]>
Commit | Line | Data |
---|---|---|
d19893da FB |
1 | /* |
2 | * Host code generation | |
5fafdf24 | 3 | * |
d19893da FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
d19893da | 18 | */ |
5b6dd868 BS |
19 | #ifdef _WIN32 |
20 | #include <windows.h> | |
5b6dd868 | 21 | #endif |
7b31bbc2 | 22 | #include "qemu/osdep.h" |
d19893da | 23 | |
2054396a | 24 | |
5b6dd868 | 25 | #include "qemu-common.h" |
af5ad107 | 26 | #define NO_CPU_IO_DEFS |
d3eead2e | 27 | #include "cpu.h" |
6db8b538 | 28 | #include "trace.h" |
76cad711 | 29 | #include "disas/disas.h" |
63c91552 | 30 | #include "exec/exec-all.h" |
57fec1fe | 31 | #include "tcg.h" |
5b6dd868 BS |
32 | #if defined(CONFIG_USER_ONLY) |
33 | #include "qemu.h" | |
34 | #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) | |
35 | #include <sys/param.h> | |
36 | #if __FreeBSD_version >= 700104 | |
37 | #define HAVE_KINFO_GETVMMAP | |
38 | #define sigqueue sigqueue_freebsd /* avoid redefinition */ | |
5b6dd868 BS |
39 | #include <sys/proc.h> |
40 | #include <machine/profile.h> | |
41 | #define _KERNEL | |
42 | #include <sys/user.h> | |
43 | #undef _KERNEL | |
44 | #undef sigqueue | |
45 | #include <libutil.h> | |
46 | #endif | |
47 | #endif | |
0bc3cd62 PB |
48 | #else |
49 | #include "exec/address-spaces.h" | |
5b6dd868 BS |
50 | #endif |
51 | ||
022c62cb | 52 | #include "exec/cputlb.h" |
e1b89321 | 53 | #include "exec/tb-hash.h" |
5b6dd868 | 54 | #include "translate-all.h" |
510a647f | 55 | #include "qemu/bitmap.h" |
0aa09897 | 56 | #include "qemu/timer.h" |
508127e2 | 57 | #include "exec/log.h" |
5b6dd868 BS |
58 | |
59 | //#define DEBUG_TB_INVALIDATE | |
60 | //#define DEBUG_FLUSH | |
61 | /* make various TB consistency checks */ | |
62 | //#define DEBUG_TB_CHECK | |
63 | ||
64 | #if !defined(CONFIG_USER_ONLY) | |
65 | /* TB consistency checks only implemented for usermode emulation. */ | |
66 | #undef DEBUG_TB_CHECK | |
67 | #endif | |
68 | ||
69 | #define SMC_BITMAP_USE_THRESHOLD 10 | |
70 | ||
5b6dd868 BS |
71 | typedef struct PageDesc { |
72 | /* list of TBs intersecting this ram page */ | |
73 | TranslationBlock *first_tb; | |
6fad459c | 74 | #ifdef CONFIG_SOFTMMU |
5b6dd868 BS |
75 | /* in order to optimize self modifying code, we count the number |
76 | of lookups we do to a given page to use a bitmap */ | |
77 | unsigned int code_write_count; | |
510a647f | 78 | unsigned long *code_bitmap; |
6fad459c | 79 | #else |
5b6dd868 BS |
80 | unsigned long flags; |
81 | #endif | |
82 | } PageDesc; | |
83 | ||
84 | /* In system mode we want L1_MAP to be based on ram offsets, | |
85 | while in user mode we want it to be based on virtual addresses. */ | |
86 | #if !defined(CONFIG_USER_ONLY) | |
87 | #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS | |
88 | # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS | |
89 | #else | |
90 | # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS | |
91 | #endif | |
92 | #else | |
93 | # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS | |
94 | #endif | |
95 | ||
03f49957 PB |
96 | /* Size of the L2 (and L3, etc) page tables. */ |
97 | #define V_L2_BITS 10 | |
98 | #define V_L2_SIZE (1 << V_L2_BITS) | |
99 | ||
5b6dd868 BS |
100 | /* The bits remaining after N lower levels of page tables. */ |
101 | #define V_L1_BITS_REM \ | |
03f49957 | 102 | ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS) |
5b6dd868 BS |
103 | |
104 | #if V_L1_BITS_REM < 4 | |
03f49957 | 105 | #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS) |
5b6dd868 BS |
106 | #else |
107 | #define V_L1_BITS V_L1_BITS_REM | |
108 | #endif | |
109 | ||
110 | #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS) | |
111 | ||
112 | #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS) | |
113 | ||
5b6dd868 | 114 | uintptr_t qemu_host_page_size; |
0c2d70c4 | 115 | intptr_t qemu_host_page_mask; |
5b6dd868 | 116 | |
d1142fb8 | 117 | /* The bottom level has pointers to PageDesc */ |
5b6dd868 BS |
118 | static void *l1_map[V_L1_SIZE]; |
119 | ||
57fec1fe FB |
120 | /* code generation context */ |
121 | TCGContext tcg_ctx; | |
d19893da | 122 | |
677ef623 FK |
123 | /* translation block context */ |
124 | #ifdef CONFIG_USER_ONLY | |
125 | __thread int have_tb_lock; | |
126 | #endif | |
127 | ||
128 | void tb_lock(void) | |
129 | { | |
130 | #ifdef CONFIG_USER_ONLY | |
131 | assert(!have_tb_lock); | |
132 | qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock); | |
133 | have_tb_lock++; | |
134 | #endif | |
135 | } | |
136 | ||
137 | void tb_unlock(void) | |
138 | { | |
139 | #ifdef CONFIG_USER_ONLY | |
140 | assert(have_tb_lock); | |
141 | have_tb_lock--; | |
142 | qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock); | |
143 | #endif | |
144 | } | |
145 | ||
146 | void tb_lock_reset(void) | |
147 | { | |
148 | #ifdef CONFIG_USER_ONLY | |
149 | if (have_tb_lock) { | |
150 | qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock); | |
151 | have_tb_lock = 0; | |
152 | } | |
153 | #endif | |
154 | } | |
155 | ||
a8a826a3 | 156 | static TranslationBlock *tb_find_pc(uintptr_t tc_ptr); |
5b6dd868 | 157 | |
57fec1fe FB |
158 | void cpu_gen_init(void) |
159 | { | |
160 | tcg_context_init(&tcg_ctx); | |
57fec1fe FB |
161 | } |
162 | ||
fca8a500 RH |
163 | /* Encode VAL as a signed leb128 sequence at P. |
164 | Return P incremented past the encoded value. */ | |
165 | static uint8_t *encode_sleb128(uint8_t *p, target_long val) | |
166 | { | |
167 | int more, byte; | |
168 | ||
169 | do { | |
170 | byte = val & 0x7f; | |
171 | val >>= 7; | |
172 | more = !((val == 0 && (byte & 0x40) == 0) | |
173 | || (val == -1 && (byte & 0x40) != 0)); | |
174 | if (more) { | |
175 | byte |= 0x80; | |
176 | } | |
177 | *p++ = byte; | |
178 | } while (more); | |
179 | ||
180 | return p; | |
181 | } | |
182 | ||
183 | /* Decode a signed leb128 sequence at *PP; increment *PP past the | |
184 | decoded value. Return the decoded value. */ | |
185 | static target_long decode_sleb128(uint8_t **pp) | |
186 | { | |
187 | uint8_t *p = *pp; | |
188 | target_long val = 0; | |
189 | int byte, shift = 0; | |
190 | ||
191 | do { | |
192 | byte = *p++; | |
193 | val |= (target_ulong)(byte & 0x7f) << shift; | |
194 | shift += 7; | |
195 | } while (byte & 0x80); | |
196 | if (shift < TARGET_LONG_BITS && (byte & 0x40)) { | |
197 | val |= -(target_ulong)1 << shift; | |
198 | } | |
199 | ||
200 | *pp = p; | |
201 | return val; | |
202 | } | |
203 | ||
204 | /* Encode the data collected about the instructions while compiling TB. | |
205 | Place the data at BLOCK, and return the number of bytes consumed. | |
206 | ||
207 | The logical table consisits of TARGET_INSN_START_WORDS target_ulong's, | |
208 | which come from the target's insn_start data, followed by a uintptr_t | |
209 | which comes from the host pc of the end of the code implementing the insn. | |
210 | ||
211 | Each line of the table is encoded as sleb128 deltas from the previous | |
212 | line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }. | |
213 | That is, the first column is seeded with the guest pc, the last column | |
214 | with the host pc, and the middle columns with zeros. */ | |
215 | ||
216 | static int encode_search(TranslationBlock *tb, uint8_t *block) | |
217 | { | |
b125f9dc | 218 | uint8_t *highwater = tcg_ctx.code_gen_highwater; |
fca8a500 RH |
219 | uint8_t *p = block; |
220 | int i, j, n; | |
221 | ||
222 | tb->tc_search = block; | |
223 | ||
224 | for (i = 0, n = tb->icount; i < n; ++i) { | |
225 | target_ulong prev; | |
226 | ||
227 | for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { | |
228 | if (i == 0) { | |
229 | prev = (j == 0 ? tb->pc : 0); | |
230 | } else { | |
231 | prev = tcg_ctx.gen_insn_data[i - 1][j]; | |
232 | } | |
233 | p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev); | |
234 | } | |
235 | prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]); | |
236 | p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev); | |
b125f9dc RH |
237 | |
238 | /* Test for (pending) buffer overflow. The assumption is that any | |
239 | one row beginning below the high water mark cannot overrun | |
240 | the buffer completely. Thus we can test for overflow after | |
241 | encoding a row without having to check during encoding. */ | |
242 | if (unlikely(p > highwater)) { | |
243 | return -1; | |
244 | } | |
fca8a500 RH |
245 | } |
246 | ||
247 | return p - block; | |
248 | } | |
249 | ||
fec88f64 | 250 | /* The cpu state corresponding to 'searched_pc' is restored. */ |
74f10515 | 251 | static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, |
a8a826a3 | 252 | uintptr_t searched_pc) |
d19893da | 253 | { |
fca8a500 RH |
254 | target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc }; |
255 | uintptr_t host_pc = (uintptr_t)tb->tc_ptr; | |
74f10515 | 256 | CPUArchState *env = cpu->env_ptr; |
fca8a500 RH |
257 | uint8_t *p = tb->tc_search; |
258 | int i, j, num_insns = tb->icount; | |
57fec1fe | 259 | #ifdef CONFIG_PROFILER |
fca8a500 | 260 | int64_t ti = profile_getclock(); |
57fec1fe FB |
261 | #endif |
262 | ||
fca8a500 RH |
263 | if (searched_pc < host_pc) { |
264 | return -1; | |
265 | } | |
d19893da | 266 | |
fca8a500 RH |
267 | /* Reconstruct the stored insn data while looking for the point at |
268 | which the end of the insn exceeds the searched_pc. */ | |
269 | for (i = 0; i < num_insns; ++i) { | |
270 | for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { | |
271 | data[j] += decode_sleb128(&p); | |
272 | } | |
273 | host_pc += decode_sleb128(&p); | |
274 | if (host_pc > searched_pc) { | |
275 | goto found; | |
276 | } | |
277 | } | |
278 | return -1; | |
3b46e624 | 279 | |
fca8a500 | 280 | found: |
bd79255d | 281 | if (tb->cflags & CF_USE_ICOUNT) { |
414b15c9 | 282 | assert(use_icount); |
2e70f6ef | 283 | /* Reset the cycle counter to the start of the block. */ |
fca8a500 | 284 | cpu->icount_decr.u16.low += num_insns; |
2e70f6ef | 285 | /* Clear the IO flag. */ |
99df7dce | 286 | cpu->can_do_io = 0; |
2e70f6ef | 287 | } |
fca8a500 RH |
288 | cpu->icount_decr.u16.low -= i; |
289 | restore_state_to_opc(env, tb, data); | |
57fec1fe FB |
290 | |
291 | #ifdef CONFIG_PROFILER | |
fca8a500 RH |
292 | tcg_ctx.restore_time += profile_getclock() - ti; |
293 | tcg_ctx.restore_count++; | |
57fec1fe | 294 | #endif |
d19893da FB |
295 | return 0; |
296 | } | |
5b6dd868 | 297 | |
3f38f309 | 298 | bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr) |
a8a826a3 BS |
299 | { |
300 | TranslationBlock *tb; | |
301 | ||
302 | tb = tb_find_pc(retaddr); | |
303 | if (tb) { | |
74f10515 | 304 | cpu_restore_state_from_tb(cpu, tb, retaddr); |
d8a499f1 PD |
305 | if (tb->cflags & CF_NOCACHE) { |
306 | /* one-shot translation, invalidate it immediately */ | |
d8a499f1 PD |
307 | tb_phys_invalidate(tb, -1); |
308 | tb_free(tb); | |
309 | } | |
a8a826a3 BS |
310 | return true; |
311 | } | |
312 | return false; | |
313 | } | |
314 | ||
47c16ed5 | 315 | void page_size_init(void) |
5b6dd868 BS |
316 | { |
317 | /* NOTE: we can always suppose that qemu_host_page_size >= | |
318 | TARGET_PAGE_SIZE */ | |
5b6dd868 | 319 | qemu_real_host_page_size = getpagesize(); |
0c2d70c4 | 320 | qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size; |
5b6dd868 BS |
321 | if (qemu_host_page_size == 0) { |
322 | qemu_host_page_size = qemu_real_host_page_size; | |
323 | } | |
324 | if (qemu_host_page_size < TARGET_PAGE_SIZE) { | |
325 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
326 | } | |
0c2d70c4 | 327 | qemu_host_page_mask = -(intptr_t)qemu_host_page_size; |
47c16ed5 | 328 | } |
5b6dd868 | 329 | |
47c16ed5 AK |
330 | static void page_init(void) |
331 | { | |
332 | page_size_init(); | |
5b6dd868 BS |
333 | #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) |
334 | { | |
335 | #ifdef HAVE_KINFO_GETVMMAP | |
336 | struct kinfo_vmentry *freep; | |
337 | int i, cnt; | |
338 | ||
339 | freep = kinfo_getvmmap(getpid(), &cnt); | |
340 | if (freep) { | |
341 | mmap_lock(); | |
342 | for (i = 0; i < cnt; i++) { | |
343 | unsigned long startaddr, endaddr; | |
344 | ||
345 | startaddr = freep[i].kve_start; | |
346 | endaddr = freep[i].kve_end; | |
347 | if (h2g_valid(startaddr)) { | |
348 | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | |
349 | ||
350 | if (h2g_valid(endaddr)) { | |
351 | endaddr = h2g(endaddr); | |
352 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
353 | } else { | |
354 | #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS | |
355 | endaddr = ~0ul; | |
356 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
357 | #endif | |
358 | } | |
359 | } | |
360 | } | |
361 | free(freep); | |
362 | mmap_unlock(); | |
363 | } | |
364 | #else | |
365 | FILE *f; | |
366 | ||
367 | last_brk = (unsigned long)sbrk(0); | |
368 | ||
369 | f = fopen("/compat/linux/proc/self/maps", "r"); | |
370 | if (f) { | |
371 | mmap_lock(); | |
372 | ||
373 | do { | |
374 | unsigned long startaddr, endaddr; | |
375 | int n; | |
376 | ||
377 | n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); | |
378 | ||
379 | if (n == 2 && h2g_valid(startaddr)) { | |
380 | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | |
381 | ||
382 | if (h2g_valid(endaddr)) { | |
383 | endaddr = h2g(endaddr); | |
384 | } else { | |
385 | endaddr = ~0ul; | |
386 | } | |
387 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
388 | } | |
389 | } while (!feof(f)); | |
390 | ||
391 | fclose(f); | |
392 | mmap_unlock(); | |
393 | } | |
394 | #endif | |
395 | } | |
396 | #endif | |
397 | } | |
398 | ||
75692087 PB |
399 | /* If alloc=1: |
400 | * Called with mmap_lock held for user-mode emulation. | |
401 | */ | |
5b6dd868 BS |
402 | static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) |
403 | { | |
404 | PageDesc *pd; | |
405 | void **lp; | |
406 | int i; | |
407 | ||
5b6dd868 BS |
408 | /* Level 1. Always allocated. */ |
409 | lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1)); | |
410 | ||
411 | /* Level 2..N-1. */ | |
03f49957 | 412 | for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) { |
6940fab8 | 413 | void **p = atomic_rcu_read(lp); |
5b6dd868 BS |
414 | |
415 | if (p == NULL) { | |
416 | if (!alloc) { | |
417 | return NULL; | |
418 | } | |
e3a0abfd | 419 | p = g_new0(void *, V_L2_SIZE); |
6940fab8 | 420 | atomic_rcu_set(lp, p); |
5b6dd868 BS |
421 | } |
422 | ||
03f49957 | 423 | lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); |
5b6dd868 BS |
424 | } |
425 | ||
6940fab8 | 426 | pd = atomic_rcu_read(lp); |
5b6dd868 BS |
427 | if (pd == NULL) { |
428 | if (!alloc) { | |
429 | return NULL; | |
430 | } | |
e3a0abfd | 431 | pd = g_new0(PageDesc, V_L2_SIZE); |
6940fab8 | 432 | atomic_rcu_set(lp, pd); |
5b6dd868 BS |
433 | } |
434 | ||
03f49957 | 435 | return pd + (index & (V_L2_SIZE - 1)); |
5b6dd868 BS |
436 | } |
437 | ||
438 | static inline PageDesc *page_find(tb_page_addr_t index) | |
439 | { | |
440 | return page_find_alloc(index, 0); | |
441 | } | |
442 | ||
5b6dd868 BS |
443 | #if defined(CONFIG_USER_ONLY) |
444 | /* Currently it is not recommended to allocate big chunks of data in | |
445 | user mode. It will change when a dedicated libc will be used. */ | |
446 | /* ??? 64-bit hosts ought to have no problem mmaping data outside the | |
447 | region in which the guest needs to run. Revisit this. */ | |
448 | #define USE_STATIC_CODE_GEN_BUFFER | |
449 | #endif | |
450 | ||
5b6dd868 BS |
451 | /* Minimum size of the code gen buffer. This number is randomly chosen, |
452 | but not so small that we can't have a fair number of TB's live. */ | |
453 | #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024) | |
454 | ||
455 | /* Maximum size of the code gen buffer we'd like to use. Unless otherwise | |
456 | indicated, this is constrained by the range of direct branches on the | |
457 | host cpu, as used by the TCG implementation of goto_tb. */ | |
458 | #if defined(__x86_64__) | |
459 | # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) | |
460 | #elif defined(__sparc__) | |
461 | # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) | |
5bfd75a3 RH |
462 | #elif defined(__powerpc64__) |
463 | # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) | |
399f1648 SF |
464 | #elif defined(__powerpc__) |
465 | # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024) | |
4a136e0a CF |
466 | #elif defined(__aarch64__) |
467 | # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) | |
5b6dd868 BS |
468 | #elif defined(__arm__) |
469 | # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024) | |
470 | #elif defined(__s390x__) | |
471 | /* We have a +- 4GB range on the branches; leave some slop. */ | |
472 | # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024) | |
479eb121 RH |
473 | #elif defined(__mips__) |
474 | /* We have a 256MB branch region, but leave room to make sure the | |
475 | main executable is also within that region. */ | |
476 | # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) | |
5b6dd868 BS |
477 | #else |
478 | # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) | |
479 | #endif | |
480 | ||
481 | #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024) | |
482 | ||
483 | #define DEFAULT_CODE_GEN_BUFFER_SIZE \ | |
484 | (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ | |
485 | ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) | |
486 | ||
487 | static inline size_t size_code_gen_buffer(size_t tb_size) | |
488 | { | |
489 | /* Size the buffer. */ | |
490 | if (tb_size == 0) { | |
491 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
492 | tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
493 | #else | |
494 | /* ??? Needs adjustments. */ | |
495 | /* ??? If we relax the requirement that CONFIG_USER_ONLY use the | |
496 | static buffer, we could size this on RESERVED_VA, on the text | |
497 | segment size of the executable, or continue to use the default. */ | |
498 | tb_size = (unsigned long)(ram_size / 4); | |
499 | #endif | |
500 | } | |
501 | if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { | |
502 | tb_size = MIN_CODE_GEN_BUFFER_SIZE; | |
503 | } | |
504 | if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { | |
505 | tb_size = MAX_CODE_GEN_BUFFER_SIZE; | |
506 | } | |
5b6dd868 BS |
507 | return tb_size; |
508 | } | |
509 | ||
483c76e1 RH |
510 | #ifdef __mips__ |
511 | /* In order to use J and JAL within the code_gen_buffer, we require | |
512 | that the buffer not cross a 256MB boundary. */ | |
513 | static inline bool cross_256mb(void *addr, size_t size) | |
514 | { | |
7ba6a512 | 515 | return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; |
483c76e1 RH |
516 | } |
517 | ||
518 | /* We weren't able to allocate a buffer without crossing that boundary, | |
519 | so make do with the larger portion of the buffer that doesn't cross. | |
520 | Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ | |
521 | static inline void *split_cross_256mb(void *buf1, size_t size1) | |
522 | { | |
7ba6a512 | 523 | void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); |
483c76e1 RH |
524 | size_t size2 = buf1 + size1 - buf2; |
525 | ||
526 | size1 = buf2 - buf1; | |
527 | if (size1 < size2) { | |
528 | size1 = size2; | |
529 | buf1 = buf2; | |
530 | } | |
531 | ||
532 | tcg_ctx.code_gen_buffer_size = size1; | |
533 | return buf1; | |
534 | } | |
535 | #endif | |
536 | ||
5b6dd868 BS |
537 | #ifdef USE_STATIC_CODE_GEN_BUFFER |
538 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] | |
539 | __attribute__((aligned(CODE_GEN_ALIGN))); | |
540 | ||
f293709c RH |
541 | # ifdef _WIN32 |
542 | static inline void do_protect(void *addr, long size, int prot) | |
543 | { | |
544 | DWORD old_protect; | |
545 | VirtualProtect(addr, size, prot, &old_protect); | |
546 | } | |
547 | ||
548 | static inline void map_exec(void *addr, long size) | |
549 | { | |
550 | do_protect(addr, size, PAGE_EXECUTE_READWRITE); | |
551 | } | |
552 | ||
553 | static inline void map_none(void *addr, long size) | |
554 | { | |
555 | do_protect(addr, size, PAGE_NOACCESS); | |
556 | } | |
557 | # else | |
558 | static inline void do_protect(void *addr, long size, int prot) | |
559 | { | |
560 | uintptr_t start, end; | |
561 | ||
562 | start = (uintptr_t)addr; | |
563 | start &= qemu_real_host_page_mask; | |
564 | ||
565 | end = (uintptr_t)addr + size; | |
566 | end = ROUND_UP(end, qemu_real_host_page_size); | |
567 | ||
568 | mprotect((void *)start, end - start, prot); | |
569 | } | |
570 | ||
571 | static inline void map_exec(void *addr, long size) | |
572 | { | |
573 | do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC); | |
574 | } | |
575 | ||
576 | static inline void map_none(void *addr, long size) | |
577 | { | |
578 | do_protect(addr, size, PROT_NONE); | |
579 | } | |
580 | # endif /* WIN32 */ | |
581 | ||
5b6dd868 BS |
582 | static inline void *alloc_code_gen_buffer(void) |
583 | { | |
483c76e1 | 584 | void *buf = static_code_gen_buffer; |
f293709c RH |
585 | size_t full_size, size; |
586 | ||
587 | /* The size of the buffer, rounded down to end on a page boundary. */ | |
588 | full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer)) | |
589 | & qemu_real_host_page_mask) - (uintptr_t)buf; | |
590 | ||
591 | /* Reserve a guard page. */ | |
592 | size = full_size - qemu_real_host_page_size; | |
593 | ||
594 | /* Honor a command-line option limiting the size of the buffer. */ | |
595 | if (size > tcg_ctx.code_gen_buffer_size) { | |
596 | size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size) | |
597 | & qemu_real_host_page_mask) - (uintptr_t)buf; | |
598 | } | |
599 | tcg_ctx.code_gen_buffer_size = size; | |
600 | ||
483c76e1 | 601 | #ifdef __mips__ |
f293709c RH |
602 | if (cross_256mb(buf, size)) { |
603 | buf = split_cross_256mb(buf, size); | |
604 | size = tcg_ctx.code_gen_buffer_size; | |
483c76e1 RH |
605 | } |
606 | #endif | |
f293709c RH |
607 | |
608 | map_exec(buf, size); | |
609 | map_none(buf + size, qemu_real_host_page_size); | |
610 | qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); | |
611 | ||
483c76e1 | 612 | return buf; |
5b6dd868 | 613 | } |
f293709c RH |
614 | #elif defined(_WIN32) |
615 | static inline void *alloc_code_gen_buffer(void) | |
616 | { | |
617 | size_t size = tcg_ctx.code_gen_buffer_size; | |
618 | void *buf1, *buf2; | |
619 | ||
620 | /* Perform the allocation in two steps, so that the guard page | |
621 | is reserved but uncommitted. */ | |
622 | buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size, | |
623 | MEM_RESERVE, PAGE_NOACCESS); | |
624 | if (buf1 != NULL) { | |
625 | buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE); | |
626 | assert(buf1 == buf2); | |
627 | } | |
628 | ||
629 | return buf1; | |
630 | } | |
631 | #else | |
5b6dd868 BS |
632 | static inline void *alloc_code_gen_buffer(void) |
633 | { | |
634 | int flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
635 | uintptr_t start = 0; | |
f293709c | 636 | size_t size = tcg_ctx.code_gen_buffer_size; |
5b6dd868 BS |
637 | void *buf; |
638 | ||
639 | /* Constrain the position of the buffer based on the host cpu. | |
640 | Note that these addresses are chosen in concert with the | |
641 | addresses assigned in the relevant linker script file. */ | |
642 | # if defined(__PIE__) || defined(__PIC__) | |
643 | /* Don't bother setting a preferred location if we're building | |
644 | a position-independent executable. We're more likely to get | |
645 | an address near the main executable if we let the kernel | |
646 | choose the address. */ | |
647 | # elif defined(__x86_64__) && defined(MAP_32BIT) | |
648 | /* Force the memory down into low memory with the executable. | |
649 | Leave the choice of exact location with the kernel. */ | |
650 | flags |= MAP_32BIT; | |
651 | /* Cannot expect to map more than 800MB in low memory. */ | |
f293709c RH |
652 | if (size > 800u * 1024 * 1024) { |
653 | tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024; | |
5b6dd868 BS |
654 | } |
655 | # elif defined(__sparc__) | |
656 | start = 0x40000000ul; | |
657 | # elif defined(__s390x__) | |
658 | start = 0x90000000ul; | |
479eb121 | 659 | # elif defined(__mips__) |
f293709c | 660 | # if _MIPS_SIM == _ABI64 |
479eb121 RH |
661 | start = 0x128000000ul; |
662 | # else | |
663 | start = 0x08000000ul; | |
664 | # endif | |
5b6dd868 BS |
665 | # endif |
666 | ||
f293709c RH |
667 | buf = mmap((void *)start, size + qemu_real_host_page_size, |
668 | PROT_NONE, flags, -1, 0); | |
483c76e1 RH |
669 | if (buf == MAP_FAILED) { |
670 | return NULL; | |
671 | } | |
672 | ||
673 | #ifdef __mips__ | |
f293709c | 674 | if (cross_256mb(buf, size)) { |
5d831be2 | 675 | /* Try again, with the original still mapped, to avoid re-acquiring |
483c76e1 | 676 | that 256mb crossing. This time don't specify an address. */ |
f293709c RH |
677 | size_t size2; |
678 | void *buf2 = mmap(NULL, size + qemu_real_host_page_size, | |
679 | PROT_NONE, flags, -1, 0); | |
680 | switch (buf2 != MAP_FAILED) { | |
681 | case 1: | |
682 | if (!cross_256mb(buf2, size)) { | |
483c76e1 | 683 | /* Success! Use the new buffer. */ |
8bdf4997 | 684 | munmap(buf, size + qemu_real_host_page_size); |
f293709c | 685 | break; |
483c76e1 RH |
686 | } |
687 | /* Failure. Work with what we had. */ | |
8bdf4997 | 688 | munmap(buf2, size + qemu_real_host_page_size); |
f293709c RH |
689 | /* fallthru */ |
690 | default: | |
691 | /* Split the original buffer. Free the smaller half. */ | |
692 | buf2 = split_cross_256mb(buf, size); | |
693 | size2 = tcg_ctx.code_gen_buffer_size; | |
694 | if (buf == buf2) { | |
695 | munmap(buf + size2 + qemu_real_host_page_size, size - size2); | |
696 | } else { | |
697 | munmap(buf, size - size2); | |
698 | } | |
699 | size = size2; | |
700 | break; | |
483c76e1 | 701 | } |
f293709c | 702 | buf = buf2; |
483c76e1 RH |
703 | } |
704 | #endif | |
705 | ||
f293709c RH |
706 | /* Make the final buffer accessible. The guard page at the end |
707 | will remain inaccessible with PROT_NONE. */ | |
708 | mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC); | |
483c76e1 | 709 | |
f293709c RH |
710 | /* Request large pages for the buffer. */ |
711 | qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); | |
483c76e1 | 712 | |
5b6dd868 BS |
713 | return buf; |
714 | } | |
f293709c | 715 | #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ |
5b6dd868 BS |
716 | |
717 | static inline void code_gen_alloc(size_t tb_size) | |
718 | { | |
0b0d3320 EV |
719 | tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size); |
720 | tcg_ctx.code_gen_buffer = alloc_code_gen_buffer(); | |
721 | if (tcg_ctx.code_gen_buffer == NULL) { | |
5b6dd868 BS |
722 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); |
723 | exit(1); | |
724 | } | |
725 | ||
8163b749 RH |
726 | /* Estimate a good size for the number of TBs we can support. We |
727 | still haven't deducted the prologue from the buffer size here, | |
728 | but that's minimal and won't affect the estimate much. */ | |
729 | tcg_ctx.code_gen_max_blocks | |
730 | = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; | |
731 | tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks); | |
732 | ||
677ef623 | 733 | qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock); |
5b6dd868 BS |
734 | } |
735 | ||
909eaac9 EC |
736 | static void tb_htable_init(void) |
737 | { | |
738 | unsigned int mode = QHT_MODE_AUTO_RESIZE; | |
739 | ||
740 | qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode); | |
741 | } | |
742 | ||
5b6dd868 BS |
743 | /* Must be called before using the QEMU cpus. 'tb_size' is the size |
744 | (in bytes) allocated to the translation buffer. Zero means default | |
745 | size. */ | |
746 | void tcg_exec_init(unsigned long tb_size) | |
747 | { | |
748 | cpu_gen_init(); | |
5b6dd868 | 749 | page_init(); |
909eaac9 | 750 | tb_htable_init(); |
f293709c | 751 | code_gen_alloc(tb_size); |
4cbea598 | 752 | #if defined(CONFIG_SOFTMMU) |
5b6dd868 BS |
753 | /* There's no guest base to take into account, so go ahead and |
754 | initialize the prologue now. */ | |
755 | tcg_prologue_init(&tcg_ctx); | |
756 | #endif | |
757 | } | |
758 | ||
759 | bool tcg_enabled(void) | |
760 | { | |
0b0d3320 | 761 | return tcg_ctx.code_gen_buffer != NULL; |
5b6dd868 BS |
762 | } |
763 | ||
764 | /* Allocate a new translation block. Flush the translation buffer if | |
765 | too many translation blocks or too much generated code. */ | |
766 | static TranslationBlock *tb_alloc(target_ulong pc) | |
767 | { | |
768 | TranslationBlock *tb; | |
769 | ||
b125f9dc | 770 | if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) { |
5b6dd868 BS |
771 | return NULL; |
772 | } | |
5e5f07e0 | 773 | tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++]; |
5b6dd868 BS |
774 | tb->pc = pc; |
775 | tb->cflags = 0; | |
776 | return tb; | |
777 | } | |
778 | ||
779 | void tb_free(TranslationBlock *tb) | |
780 | { | |
781 | /* In practice this is mostly used for single use temporary TB | |
782 | Ignore the hard cases and just back up if this TB happens to | |
783 | be the last one generated. */ | |
5e5f07e0 EV |
784 | if (tcg_ctx.tb_ctx.nb_tbs > 0 && |
785 | tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) { | |
0b0d3320 | 786 | tcg_ctx.code_gen_ptr = tb->tc_ptr; |
5e5f07e0 | 787 | tcg_ctx.tb_ctx.nb_tbs--; |
5b6dd868 BS |
788 | } |
789 | } | |
790 | ||
791 | static inline void invalidate_page_bitmap(PageDesc *p) | |
792 | { | |
6fad459c | 793 | #ifdef CONFIG_SOFTMMU |
012aef07 MA |
794 | g_free(p->code_bitmap); |
795 | p->code_bitmap = NULL; | |
5b6dd868 | 796 | p->code_write_count = 0; |
6fad459c | 797 | #endif |
5b6dd868 BS |
798 | } |
799 | ||
800 | /* Set to NULL all the 'first_tb' fields in all PageDescs. */ | |
801 | static void page_flush_tb_1(int level, void **lp) | |
802 | { | |
803 | int i; | |
804 | ||
805 | if (*lp == NULL) { | |
806 | return; | |
807 | } | |
808 | if (level == 0) { | |
809 | PageDesc *pd = *lp; | |
810 | ||
03f49957 | 811 | for (i = 0; i < V_L2_SIZE; ++i) { |
5b6dd868 BS |
812 | pd[i].first_tb = NULL; |
813 | invalidate_page_bitmap(pd + i); | |
814 | } | |
815 | } else { | |
816 | void **pp = *lp; | |
817 | ||
03f49957 | 818 | for (i = 0; i < V_L2_SIZE; ++i) { |
5b6dd868 BS |
819 | page_flush_tb_1(level - 1, pp + i); |
820 | } | |
821 | } | |
822 | } | |
823 | ||
824 | static void page_flush_tb(void) | |
825 | { | |
826 | int i; | |
827 | ||
828 | for (i = 0; i < V_L1_SIZE; i++) { | |
03f49957 | 829 | page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i); |
5b6dd868 BS |
830 | } |
831 | } | |
832 | ||
833 | /* flush all the translation blocks */ | |
834 | /* XXX: tb_flush is currently not thread safe */ | |
bbd77c18 | 835 | void tb_flush(CPUState *cpu) |
5b6dd868 | 836 | { |
5b6dd868 BS |
837 | #if defined(DEBUG_FLUSH) |
838 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", | |
0b0d3320 | 839 | (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer), |
5e5f07e0 | 840 | tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ? |
0b0d3320 | 841 | ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) / |
5e5f07e0 | 842 | tcg_ctx.tb_ctx.nb_tbs : 0); |
5b6dd868 | 843 | #endif |
0b0d3320 EV |
844 | if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) |
845 | > tcg_ctx.code_gen_buffer_size) { | |
a47dddd7 | 846 | cpu_abort(cpu, "Internal error: code buffer overflow\n"); |
5b6dd868 | 847 | } |
5e5f07e0 | 848 | tcg_ctx.tb_ctx.nb_tbs = 0; |
5b6dd868 | 849 | |
bdc44640 | 850 | CPU_FOREACH(cpu) { |
8cd70437 | 851 | memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); |
6f789be5 | 852 | cpu->tb_flushed = true; |
5b6dd868 BS |
853 | } |
854 | ||
909eaac9 | 855 | qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE); |
5b6dd868 BS |
856 | page_flush_tb(); |
857 | ||
0b0d3320 | 858 | tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer; |
5b6dd868 BS |
859 | /* XXX: flush processor icache at this point if cache flush is |
860 | expensive */ | |
5e5f07e0 | 861 | tcg_ctx.tb_ctx.tb_flush_count++; |
5b6dd868 BS |
862 | } |
863 | ||
864 | #ifdef DEBUG_TB_CHECK | |
865 | ||
909eaac9 EC |
866 | static void |
867 | do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp) | |
5b6dd868 | 868 | { |
909eaac9 EC |
869 | TranslationBlock *tb = p; |
870 | target_ulong addr = *(target_ulong *)userp; | |
871 | ||
872 | if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) { | |
873 | printf("ERROR invalidate: address=" TARGET_FMT_lx | |
874 | " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size); | |
875 | } | |
876 | } | |
5b6dd868 | 877 | |
909eaac9 EC |
878 | static void tb_invalidate_check(target_ulong address) |
879 | { | |
5b6dd868 | 880 | address &= TARGET_PAGE_MASK; |
909eaac9 EC |
881 | qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address); |
882 | } | |
883 | ||
884 | static void | |
885 | do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp) | |
886 | { | |
887 | TranslationBlock *tb = p; | |
888 | int flags1, flags2; | |
889 | ||
890 | flags1 = page_get_flags(tb->pc); | |
891 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
892 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
893 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
894 | (long)tb->pc, tb->size, flags1, flags2); | |
5b6dd868 BS |
895 | } |
896 | } | |
897 | ||
898 | /* verify that all the pages have correct rights for code */ | |
899 | static void tb_page_check(void) | |
900 | { | |
909eaac9 | 901 | qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL); |
5b6dd868 BS |
902 | } |
903 | ||
904 | #endif | |
905 | ||
5b6dd868 BS |
906 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) |
907 | { | |
908 | TranslationBlock *tb1; | |
909 | unsigned int n1; | |
910 | ||
911 | for (;;) { | |
912 | tb1 = *ptb; | |
913 | n1 = (uintptr_t)tb1 & 3; | |
914 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
915 | if (tb1 == tb) { | |
916 | *ptb = tb1->page_next[n1]; | |
917 | break; | |
918 | } | |
919 | ptb = &tb1->page_next[n1]; | |
920 | } | |
921 | } | |
922 | ||
13362678 SF |
923 | /* remove the TB from a list of TBs jumping to the n-th jump target of the TB */ |
924 | static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n) | |
5b6dd868 | 925 | { |
c37e6d7e SF |
926 | TranslationBlock *tb1; |
927 | uintptr_t *ptb, ntb; | |
5b6dd868 BS |
928 | unsigned int n1; |
929 | ||
f309101c | 930 | ptb = &tb->jmp_list_next[n]; |
c37e6d7e | 931 | if (*ptb) { |
5b6dd868 BS |
932 | /* find tb(n) in circular list */ |
933 | for (;;) { | |
c37e6d7e SF |
934 | ntb = *ptb; |
935 | n1 = ntb & 3; | |
936 | tb1 = (TranslationBlock *)(ntb & ~3); | |
5b6dd868 BS |
937 | if (n1 == n && tb1 == tb) { |
938 | break; | |
939 | } | |
940 | if (n1 == 2) { | |
f309101c | 941 | ptb = &tb1->jmp_list_first; |
5b6dd868 | 942 | } else { |
f309101c | 943 | ptb = &tb1->jmp_list_next[n1]; |
5b6dd868 BS |
944 | } |
945 | } | |
946 | /* now we can suppress tb(n) from the list */ | |
f309101c | 947 | *ptb = tb->jmp_list_next[n]; |
5b6dd868 | 948 | |
c37e6d7e | 949 | tb->jmp_list_next[n] = (uintptr_t)NULL; |
5b6dd868 BS |
950 | } |
951 | } | |
952 | ||
953 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
954 | another TB */ | |
955 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
956 | { | |
f309101c SF |
957 | uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]); |
958 | tb_set_jmp_target(tb, n, addr); | |
5b6dd868 BS |
959 | } |
960 | ||
89bba496 SF |
961 | /* remove any jumps to the TB */ |
962 | static inline void tb_jmp_unlink(TranslationBlock *tb) | |
963 | { | |
f9c5b66f SF |
964 | TranslationBlock *tb1; |
965 | uintptr_t *ptb, ntb; | |
89bba496 SF |
966 | unsigned int n1; |
967 | ||
f9c5b66f | 968 | ptb = &tb->jmp_list_first; |
89bba496 | 969 | for (;;) { |
f9c5b66f SF |
970 | ntb = *ptb; |
971 | n1 = ntb & 3; | |
972 | tb1 = (TranslationBlock *)(ntb & ~3); | |
89bba496 SF |
973 | if (n1 == 2) { |
974 | break; | |
975 | } | |
f9c5b66f SF |
976 | tb_reset_jump(tb1, n1); |
977 | *ptb = tb1->jmp_list_next[n1]; | |
978 | tb1->jmp_list_next[n1] = (uintptr_t)NULL; | |
89bba496 | 979 | } |
89bba496 SF |
980 | } |
981 | ||
0c884d16 | 982 | /* invalidate one TB */ |
5b6dd868 BS |
983 | void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) |
984 | { | |
182735ef | 985 | CPUState *cpu; |
5b6dd868 | 986 | PageDesc *p; |
42bd3228 | 987 | uint32_t h; |
5b6dd868 | 988 | tb_page_addr_t phys_pc; |
5b6dd868 BS |
989 | |
990 | /* remove the TB from the hash list */ | |
991 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
42bd3228 | 992 | h = tb_hash_func(phys_pc, tb->pc, tb->flags); |
909eaac9 | 993 | qht_remove(&tcg_ctx.tb_ctx.htable, tb, h); |
5b6dd868 BS |
994 | |
995 | /* remove the TB from the page list */ | |
996 | if (tb->page_addr[0] != page_addr) { | |
997 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
998 | tb_page_remove(&p->first_tb, tb); | |
999 | invalidate_page_bitmap(p); | |
1000 | } | |
1001 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
1002 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
1003 | tb_page_remove(&p->first_tb, tb); | |
1004 | invalidate_page_bitmap(p); | |
1005 | } | |
1006 | ||
5b6dd868 BS |
1007 | /* remove the TB from the hash list */ |
1008 | h = tb_jmp_cache_hash_func(tb->pc); | |
bdc44640 | 1009 | CPU_FOREACH(cpu) { |
8cd70437 AF |
1010 | if (cpu->tb_jmp_cache[h] == tb) { |
1011 | cpu->tb_jmp_cache[h] = NULL; | |
5b6dd868 BS |
1012 | } |
1013 | } | |
1014 | ||
1015 | /* suppress this TB from the two jump lists */ | |
13362678 SF |
1016 | tb_remove_from_jmp_list(tb, 0); |
1017 | tb_remove_from_jmp_list(tb, 1); | |
5b6dd868 BS |
1018 | |
1019 | /* suppress any remaining jumps to this TB */ | |
89bba496 | 1020 | tb_jmp_unlink(tb); |
5b6dd868 | 1021 | |
5e5f07e0 | 1022 | tcg_ctx.tb_ctx.tb_phys_invalidate_count++; |
5b6dd868 BS |
1023 | } |
1024 | ||
6fad459c | 1025 | #ifdef CONFIG_SOFTMMU |
5b6dd868 BS |
1026 | static void build_page_bitmap(PageDesc *p) |
1027 | { | |
1028 | int n, tb_start, tb_end; | |
1029 | TranslationBlock *tb; | |
1030 | ||
510a647f | 1031 | p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE); |
5b6dd868 BS |
1032 | |
1033 | tb = p->first_tb; | |
1034 | while (tb != NULL) { | |
1035 | n = (uintptr_t)tb & 3; | |
1036 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
1037 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
1038 | if (n == 0) { | |
1039 | /* NOTE: tb_end may be after the end of the page, but | |
1040 | it is not a problem */ | |
1041 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
1042 | tb_end = tb_start + tb->size; | |
1043 | if (tb_end > TARGET_PAGE_SIZE) { | |
1044 | tb_end = TARGET_PAGE_SIZE; | |
1045 | } | |
1046 | } else { | |
1047 | tb_start = 0; | |
1048 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
1049 | } | |
510a647f | 1050 | bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start); |
5b6dd868 BS |
1051 | tb = tb->page_next[n]; |
1052 | } | |
1053 | } | |
6fad459c | 1054 | #endif |
5b6dd868 | 1055 | |
e90d96b1 SF |
1056 | /* add the tb in the target page and protect it if necessary |
1057 | * | |
1058 | * Called with mmap_lock held for user-mode emulation. | |
1059 | */ | |
1060 | static inline void tb_alloc_page(TranslationBlock *tb, | |
1061 | unsigned int n, tb_page_addr_t page_addr) | |
1062 | { | |
1063 | PageDesc *p; | |
1064 | #ifndef CONFIG_USER_ONLY | |
1065 | bool page_already_protected; | |
1066 | #endif | |
1067 | ||
1068 | tb->page_addr[n] = page_addr; | |
1069 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1); | |
1070 | tb->page_next[n] = p->first_tb; | |
1071 | #ifndef CONFIG_USER_ONLY | |
1072 | page_already_protected = p->first_tb != NULL; | |
1073 | #endif | |
1074 | p->first_tb = (TranslationBlock *)((uintptr_t)tb | n); | |
1075 | invalidate_page_bitmap(p); | |
1076 | ||
1077 | #if defined(CONFIG_USER_ONLY) | |
1078 | if (p->flags & PAGE_WRITE) { | |
1079 | target_ulong addr; | |
1080 | PageDesc *p2; | |
1081 | int prot; | |
1082 | ||
1083 | /* force the host page as non writable (writes will have a | |
1084 | page fault + mprotect overhead) */ | |
1085 | page_addr &= qemu_host_page_mask; | |
1086 | prot = 0; | |
1087 | for (addr = page_addr; addr < page_addr + qemu_host_page_size; | |
1088 | addr += TARGET_PAGE_SIZE) { | |
1089 | ||
1090 | p2 = page_find(addr >> TARGET_PAGE_BITS); | |
1091 | if (!p2) { | |
1092 | continue; | |
1093 | } | |
1094 | prot |= p2->flags; | |
1095 | p2->flags &= ~PAGE_WRITE; | |
1096 | } | |
1097 | mprotect(g2h(page_addr), qemu_host_page_size, | |
1098 | (prot & PAGE_BITS) & ~PAGE_WRITE); | |
1099 | #ifdef DEBUG_TB_INVALIDATE | |
1100 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", | |
1101 | page_addr); | |
1102 | #endif | |
1103 | } | |
1104 | #else | |
1105 | /* if some code is already present, then the pages are already | |
1106 | protected. So we handle the case where only the first TB is | |
1107 | allocated in a physical page */ | |
1108 | if (!page_already_protected) { | |
1109 | tlb_protect_code(page_addr); | |
1110 | } | |
1111 | #endif | |
1112 | } | |
1113 | ||
1114 | /* add a new TB and link it to the physical page tables. phys_page2 is | |
1115 | * (-1) to indicate that only one page contains the TB. | |
1116 | * | |
1117 | * Called with mmap_lock held for user-mode emulation. | |
1118 | */ | |
1119 | static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, | |
1120 | tb_page_addr_t phys_page2) | |
1121 | { | |
42bd3228 | 1122 | uint32_t h; |
e90d96b1 | 1123 | |
42bd3228 EC |
1124 | /* add in the hash table */ |
1125 | h = tb_hash_func(phys_pc, tb->pc, tb->flags); | |
909eaac9 | 1126 | qht_insert(&tcg_ctx.tb_ctx.htable, tb, h); |
e90d96b1 SF |
1127 | |
1128 | /* add in the page list */ | |
1129 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); | |
1130 | if (phys_page2 != -1) { | |
1131 | tb_alloc_page(tb, 1, phys_page2); | |
1132 | } else { | |
1133 | tb->page_addr[1] = -1; | |
1134 | } | |
1135 | ||
e90d96b1 SF |
1136 | #ifdef DEBUG_TB_CHECK |
1137 | tb_page_check(); | |
1138 | #endif | |
1139 | } | |
1140 | ||
75692087 | 1141 | /* Called with mmap_lock held for user mode emulation. */ |
648f034c | 1142 | TranslationBlock *tb_gen_code(CPUState *cpu, |
5b6dd868 | 1143 | target_ulong pc, target_ulong cs_base, |
89fee74a | 1144 | uint32_t flags, int cflags) |
5b6dd868 | 1145 | { |
648f034c | 1146 | CPUArchState *env = cpu->env_ptr; |
5b6dd868 | 1147 | TranslationBlock *tb; |
5b6dd868 BS |
1148 | tb_page_addr_t phys_pc, phys_page2; |
1149 | target_ulong virt_page2; | |
fec88f64 | 1150 | tcg_insn_unit *gen_code_buf; |
fca8a500 | 1151 | int gen_code_size, search_size; |
fec88f64 RH |
1152 | #ifdef CONFIG_PROFILER |
1153 | int64_t ti; | |
1154 | #endif | |
5b6dd868 BS |
1155 | |
1156 | phys_pc = get_page_addr_code(env, pc); | |
56c0269a | 1157 | if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) { |
0266359e PB |
1158 | cflags |= CF_USE_ICOUNT; |
1159 | } | |
b125f9dc | 1160 | |
5b6dd868 | 1161 | tb = tb_alloc(pc); |
b125f9dc RH |
1162 | if (unlikely(!tb)) { |
1163 | buffer_overflow: | |
5b6dd868 | 1164 | /* flush must be done */ |
bbd77c18 | 1165 | tb_flush(cpu); |
5b6dd868 BS |
1166 | /* cannot fail at this point */ |
1167 | tb = tb_alloc(pc); | |
b125f9dc | 1168 | assert(tb != NULL); |
5b6dd868 | 1169 | } |
fec88f64 RH |
1170 | |
1171 | gen_code_buf = tcg_ctx.code_gen_ptr; | |
1172 | tb->tc_ptr = gen_code_buf; | |
5b6dd868 BS |
1173 | tb->cs_base = cs_base; |
1174 | tb->flags = flags; | |
1175 | tb->cflags = cflags; | |
fec88f64 RH |
1176 | |
1177 | #ifdef CONFIG_PROFILER | |
1178 | tcg_ctx.tb_count1++; /* includes aborted translations because of | |
1179 | exceptions */ | |
1180 | ti = profile_getclock(); | |
1181 | #endif | |
1182 | ||
1183 | tcg_func_start(&tcg_ctx); | |
1184 | ||
7c255043 | 1185 | tcg_ctx.cpu = ENV_GET_CPU(env); |
fec88f64 | 1186 | gen_intermediate_code(env, tb); |
7c255043 | 1187 | tcg_ctx.cpu = NULL; |
fec88f64 RH |
1188 | |
1189 | trace_translate_block(tb, tb->pc, tb->tc_ptr); | |
1190 | ||
1191 | /* generate machine code */ | |
f309101c SF |
1192 | tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID; |
1193 | tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID; | |
1194 | tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset; | |
fec88f64 | 1195 | #ifdef USE_DIRECT_JUMP |
f309101c SF |
1196 | tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset; |
1197 | tcg_ctx.tb_jmp_target_addr = NULL; | |
fec88f64 | 1198 | #else |
f309101c SF |
1199 | tcg_ctx.tb_jmp_insn_offset = NULL; |
1200 | tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr; | |
fec88f64 RH |
1201 | #endif |
1202 | ||
1203 | #ifdef CONFIG_PROFILER | |
1204 | tcg_ctx.tb_count++; | |
1205 | tcg_ctx.interm_time += profile_getclock() - ti; | |
1206 | tcg_ctx.code_time -= profile_getclock(); | |
1207 | #endif | |
1208 | ||
b125f9dc RH |
1209 | /* ??? Overflow could be handled better here. In particular, we |
1210 | don't need to re-do gen_intermediate_code, nor should we re-do | |
1211 | the tcg optimization currently hidden inside tcg_gen_code. All | |
1212 | that should be required is to flush the TBs, allocate a new TB, | |
1213 | re-initialize it per above, and re-do the actual code generation. */ | |
5bd2ec3d | 1214 | gen_code_size = tcg_gen_code(&tcg_ctx, tb); |
b125f9dc RH |
1215 | if (unlikely(gen_code_size < 0)) { |
1216 | goto buffer_overflow; | |
1217 | } | |
fca8a500 | 1218 | search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); |
b125f9dc RH |
1219 | if (unlikely(search_size < 0)) { |
1220 | goto buffer_overflow; | |
1221 | } | |
fec88f64 RH |
1222 | |
1223 | #ifdef CONFIG_PROFILER | |
1224 | tcg_ctx.code_time += profile_getclock(); | |
1225 | tcg_ctx.code_in_len += tb->size; | |
1226 | tcg_ctx.code_out_len += gen_code_size; | |
fca8a500 | 1227 | tcg_ctx.search_out_len += search_size; |
fec88f64 RH |
1228 | #endif |
1229 | ||
1230 | #ifdef DEBUG_DISAS | |
d977e1c2 AB |
1231 | if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && |
1232 | qemu_log_in_addr_range(tb->pc)) { | |
fec88f64 RH |
1233 | qemu_log("OUT: [size=%d]\n", gen_code_size); |
1234 | log_disas(tb->tc_ptr, gen_code_size); | |
1235 | qemu_log("\n"); | |
1236 | qemu_log_flush(); | |
1237 | } | |
1238 | #endif | |
1239 | ||
fca8a500 RH |
1240 | tcg_ctx.code_gen_ptr = (void *) |
1241 | ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, | |
1242 | CODE_GEN_ALIGN); | |
5b6dd868 | 1243 | |
901bc3de SF |
1244 | /* init jump list */ |
1245 | assert(((uintptr_t)tb & 3) == 0); | |
1246 | tb->jmp_list_first = (uintptr_t)tb | 2; | |
1247 | tb->jmp_list_next[0] = (uintptr_t)NULL; | |
1248 | tb->jmp_list_next[1] = (uintptr_t)NULL; | |
1249 | ||
1250 | /* init original jump addresses wich has been set during tcg_gen_code() */ | |
1251 | if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { | |
1252 | tb_reset_jump(tb, 0); | |
1253 | } | |
1254 | if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { | |
1255 | tb_reset_jump(tb, 1); | |
1256 | } | |
1257 | ||
5b6dd868 BS |
1258 | /* check next page if needed */ |
1259 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; | |
1260 | phys_page2 = -1; | |
1261 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { | |
1262 | phys_page2 = get_page_addr_code(env, virt_page2); | |
1263 | } | |
901bc3de SF |
1264 | /* As long as consistency of the TB stuff is provided by tb_lock in user |
1265 | * mode and is implicit in single-threaded softmmu emulation, no explicit | |
1266 | * memory barrier is required before tb_link_page() makes the TB visible | |
1267 | * through the physical hash table and physical page list. | |
1268 | */ | |
5b6dd868 BS |
1269 | tb_link_page(tb, phys_pc, phys_page2); |
1270 | return tb; | |
1271 | } | |
1272 | ||
1273 | /* | |
1274 | * Invalidate all TBs which intersect with the target physical address range | |
1275 | * [start;end[. NOTE: start and end may refer to *different* physical pages. | |
1276 | * 'is_cpu_write_access' should be true if called from a real cpu write | |
1277 | * access: the virtual CPU will exit the current TB if code is modified inside | |
1278 | * this TB. | |
75692087 PB |
1279 | * |
1280 | * Called with mmap_lock held for user-mode emulation | |
5b6dd868 | 1281 | */ |
35865339 | 1282 | void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end) |
5b6dd868 BS |
1283 | { |
1284 | while (start < end) { | |
35865339 | 1285 | tb_invalidate_phys_page_range(start, end, 0); |
5b6dd868 BS |
1286 | start &= TARGET_PAGE_MASK; |
1287 | start += TARGET_PAGE_SIZE; | |
1288 | } | |
1289 | } | |
1290 | ||
1291 | /* | |
1292 | * Invalidate all TBs which intersect with the target physical address range | |
1293 | * [start;end[. NOTE: start and end must refer to the *same* physical page. | |
1294 | * 'is_cpu_write_access' should be true if called from a real cpu write | |
1295 | * access: the virtual CPU will exit the current TB if code is modified inside | |
1296 | * this TB. | |
75692087 PB |
1297 | * |
1298 | * Called with mmap_lock held for user-mode emulation | |
5b6dd868 BS |
1299 | */ |
1300 | void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, | |
1301 | int is_cpu_write_access) | |
1302 | { | |
3213525f | 1303 | TranslationBlock *tb, *tb_next; |
baea4fae | 1304 | #if defined(TARGET_HAS_PRECISE_SMC) |
3213525f | 1305 | CPUState *cpu = current_cpu; |
4917cf44 AF |
1306 | CPUArchState *env = NULL; |
1307 | #endif | |
5b6dd868 BS |
1308 | tb_page_addr_t tb_start, tb_end; |
1309 | PageDesc *p; | |
1310 | int n; | |
1311 | #ifdef TARGET_HAS_PRECISE_SMC | |
1312 | int current_tb_not_found = is_cpu_write_access; | |
1313 | TranslationBlock *current_tb = NULL; | |
1314 | int current_tb_modified = 0; | |
1315 | target_ulong current_pc = 0; | |
1316 | target_ulong current_cs_base = 0; | |
89fee74a | 1317 | uint32_t current_flags = 0; |
5b6dd868 BS |
1318 | #endif /* TARGET_HAS_PRECISE_SMC */ |
1319 | ||
1320 | p = page_find(start >> TARGET_PAGE_BITS); | |
1321 | if (!p) { | |
1322 | return; | |
1323 | } | |
baea4fae | 1324 | #if defined(TARGET_HAS_PRECISE_SMC) |
4917cf44 AF |
1325 | if (cpu != NULL) { |
1326 | env = cpu->env_ptr; | |
d77953b9 | 1327 | } |
4917cf44 | 1328 | #endif |
5b6dd868 BS |
1329 | |
1330 | /* we remove all the TBs in the range [start, end[ */ | |
1331 | /* XXX: see if in some cases it could be faster to invalidate all | |
1332 | the code */ | |
1333 | tb = p->first_tb; | |
1334 | while (tb != NULL) { | |
1335 | n = (uintptr_t)tb & 3; | |
1336 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
1337 | tb_next = tb->page_next[n]; | |
1338 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
1339 | if (n == 0) { | |
1340 | /* NOTE: tb_end may be after the end of the page, but | |
1341 | it is not a problem */ | |
1342 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
1343 | tb_end = tb_start + tb->size; | |
1344 | } else { | |
1345 | tb_start = tb->page_addr[1]; | |
1346 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
1347 | } | |
1348 | if (!(tb_end <= start || tb_start >= end)) { | |
1349 | #ifdef TARGET_HAS_PRECISE_SMC | |
1350 | if (current_tb_not_found) { | |
1351 | current_tb_not_found = 0; | |
1352 | current_tb = NULL; | |
93afeade | 1353 | if (cpu->mem_io_pc) { |
5b6dd868 | 1354 | /* now we have a real cpu fault */ |
93afeade | 1355 | current_tb = tb_find_pc(cpu->mem_io_pc); |
5b6dd868 BS |
1356 | } |
1357 | } | |
1358 | if (current_tb == tb && | |
1359 | (current_tb->cflags & CF_COUNT_MASK) != 1) { | |
1360 | /* If we are modifying the current TB, we must stop | |
1361 | its execution. We could be more precise by checking | |
1362 | that the modification is after the current PC, but it | |
1363 | would require a specialized function to partially | |
1364 | restore the CPU state */ | |
1365 | ||
1366 | current_tb_modified = 1; | |
74f10515 | 1367 | cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc); |
5b6dd868 BS |
1368 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1369 | ¤t_flags); | |
1370 | } | |
1371 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
5b6dd868 | 1372 | tb_phys_invalidate(tb, -1); |
5b6dd868 BS |
1373 | } |
1374 | tb = tb_next; | |
1375 | } | |
1376 | #if !defined(CONFIG_USER_ONLY) | |
1377 | /* if no code remaining, no need to continue to use slow writes */ | |
1378 | if (!p->first_tb) { | |
1379 | invalidate_page_bitmap(p); | |
fc377bcf | 1380 | tlb_unprotect_code(start); |
5b6dd868 BS |
1381 | } |
1382 | #endif | |
1383 | #ifdef TARGET_HAS_PRECISE_SMC | |
1384 | if (current_tb_modified) { | |
1385 | /* we generate a block containing just the instruction | |
1386 | modifying the memory. It will ensure that it cannot modify | |
1387 | itself */ | |
648f034c | 1388 | tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1); |
6886b980 | 1389 | cpu_loop_exit_noexc(cpu); |
5b6dd868 BS |
1390 | } |
1391 | #endif | |
1392 | } | |
1393 | ||
6fad459c | 1394 | #ifdef CONFIG_SOFTMMU |
5b6dd868 BS |
1395 | /* len must be <= 8 and start must be a multiple of len */ |
1396 | void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len) | |
1397 | { | |
1398 | PageDesc *p; | |
5b6dd868 BS |
1399 | |
1400 | #if 0 | |
1401 | if (1) { | |
1402 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", | |
1403 | cpu_single_env->mem_io_vaddr, len, | |
1404 | cpu_single_env->eip, | |
1405 | cpu_single_env->eip + | |
1406 | (intptr_t)cpu_single_env->segs[R_CS].base); | |
1407 | } | |
1408 | #endif | |
1409 | p = page_find(start >> TARGET_PAGE_BITS); | |
1410 | if (!p) { | |
1411 | return; | |
1412 | } | |
fc377bcf PB |
1413 | if (!p->code_bitmap && |
1414 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) { | |
1415 | /* build code bitmap */ | |
1416 | build_page_bitmap(p); | |
1417 | } | |
5b6dd868 | 1418 | if (p->code_bitmap) { |
510a647f EC |
1419 | unsigned int nr; |
1420 | unsigned long b; | |
1421 | ||
1422 | nr = start & ~TARGET_PAGE_MASK; | |
1423 | b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1)); | |
5b6dd868 BS |
1424 | if (b & ((1 << len) - 1)) { |
1425 | goto do_invalidate; | |
1426 | } | |
1427 | } else { | |
1428 | do_invalidate: | |
1429 | tb_invalidate_phys_page_range(start, start + len, 1); | |
1430 | } | |
1431 | } | |
6fad459c | 1432 | #else |
75809229 PM |
1433 | /* Called with mmap_lock held. If pc is not 0 then it indicates the |
1434 | * host PC of the faulting store instruction that caused this invalidate. | |
1435 | * Returns true if the caller needs to abort execution of the current | |
1436 | * TB (because it was modified by this store and the guest CPU has | |
1437 | * precise-SMC semantics). | |
1438 | */ | |
1439 | static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc) | |
5b6dd868 BS |
1440 | { |
1441 | TranslationBlock *tb; | |
1442 | PageDesc *p; | |
1443 | int n; | |
1444 | #ifdef TARGET_HAS_PRECISE_SMC | |
1445 | TranslationBlock *current_tb = NULL; | |
4917cf44 AF |
1446 | CPUState *cpu = current_cpu; |
1447 | CPUArchState *env = NULL; | |
5b6dd868 BS |
1448 | int current_tb_modified = 0; |
1449 | target_ulong current_pc = 0; | |
1450 | target_ulong current_cs_base = 0; | |
89fee74a | 1451 | uint32_t current_flags = 0; |
5b6dd868 BS |
1452 | #endif |
1453 | ||
1454 | addr &= TARGET_PAGE_MASK; | |
1455 | p = page_find(addr >> TARGET_PAGE_BITS); | |
1456 | if (!p) { | |
75809229 | 1457 | return false; |
5b6dd868 BS |
1458 | } |
1459 | tb = p->first_tb; | |
1460 | #ifdef TARGET_HAS_PRECISE_SMC | |
1461 | if (tb && pc != 0) { | |
1462 | current_tb = tb_find_pc(pc); | |
1463 | } | |
4917cf44 AF |
1464 | if (cpu != NULL) { |
1465 | env = cpu->env_ptr; | |
d77953b9 | 1466 | } |
5b6dd868 BS |
1467 | #endif |
1468 | while (tb != NULL) { | |
1469 | n = (uintptr_t)tb & 3; | |
1470 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
1471 | #ifdef TARGET_HAS_PRECISE_SMC | |
1472 | if (current_tb == tb && | |
1473 | (current_tb->cflags & CF_COUNT_MASK) != 1) { | |
1474 | /* If we are modifying the current TB, we must stop | |
1475 | its execution. We could be more precise by checking | |
1476 | that the modification is after the current PC, but it | |
1477 | would require a specialized function to partially | |
1478 | restore the CPU state */ | |
1479 | ||
1480 | current_tb_modified = 1; | |
74f10515 | 1481 | cpu_restore_state_from_tb(cpu, current_tb, pc); |
5b6dd868 BS |
1482 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1483 | ¤t_flags); | |
1484 | } | |
1485 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1486 | tb_phys_invalidate(tb, addr); | |
1487 | tb = tb->page_next[n]; | |
1488 | } | |
1489 | p->first_tb = NULL; | |
1490 | #ifdef TARGET_HAS_PRECISE_SMC | |
1491 | if (current_tb_modified) { | |
1492 | /* we generate a block containing just the instruction | |
1493 | modifying the memory. It will ensure that it cannot modify | |
1494 | itself */ | |
648f034c | 1495 | tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1); |
75809229 | 1496 | return true; |
5b6dd868 BS |
1497 | } |
1498 | #endif | |
75809229 | 1499 | return false; |
5b6dd868 BS |
1500 | } |
1501 | #endif | |
1502 | ||
5b6dd868 BS |
1503 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < |
1504 | tb[1].tc_ptr. Return NULL if not found */ | |
a8a826a3 | 1505 | static TranslationBlock *tb_find_pc(uintptr_t tc_ptr) |
5b6dd868 BS |
1506 | { |
1507 | int m_min, m_max, m; | |
1508 | uintptr_t v; | |
1509 | TranslationBlock *tb; | |
1510 | ||
5e5f07e0 | 1511 | if (tcg_ctx.tb_ctx.nb_tbs <= 0) { |
5b6dd868 BS |
1512 | return NULL; |
1513 | } | |
0b0d3320 EV |
1514 | if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer || |
1515 | tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) { | |
5b6dd868 BS |
1516 | return NULL; |
1517 | } | |
1518 | /* binary search (cf Knuth) */ | |
1519 | m_min = 0; | |
5e5f07e0 | 1520 | m_max = tcg_ctx.tb_ctx.nb_tbs - 1; |
5b6dd868 BS |
1521 | while (m_min <= m_max) { |
1522 | m = (m_min + m_max) >> 1; | |
5e5f07e0 | 1523 | tb = &tcg_ctx.tb_ctx.tbs[m]; |
5b6dd868 BS |
1524 | v = (uintptr_t)tb->tc_ptr; |
1525 | if (v == tc_ptr) { | |
1526 | return tb; | |
1527 | } else if (tc_ptr < v) { | |
1528 | m_max = m - 1; | |
1529 | } else { | |
1530 | m_min = m + 1; | |
1531 | } | |
1532 | } | |
5e5f07e0 | 1533 | return &tcg_ctx.tb_ctx.tbs[m_max]; |
5b6dd868 BS |
1534 | } |
1535 | ||
ec53b45b | 1536 | #if !defined(CONFIG_USER_ONLY) |
29d8ec7b | 1537 | void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr) |
5b6dd868 BS |
1538 | { |
1539 | ram_addr_t ram_addr; | |
5c8a00ce | 1540 | MemoryRegion *mr; |
149f54b5 | 1541 | hwaddr l = 1; |
5b6dd868 | 1542 | |
41063e1e | 1543 | rcu_read_lock(); |
29d8ec7b | 1544 | mr = address_space_translate(as, addr, &addr, &l, false); |
5c8a00ce PB |
1545 | if (!(memory_region_is_ram(mr) |
1546 | || memory_region_is_romd(mr))) { | |
41063e1e | 1547 | rcu_read_unlock(); |
5b6dd868 BS |
1548 | return; |
1549 | } | |
e4e69794 | 1550 | ram_addr = memory_region_get_ram_addr(mr) + addr; |
5b6dd868 | 1551 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
41063e1e | 1552 | rcu_read_unlock(); |
5b6dd868 | 1553 | } |
ec53b45b | 1554 | #endif /* !defined(CONFIG_USER_ONLY) */ |
5b6dd868 | 1555 | |
239c51a5 | 1556 | void tb_check_watchpoint(CPUState *cpu) |
5b6dd868 BS |
1557 | { |
1558 | TranslationBlock *tb; | |
1559 | ||
93afeade | 1560 | tb = tb_find_pc(cpu->mem_io_pc); |
8d302e76 AJ |
1561 | if (tb) { |
1562 | /* We can use retranslation to find the PC. */ | |
1563 | cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc); | |
1564 | tb_phys_invalidate(tb, -1); | |
1565 | } else { | |
1566 | /* The exception probably happened in a helper. The CPU state should | |
1567 | have been saved before calling it. Fetch the PC from there. */ | |
1568 | CPUArchState *env = cpu->env_ptr; | |
1569 | target_ulong pc, cs_base; | |
1570 | tb_page_addr_t addr; | |
89fee74a | 1571 | uint32_t flags; |
8d302e76 AJ |
1572 | |
1573 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); | |
1574 | addr = get_page_addr_code(env, pc); | |
1575 | tb_invalidate_phys_range(addr, addr + 1); | |
5b6dd868 | 1576 | } |
5b6dd868 BS |
1577 | } |
1578 | ||
1579 | #ifndef CONFIG_USER_ONLY | |
5b6dd868 BS |
1580 | /* in deterministic execution mode, instructions doing device I/Os |
1581 | must be at the end of the TB */ | |
90b40a69 | 1582 | void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) |
5b6dd868 | 1583 | { |
a47dddd7 | 1584 | #if defined(TARGET_MIPS) || defined(TARGET_SH4) |
90b40a69 | 1585 | CPUArchState *env = cpu->env_ptr; |
a47dddd7 | 1586 | #endif |
5b6dd868 BS |
1587 | TranslationBlock *tb; |
1588 | uint32_t n, cflags; | |
1589 | target_ulong pc, cs_base; | |
89fee74a | 1590 | uint32_t flags; |
5b6dd868 BS |
1591 | |
1592 | tb = tb_find_pc(retaddr); | |
1593 | if (!tb) { | |
a47dddd7 | 1594 | cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", |
5b6dd868 BS |
1595 | (void *)retaddr); |
1596 | } | |
28ecfd7a | 1597 | n = cpu->icount_decr.u16.low + tb->icount; |
74f10515 | 1598 | cpu_restore_state_from_tb(cpu, tb, retaddr); |
5b6dd868 BS |
1599 | /* Calculate how many instructions had been executed before the fault |
1600 | occurred. */ | |
28ecfd7a | 1601 | n = n - cpu->icount_decr.u16.low; |
5b6dd868 BS |
1602 | /* Generate a new TB ending on the I/O insn. */ |
1603 | n++; | |
1604 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
1605 | they were already the first instruction in the TB. If this is not | |
1606 | the first instruction in a TB then re-execute the preceding | |
1607 | branch. */ | |
1608 | #if defined(TARGET_MIPS) | |
1609 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
c3577479 | 1610 | env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); |
28ecfd7a | 1611 | cpu->icount_decr.u16.low++; |
5b6dd868 BS |
1612 | env->hflags &= ~MIPS_HFLAG_BMASK; |
1613 | } | |
1614 | #elif defined(TARGET_SH4) | |
1615 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
1616 | && n > 1) { | |
1617 | env->pc -= 2; | |
28ecfd7a | 1618 | cpu->icount_decr.u16.low++; |
5b6dd868 BS |
1619 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); |
1620 | } | |
1621 | #endif | |
1622 | /* This should never happen. */ | |
1623 | if (n > CF_COUNT_MASK) { | |
a47dddd7 | 1624 | cpu_abort(cpu, "TB too big during recompile"); |
5b6dd868 BS |
1625 | } |
1626 | ||
1627 | cflags = n | CF_LAST_IO; | |
1628 | pc = tb->pc; | |
1629 | cs_base = tb->cs_base; | |
1630 | flags = tb->flags; | |
1631 | tb_phys_invalidate(tb, -1); | |
02d57ea1 SF |
1632 | if (tb->cflags & CF_NOCACHE) { |
1633 | if (tb->orig_tb) { | |
1634 | /* Invalidate original TB if this TB was generated in | |
1635 | * cpu_exec_nocache() */ | |
1636 | tb_phys_invalidate(tb->orig_tb, -1); | |
1637 | } | |
1638 | tb_free(tb); | |
1639 | } | |
5b6dd868 BS |
1640 | /* FIXME: In theory this could raise an exception. In practice |
1641 | we have already translated the block once so it's probably ok. */ | |
648f034c | 1642 | tb_gen_code(cpu, pc, cs_base, flags, cflags); |
5b6dd868 BS |
1643 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not |
1644 | the first in the TB) then we end up generating a whole new TB and | |
1645 | repeating the fault, which is horribly inefficient. | |
1646 | Better would be to execute just this insn uncached, or generate a | |
1647 | second new TB. */ | |
6886b980 | 1648 | cpu_loop_exit_noexc(cpu); |
5b6dd868 BS |
1649 | } |
1650 | ||
611d4f99 | 1651 | void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) |
5b6dd868 BS |
1652 | { |
1653 | unsigned int i; | |
1654 | ||
1655 | /* Discard jump cache entries for any tb which might potentially | |
1656 | overlap the flushed page. */ | |
1657 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
8cd70437 | 1658 | memset(&cpu->tb_jmp_cache[i], 0, |
5b6dd868 BS |
1659 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); |
1660 | ||
1661 | i = tb_jmp_cache_hash_page(addr); | |
8cd70437 | 1662 | memset(&cpu->tb_jmp_cache[i], 0, |
5b6dd868 BS |
1663 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); |
1664 | } | |
1665 | ||
1666 | void dump_exec_info(FILE *f, fprintf_function cpu_fprintf) | |
1667 | { | |
1668 | int i, target_code_size, max_target_code_size; | |
1669 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
1670 | TranslationBlock *tb; | |
329844d4 EC |
1671 | struct qht_stats hst; |
1672 | uint32_t hgram_opts; | |
1673 | size_t hgram_bins; | |
1674 | char *hgram; | |
5b6dd868 BS |
1675 | |
1676 | target_code_size = 0; | |
1677 | max_target_code_size = 0; | |
1678 | cross_page = 0; | |
1679 | direct_jmp_count = 0; | |
1680 | direct_jmp2_count = 0; | |
5e5f07e0 EV |
1681 | for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) { |
1682 | tb = &tcg_ctx.tb_ctx.tbs[i]; | |
5b6dd868 BS |
1683 | target_code_size += tb->size; |
1684 | if (tb->size > max_target_code_size) { | |
1685 | max_target_code_size = tb->size; | |
1686 | } | |
1687 | if (tb->page_addr[1] != -1) { | |
1688 | cross_page++; | |
1689 | } | |
f309101c | 1690 | if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { |
5b6dd868 | 1691 | direct_jmp_count++; |
f309101c | 1692 | if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { |
5b6dd868 BS |
1693 | direct_jmp2_count++; |
1694 | } | |
1695 | } | |
1696 | } | |
1697 | /* XXX: avoid using doubles ? */ | |
1698 | cpu_fprintf(f, "Translation buffer state:\n"); | |
1699 | cpu_fprintf(f, "gen code size %td/%zd\n", | |
0b0d3320 | 1700 | tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer, |
b125f9dc | 1701 | tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer); |
5b6dd868 | 1702 | cpu_fprintf(f, "TB count %d/%d\n", |
5e5f07e0 | 1703 | tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks); |
5b6dd868 | 1704 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", |
5e5f07e0 EV |
1705 | tcg_ctx.tb_ctx.nb_tbs ? target_code_size / |
1706 | tcg_ctx.tb_ctx.nb_tbs : 0, | |
1707 | max_target_code_size); | |
5b6dd868 | 1708 | cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n", |
5e5f07e0 EV |
1709 | tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr - |
1710 | tcg_ctx.code_gen_buffer) / | |
1711 | tcg_ctx.tb_ctx.nb_tbs : 0, | |
1712 | target_code_size ? (double) (tcg_ctx.code_gen_ptr - | |
1713 | tcg_ctx.code_gen_buffer) / | |
1714 | target_code_size : 0); | |
1715 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page, | |
1716 | tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) / | |
1717 | tcg_ctx.tb_ctx.nb_tbs : 0); | |
5b6dd868 BS |
1718 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", |
1719 | direct_jmp_count, | |
5e5f07e0 EV |
1720 | tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) / |
1721 | tcg_ctx.tb_ctx.nb_tbs : 0, | |
5b6dd868 | 1722 | direct_jmp2_count, |
5e5f07e0 EV |
1723 | tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) / |
1724 | tcg_ctx.tb_ctx.nb_tbs : 0); | |
329844d4 EC |
1725 | |
1726 | qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst); | |
1727 | ||
1728 | cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n", | |
1729 | hst.used_head_buckets, hst.head_buckets, | |
1730 | (double)hst.used_head_buckets / hst.head_buckets * 100); | |
1731 | ||
1732 | hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; | |
1733 | hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT; | |
1734 | if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) { | |
1735 | hgram_opts |= QDIST_PR_NODECIMAL; | |
1736 | } | |
1737 | hgram = qdist_pr(&hst.occupancy, 10, hgram_opts); | |
1738 | cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n", | |
1739 | qdist_avg(&hst.occupancy) * 100, hgram); | |
1740 | g_free(hgram); | |
1741 | ||
1742 | hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; | |
1743 | hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain); | |
1744 | if (hgram_bins > 10) { | |
1745 | hgram_bins = 10; | |
1746 | } else { | |
1747 | hgram_bins = 0; | |
1748 | hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE; | |
1749 | } | |
1750 | hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts); | |
1751 | cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n", | |
1752 | qdist_avg(&hst.chain), hgram); | |
1753 | g_free(hgram); | |
1754 | ||
1755 | qht_statistics_destroy(&hst); | |
1756 | ||
5b6dd868 | 1757 | cpu_fprintf(f, "\nStatistics:\n"); |
5e5f07e0 EV |
1758 | cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count); |
1759 | cpu_fprintf(f, "TB invalidate count %d\n", | |
1760 | tcg_ctx.tb_ctx.tb_phys_invalidate_count); | |
5b6dd868 BS |
1761 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); |
1762 | tcg_dump_info(f, cpu_fprintf); | |
1763 | } | |
1764 | ||
246ae24d MF |
1765 | void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf) |
1766 | { | |
1767 | tcg_dump_op_count(f, cpu_fprintf); | |
1768 | } | |
1769 | ||
5b6dd868 BS |
1770 | #else /* CONFIG_USER_ONLY */ |
1771 | ||
c3affe56 | 1772 | void cpu_interrupt(CPUState *cpu, int mask) |
5b6dd868 | 1773 | { |
259186a7 | 1774 | cpu->interrupt_request |= mask; |
378df4b2 | 1775 | cpu->tcg_exit_req = 1; |
5b6dd868 BS |
1776 | } |
1777 | ||
1778 | /* | |
1779 | * Walks guest process memory "regions" one by one | |
1780 | * and calls callback function 'fn' for each region. | |
1781 | */ | |
1782 | struct walk_memory_regions_data { | |
1783 | walk_memory_regions_fn fn; | |
1784 | void *priv; | |
1a1c4db9 | 1785 | target_ulong start; |
5b6dd868 BS |
1786 | int prot; |
1787 | }; | |
1788 | ||
1789 | static int walk_memory_regions_end(struct walk_memory_regions_data *data, | |
1a1c4db9 | 1790 | target_ulong end, int new_prot) |
5b6dd868 | 1791 | { |
1a1c4db9 | 1792 | if (data->start != -1u) { |
5b6dd868 BS |
1793 | int rc = data->fn(data->priv, data->start, end, data->prot); |
1794 | if (rc != 0) { | |
1795 | return rc; | |
1796 | } | |
1797 | } | |
1798 | ||
1a1c4db9 | 1799 | data->start = (new_prot ? end : -1u); |
5b6dd868 BS |
1800 | data->prot = new_prot; |
1801 | ||
1802 | return 0; | |
1803 | } | |
1804 | ||
1805 | static int walk_memory_regions_1(struct walk_memory_regions_data *data, | |
1a1c4db9 | 1806 | target_ulong base, int level, void **lp) |
5b6dd868 | 1807 | { |
1a1c4db9 | 1808 | target_ulong pa; |
5b6dd868 BS |
1809 | int i, rc; |
1810 | ||
1811 | if (*lp == NULL) { | |
1812 | return walk_memory_regions_end(data, base, 0); | |
1813 | } | |
1814 | ||
1815 | if (level == 0) { | |
1816 | PageDesc *pd = *lp; | |
1817 | ||
03f49957 | 1818 | for (i = 0; i < V_L2_SIZE; ++i) { |
5b6dd868 BS |
1819 | int prot = pd[i].flags; |
1820 | ||
1821 | pa = base | (i << TARGET_PAGE_BITS); | |
1822 | if (prot != data->prot) { | |
1823 | rc = walk_memory_regions_end(data, pa, prot); | |
1824 | if (rc != 0) { | |
1825 | return rc; | |
1826 | } | |
1827 | } | |
1828 | } | |
1829 | } else { | |
1830 | void **pp = *lp; | |
1831 | ||
03f49957 | 1832 | for (i = 0; i < V_L2_SIZE; ++i) { |
1a1c4db9 | 1833 | pa = base | ((target_ulong)i << |
03f49957 | 1834 | (TARGET_PAGE_BITS + V_L2_BITS * level)); |
5b6dd868 BS |
1835 | rc = walk_memory_regions_1(data, pa, level - 1, pp + i); |
1836 | if (rc != 0) { | |
1837 | return rc; | |
1838 | } | |
1839 | } | |
1840 | } | |
1841 | ||
1842 | return 0; | |
1843 | } | |
1844 | ||
1845 | int walk_memory_regions(void *priv, walk_memory_regions_fn fn) | |
1846 | { | |
1847 | struct walk_memory_regions_data data; | |
1848 | uintptr_t i; | |
1849 | ||
1850 | data.fn = fn; | |
1851 | data.priv = priv; | |
1a1c4db9 | 1852 | data.start = -1u; |
5b6dd868 BS |
1853 | data.prot = 0; |
1854 | ||
1855 | for (i = 0; i < V_L1_SIZE; i++) { | |
1a1c4db9 | 1856 | int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS), |
03f49957 | 1857 | V_L1_SHIFT / V_L2_BITS - 1, l1_map + i); |
5b6dd868 BS |
1858 | if (rc != 0) { |
1859 | return rc; | |
1860 | } | |
1861 | } | |
1862 | ||
1863 | return walk_memory_regions_end(&data, 0, 0); | |
1864 | } | |
1865 | ||
1a1c4db9 MI |
1866 | static int dump_region(void *priv, target_ulong start, |
1867 | target_ulong end, unsigned long prot) | |
5b6dd868 BS |
1868 | { |
1869 | FILE *f = (FILE *)priv; | |
1870 | ||
1a1c4db9 MI |
1871 | (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx |
1872 | " "TARGET_FMT_lx" %c%c%c\n", | |
5b6dd868 BS |
1873 | start, end, end - start, |
1874 | ((prot & PAGE_READ) ? 'r' : '-'), | |
1875 | ((prot & PAGE_WRITE) ? 'w' : '-'), | |
1876 | ((prot & PAGE_EXEC) ? 'x' : '-')); | |
1877 | ||
1878 | return 0; | |
1879 | } | |
1880 | ||
1881 | /* dump memory mappings */ | |
1882 | void page_dump(FILE *f) | |
1883 | { | |
1a1c4db9 | 1884 | const int length = sizeof(target_ulong) * 2; |
227b8175 SW |
1885 | (void) fprintf(f, "%-*s %-*s %-*s %s\n", |
1886 | length, "start", length, "end", length, "size", "prot"); | |
5b6dd868 BS |
1887 | walk_memory_regions(f, dump_region); |
1888 | } | |
1889 | ||
1890 | int page_get_flags(target_ulong address) | |
1891 | { | |
1892 | PageDesc *p; | |
1893 | ||
1894 | p = page_find(address >> TARGET_PAGE_BITS); | |
1895 | if (!p) { | |
1896 | return 0; | |
1897 | } | |
1898 | return p->flags; | |
1899 | } | |
1900 | ||
1901 | /* Modify the flags of a page and invalidate the code if necessary. | |
1902 | The flag PAGE_WRITE_ORG is positioned automatically depending | |
1903 | on PAGE_WRITE. The mmap_lock should already be held. */ | |
1904 | void page_set_flags(target_ulong start, target_ulong end, int flags) | |
1905 | { | |
1906 | target_ulong addr, len; | |
1907 | ||
1908 | /* This function should never be called with addresses outside the | |
1909 | guest address space. If this assert fires, it probably indicates | |
1910 | a missing call to h2g_valid. */ | |
1911 | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS | |
1a1c4db9 | 1912 | assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); |
5b6dd868 BS |
1913 | #endif |
1914 | assert(start < end); | |
1915 | ||
1916 | start = start & TARGET_PAGE_MASK; | |
1917 | end = TARGET_PAGE_ALIGN(end); | |
1918 | ||
1919 | if (flags & PAGE_WRITE) { | |
1920 | flags |= PAGE_WRITE_ORG; | |
1921 | } | |
1922 | ||
1923 | for (addr = start, len = end - start; | |
1924 | len != 0; | |
1925 | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
1926 | PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
1927 | ||
1928 | /* If the write protection bit is set, then we invalidate | |
1929 | the code inside. */ | |
1930 | if (!(p->flags & PAGE_WRITE) && | |
1931 | (flags & PAGE_WRITE) && | |
1932 | p->first_tb) { | |
75809229 | 1933 | tb_invalidate_phys_page(addr, 0); |
5b6dd868 BS |
1934 | } |
1935 | p->flags = flags; | |
1936 | } | |
1937 | } | |
1938 | ||
1939 | int page_check_range(target_ulong start, target_ulong len, int flags) | |
1940 | { | |
1941 | PageDesc *p; | |
1942 | target_ulong end; | |
1943 | target_ulong addr; | |
1944 | ||
1945 | /* This function should never be called with addresses outside the | |
1946 | guest address space. If this assert fires, it probably indicates | |
1947 | a missing call to h2g_valid. */ | |
1948 | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS | |
1a1c4db9 | 1949 | assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); |
5b6dd868 BS |
1950 | #endif |
1951 | ||
1952 | if (len == 0) { | |
1953 | return 0; | |
1954 | } | |
1955 | if (start + len - 1 < start) { | |
1956 | /* We've wrapped around. */ | |
1957 | return -1; | |
1958 | } | |
1959 | ||
1960 | /* must do before we loose bits in the next step */ | |
1961 | end = TARGET_PAGE_ALIGN(start + len); | |
1962 | start = start & TARGET_PAGE_MASK; | |
1963 | ||
1964 | for (addr = start, len = end - start; | |
1965 | len != 0; | |
1966 | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
1967 | p = page_find(addr >> TARGET_PAGE_BITS); | |
1968 | if (!p) { | |
1969 | return -1; | |
1970 | } | |
1971 | if (!(p->flags & PAGE_VALID)) { | |
1972 | return -1; | |
1973 | } | |
1974 | ||
1975 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { | |
1976 | return -1; | |
1977 | } | |
1978 | if (flags & PAGE_WRITE) { | |
1979 | if (!(p->flags & PAGE_WRITE_ORG)) { | |
1980 | return -1; | |
1981 | } | |
1982 | /* unprotect the page if it was put read-only because it | |
1983 | contains translated code */ | |
1984 | if (!(p->flags & PAGE_WRITE)) { | |
f213e72f | 1985 | if (!page_unprotect(addr, 0)) { |
5b6dd868 BS |
1986 | return -1; |
1987 | } | |
1988 | } | |
5b6dd868 BS |
1989 | } |
1990 | } | |
1991 | return 0; | |
1992 | } | |
1993 | ||
1994 | /* called from signal handler: invalidate the code and unprotect the | |
f213e72f PM |
1995 | * page. Return 0 if the fault was not handled, 1 if it was handled, |
1996 | * and 2 if it was handled but the caller must cause the TB to be | |
1997 | * immediately exited. (We can only return 2 if the 'pc' argument is | |
1998 | * non-zero.) | |
1999 | */ | |
2000 | int page_unprotect(target_ulong address, uintptr_t pc) | |
5b6dd868 BS |
2001 | { |
2002 | unsigned int prot; | |
2003 | PageDesc *p; | |
2004 | target_ulong host_start, host_end, addr; | |
2005 | ||
2006 | /* Technically this isn't safe inside a signal handler. However we | |
2007 | know this only ever happens in a synchronous SEGV handler, so in | |
2008 | practice it seems to be ok. */ | |
2009 | mmap_lock(); | |
2010 | ||
2011 | p = page_find(address >> TARGET_PAGE_BITS); | |
2012 | if (!p) { | |
2013 | mmap_unlock(); | |
2014 | return 0; | |
2015 | } | |
2016 | ||
2017 | /* if the page was really writable, then we change its | |
2018 | protection back to writable */ | |
2019 | if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) { | |
2020 | host_start = address & qemu_host_page_mask; | |
2021 | host_end = host_start + qemu_host_page_size; | |
2022 | ||
2023 | prot = 0; | |
2024 | for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) { | |
2025 | p = page_find(addr >> TARGET_PAGE_BITS); | |
2026 | p->flags |= PAGE_WRITE; | |
2027 | prot |= p->flags; | |
2028 | ||
2029 | /* and since the content will be modified, we must invalidate | |
2030 | the corresponding translated code. */ | |
75809229 PM |
2031 | if (tb_invalidate_phys_page(addr, pc)) { |
2032 | mmap_unlock(); | |
f213e72f | 2033 | return 2; |
75809229 | 2034 | } |
5b6dd868 BS |
2035 | #ifdef DEBUG_TB_CHECK |
2036 | tb_invalidate_check(addr); | |
2037 | #endif | |
2038 | } | |
2039 | mprotect((void *)g2h(host_start), qemu_host_page_size, | |
2040 | prot & PAGE_BITS); | |
2041 | ||
2042 | mmap_unlock(); | |
2043 | return 1; | |
2044 | } | |
2045 | mmap_unlock(); | |
2046 | return 0; | |
2047 | } | |
2048 | #endif /* CONFIG_USER_ONLY */ |