) | |
2157 | return -1; | |
2158 | ||
dae3270c | 2159 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) |
3d97b40b | 2160 | return -1; |
dae3270c FB |
2161 | if (flags & PAGE_WRITE) { |
2162 | if (!(p->flags & PAGE_WRITE_ORG)) | |
2163 | return -1; | |
2164 | /* unprotect the page if it was put read-only because it | |
2165 | contains translated code */ | |
2166 | if (!(p->flags & PAGE_WRITE)) { | |
2167 | if (!page_unprotect(addr, 0, NULL)) | |
2168 | return -1; | |
2169 | } | |
2170 | return 0; | |
2171 | } | |
3d97b40b TS |
2172 | } |
2173 | return 0; | |
2174 | } | |
2175 | ||
9fa3e853 FB |
2176 | /* called from signal handler: invalidate the code and unprotect the |
2177 | page. Return TRUE if the fault was succesfully handled. */ | |
53a5960a | 2178 | int page_unprotect(target_ulong address, unsigned long pc, void *puc) |
9fa3e853 FB |
2179 | { |
2180 | unsigned int page_index, prot, pindex; | |
2181 | PageDesc *p, *p1; | |
53a5960a | 2182 | target_ulong host_start, host_end, addr; |
9fa3e853 | 2183 | |
c8a706fe PB |
2184 | /* Technically this isn't safe inside a signal handler. However we |
2185 | know this only ever happens in a synchronous SEGV handler, so in | |
2186 | practice it seems to be ok. */ | |
2187 | mmap_lock(); | |
2188 | ||
83fb7adf | 2189 | host_start = address & qemu_host_page_mask; |
9fa3e853 FB |
2190 | page_index = host_start >> TARGET_PAGE_BITS; |
2191 | p1 = page_find(page_index); | |
c8a706fe PB |
2192 | if (!p1) { |
2193 | mmap_unlock(); | |
9fa3e853 | 2194 | return 0; |
c8a706fe | 2195 | } |
83fb7adf | 2196 | host_end = host_start + qemu_host_page_size; |
9fa3e853 FB |
2197 | p = p1; |
2198 | prot = 0; | |
2199 | for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) { | |
2200 | prot |= p->flags; | |
2201 | p++; | |
2202 | } | |
2203 | /* if the page was really writable, then we change its | |
2204 | protection back to writable */ | |
2205 | if (prot & PAGE_WRITE_ORG) { | |
2206 | pindex = (address - host_start) >> TARGET_PAGE_BITS; | |
2207 | if (!(p1[pindex].flags & PAGE_WRITE)) { | |
5fafdf24 | 2208 | mprotect((void *)g2h(host_start), qemu_host_page_size, |
9fa3e853 FB |
2209 | (prot & PAGE_BITS) | PAGE_WRITE); |
2210 | p1[pindex].flags |= PAGE_WRITE; | |
2211 | /* and since the content will be modified, we must invalidate | |
2212 | the corresponding translated code. */ | |
d720b93d | 2213 | tb_invalidate_phys_page(address, pc, puc); |
9fa3e853 FB |
2214 | #ifdef DEBUG_TB_CHECK |
2215 | tb_invalidate_check(address); | |
2216 | #endif | |
c8a706fe | 2217 | mmap_unlock(); |
9fa3e853 FB |
2218 | return 1; |
2219 | } | |
2220 | } | |
c8a706fe | 2221 | mmap_unlock(); |
9fa3e853 FB |
2222 | return 0; |
2223 | } | |
2224 | ||
6a00d601 FB |
2225 | static inline void tlb_set_dirty(CPUState *env, |
2226 | unsigned long addr, target_ulong vaddr) | |
1ccde1cb FB |
2227 | { |
2228 | } | |
9fa3e853 FB |
2229 | #endif /* defined(CONFIG_USER_ONLY) */ |
2230 | ||
e2eef170 | 2231 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 2232 | |
db7b5426 | 2233 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
8da3ff18 | 2234 | ram_addr_t memory, ram_addr_t region_offset); |
00f82b8a | 2235 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
8da3ff18 | 2236 | ram_addr_t orig_memory, ram_addr_t region_offset); |
db7b5426 BS |
2237 | #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \ |
2238 | need_subpage) \ | |
2239 | do { \ | |
2240 | if (addr > start_addr) \ | |
2241 | start_addr2 = 0; \ | |
2242 | else { \ | |
2243 | start_addr2 = start_addr & ~TARGET_PAGE_MASK; \ | |
2244 | if (start_addr2 > 0) \ | |
2245 | need_subpage = 1; \ | |
2246 | } \ | |
2247 | \ | |
49e9fba2 | 2248 | if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \ |
db7b5426 BS |
2249 | end_addr2 = TARGET_PAGE_SIZE - 1; \ |
2250 | else { \ | |
2251 | end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \ | |
2252 | if (end_addr2 < TARGET_PAGE_SIZE - 1) \ | |
2253 | need_subpage = 1; \ | |
2254 | } \ | |
2255 | } while (0) | |
2256 | ||
33417e70 FB |
2257 | /* register physical memory. 'size' must be a multiple of the target |
2258 | page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an | |
8da3ff18 PB |
2259 | io memory page. The address used when calling the IO function is |
2260 | the offset from the start of the region, plus region_offset. Both | |
2261 | start_region and regon_offset are rounded down to a page boundary | |
2262 | before calculating this offset. This should not be a problem unless | |
2263 | the low bits of start_addr and region_offset differ. */ | |
2264 | void cpu_register_physical_memory_offset(target_phys_addr_t start_addr, | |
2265 | ram_addr_t size, | |
2266 | ram_addr_t phys_offset, | |
2267 | ram_addr_t region_offset) | |
33417e70 | 2268 | { |
108c49b8 | 2269 | target_phys_addr_t addr, end_addr; |
92e873b9 | 2270 | PhysPageDesc *p; |
9d42037b | 2271 | CPUState *env; |
00f82b8a | 2272 | ram_addr_t orig_size = size; |
db7b5426 | 2273 | void *subpage; |
33417e70 | 2274 | |
da260249 FB |
2275 | #ifdef USE_KQEMU |
2276 | /* XXX: should not depend on cpu context */ | |
2277 | env = first_cpu; | |
2278 | if (env->kqemu_enabled) { | |
2279 | kqemu_set_phys_mem(start_addr, size, phys_offset); | |
2280 | } | |
2281 | #endif | |
7ba1e619 AL |
2282 | if (kvm_enabled()) |
2283 | kvm_set_phys_mem(start_addr, size, phys_offset); | |
2284 | ||
67c4d23c PB |
2285 | if (phys_offset == IO_MEM_UNASSIGNED) { |
2286 | region_offset = start_addr; | |
2287 | } | |
8da3ff18 | 2288 | region_offset &= TARGET_PAGE_MASK; |
5fd386f6 | 2289 | size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK; |
49e9fba2 BS |
2290 | end_addr = start_addr + (target_phys_addr_t)size; |
2291 | for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) { | |
db7b5426 BS |
2292 | p = phys_page_find(addr >> TARGET_PAGE_BITS); |
2293 | if (p && p->phys_offset != IO_MEM_UNASSIGNED) { | |
00f82b8a | 2294 | ram_addr_t orig_memory = p->phys_offset; |
db7b5426 BS |
2295 | target_phys_addr_t start_addr2, end_addr2; |
2296 | int need_subpage = 0; | |
2297 | ||
2298 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, | |
2299 | need_subpage); | |
4254fab8 | 2300 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 BS |
2301 | if (!(orig_memory & IO_MEM_SUBPAGE)) { |
2302 | subpage = subpage_init((addr & TARGET_PAGE_MASK), | |
8da3ff18 PB |
2303 | &p->phys_offset, orig_memory, |
2304 | p->region_offset); | |
db7b5426 BS |
2305 | } else { |
2306 | subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK) | |
2307 | >> IO_MEM_SHIFT]; | |
2308 | } | |
8da3ff18 PB |
2309 | subpage_register(subpage, start_addr2, end_addr2, phys_offset, |
2310 | region_offset); | |
2311 | p->region_offset = 0; | |
db7b5426 BS |
2312 | } else { |
2313 | p->phys_offset = phys_offset; | |
2314 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2315 | (phys_offset & IO_MEM_ROMD)) | |
2316 | phys_offset += TARGET_PAGE_SIZE; | |
2317 | } | |
2318 | } else { | |
2319 | p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
2320 | p->phys_offset = phys_offset; | |
8da3ff18 | 2321 | p->region_offset = region_offset; |
db7b5426 | 2322 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || |
8da3ff18 | 2323 | (phys_offset & IO_MEM_ROMD)) { |
db7b5426 | 2324 | phys_offset += TARGET_PAGE_SIZE; |
0e8f0967 | 2325 | } else { |
db7b5426 BS |
2326 | target_phys_addr_t start_addr2, end_addr2; |
2327 | int need_subpage = 0; | |
2328 | ||
2329 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, | |
2330 | end_addr2, need_subpage); | |
2331 | ||
4254fab8 | 2332 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 | 2333 | subpage = subpage_init((addr & TARGET_PAGE_MASK), |
8da3ff18 | 2334 | &p->phys_offset, IO_MEM_UNASSIGNED, |
67c4d23c | 2335 | addr & TARGET_PAGE_MASK); |
db7b5426 | 2336 | subpage_register(subpage, start_addr2, end_addr2, |
8da3ff18 PB |
2337 | phys_offset, region_offset); |
2338 | p->region_offset = 0; | |
db7b5426 BS |
2339 | } |
2340 | } | |
2341 | } | |
8da3ff18 | 2342 | region_offset += TARGET_PAGE_SIZE; |
33417e70 | 2343 | } |
3b46e624 | 2344 | |
9d42037b FB |
2345 | /* since each CPU stores ram addresses in its TLB cache, we must |
2346 | reset the modified entries */ | |
2347 | /* XXX: slow ! */ | |
2348 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
2349 | tlb_flush(env, 1); | |
2350 | } | |
33417e70 FB |
2351 | } |
2352 | ||
ba863458 | 2353 | /* XXX: temporary until new memory mapping API */ |
00f82b8a | 2354 | ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr) |
ba863458 FB |
2355 | { |
2356 | PhysPageDesc *p; | |
2357 | ||
2358 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2359 | if (!p) | |
2360 | return IO_MEM_UNASSIGNED; | |
2361 | return p->phys_offset; | |
2362 | } | |
2363 | ||
f65ed4c1 AL |
2364 | void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) |
2365 | { | |
2366 | if (kvm_enabled()) | |
2367 | kvm_coalesce_mmio_region(addr, size); | |
2368 | } | |
2369 | ||
2370 | void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) | |
2371 | { | |
2372 | if (kvm_enabled()) | |
2373 | kvm_uncoalesce_mmio_region(addr, size); | |
2374 | } | |
2375 | ||
e9a1ab19 | 2376 | /* XXX: better than nothing */ |
00f82b8a | 2377 | ram_addr_t qemu_ram_alloc(ram_addr_t size) |
e9a1ab19 FB |
2378 | { |
2379 | ram_addr_t addr; | |
7fb4fdcf | 2380 | if ((phys_ram_alloc_offset + size) > phys_ram_size) { |
012a7045 | 2381 | fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n", |
ed441467 | 2382 | (uint64_t)size, (uint64_t)phys_ram_size); |
e9a1ab19 FB |
2383 | abort(); |
2384 | } | |
2385 | addr = phys_ram_alloc_offset; | |
2386 | phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size); | |
2387 | return addr; | |
2388 | } | |
2389 | ||
2390 | void qemu_ram_free(ram_addr_t addr) | |
2391 | { | |
2392 | } | |
2393 | ||
a4193c8a | 2394 | static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr) |
33417e70 | 2395 | { |
67d3b957 | 2396 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2397 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); |
b4f0a316 | 2398 | #endif |
0a6f8a6d | 2399 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2400 | do_unassigned_access(addr, 0, 0, 0, 1); |
2401 | #endif | |
2402 | return 0; | |
2403 | } | |
2404 | ||
2405 | static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr) | |
2406 | { | |
2407 | #ifdef DEBUG_UNASSIGNED | |
2408 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2409 | #endif | |
0a6f8a6d | 2410 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2411 | do_unassigned_access(addr, 0, 0, 0, 2); |
2412 | #endif | |
2413 | return 0; | |
2414 | } | |
2415 | ||
2416 | static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr) | |
2417 | { | |
2418 | #ifdef DEBUG_UNASSIGNED | |
2419 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2420 | #endif | |
0a6f8a6d | 2421 | #if defined(TARGET_SPARC) |
e18231a3 | 2422 | do_unassigned_access(addr, 0, 0, 0, 4); |
67d3b957 | 2423 | #endif |
33417e70 FB |
2424 | return 0; |
2425 | } | |
2426 | ||
a4193c8a | 2427 | static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) |
33417e70 | 2428 | { |
67d3b957 | 2429 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2430 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); |
67d3b957 | 2431 | #endif |
0a6f8a6d | 2432 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2433 | do_unassigned_access(addr, 1, 0, 0, 1); |
2434 | #endif | |
2435 | } | |
2436 | ||
2437 | static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2438 | { | |
2439 | #ifdef DEBUG_UNASSIGNED | |
2440 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2441 | #endif | |
0a6f8a6d | 2442 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2443 | do_unassigned_access(addr, 1, 0, 0, 2); |
2444 | #endif | |
2445 | } | |
2446 | ||
2447 | static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2448 | { | |
2449 | #ifdef DEBUG_UNASSIGNED | |
2450 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2451 | #endif | |
0a6f8a6d | 2452 | #if defined(TARGET_SPARC) |
e18231a3 | 2453 | do_unassigned_access(addr, 1, 0, 0, 4); |
b4f0a316 | 2454 | #endif |
33417e70 FB |
2455 | } |
2456 | ||
2457 | static CPUReadMemoryFunc *unassigned_mem_read[3] = { | |
2458 | unassigned_mem_readb, | |
e18231a3 BS |
2459 | unassigned_mem_readw, |
2460 | unassigned_mem_readl, | |
33417e70 FB |
2461 | }; |
2462 | ||
2463 | static CPUWriteMemoryFunc *unassigned_mem_write[3] = { | |
2464 | unassigned_mem_writeb, | |
e18231a3 BS |
2465 | unassigned_mem_writew, |
2466 | unassigned_mem_writel, | |
33417e70 FB |
2467 | }; |
2468 | ||
0f459d16 PB |
2469 | static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr, |
2470 | uint32_t val) | |
9fa3e853 | 2471 | { |
3a7d929e | 2472 | int dirty_flags; |
3a7d929e FB |
2473 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2474 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2475 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2476 | tb_invalidate_phys_page_fast(ram_addr, 1); |
2477 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2478 | #endif |
3a7d929e | 2479 | } |
0f459d16 | 2480 | stb_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2481 | #ifdef USE_KQEMU |
2482 | if (cpu_single_env->kqemu_enabled && | |
2483 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2484 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2485 | #endif | |
f23db169 FB |
2486 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2487 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2488 | /* we remove the notdirty callback only if the code has been | |
2489 | flushed */ | |
2490 | if (dirty_flags == 0xff) | |
2e70f6ef | 2491 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2492 | } |
2493 | ||
0f459d16 PB |
2494 | static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr, |
2495 | uint32_t val) | |
9fa3e853 | 2496 | { |
3a7d929e | 2497 | int dirty_flags; |
3a7d929e FB |
2498 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2499 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2500 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2501 | tb_invalidate_phys_page_fast(ram_addr, 2); |
2502 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2503 | #endif |
3a7d929e | 2504 | } |
0f459d16 | 2505 | stw_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2506 | #ifdef USE_KQEMU |
2507 | if (cpu_single_env->kqemu_enabled && | |
2508 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2509 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2510 | #endif | |
f23db169 FB |
2511 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2512 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2513 | /* we remove the notdirty callback only if the code has been | |
2514 | flushed */ | |
2515 | if (dirty_flags == 0xff) | |
2e70f6ef | 2516 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2517 | } |
2518 | ||
0f459d16 PB |
2519 | static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr, |
2520 | uint32_t val) | |
9fa3e853 | 2521 | { |
3a7d929e | 2522 | int dirty_flags; |
3a7d929e FB |
2523 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2524 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2525 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2526 | tb_invalidate_phys_page_fast(ram_addr, 4); |
2527 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2528 | #endif |
3a7d929e | 2529 | } |
0f459d16 | 2530 | stl_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2531 | #ifdef USE_KQEMU |
2532 | if (cpu_single_env->kqemu_enabled && | |
2533 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2534 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2535 | #endif | |
f23db169 FB |
2536 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2537 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2538 | /* we remove the notdirty callback only if the code has been | |
2539 | flushed */ | |
2540 | if (dirty_flags == 0xff) | |
2e70f6ef | 2541 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2542 | } |
2543 | ||
3a7d929e | 2544 | static CPUReadMemoryFunc *error_mem_read[3] = { |
9fa3e853 FB |
2545 | NULL, /* never used */ |
2546 | NULL, /* never used */ | |
2547 | NULL, /* never used */ | |
2548 | }; | |
2549 | ||
1ccde1cb FB |
2550 | static CPUWriteMemoryFunc *notdirty_mem_write[3] = { |
2551 | notdirty_mem_writeb, | |
2552 | notdirty_mem_writew, | |
2553 | notdirty_mem_writel, | |
2554 | }; | |
2555 | ||
0f459d16 | 2556 | /* Generate a debug exception if a watchpoint has been hit. */ |
b4051334 | 2557 | static void check_watchpoint(int offset, int len_mask, int flags) |
0f459d16 PB |
2558 | { |
2559 | CPUState *env = cpu_single_env; | |
06d55cc1 AL |
2560 | target_ulong pc, cs_base; |
2561 | TranslationBlock *tb; | |
0f459d16 | 2562 | target_ulong vaddr; |
a1d1bb31 | 2563 | CPUWatchpoint *wp; |
06d55cc1 | 2564 | int cpu_flags; |
0f459d16 | 2565 | |
06d55cc1 AL |
2566 | if (env->watchpoint_hit) { |
2567 | /* We re-entered the check after replacing the TB. Now raise | |
2568 | * the debug interrupt so that is will trigger after the | |
2569 | * current instruction. */ | |
2570 | cpu_interrupt(env, CPU_INTERRUPT_DEBUG); | |
2571 | return; | |
2572 | } | |
2e70f6ef | 2573 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
c0ce998e | 2574 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
b4051334 AL |
2575 | if ((vaddr == (wp->vaddr & len_mask) || |
2576 | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { | |
6e140f28 AL |
2577 | wp->flags |= BP_WATCHPOINT_HIT; |
2578 | if (!env->watchpoint_hit) { | |
2579 | env->watchpoint_hit = wp; | |
2580 | tb = tb_find_pc(env->mem_io_pc); | |
2581 | if (!tb) { | |
2582 | cpu_abort(env, "check_watchpoint: could not find TB for " | |
2583 | "pc=%p", (void *)env->mem_io_pc); | |
2584 | } | |
2585 | cpu_restore_state(tb, env, env->mem_io_pc, NULL); | |
2586 | tb_phys_invalidate(tb, -1); | |
2587 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
2588 | env->exception_index = EXCP_DEBUG; | |
2589 | } else { | |
2590 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
2591 | tb_gen_code(env, pc, cs_base, cpu_flags, 1); | |
2592 | } | |
2593 | cpu_resume_from_signal(env, NULL); | |
06d55cc1 | 2594 | } |
6e140f28 AL |
2595 | } else { |
2596 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2597 | } |
2598 | } | |
2599 | } | |
2600 | ||
6658ffb8 PB |
2601 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2602 | so these check for a hit then pass through to the normal out-of-line | |
2603 | phys routines. */ | |
2604 | static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr) | |
2605 | { | |
b4051334 | 2606 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ); |
6658ffb8 PB |
2607 | return ldub_phys(addr); |
2608 | } | |
2609 | ||
2610 | static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr) | |
2611 | { | |
b4051334 | 2612 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ); |
6658ffb8 PB |
2613 | return lduw_phys(addr); |
2614 | } | |
2615 | ||
2616 | static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr) | |
2617 | { | |
b4051334 | 2618 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ); |
6658ffb8 PB |
2619 | return ldl_phys(addr); |
2620 | } | |
2621 | ||
6658ffb8 PB |
2622 | static void watch_mem_writeb(void *opaque, target_phys_addr_t addr, |
2623 | uint32_t val) | |
2624 | { | |
b4051334 | 2625 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE); |
6658ffb8 PB |
2626 | stb_phys(addr, val); |
2627 | } | |
2628 | ||
2629 | static void watch_mem_writew(void *opaque, target_phys_addr_t addr, | |
2630 | uint32_t val) | |
2631 | { | |
b4051334 | 2632 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE); |
6658ffb8 PB |
2633 | stw_phys(addr, val); |
2634 | } | |
2635 | ||
2636 | static void watch_mem_writel(void *opaque, target_phys_addr_t addr, | |
2637 | uint32_t val) | |
2638 | { | |
b4051334 | 2639 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE); |
6658ffb8 PB |
2640 | stl_phys(addr, val); |
2641 | } | |
2642 | ||
2643 | static CPUReadMemoryFunc *watch_mem_read[3] = { | |
2644 | watch_mem_readb, | |
2645 | watch_mem_readw, | |
2646 | watch_mem_readl, | |
2647 | }; | |
2648 | ||
2649 | static CPUWriteMemoryFunc *watch_mem_write[3] = { | |
2650 | watch_mem_writeb, | |
2651 | watch_mem_writew, | |
2652 | watch_mem_writel, | |
2653 | }; | |
6658ffb8 | 2654 | |
db7b5426 BS |
2655 | static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr, |
2656 | unsigned int len) | |
2657 | { | |
db7b5426 BS |
2658 | uint32_t ret; |
2659 | unsigned int idx; | |
2660 | ||
8da3ff18 | 2661 | idx = SUBPAGE_IDX(addr); |
db7b5426 BS |
2662 | #if defined(DEBUG_SUBPAGE) |
2663 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, | |
2664 | mmio, len, addr, idx); | |
2665 | #endif | |
8da3ff18 PB |
2666 | ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], |
2667 | addr + mmio->region_offset[idx][0][len]); | |
db7b5426 BS |
2668 | |
2669 | return ret; | |
2670 | } | |
2671 | ||
2672 | static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr, | |
2673 | uint32_t value, unsigned int len) | |
2674 | { | |
db7b5426 BS |
2675 | unsigned int idx; |
2676 | ||
8da3ff18 | 2677 | idx = SUBPAGE_IDX(addr); |
db7b5426 BS |
2678 | #if defined(DEBUG_SUBPAGE) |
2679 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__, | |
2680 | mmio, len, addr, idx, value); | |
2681 | #endif | |
8da3ff18 PB |
2682 | (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], |
2683 | addr + mmio->region_offset[idx][1][len], | |
2684 | value); | |
db7b5426 BS |
2685 | } |
2686 | ||
2687 | static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr) | |
2688 | { | |
2689 | #if defined(DEBUG_SUBPAGE) | |
2690 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2691 | #endif | |
2692 | ||
2693 | return subpage_readlen(opaque, addr, 0); | |
2694 | } | |
2695 | ||
2696 | static void subpage_writeb (void *opaque, target_phys_addr_t addr, | |
2697 | uint32_t value) | |
2698 | { | |
2699 | #if defined(DEBUG_SUBPAGE) | |
2700 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2701 | #endif | |
2702 | subpage_writelen(opaque, addr, value, 0); | |
2703 | } | |
2704 | ||
2705 | static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr) | |
2706 | { | |
2707 | #if defined(DEBUG_SUBPAGE) | |
2708 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2709 | #endif | |
2710 | ||
2711 | return subpage_readlen(opaque, addr, 1); | |
2712 | } | |
2713 | ||
2714 | static void subpage_writew (void *opaque, target_phys_addr_t addr, | |
2715 | uint32_t value) | |
2716 | { | |
2717 | #if defined(DEBUG_SUBPAGE) | |
2718 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2719 | #endif | |
2720 | subpage_writelen(opaque, addr, value, 1); | |
2721 | } | |
2722 | ||
2723 | static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr) | |
2724 | { | |
2725 | #if defined(DEBUG_SUBPAGE) | |
2726 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2727 | #endif | |
2728 | ||
2729 | return subpage_readlen(opaque, addr, 2); | |
2730 | } | |
2731 | ||
2732 | static void subpage_writel (void *opaque, | |
2733 | target_phys_addr_t addr, uint32_t value) | |
2734 | { | |
2735 | #if defined(DEBUG_SUBPAGE) | |
2736 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2737 | #endif | |
2738 | subpage_writelen(opaque, addr, value, 2); | |
2739 | } | |
2740 | ||
2741 | static CPUReadMemoryFunc *subpage_read[] = { | |
2742 | &subpage_readb, | |
2743 | &subpage_readw, | |
2744 | &subpage_readl, | |
2745 | }; | |
2746 | ||
2747 | static CPUWriteMemoryFunc *subpage_write[] = { | |
2748 | &subpage_writeb, | |
2749 | &subpage_writew, | |
2750 | &subpage_writel, | |
2751 | }; | |
2752 | ||
2753 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
8da3ff18 | 2754 | ram_addr_t memory, ram_addr_t region_offset) |
db7b5426 BS |
2755 | { |
2756 | int idx, eidx; | |
4254fab8 | 2757 | unsigned int i; |
db7b5426 BS |
2758 | |
2759 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2760 | return -1; | |
2761 | idx = SUBPAGE_IDX(start); | |
2762 | eidx = SUBPAGE_IDX(end); | |
2763 | #if defined(DEBUG_SUBPAGE) | |
2764 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__, | |
2765 | mmio, start, end, idx, eidx, memory); | |
2766 | #endif | |
2767 | memory >>= IO_MEM_SHIFT; | |
2768 | for (; idx <= eidx; idx++) { | |
4254fab8 | 2769 | for (i = 0; i < 4; i++) { |
3ee89922 BS |
2770 | if (io_mem_read[memory][i]) { |
2771 | mmio->mem_read[idx][i] = &io_mem_read[memory][i]; | |
2772 | mmio->opaque[idx][0][i] = io_mem_opaque[memory]; | |
8da3ff18 | 2773 | mmio->region_offset[idx][0][i] = region_offset; |
3ee89922 BS |
2774 | } |
2775 | if (io_mem_write[memory][i]) { | |
2776 | mmio->mem_write[idx][i] = &io_mem_write[memory][i]; | |
2777 | mmio->opaque[idx][1][i] = io_mem_opaque[memory]; | |
8da3ff18 | 2778 | mmio->region_offset[idx][1][i] = region_offset; |
3ee89922 | 2779 | } |
4254fab8 | 2780 | } |
db7b5426 BS |
2781 | } |
2782 | ||
2783 | return 0; | |
2784 | } | |
2785 | ||
00f82b8a | 2786 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
8da3ff18 | 2787 | ram_addr_t orig_memory, ram_addr_t region_offset) |
db7b5426 BS |
2788 | { |
2789 | subpage_t *mmio; | |
2790 | int subpage_memory; | |
2791 | ||
2792 | mmio = qemu_mallocz(sizeof(subpage_t)); | |
1eec614b AL |
2793 | |
2794 | mmio->base = base; | |
2795 | subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio); | |
db7b5426 | 2796 | #if defined(DEBUG_SUBPAGE) |
1eec614b AL |
2797 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, |
2798 | mmio, base, TARGET_PAGE_SIZE, subpage_memory); | |
db7b5426 | 2799 | #endif |
1eec614b AL |
2800 | *phys = subpage_memory | IO_MEM_SUBPAGE; |
2801 | subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory, | |
8da3ff18 | 2802 | region_offset); |
db7b5426 BS |
2803 | |
2804 | return mmio; | |
2805 | } | |
2806 | ||
88715657 AL |
2807 | static int get_free_io_mem_idx(void) |
2808 | { | |
2809 | int i; | |
2810 | ||
2811 | for (i = 0; i<IO_MEM_NB_ENTRIES; i++) | |
2812 | if (!io_mem_used[i]) { | |
2813 | io_mem_used[i] = 1; | |
2814 | return i; | |
2815 | } | |
2816 | ||
2817 | return -1; | |
2818 | } | |
2819 | ||
33417e70 FB |
2820 | static void io_mem_init(void) |
2821 | { | |
88715657 AL |
2822 | int i; |
2823 | ||
3a7d929e | 2824 | cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL); |
a4193c8a | 2825 | cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL); |
3a7d929e | 2826 | cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL); |
88715657 AL |
2827 | for (i=0; i<5; i++) |
2828 | io_mem_used[i] = 1; | |
1ccde1cb | 2829 | |
0f459d16 | 2830 | io_mem_watch = cpu_register_io_memory(0, watch_mem_read, |
6658ffb8 | 2831 | watch_mem_write, NULL); |
1ccde1cb | 2832 | /* alloc dirty bits array */ |
0a962c02 | 2833 | phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS); |
3a7d929e | 2834 | memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS); |
33417e70 FB |
2835 | } |
2836 | ||
2837 | /* mem_read and mem_write are arrays of functions containing the | |
2838 | function to access byte (index 0), word (index 1) and dword (index | |
3ee89922 BS |
2839 | 2). Functions can be omitted with a NULL function pointer. The |
2840 | registered functions may be modified dynamically later. | |
2841 | If io_index is non zero, the corresponding io zone is | |
4254fab8 BS |
2842 | modified. If it is zero, a new io zone is allocated. The return |
2843 | value can be used with cpu_register_physical_memory(). (-1) is | |
2844 | returned if error. */ | |
33417e70 FB |
2845 | int cpu_register_io_memory(int io_index, |
2846 | CPUReadMemoryFunc **mem_read, | |
a4193c8a FB |
2847 | CPUWriteMemoryFunc **mem_write, |
2848 | void *opaque) | |
33417e70 | 2849 | { |
4254fab8 | 2850 | int i, subwidth = 0; |
33417e70 FB |
2851 | |
2852 | if (io_index <= 0) { | |
88715657 AL |
2853 | io_index = get_free_io_mem_idx(); |
2854 | if (io_index == -1) | |
2855 | return io_index; | |
33417e70 FB |
2856 | } else { |
2857 | if (io_index >= IO_MEM_NB_ENTRIES) | |
2858 | return -1; | |
2859 | } | |
b5ff1b31 | 2860 | |
33417e70 | 2861 | for(i = 0;i < 3; i++) { |
4254fab8 BS |
2862 | if (!mem_read[i] || !mem_write[i]) |
2863 | subwidth = IO_MEM_SUBWIDTH; | |
33417e70 FB |
2864 | io_mem_read[io_index][i] = mem_read[i]; |
2865 | io_mem_write[io_index][i] = mem_write[i]; | |
2866 | } | |
a4193c8a | 2867 | io_mem_opaque[io_index] = opaque; |
4254fab8 | 2868 | return (io_index << IO_MEM_SHIFT) | subwidth; |
33417e70 | 2869 | } |
61382a50 | 2870 | |
88715657 AL |
2871 | void cpu_unregister_io_memory(int io_table_address) |
2872 | { | |
2873 | int i; | |
2874 | int io_index = io_table_address >> IO_MEM_SHIFT; | |
2875 | ||
2876 | for (i=0;i < 3; i++) { | |
2877 | io_mem_read[io_index][i] = unassigned_mem_read[i]; | |
2878 | io_mem_write[io_index][i] = unassigned_mem_write[i]; | |
2879 | } | |
2880 | io_mem_opaque[io_index] = NULL; | |
2881 | io_mem_used[io_index] = 0; | |
2882 | } | |
2883 | ||
8926b517 FB |
2884 | CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index) |
2885 | { | |
2886 | return io_mem_write[io_index >> IO_MEM_SHIFT]; | |
2887 | } | |
2888 | ||
2889 | CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index) | |
2890 | { | |
2891 | return io_mem_read[io_index >> IO_MEM_SHIFT]; | |
2892 | } | |
2893 | ||
e2eef170 PB |
2894 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2895 | ||
13eb76e0 FB |
2896 | /* physical memory access (slow version, mainly for debug) */ |
2897 | #if defined(CONFIG_USER_ONLY) | |
5fafdf24 | 2898 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
2899 | int len, int is_write) |
2900 | { | |
2901 | int l, flags; | |
2902 | target_ulong page; | |
53a5960a | 2903 | void * p; |
13eb76e0 FB |
2904 | |
2905 | while (len > 0) { | |
2906 | page = addr & TARGET_PAGE_MASK; | |
2907 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2908 | if (l > len) | |
2909 | l = len; | |
2910 | flags = page_get_flags(page); | |
2911 | if (!(flags & PAGE_VALID)) | |
2912 | return; | |
2913 | if (is_write) { | |
2914 | if (!(flags & PAGE_WRITE)) | |
2915 | return; | |
579a97f7 | 2916 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2917 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
579a97f7 FB |
2918 | /* FIXME - should this return an error rather than just fail? */ |
2919 | return; | |
72fb7daa AJ |
2920 | memcpy(p, buf, l); |
2921 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2922 | } else { |
2923 | if (!(flags & PAGE_READ)) | |
2924 | return; | |
579a97f7 | 2925 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2926 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
579a97f7 FB |
2927 | /* FIXME - should this return an error rather than just fail? */ |
2928 | return; | |
72fb7daa | 2929 | memcpy(buf, p, l); |
5b257578 | 2930 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2931 | } |
2932 | len -= l; | |
2933 | buf += l; | |
2934 | addr += l; | |
2935 | } | |
2936 | } | |
8df1cd07 | 2937 | |
13eb76e0 | 2938 | #else |
5fafdf24 | 2939 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
2940 | int len, int is_write) |
2941 | { | |
2942 | int l, io_index; | |
2943 | uint8_t *ptr; | |
2944 | uint32_t val; | |
2e12669a FB |
2945 | target_phys_addr_t page; |
2946 | unsigned long pd; | |
92e873b9 | 2947 | PhysPageDesc *p; |
3b46e624 | 2948 | |
13eb76e0 FB |
2949 | while (len > 0) { |
2950 | page = addr & TARGET_PAGE_MASK; | |
2951 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2952 | if (l > len) | |
2953 | l = len; | |
92e873b9 | 2954 | p = phys_page_find(page >> TARGET_PAGE_BITS); |
13eb76e0 FB |
2955 | if (!p) { |
2956 | pd = IO_MEM_UNASSIGNED; | |
2957 | } else { | |
2958 | pd = p->phys_offset; | |
2959 | } | |
3b46e624 | 2960 | |
13eb76e0 | 2961 | if (is_write) { |
3a7d929e | 2962 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
6c2934db | 2963 | target_phys_addr_t addr1 = addr; |
13eb76e0 | 2964 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 | 2965 | if (p) |
6c2934db | 2966 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
6a00d601 FB |
2967 | /* XXX: could force cpu_single_env to NULL to avoid |
2968 | potential bugs */ | |
6c2934db | 2969 | if (l >= 4 && ((addr1 & 3) == 0)) { |
1c213d19 | 2970 | /* 32 bit write access */ |
c27004ec | 2971 | val = ldl_p(buf); |
6c2934db | 2972 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val); |
13eb76e0 | 2973 | l = 4; |
6c2934db | 2974 | } else if (l >= 2 && ((addr1 & 1) == 0)) { |
1c213d19 | 2975 | /* 16 bit write access */ |
c27004ec | 2976 | val = lduw_p(buf); |
6c2934db | 2977 | io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val); |
13eb76e0 FB |
2978 | l = 2; |
2979 | } else { | |
1c213d19 | 2980 | /* 8 bit write access */ |
c27004ec | 2981 | val = ldub_p(buf); |
6c2934db | 2982 | io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val); |
13eb76e0 FB |
2983 | l = 1; |
2984 | } | |
2985 | } else { | |
b448f2f3 FB |
2986 | unsigned long addr1; |
2987 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
13eb76e0 | 2988 | /* RAM case */ |
b448f2f3 | 2989 | ptr = phys_ram_base + addr1; |
13eb76e0 | 2990 | memcpy(ptr, buf, l); |
3a7d929e FB |
2991 | if (!cpu_physical_memory_is_dirty(addr1)) { |
2992 | /* invalidate code */ | |
2993 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
2994 | /* set dirty bit */ | |
5fafdf24 | 2995 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
f23db169 | 2996 | (0xff & ~CODE_DIRTY_FLAG); |
3a7d929e | 2997 | } |
13eb76e0 FB |
2998 | } |
2999 | } else { | |
5fafdf24 | 3000 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 3001 | !(pd & IO_MEM_ROMD)) { |
6c2934db | 3002 | target_phys_addr_t addr1 = addr; |
13eb76e0 FB |
3003 | /* I/O case */ |
3004 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 | 3005 | if (p) |
6c2934db AJ |
3006 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
3007 | if (l >= 4 && ((addr1 & 3) == 0)) { | |
13eb76e0 | 3008 | /* 32 bit read access */ |
6c2934db | 3009 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1); |
c27004ec | 3010 | stl_p(buf, val); |
13eb76e0 | 3011 | l = 4; |
6c2934db | 3012 | } else if (l >= 2 && ((addr1 & 1) == 0)) { |
13eb76e0 | 3013 | /* 16 bit read access */ |
6c2934db | 3014 | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1); |
c27004ec | 3015 | stw_p(buf, val); |
13eb76e0 FB |
3016 | l = 2; |
3017 | } else { | |
1c213d19 | 3018 | /* 8 bit read access */ |
6c2934db | 3019 | val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1); |
c27004ec | 3020 | stb_p(buf, val); |
13eb76e0 FB |
3021 | l = 1; |
3022 | } | |
3023 | } else { | |
3024 | /* RAM case */ | |
5fafdf24 | 3025 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
13eb76e0 FB |
3026 | (addr & ~TARGET_PAGE_MASK); |
3027 | memcpy(buf, ptr, l); | |
3028 | } | |
3029 | } | |
3030 | len -= l; | |
3031 | buf += l; | |
3032 | addr += l; | |
3033 | } | |
3034 | } | |
8df1cd07 | 3035 | |
d0ecd2aa | 3036 | /* used for ROM loading : can write in RAM and ROM */ |
5fafdf24 | 3037 | void cpu_physical_memory_write_rom(target_phys_addr_t addr, |
d0ecd2aa FB |
3038 | const uint8_t *buf, int len) |
3039 | { | |
3040 | int l; | |
3041 | uint8_t *ptr; | |
3042 | target_phys_addr_t page; | |
3043 | unsigned long pd; | |
3044 | PhysPageDesc *p; | |
3b46e624 | 3045 | |
d0ecd2aa FB |
3046 | while (len > 0) { |
3047 | page = addr & TARGET_PAGE_MASK; | |
3048 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3049 | if (l > len) | |
3050 | l = len; | |
3051 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
3052 | if (!p) { | |
3053 | pd = IO_MEM_UNASSIGNED; | |
3054 | } else { | |
3055 | pd = p->phys_offset; | |
3056 | } | |
3b46e624 | 3057 | |
d0ecd2aa | 3058 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM && |
2a4188a3 FB |
3059 | (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM && |
3060 | !(pd & IO_MEM_ROMD)) { | |
d0ecd2aa FB |
3061 | /* do nothing */ |
3062 | } else { | |
3063 | unsigned long addr1; | |
3064 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3065 | /* ROM/RAM case */ | |
3066 | ptr = phys_ram_base + addr1; | |
3067 | memcpy(ptr, buf, l); | |
3068 | } | |
3069 | len -= l; | |
3070 | buf += l; | |
3071 | addr += l; | |
3072 | } | |
3073 | } | |
3074 | ||
6d16c2f8 AL |
3075 | typedef struct { |
3076 | void *buffer; | |
3077 | target_phys_addr_t addr; | |
3078 | target_phys_addr_t len; | |
3079 | } BounceBuffer; | |
3080 | ||
3081 | static BounceBuffer bounce; | |
3082 | ||
ba223c29 AL |
3083 | typedef struct MapClient { |
3084 | void *opaque; | |
3085 | void (*callback)(void *opaque); | |
3086 | LIST_ENTRY(MapClient) link; | |
3087 | } MapClient; | |
3088 | ||
3089 | static LIST_HEAD(map_client_list, MapClient) map_client_list | |
3090 | = LIST_HEAD_INITIALIZER(map_client_list); | |
3091 | ||
3092 | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)) | |
3093 | { | |
3094 | MapClient *client = qemu_malloc(sizeof(*client)); | |
3095 | ||
3096 | client->opaque = opaque; | |
3097 | client->callback = callback; | |
3098 | LIST_INSERT_HEAD(&map_client_list, client, link); | |
3099 | return client; | |
3100 | } | |
3101 | ||
3102 | void cpu_unregister_map_client(void *_client) | |
3103 | { | |
3104 | MapClient *client = (MapClient *)_client; | |
3105 | ||
3106 | LIST_REMOVE(client, link); | |
3107 | } | |
3108 | ||
3109 | static void cpu_notify_map_clients(void) | |
3110 | { | |
3111 | MapClient *client; | |
3112 | ||
3113 | while (!LIST_EMPTY(&map_client_list)) { | |
3114 | client = LIST_FIRST(&map_client_list); | |
3115 | client->callback(client->opaque); | |
3116 | LIST_REMOVE(client, link); | |
3117 | } | |
3118 | } | |
3119 | ||
6d16c2f8 AL |
3120 | /* Map a physical memory region into a host virtual address. |
3121 | * May map a subset of the requested range, given by and returned in *plen. | |
3122 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3123 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
3124 | * Use cpu_register_map_client() to know when retrying the map operation is |
3125 | * likely to succeed. | |
6d16c2f8 AL |
3126 | */ |
3127 | void *cpu_physical_memory_map(target_phys_addr_t addr, | |
3128 | target_phys_addr_t *plen, | |
3129 | int is_write) | |
3130 | { | |
3131 | target_phys_addr_t len = *plen; | |
3132 | target_phys_addr_t done = 0; | |
3133 | int l; | |
3134 | uint8_t *ret = NULL; | |
3135 | uint8_t *ptr; | |
3136 | target_phys_addr_t page; | |
3137 | unsigned long pd; | |
3138 | PhysPageDesc *p; | |
3139 | unsigned long addr1; | |
3140 | ||
3141 | while (len > 0) { | |
3142 | page = addr & TARGET_PAGE_MASK; | |
3143 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3144 | if (l > len) | |
3145 | l = len; | |
3146 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
3147 | if (!p) { | |
3148 | pd = IO_MEM_UNASSIGNED; | |
3149 | } else { | |
3150 | pd = p->phys_offset; | |
3151 | } | |
3152 | ||
3153 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | |
3154 | if (done || bounce.buffer) { | |
3155 | break; | |
3156 | } | |
3157 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); | |
3158 | bounce.addr = addr; | |
3159 | bounce.len = l; | |
3160 | if (!is_write) { | |
3161 | cpu_physical_memory_rw(addr, bounce.buffer, l, 0); | |
3162 | } | |
3163 | ptr = bounce.buffer; | |
3164 | } else { | |
3165 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3166 | ptr = phys_ram_base + addr1; | |
3167 | } | |
3168 | if (!done) { | |
3169 | ret = ptr; | |
3170 | } else if (ret + done != ptr) { | |
3171 | break; | |
3172 | } | |
3173 | ||
3174 | len -= l; | |
3175 | addr += l; | |
3176 | done += l; | |
3177 | } | |
3178 | *plen = done; | |
3179 | return ret; | |
3180 | } | |
3181 | ||
3182 | /* Unmaps a memory region previously mapped by cpu_physical_memory_map(). | |
3183 | * Will also mark the memory as dirty if is_write == 1. access_len gives | |
3184 | * the amount of memory that was actually read or written by the caller. | |
3185 | */ | |
3186 | void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len, | |
3187 | int is_write, target_phys_addr_t access_len) | |
3188 | { | |
3189 | if (buffer != bounce.buffer) { | |
3190 | if (is_write) { | |
3191 | unsigned long addr1 = (uint8_t *)buffer - phys_ram_base; | |
3192 | while (access_len) { | |
3193 | unsigned l; | |
3194 | l = TARGET_PAGE_SIZE; | |
3195 | if (l > access_len) | |
3196 | l = access_len; | |
3197 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3198 | /* invalidate code */ | |
3199 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
3200 | /* set dirty bit */ | |
3201 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3202 | (0xff & ~CODE_DIRTY_FLAG); | |
3203 | } | |
3204 | addr1 += l; | |
3205 | access_len -= l; | |
3206 | } | |
3207 | } | |
3208 | return; | |
3209 | } | |
3210 | if (is_write) { | |
3211 | cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len); | |
3212 | } | |
3213 | qemu_free(bounce.buffer); | |
3214 | bounce.buffer = NULL; | |
ba223c29 | 3215 | cpu_notify_map_clients(); |
6d16c2f8 | 3216 | } |
d0ecd2aa | 3217 | |
8df1cd07 FB |
3218 | /* warning: addr must be aligned */ |
3219 | uint32_t ldl_phys(target_phys_addr_t addr) | |
3220 | { | |
3221 | int io_index; | |
3222 | uint8_t *ptr; | |
3223 | uint32_t val; | |
3224 | unsigned long pd; | |
3225 | PhysPageDesc *p; | |
3226 | ||
3227 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3228 | if (!p) { | |
3229 | pd = IO_MEM_UNASSIGNED; | |
3230 | } else { | |
3231 | pd = p->phys_offset; | |
3232 | } | |
3b46e624 | 3233 | |
5fafdf24 | 3234 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 3235 | !(pd & IO_MEM_ROMD)) { |
8df1cd07 FB |
3236 | /* I/O case */ |
3237 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3238 | if (p) |
3239 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3240 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); |
3241 | } else { | |
3242 | /* RAM case */ | |
5fafdf24 | 3243 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
8df1cd07 FB |
3244 | (addr & ~TARGET_PAGE_MASK); |
3245 | val = ldl_p(ptr); | |
3246 | } | |
3247 | return val; | |
3248 | } | |
3249 | ||
84b7b8e7 FB |
3250 | /* warning: addr must be aligned */ |
3251 | uint64_t ldq_phys(target_phys_addr_t addr) | |
3252 | { | |
3253 | int io_index; | |
3254 | uint8_t *ptr; | |
3255 | uint64_t val; | |
3256 | unsigned long pd; | |
3257 | PhysPageDesc *p; | |
3258 | ||
3259 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3260 | if (!p) { | |
3261 | pd = IO_MEM_UNASSIGNED; | |
3262 | } else { | |
3263 | pd = p->phys_offset; | |
3264 | } | |
3b46e624 | 3265 | |
2a4188a3 FB |
3266 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
3267 | !(pd & IO_MEM_ROMD)) { | |
84b7b8e7 FB |
3268 | /* I/O case */ |
3269 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3270 | if (p) |
3271 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
84b7b8e7 FB |
3272 | #ifdef TARGET_WORDS_BIGENDIAN |
3273 | val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32; | |
3274 | val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4); | |
3275 | #else | |
3276 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
3277 | val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32; | |
3278 | #endif | |
3279 | } else { | |
3280 | /* RAM case */ | |
5fafdf24 | 3281 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
84b7b8e7 FB |
3282 | (addr & ~TARGET_PAGE_MASK); |
3283 | val = ldq_p(ptr); | |
3284 | } | |
3285 | return val; | |
3286 | } | |
3287 | ||
aab33094 FB |
3288 | /* XXX: optimize */ |
3289 | uint32_t ldub_phys(target_phys_addr_t addr) | |
3290 | { | |
3291 | uint8_t val; | |
3292 | cpu_physical_memory_read(addr, &val, 1); | |
3293 | return val; | |
3294 | } | |
3295 | ||
3296 | /* XXX: optimize */ | |
3297 | uint32_t lduw_phys(target_phys_addr_t addr) | |
3298 | { | |
3299 | uint16_t val; | |
3300 | cpu_physical_memory_read(addr, (uint8_t *)&val, 2); | |
3301 | return tswap16(val); | |
3302 | } | |
3303 | ||
8df1cd07 FB |
3304 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3305 | and the code inside is not invalidated. It is useful if the dirty | |
3306 | bits are used to track modified PTEs */ | |
3307 | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val) | |
3308 | { | |
3309 | int io_index; | |
3310 | uint8_t *ptr; | |
3311 | unsigned long pd; | |
3312 | PhysPageDesc *p; | |
3313 | ||
3314 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3315 | if (!p) { | |
3316 | pd = IO_MEM_UNASSIGNED; | |
3317 | } else { | |
3318 | pd = p->phys_offset; | |
3319 | } | |
3b46e624 | 3320 | |
3a7d929e | 3321 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 | 3322 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 PB |
3323 | if (p) |
3324 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3325 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
3326 | } else { | |
74576198 AL |
3327 | unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
3328 | ptr = phys_ram_base + addr1; | |
8df1cd07 | 3329 | stl_p(ptr, val); |
74576198 AL |
3330 | |
3331 | if (unlikely(in_migration)) { | |
3332 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3333 | /* invalidate code */ | |
3334 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3335 | /* set dirty bit */ | |
3336 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3337 | (0xff & ~CODE_DIRTY_FLAG); | |
3338 | } | |
3339 | } | |
8df1cd07 FB |
3340 | } |
3341 | } | |
3342 | ||
bc98a7ef JM |
3343 | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val) |
3344 | { | |
3345 | int io_index; | |
3346 | uint8_t *ptr; | |
3347 | unsigned long pd; | |
3348 | PhysPageDesc *p; | |
3349 | ||
3350 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3351 | if (!p) { | |
3352 | pd = IO_MEM_UNASSIGNED; | |
3353 | } else { | |
3354 | pd = p->phys_offset; | |
3355 | } | |
3b46e624 | 3356 | |
bc98a7ef JM |
3357 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
3358 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3359 | if (p) |
3360 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
bc98a7ef JM |
3361 | #ifdef TARGET_WORDS_BIGENDIAN |
3362 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32); | |
3363 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val); | |
3364 | #else | |
3365 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3366 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32); | |
3367 | #endif | |
3368 | } else { | |
5fafdf24 | 3369 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
bc98a7ef JM |
3370 | (addr & ~TARGET_PAGE_MASK); |
3371 | stq_p(ptr, val); | |
3372 | } | |
3373 | } | |
3374 | ||
8df1cd07 | 3375 | /* warning: addr must be aligned */ |
8df1cd07 FB |
3376 | void stl_phys(target_phys_addr_t addr, uint32_t val) |
3377 | { | |
3378 | int io_index; | |
3379 | uint8_t *ptr; | |
3380 | unsigned long pd; | |
3381 | PhysPageDesc *p; | |
3382 | ||
3383 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3384 | if (!p) { | |
3385 | pd = IO_MEM_UNASSIGNED; | |
3386 | } else { | |
3387 | pd = p->phys_offset; | |
3388 | } | |
3b46e624 | 3389 | |
3a7d929e | 3390 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 | 3391 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 PB |
3392 | if (p) |
3393 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3394 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
3395 | } else { | |
3396 | unsigned long addr1; | |
3397 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3398 | /* RAM case */ | |
3399 | ptr = phys_ram_base + addr1; | |
3400 | stl_p(ptr, val); | |
3a7d929e FB |
3401 | if (!cpu_physical_memory_is_dirty(addr1)) { |
3402 | /* invalidate code */ | |
3403 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3404 | /* set dirty bit */ | |
f23db169 FB |
3405 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
3406 | (0xff & ~CODE_DIRTY_FLAG); | |
3a7d929e | 3407 | } |
8df1cd07 FB |
3408 | } |
3409 | } | |
3410 | ||
aab33094 FB |
3411 | /* XXX: optimize */ |
3412 | void stb_phys(target_phys_addr_t addr, uint32_t val) | |
3413 | { | |
3414 | uint8_t v = val; | |
3415 | cpu_physical_memory_write(addr, &v, 1); | |
3416 | } | |
3417 | ||
3418 | /* XXX: optimize */ | |
3419 | void stw_phys(target_phys_addr_t addr, uint32_t val) | |
3420 | { | |
3421 | uint16_t v = tswap16(val); | |
3422 | cpu_physical_memory_write(addr, (const uint8_t *)&v, 2); | |
3423 | } | |
3424 | ||
3425 | /* XXX: optimize */ | |
3426 | void stq_phys(target_phys_addr_t addr, uint64_t val) | |
3427 | { | |
3428 | val = tswap64(val); | |
3429 | cpu_physical_memory_write(addr, (const uint8_t *)&val, 8); | |
3430 | } | |
3431 | ||
13eb76e0 FB |
3432 | #endif |
3433 | ||
3434 | /* virtual memory access for debug */ | |
5fafdf24 | 3435 | int cpu_memory_rw_debug(CPUState *env, target_ulong addr, |
b448f2f3 | 3436 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3437 | { |
3438 | int l; | |
9b3c35e0 JM |
3439 | target_phys_addr_t phys_addr; |
3440 | target_ulong page; | |
13eb76e0 FB |
3441 | |
3442 | while (len > 0) { | |
3443 | page = addr & TARGET_PAGE_MASK; | |
3444 | phys_addr = cpu_get_phys_page_debug(env, page); | |
3445 | /* if no physical page mapped, return an error */ | |
3446 | if (phys_addr == -1) | |
3447 | return -1; | |
3448 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3449 | if (l > len) | |
3450 | l = len; | |
5fafdf24 | 3451 | cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK), |
b448f2f3 | 3452 | buf, l, is_write); |
13eb76e0 FB |
3453 | len -= l; |
3454 | buf += l; | |
3455 | addr += l; | |
3456 | } | |
3457 | return 0; | |
3458 | } | |
3459 | ||
2e70f6ef PB |
3460 | /* in deterministic execution mode, instructions doing device I/Os |
3461 | must be at the end of the TB */ | |
3462 | void cpu_io_recompile(CPUState *env, void *retaddr) | |
3463 | { | |
3464 | TranslationBlock *tb; | |
3465 | uint32_t n, cflags; | |
3466 | target_ulong pc, cs_base; | |
3467 | uint64_t flags; | |
3468 | ||
3469 | tb = tb_find_pc((unsigned long)retaddr); | |
3470 | if (!tb) { | |
3471 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | |
3472 | retaddr); | |
3473 | } | |
3474 | n = env->icount_decr.u16.low + tb->icount; | |
3475 | cpu_restore_state(tb, env, (unsigned long)retaddr, NULL); | |
3476 | /* Calculate how many instructions had been executed before the fault | |
bf20dc07 | 3477 | occurred. */ |
2e70f6ef PB |
3478 | n = n - env->icount_decr.u16.low; |
3479 | /* Generate a new TB ending on the I/O insn. */ | |
3480 | n++; | |
3481 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
3482 | they were already the first instruction in the TB. If this is not | |
bf20dc07 | 3483 | the first instruction in a TB then re-execute the preceding |
2e70f6ef PB |
3484 | branch. */ |
3485 | #if defined(TARGET_MIPS) | |
3486 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
3487 | env->active_tc.PC -= 4; | |
3488 | env->icount_decr.u16.low++; | |
3489 | env->hflags &= ~MIPS_HFLAG_BMASK; | |
3490 | } | |
3491 | #elif defined(TARGET_SH4) | |
3492 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
3493 | && n > 1) { | |
3494 | env->pc -= 2; | |
3495 | env->icount_decr.u16.low++; | |
3496 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | |
3497 | } | |
3498 | #endif | |
3499 | /* This should never happen. */ | |
3500 | if (n > CF_COUNT_MASK) | |
3501 | cpu_abort(env, "TB too big during recompile"); | |
3502 | ||
3503 | cflags = n | CF_LAST_IO; | |
3504 | pc = tb->pc; | |
3505 | cs_base = tb->cs_base; | |
3506 | flags = tb->flags; | |
3507 | tb_phys_invalidate(tb, -1); | |
3508 | /* FIXME: In theory this could raise an exception. In practice | |
3509 | we have already translated the block once so it's probably ok. */ | |
3510 | tb_gen_code(env, pc, cs_base, flags, cflags); | |
bf20dc07 | 3511 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not |
2e70f6ef PB |
3512 | the first in the TB) then we end up generating a whole new TB and |
3513 | repeating the fault, which is horribly inefficient. | |
3514 | Better would be to execute just this insn uncached, or generate a | |
3515 | second new TB. */ | |
3516 | cpu_resume_from_signal(env, NULL); | |
3517 | } | |
3518 | ||
e3db7226 FB |
3519 | void dump_exec_info(FILE *f, |
3520 | int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) | |
3521 | { | |
3522 | int i, target_code_size, max_target_code_size; | |
3523 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
3524 | TranslationBlock *tb; | |
3b46e624 | 3525 | |
e3db7226 FB |
3526 | target_code_size = 0; |
3527 | max_target_code_size = 0; | |
3528 | cross_page = 0; | |
3529 | direct_jmp_count = 0; | |
3530 | direct_jmp2_count = 0; | |
3531 | for(i = 0; i < nb_tbs; i++) { | |
3532 | tb = &tbs[i]; | |
3533 | target_code_size += tb->size; | |
3534 | if (tb->size > max_target_code_size) | |
3535 | max_target_code_size = tb->size; | |
3536 | if (tb->page_addr[1] != -1) | |
3537 | cross_page++; | |
3538 | if (tb->tb_next_offset[0] != 0xffff) { | |
3539 | direct_jmp_count++; | |
3540 | if (tb->tb_next_offset[1] != 0xffff) { | |
3541 | direct_jmp2_count++; | |
3542 | } | |
3543 | } | |
3544 | } | |
3545 | /* XXX: avoid using doubles ? */ | |
57fec1fe | 3546 | cpu_fprintf(f, "Translation buffer state:\n"); |
26a5f13b FB |
3547 | cpu_fprintf(f, "gen code size %ld/%ld\n", |
3548 | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size); | |
3549 | cpu_fprintf(f, "TB count %d/%d\n", | |
3550 | nb_tbs, code_gen_max_blocks); | |
5fafdf24 | 3551 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", |
e3db7226 FB |
3552 | nb_tbs ? target_code_size / nb_tbs : 0, |
3553 | max_target_code_size); | |
5fafdf24 | 3554 | cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n", |
e3db7226 FB |
3555 | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0, |
3556 | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0); | |
5fafdf24 TS |
3557 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", |
3558 | cross_page, | |
e3db7226 FB |
3559 | nb_tbs ? (cross_page * 100) / nb_tbs : 0); |
3560 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", | |
5fafdf24 | 3561 | direct_jmp_count, |
e3db7226 FB |
3562 | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0, |
3563 | direct_jmp2_count, | |
3564 | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0); | |
57fec1fe | 3565 | cpu_fprintf(f, "\nStatistics:\n"); |
e3db7226 FB |
3566 | cpu_fprintf(f, "TB flush count %d\n", tb_flush_count); |
3567 | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count); | |
3568 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); | |
b67d9a52 | 3569 | tcg_dump_info(f, cpu_fprintf); |
e3db7226 FB |
3570 | } |
3571 | ||
5fafdf24 | 3572 | #if !defined(CONFIG_USER_ONLY) |
61382a50 FB |
3573 | |
3574 | #define MMUSUFFIX _cmmu | |
3575 | #define GETPC() NULL | |
3576 | #define env cpu_single_env | |
b769d8fe | 3577 | #define SOFTMMU_CODE_ACCESS |
61382a50 FB |
3578 | |
3579 | #define SHIFT 0 | |
3580 | #include "softmmu_template.h" | |
3581 | ||
3582 | #define SHIFT 1 | |
3583 | #include "softmmu_template.h" | |
3584 | ||
3585 | #define SHIFT 2 | |
3586 | #include "softmmu_template.h" | |
3587 | ||
3588 | #define SHIFT 3 | |
3589 | #include "softmmu_template.h" | |
3590 | ||
3591 | #undef env | |
3592 | ||
3593 | #endif |