]>
Commit | Line | Data |
---|---|---|
b92e5a22 FB |
1 | /* |
2 | * Software MMU support | |
5fafdf24 | 3 | * |
efbf29b6 BS |
4 | * Generate helpers used by TCG for qemu_ld/st ops and code load |
5 | * functions. | |
6 | * | |
7 | * Included from target op helpers and exec.c. | |
8 | * | |
b92e5a22 FB |
9 | * Copyright (c) 2003 Fabrice Bellard |
10 | * | |
11 | * This library is free software; you can redistribute it and/or | |
12 | * modify it under the terms of the GNU Lesser General Public | |
13 | * License as published by the Free Software Foundation; either | |
14 | * version 2 of the License, or (at your option) any later version. | |
15 | * | |
16 | * This library is distributed in the hope that it will be useful, | |
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
19 | * Lesser General Public License for more details. | |
20 | * | |
21 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 22 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
b92e5a22 | 23 | */ |
1de7afc9 | 24 | #include "qemu/timer.h" |
77717094 | 25 | #include "exec/address-spaces.h" |
022c62cb | 26 | #include "exec/memory.h" |
29e922b6 | 27 | |
b92e5a22 FB |
28 | #define DATA_SIZE (1 << SHIFT) |
29 | ||
30 | #if DATA_SIZE == 8 | |
31 | #define SUFFIX q | |
701e3a5c | 32 | #define LSUFFIX q |
c8f94df5 | 33 | #define SDATA_TYPE int64_t |
dc9a353c | 34 | #define DATA_TYPE uint64_t |
b92e5a22 FB |
35 | #elif DATA_SIZE == 4 |
36 | #define SUFFIX l | |
701e3a5c | 37 | #define LSUFFIX l |
c8f94df5 | 38 | #define SDATA_TYPE int32_t |
dc9a353c | 39 | #define DATA_TYPE uint32_t |
b92e5a22 FB |
40 | #elif DATA_SIZE == 2 |
41 | #define SUFFIX w | |
701e3a5c | 42 | #define LSUFFIX uw |
c8f94df5 | 43 | #define SDATA_TYPE int16_t |
dc9a353c | 44 | #define DATA_TYPE uint16_t |
b92e5a22 FB |
45 | #elif DATA_SIZE == 1 |
46 | #define SUFFIX b | |
701e3a5c | 47 | #define LSUFFIX ub |
c8f94df5 | 48 | #define SDATA_TYPE int8_t |
dc9a353c | 49 | #define DATA_TYPE uint8_t |
b92e5a22 FB |
50 | #else |
51 | #error unsupported data size | |
52 | #endif | |
53 | ||
c8f94df5 RH |
54 | |
55 | /* For the benefit of TCG generated code, we want to avoid the complication | |
56 | of ABI-specific return type promotion and always return a value extended | |
57 | to the register size of the host. This is tcg_target_long, except in the | |
58 | case of a 32-bit host and 64-bit data, and for that we always have | |
59 | uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */ | |
60 | #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8 | |
61 | # define WORD_TYPE DATA_TYPE | |
62 | # define USUFFIX SUFFIX | |
63 | #else | |
64 | # define WORD_TYPE tcg_target_ulong | |
65 | # define USUFFIX glue(u, SUFFIX) | |
66 | # define SSUFFIX glue(s, SUFFIX) | |
67 | #endif | |
68 | ||
b769d8fe | 69 | #ifdef SOFTMMU_CODE_ACCESS |
55e94093 | 70 | #define READ_ACCESS_TYPE MMU_INST_FETCH |
84b7b8e7 | 71 | #define ADDR_READ addr_code |
b769d8fe | 72 | #else |
55e94093 | 73 | #define READ_ACCESS_TYPE MMU_DATA_LOAD |
84b7b8e7 | 74 | #define ADDR_READ addr_read |
b769d8fe FB |
75 | #endif |
76 | ||
867b3201 RH |
77 | #if DATA_SIZE == 8 |
78 | # define BSWAP(X) bswap64(X) | |
79 | #elif DATA_SIZE == 4 | |
80 | # define BSWAP(X) bswap32(X) | |
81 | #elif DATA_SIZE == 2 | |
82 | # define BSWAP(X) bswap16(X) | |
83 | #else | |
84 | # define BSWAP(X) (X) | |
85 | #endif | |
86 | ||
87 | #ifdef TARGET_WORDS_BIGENDIAN | |
88 | # define TGT_BE(X) (X) | |
89 | # define TGT_LE(X) BSWAP(X) | |
90 | #else | |
91 | # define TGT_BE(X) BSWAP(X) | |
92 | # define TGT_LE(X) (X) | |
93 | #endif | |
94 | ||
95 | #if DATA_SIZE == 1 | |
96 | # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX) | |
97 | # define helper_be_ld_name helper_le_ld_name | |
98 | # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX) | |
99 | # define helper_be_lds_name helper_le_lds_name | |
100 | # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX) | |
101 | # define helper_be_st_name helper_le_st_name | |
102 | #else | |
103 | # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX) | |
104 | # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX) | |
105 | # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX) | |
106 | # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX) | |
107 | # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX) | |
108 | # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX) | |
109 | #endif | |
110 | ||
111 | #ifdef TARGET_WORDS_BIGENDIAN | |
112 | # define helper_te_ld_name helper_be_ld_name | |
113 | # define helper_te_st_name helper_be_st_name | |
114 | #else | |
115 | # define helper_te_ld_name helper_le_ld_name | |
116 | # define helper_te_st_name helper_le_st_name | |
117 | #endif | |
118 | ||
0f590e74 | 119 | #ifndef SOFTMMU_CODE_ACCESS |
89c33337 | 120 | static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env, |
e469b22f | 121 | CPUIOTLBEntry *iotlbentry, |
2e70f6ef | 122 | target_ulong addr, |
20503968 | 123 | uintptr_t retaddr) |
b92e5a22 | 124 | { |
791af8c8 | 125 | uint64_t val; |
09daed84 | 126 | CPUState *cpu = ENV_GET_CPU(env); |
e469b22f | 127 | hwaddr physaddr = iotlbentry->addr; |
a54c87b6 | 128 | MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs); |
37ec01d4 | 129 | |
0f459d16 | 130 | physaddr = (physaddr & TARGET_PAGE_MASK) + addr; |
93afeade | 131 | cpu->mem_io_pc = retaddr; |
414b15c9 | 132 | if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { |
90b40a69 | 133 | cpu_io_recompile(cpu, retaddr); |
2e70f6ef | 134 | } |
b92e5a22 | 135 | |
93afeade | 136 | cpu->mem_io_vaddr = addr; |
3b643495 | 137 | memory_region_dispatch_read(mr, physaddr, &val, 1 << SHIFT, |
fadc1cbe | 138 | iotlbentry->attrs); |
791af8c8 | 139 | return val; |
b92e5a22 | 140 | } |
0f590e74 | 141 | #endif |
b92e5a22 | 142 | |
3972ef6f RH |
143 | WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, |
144 | TCGMemOpIdx oi, uintptr_t retaddr) | |
b92e5a22 | 145 | { |
3972ef6f | 146 | unsigned mmu_idx = get_mmuidx(oi); |
aac1fb05 RH |
147 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
148 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; | |
85aa8081 | 149 | unsigned a_bits = get_alignment_bits(get_memop(oi)); |
aac1fb05 | 150 | uintptr_t haddr; |
867b3201 | 151 | DATA_TYPE res; |
3b46e624 | 152 | |
85aa8081 | 153 | if (addr & ((1 << a_bits) - 1)) { |
1f00b27f SS |
154 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
155 | mmu_idx, retaddr); | |
156 | } | |
157 | ||
aac1fb05 RH |
158 | /* If the TLB entry is for a different page, reload and try again. */ |
159 | if ((addr & TARGET_PAGE_MASK) | |
160 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
a390284b | 161 | if (!VICTIM_TLB_HIT(ADDR_READ, addr)) { |
88e89a57 XT |
162 | tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
163 | mmu_idx, retaddr); | |
164 | } | |
aac1fb05 RH |
165 | tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; |
166 | } | |
167 | ||
168 | /* Handle an IO access. */ | |
169 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | |
e469b22f | 170 | CPUIOTLBEntry *iotlbentry; |
aac1fb05 RH |
171 | if ((addr & (DATA_SIZE - 1)) != 0) { |
172 | goto do_unaligned_access; | |
b92e5a22 | 173 | } |
e469b22f | 174 | iotlbentry = &env->iotlb[mmu_idx][index]; |
867b3201 RH |
175 | |
176 | /* ??? Note that the io helpers always read data in the target | |
177 | byte ordering. We should push the LE/BE request down into io. */ | |
e469b22f | 178 | res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr); |
867b3201 RH |
179 | res = TGT_LE(res); |
180 | return res; | |
aac1fb05 RH |
181 | } |
182 | ||
183 | /* Handle slow unaligned access (it spans two pages or IO). */ | |
184 | if (DATA_SIZE > 1 | |
185 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | |
186 | >= TARGET_PAGE_SIZE)) { | |
187 | target_ulong addr1, addr2; | |
867b3201 | 188 | DATA_TYPE res1, res2; |
aac1fb05 RH |
189 | unsigned shift; |
190 | do_unaligned_access: | |
aac1fb05 RH |
191 | addr1 = addr & ~(DATA_SIZE - 1); |
192 | addr2 = addr1 + DATA_SIZE; | |
01ecaf43 RH |
193 | res1 = helper_le_ld_name(env, addr1, oi, retaddr); |
194 | res2 = helper_le_ld_name(env, addr2, oi, retaddr); | |
aac1fb05 | 195 | shift = (addr & (DATA_SIZE - 1)) * 8; |
867b3201 RH |
196 | |
197 | /* Little-endian combine. */ | |
aac1fb05 | 198 | res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift)); |
867b3201 RH |
199 | return res; |
200 | } | |
201 | ||
867b3201 RH |
202 | haddr = addr + env->tlb_table[mmu_idx][index].addend; |
203 | #if DATA_SIZE == 1 | |
204 | res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr); | |
205 | #else | |
206 | res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr); | |
207 | #endif | |
208 | return res; | |
209 | } | |
210 | ||
211 | #if DATA_SIZE > 1 | |
3972ef6f RH |
212 | WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, |
213 | TCGMemOpIdx oi, uintptr_t retaddr) | |
867b3201 | 214 | { |
3972ef6f | 215 | unsigned mmu_idx = get_mmuidx(oi); |
867b3201 RH |
216 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
217 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; | |
85aa8081 | 218 | unsigned a_bits = get_alignment_bits(get_memop(oi)); |
867b3201 RH |
219 | uintptr_t haddr; |
220 | DATA_TYPE res; | |
221 | ||
85aa8081 | 222 | if (addr & ((1 << a_bits) - 1)) { |
1f00b27f SS |
223 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
224 | mmu_idx, retaddr); | |
225 | } | |
226 | ||
867b3201 RH |
227 | /* If the TLB entry is for a different page, reload and try again. */ |
228 | if ((addr & TARGET_PAGE_MASK) | |
229 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
a390284b | 230 | if (!VICTIM_TLB_HIT(ADDR_READ, addr)) { |
88e89a57 XT |
231 | tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
232 | mmu_idx, retaddr); | |
233 | } | |
867b3201 RH |
234 | tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; |
235 | } | |
236 | ||
237 | /* Handle an IO access. */ | |
238 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | |
e469b22f | 239 | CPUIOTLBEntry *iotlbentry; |
867b3201 RH |
240 | if ((addr & (DATA_SIZE - 1)) != 0) { |
241 | goto do_unaligned_access; | |
242 | } | |
e469b22f | 243 | iotlbentry = &env->iotlb[mmu_idx][index]; |
867b3201 RH |
244 | |
245 | /* ??? Note that the io helpers always read data in the target | |
246 | byte ordering. We should push the LE/BE request down into io. */ | |
e469b22f | 247 | res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr); |
867b3201 RH |
248 | res = TGT_BE(res); |
249 | return res; | |
250 | } | |
251 | ||
252 | /* Handle slow unaligned access (it spans two pages or IO). */ | |
253 | if (DATA_SIZE > 1 | |
254 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | |
255 | >= TARGET_PAGE_SIZE)) { | |
256 | target_ulong addr1, addr2; | |
257 | DATA_TYPE res1, res2; | |
258 | unsigned shift; | |
259 | do_unaligned_access: | |
867b3201 RH |
260 | addr1 = addr & ~(DATA_SIZE - 1); |
261 | addr2 = addr1 + DATA_SIZE; | |
01ecaf43 RH |
262 | res1 = helper_be_ld_name(env, addr1, oi, retaddr); |
263 | res2 = helper_be_ld_name(env, addr2, oi, retaddr); | |
867b3201 RH |
264 | shift = (addr & (DATA_SIZE - 1)) * 8; |
265 | ||
266 | /* Big-endian combine. */ | |
267 | res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift)); | |
aac1fb05 RH |
268 | return res; |
269 | } | |
270 | ||
aac1fb05 | 271 | haddr = addr + env->tlb_table[mmu_idx][index].addend; |
867b3201 RH |
272 | res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr); |
273 | return res; | |
b92e5a22 | 274 | } |
867b3201 | 275 | #endif /* DATA_SIZE > 1 */ |
b92e5a22 | 276 | |
b769d8fe FB |
277 | #ifndef SOFTMMU_CODE_ACCESS |
278 | ||
c8f94df5 RH |
279 | /* Provide signed versions of the load routines as well. We can of course |
280 | avoid this for 64-bit data, or for 32-bit data on 32-bit host. */ | |
281 | #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS | |
867b3201 | 282 | WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr, |
3972ef6f | 283 | TCGMemOpIdx oi, uintptr_t retaddr) |
867b3201 | 284 | { |
3972ef6f | 285 | return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr); |
867b3201 RH |
286 | } |
287 | ||
288 | # if DATA_SIZE > 1 | |
289 | WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr, | |
3972ef6f | 290 | TCGMemOpIdx oi, uintptr_t retaddr) |
c8f94df5 | 291 | { |
3972ef6f | 292 | return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr); |
c8f94df5 | 293 | } |
867b3201 | 294 | # endif |
c8f94df5 RH |
295 | #endif |
296 | ||
89c33337 | 297 | static inline void glue(io_write, SUFFIX)(CPUArchState *env, |
e469b22f | 298 | CPUIOTLBEntry *iotlbentry, |
b769d8fe | 299 | DATA_TYPE val, |
0f459d16 | 300 | target_ulong addr, |
20503968 | 301 | uintptr_t retaddr) |
b769d8fe | 302 | { |
09daed84 | 303 | CPUState *cpu = ENV_GET_CPU(env); |
e469b22f | 304 | hwaddr physaddr = iotlbentry->addr; |
a54c87b6 | 305 | MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs); |
37ec01d4 | 306 | |
0f459d16 | 307 | physaddr = (physaddr & TARGET_PAGE_MASK) + addr; |
414b15c9 | 308 | if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { |
90b40a69 | 309 | cpu_io_recompile(cpu, retaddr); |
2e70f6ef | 310 | } |
b769d8fe | 311 | |
93afeade AF |
312 | cpu->mem_io_vaddr = addr; |
313 | cpu->mem_io_pc = retaddr; | |
3b643495 | 314 | memory_region_dispatch_write(mr, physaddr, val, 1 << SHIFT, |
fadc1cbe | 315 | iotlbentry->attrs); |
b769d8fe | 316 | } |
b92e5a22 | 317 | |
867b3201 | 318 | void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, |
3972ef6f | 319 | TCGMemOpIdx oi, uintptr_t retaddr) |
b92e5a22 | 320 | { |
3972ef6f | 321 | unsigned mmu_idx = get_mmuidx(oi); |
aac1fb05 RH |
322 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
323 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; | |
85aa8081 | 324 | unsigned a_bits = get_alignment_bits(get_memop(oi)); |
aac1fb05 | 325 | uintptr_t haddr; |
3b46e624 | 326 | |
85aa8081 | 327 | if (addr & ((1 << a_bits) - 1)) { |
1f00b27f SS |
328 | cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, |
329 | mmu_idx, retaddr); | |
330 | } | |
331 | ||
aac1fb05 RH |
332 | /* If the TLB entry is for a different page, reload and try again. */ |
333 | if ((addr & TARGET_PAGE_MASK) | |
334 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
a390284b | 335 | if (!VICTIM_TLB_HIT(addr_write, addr)) { |
55e94093 | 336 | tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); |
88e89a57 | 337 | } |
aac1fb05 RH |
338 | tlb_addr = env->tlb_table[mmu_idx][index].addr_write; |
339 | } | |
340 | ||
341 | /* Handle an IO access. */ | |
342 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | |
e469b22f | 343 | CPUIOTLBEntry *iotlbentry; |
aac1fb05 RH |
344 | if ((addr & (DATA_SIZE - 1)) != 0) { |
345 | goto do_unaligned_access; | |
346 | } | |
e469b22f | 347 | iotlbentry = &env->iotlb[mmu_idx][index]; |
867b3201 RH |
348 | |
349 | /* ??? Note that the io helpers always read data in the target | |
350 | byte ordering. We should push the LE/BE request down into io. */ | |
351 | val = TGT_LE(val); | |
e469b22f | 352 | glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr); |
aac1fb05 RH |
353 | return; |
354 | } | |
355 | ||
356 | /* Handle slow unaligned access (it spans two pages or IO). */ | |
357 | if (DATA_SIZE > 1 | |
358 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | |
359 | >= TARGET_PAGE_SIZE)) { | |
81daabaf SD |
360 | int i, index2; |
361 | target_ulong page2, tlb_addr2; | |
aac1fb05 | 362 | do_unaligned_access: |
81daabaf SD |
363 | /* Ensure the second page is in the TLB. Note that the first page |
364 | is already guaranteed to be filled, and that the second page | |
365 | cannot evict the first. */ | |
366 | page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK; | |
367 | index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
368 | tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write; | |
369 | if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK)) | |
370 | && !VICTIM_TLB_HIT(addr_write, page2)) { | |
371 | tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE, | |
372 | mmu_idx, retaddr); | |
373 | } | |
374 | ||
375 | /* XXX: not efficient, but simple. */ | |
376 | /* This loop must go in the forward direction to avoid issues | |
377 | with self-modifying code in Windows 64-bit. */ | |
378 | for (i = 0; i < DATA_SIZE; ++i) { | |
867b3201 | 379 | /* Little-endian extract. */ |
aac1fb05 | 380 | uint8_t val8 = val >> (i * 8); |
867b3201 | 381 | glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, |
01ecaf43 | 382 | oi, retaddr); |
867b3201 RH |
383 | } |
384 | return; | |
385 | } | |
386 | ||
867b3201 RH |
387 | haddr = addr + env->tlb_table[mmu_idx][index].addend; |
388 | #if DATA_SIZE == 1 | |
389 | glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val); | |
390 | #else | |
391 | glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val); | |
a64d4718 | 392 | #endif |
867b3201 RH |
393 | } |
394 | ||
395 | #if DATA_SIZE > 1 | |
396 | void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, | |
3972ef6f | 397 | TCGMemOpIdx oi, uintptr_t retaddr) |
867b3201 | 398 | { |
3972ef6f | 399 | unsigned mmu_idx = get_mmuidx(oi); |
867b3201 RH |
400 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
401 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; | |
85aa8081 | 402 | unsigned a_bits = get_alignment_bits(get_memop(oi)); |
867b3201 RH |
403 | uintptr_t haddr; |
404 | ||
85aa8081 | 405 | if (addr & ((1 << a_bits) - 1)) { |
1f00b27f SS |
406 | cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, |
407 | mmu_idx, retaddr); | |
408 | } | |
409 | ||
867b3201 RH |
410 | /* If the TLB entry is for a different page, reload and try again. */ |
411 | if ((addr & TARGET_PAGE_MASK) | |
412 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
a390284b | 413 | if (!VICTIM_TLB_HIT(addr_write, addr)) { |
55e94093 | 414 | tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); |
88e89a57 | 415 | } |
867b3201 RH |
416 | tlb_addr = env->tlb_table[mmu_idx][index].addr_write; |
417 | } | |
418 | ||
419 | /* Handle an IO access. */ | |
420 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | |
e469b22f | 421 | CPUIOTLBEntry *iotlbentry; |
867b3201 RH |
422 | if ((addr & (DATA_SIZE - 1)) != 0) { |
423 | goto do_unaligned_access; | |
424 | } | |
e469b22f | 425 | iotlbentry = &env->iotlb[mmu_idx][index]; |
867b3201 RH |
426 | |
427 | /* ??? Note that the io helpers always read data in the target | |
428 | byte ordering. We should push the LE/BE request down into io. */ | |
429 | val = TGT_BE(val); | |
e469b22f | 430 | glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr); |
867b3201 RH |
431 | return; |
432 | } | |
433 | ||
434 | /* Handle slow unaligned access (it spans two pages or IO). */ | |
435 | if (DATA_SIZE > 1 | |
436 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | |
437 | >= TARGET_PAGE_SIZE)) { | |
81daabaf SD |
438 | int i, index2; |
439 | target_ulong page2, tlb_addr2; | |
867b3201 | 440 | do_unaligned_access: |
81daabaf SD |
441 | /* Ensure the second page is in the TLB. Note that the first page |
442 | is already guaranteed to be filled, and that the second page | |
443 | cannot evict the first. */ | |
444 | page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK; | |
445 | index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
446 | tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write; | |
447 | if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK)) | |
448 | && !VICTIM_TLB_HIT(addr_write, page2)) { | |
449 | tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE, | |
450 | mmu_idx, retaddr); | |
451 | } | |
452 | ||
867b3201 | 453 | /* XXX: not efficient, but simple */ |
81daabaf SD |
454 | /* This loop must go in the forward direction to avoid issues |
455 | with self-modifying code. */ | |
456 | for (i = 0; i < DATA_SIZE; ++i) { | |
867b3201 RH |
457 | /* Big-endian extract. */ |
458 | uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8)); | |
aac1fb05 | 459 | glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, |
01ecaf43 | 460 | oi, retaddr); |
b92e5a22 | 461 | } |
aac1fb05 RH |
462 | return; |
463 | } | |
464 | ||
aac1fb05 | 465 | haddr = addr + env->tlb_table[mmu_idx][index].addend; |
867b3201 | 466 | glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val); |
b92e5a22 | 467 | } |
867b3201 | 468 | #endif /* DATA_SIZE > 1 */ |
b92e5a22 | 469 | |
3b4afc9e YK |
470 | #if DATA_SIZE == 1 |
471 | /* Probe for whether the specified guest write access is permitted. | |
472 | * If it is not permitted then an exception will be taken in the same | |
473 | * way as if this were a real write access (and we will not return). | |
474 | * Otherwise the function will return, and there will be a valid | |
475 | * entry in the TLB for this access. | |
476 | */ | |
477 | void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx, | |
478 | uintptr_t retaddr) | |
479 | { | |
480 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
481 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; | |
482 | ||
483 | if ((addr & TARGET_PAGE_MASK) | |
484 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
485 | /* TLB entry is for a different page */ | |
a390284b | 486 | if (!VICTIM_TLB_HIT(addr_write, addr)) { |
3b4afc9e YK |
487 | tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); |
488 | } | |
489 | } | |
490 | } | |
491 | #endif | |
b769d8fe FB |
492 | #endif /* !defined(SOFTMMU_CODE_ACCESS) */ |
493 | ||
494 | #undef READ_ACCESS_TYPE | |
b92e5a22 FB |
495 | #undef SHIFT |
496 | #undef DATA_TYPE | |
497 | #undef SUFFIX | |
701e3a5c | 498 | #undef LSUFFIX |
b92e5a22 | 499 | #undef DATA_SIZE |
84b7b8e7 | 500 | #undef ADDR_READ |
c8f94df5 RH |
501 | #undef WORD_TYPE |
502 | #undef SDATA_TYPE | |
503 | #undef USUFFIX | |
504 | #undef SSUFFIX | |
867b3201 RH |
505 | #undef BSWAP |
506 | #undef TGT_BE | |
507 | #undef TGT_LE | |
508 | #undef CPU_BE | |
509 | #undef CPU_LE | |
510 | #undef helper_le_ld_name | |
511 | #undef helper_be_ld_name | |
512 | #undef helper_le_lds_name | |
513 | #undef helper_be_lds_name | |
514 | #undef helper_le_st_name | |
515 | #undef helper_be_st_name | |
516 | #undef helper_te_ld_name | |
517 | #undef helper_te_st_name |