]> Git Repo - qemu.git/blame - exec.c
nbd: Fix potential signed overflow issues
[qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
777872e5 20#ifndef _WIN32
a98d49b1 21#include <sys/types.h>
d5a8f07c
FB
22#include <sys/mman.h>
23#endif
54936004 24
055403b2 25#include "qemu-common.h"
6180a181 26#include "cpu.h"
b67d9a52 27#include "tcg.h"
b3c7724c 28#include "hw/hw.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
4485bd26 31#endif
cc9e98cb 32#include "hw/qdev.h"
1de7afc9 33#include "qemu/osdep.h"
9c17d615 34#include "sysemu/kvm.h"
2ff3de68 35#include "sysemu/sysemu.h"
0d09e41a 36#include "hw/xen/xen.h"
1de7afc9
PB
37#include "qemu/timer.h"
38#include "qemu/config-file.h"
75a34036 39#include "qemu/error-report.h"
022c62cb 40#include "exec/memory.h"
9c17d615 41#include "sysemu/dma.h"
022c62cb 42#include "exec/address-spaces.h"
53a5960a
PB
43#if defined(CONFIG_USER_ONLY)
44#include <qemu.h>
432d268c 45#else /* !CONFIG_USER_ONLY */
9c17d615 46#include "sysemu/xen-mapcache.h"
6506e4f9 47#include "trace.h"
53a5960a 48#endif
0d6d3c87 49#include "exec/cpu-all.h"
0dc3f44a 50#include "qemu/rcu_queue.h"
022c62cb 51#include "exec/cputlb.h"
5b6dd868 52#include "translate-all.h"
0cac1b66 53
022c62cb 54#include "exec/memory-internal.h"
220c3ebd 55#include "exec/ram_addr.h"
67d95c15 56
b35ba30f
MT
57#include "qemu/range.h"
58
db7b5426 59//#define DEBUG_SUBPAGE
1196be37 60
e2eef170 61#if !defined(CONFIG_USER_ONLY)
981fdf23 62static bool in_migration;
94a6b54f 63
0dc3f44a
MD
64/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
65 * are protected by the ramlist lock.
66 */
0d53d9fe 67RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
68
69static MemoryRegion *system_memory;
309cb471 70static MemoryRegion *system_io;
62152b8a 71
f6790af6
AK
72AddressSpace address_space_io;
73AddressSpace address_space_memory;
2673a5da 74
0844e007 75MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 76static MemoryRegion io_mem_unassigned;
0e0df1e2 77
7bd4f430
PB
78/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
79#define RAM_PREALLOC (1 << 0)
80
dbcb8981
PB
81/* RAM is mmap-ed with MAP_SHARED */
82#define RAM_SHARED (1 << 1)
83
62be4e3a
MT
84/* Only a portion of RAM (used_length) is actually used, and migrated.
85 * This used_length size can change across reboots.
86 */
87#define RAM_RESIZEABLE (1 << 2)
88
e2eef170 89#endif
9fa3e853 90
bdc44640 91struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
92/* current CPU in the current thread. It is only valid inside
93 cpu_exec() */
4917cf44 94DEFINE_TLS(CPUState *, current_cpu);
2e70f6ef 95/* 0 = Do not count executed instructions.
bf20dc07 96 1 = Precise instruction counting.
2e70f6ef 97 2 = Adaptive rate instruction counting. */
5708fc66 98int use_icount;
6a00d601 99
e2eef170 100#if !defined(CONFIG_USER_ONLY)
4346ae3e 101
1db8abb1
PB
102typedef struct PhysPageEntry PhysPageEntry;
103
104struct PhysPageEntry {
9736e55b 105 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 106 uint32_t skip : 6;
9736e55b 107 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 108 uint32_t ptr : 26;
1db8abb1
PB
109};
110
8b795765
MT
111#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
112
03f49957 113/* Size of the L2 (and L3, etc) page tables. */
57271d63 114#define ADDR_SPACE_BITS 64
03f49957 115
026736ce 116#define P_L2_BITS 9
03f49957
PB
117#define P_L2_SIZE (1 << P_L2_BITS)
118
119#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
120
121typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 122
53cb28cb 123typedef struct PhysPageMap {
79e2b9ae
PB
124 struct rcu_head rcu;
125
53cb28cb
MA
126 unsigned sections_nb;
127 unsigned sections_nb_alloc;
128 unsigned nodes_nb;
129 unsigned nodes_nb_alloc;
130 Node *nodes;
131 MemoryRegionSection *sections;
132} PhysPageMap;
133
1db8abb1 134struct AddressSpaceDispatch {
79e2b9ae
PB
135 struct rcu_head rcu;
136
1db8abb1
PB
137 /* This is a multi-level map on the physical address space.
138 * The bottom level has pointers to MemoryRegionSections.
139 */
140 PhysPageEntry phys_map;
53cb28cb 141 PhysPageMap map;
acc9d80b 142 AddressSpace *as;
1db8abb1
PB
143};
144
90260c6c
JK
145#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
146typedef struct subpage_t {
147 MemoryRegion iomem;
acc9d80b 148 AddressSpace *as;
90260c6c
JK
149 hwaddr base;
150 uint16_t sub_section[TARGET_PAGE_SIZE];
151} subpage_t;
152
b41aac4f
LPF
153#define PHYS_SECTION_UNASSIGNED 0
154#define PHYS_SECTION_NOTDIRTY 1
155#define PHYS_SECTION_ROM 2
156#define PHYS_SECTION_WATCH 3
5312bd8b 157
e2eef170 158static void io_mem_init(void);
62152b8a 159static void memory_map_init(void);
09daed84 160static void tcg_commit(MemoryListener *listener);
e2eef170 161
1ec9b909 162static MemoryRegion io_mem_watch;
6658ffb8 163#endif
fd6ce8f6 164
6d9a1304 165#if !defined(CONFIG_USER_ONLY)
d6f2ea22 166
53cb28cb 167static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 168{
53cb28cb
MA
169 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
170 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
171 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
172 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 173 }
f7bf5461
AK
174}
175
53cb28cb 176static uint32_t phys_map_node_alloc(PhysPageMap *map)
f7bf5461
AK
177{
178 unsigned i;
8b795765 179 uint32_t ret;
f7bf5461 180
53cb28cb 181 ret = map->nodes_nb++;
f7bf5461 182 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 183 assert(ret != map->nodes_nb_alloc);
03f49957 184 for (i = 0; i < P_L2_SIZE; ++i) {
53cb28cb
MA
185 map->nodes[ret][i].skip = 1;
186 map->nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 187 }
f7bf5461 188 return ret;
d6f2ea22
AK
189}
190
53cb28cb
MA
191static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
192 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 193 int level)
f7bf5461
AK
194{
195 PhysPageEntry *p;
196 int i;
03f49957 197 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 198
9736e55b 199 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
53cb28cb
MA
200 lp->ptr = phys_map_node_alloc(map);
201 p = map->nodes[lp->ptr];
f7bf5461 202 if (level == 0) {
03f49957 203 for (i = 0; i < P_L2_SIZE; i++) {
9736e55b 204 p[i].skip = 0;
b41aac4f 205 p[i].ptr = PHYS_SECTION_UNASSIGNED;
4346ae3e 206 }
67c4d23c 207 }
f7bf5461 208 } else {
53cb28cb 209 p = map->nodes[lp->ptr];
92e873b9 210 }
03f49957 211 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 212
03f49957 213 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 214 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 215 lp->skip = 0;
c19e8800 216 lp->ptr = leaf;
07f07b31
AK
217 *index += step;
218 *nb -= step;
2999097b 219 } else {
53cb28cb 220 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
221 }
222 ++lp;
f7bf5461
AK
223 }
224}
225
ac1970fb 226static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 227 hwaddr index, hwaddr nb,
2999097b 228 uint16_t leaf)
f7bf5461 229{
2999097b 230 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 231 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 232
53cb28cb 233 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
234}
235
b35ba30f
MT
236/* Compact a non leaf page entry. Simply detect that the entry has a single child,
237 * and update our entry so we can skip it and go directly to the destination.
238 */
239static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
240{
241 unsigned valid_ptr = P_L2_SIZE;
242 int valid = 0;
243 PhysPageEntry *p;
244 int i;
245
246 if (lp->ptr == PHYS_MAP_NODE_NIL) {
247 return;
248 }
249
250 p = nodes[lp->ptr];
251 for (i = 0; i < P_L2_SIZE; i++) {
252 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
253 continue;
254 }
255
256 valid_ptr = i;
257 valid++;
258 if (p[i].skip) {
259 phys_page_compact(&p[i], nodes, compacted);
260 }
261 }
262
263 /* We can only compress if there's only one child. */
264 if (valid != 1) {
265 return;
266 }
267
268 assert(valid_ptr < P_L2_SIZE);
269
270 /* Don't compress if it won't fit in the # of bits we have. */
271 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
272 return;
273 }
274
275 lp->ptr = p[valid_ptr].ptr;
276 if (!p[valid_ptr].skip) {
277 /* If our only child is a leaf, make this a leaf. */
278 /* By design, we should have made this node a leaf to begin with so we
279 * should never reach here.
280 * But since it's so simple to handle this, let's do it just in case we
281 * change this rule.
282 */
283 lp->skip = 0;
284 } else {
285 lp->skip += p[valid_ptr].skip;
286 }
287}
288
289static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
290{
291 DECLARE_BITMAP(compacted, nodes_nb);
292
293 if (d->phys_map.skip) {
53cb28cb 294 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
295 }
296}
297
97115a8d 298static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 299 Node *nodes, MemoryRegionSection *sections)
92e873b9 300{
31ab2b4a 301 PhysPageEntry *p;
97115a8d 302 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 303 int i;
f1f6e3b8 304
9736e55b 305 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 306 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 307 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 308 }
9affd6fc 309 p = nodes[lp.ptr];
03f49957 310 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 311 }
b35ba30f
MT
312
313 if (sections[lp.ptr].size.hi ||
314 range_covers_byte(sections[lp.ptr].offset_within_address_space,
315 sections[lp.ptr].size.lo, addr)) {
316 return &sections[lp.ptr];
317 } else {
318 return &sections[PHYS_SECTION_UNASSIGNED];
319 }
f3705d53
AK
320}
321
e5548617
BS
322bool memory_region_is_unassigned(MemoryRegion *mr)
323{
2a8e7499 324 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 325 && mr != &io_mem_watch;
fd6ce8f6 326}
149f54b5 327
79e2b9ae 328/* Called from RCU critical section */
c7086b4a 329static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
330 hwaddr addr,
331 bool resolve_subpage)
9f029603 332{
90260c6c
JK
333 MemoryRegionSection *section;
334 subpage_t *subpage;
335
53cb28cb 336 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
90260c6c
JK
337 if (resolve_subpage && section->mr->subpage) {
338 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 339 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
340 }
341 return section;
9f029603
JK
342}
343
79e2b9ae 344/* Called from RCU critical section */
90260c6c 345static MemoryRegionSection *
c7086b4a 346address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 347 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
348{
349 MemoryRegionSection *section;
a87f3954 350 Int128 diff;
149f54b5 351
c7086b4a 352 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
353 /* Compute offset within MemoryRegionSection */
354 addr -= section->offset_within_address_space;
355
356 /* Compute offset within MemoryRegion */
357 *xlat = addr + section->offset_within_region;
358
359 diff = int128_sub(section->mr->size, int128_make64(addr));
3752a036 360 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
149f54b5
PB
361 return section;
362}
90260c6c 363
a87f3954
PB
364static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
365{
366 if (memory_region_is_ram(mr)) {
367 return !(is_write && mr->readonly);
368 }
369 if (memory_region_is_romd(mr)) {
370 return !is_write;
371 }
372
373 return false;
374}
375
5c8a00ce
PB
376MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
377 hwaddr *xlat, hwaddr *plen,
378 bool is_write)
90260c6c 379{
30951157
AK
380 IOMMUTLBEntry iotlb;
381 MemoryRegionSection *section;
382 MemoryRegion *mr;
383 hwaddr len = *plen;
384
79e2b9ae 385 rcu_read_lock();
30951157 386 for (;;) {
79e2b9ae
PB
387 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
388 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
389 mr = section->mr;
390
391 if (!mr->iommu_ops) {
392 break;
393 }
394
8d7b8cb9 395 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
396 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
397 | (addr & iotlb.addr_mask));
398 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
399 if (!(iotlb.perm & (1 << is_write))) {
400 mr = &io_mem_unassigned;
401 break;
402 }
403
404 as = iotlb.target_as;
405 }
406
fe680d0d 407 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954
PB
408 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
409 len = MIN(page, len);
410 }
411
30951157
AK
412 *plen = len;
413 *xlat = addr;
79e2b9ae 414 rcu_read_unlock();
30951157 415 return mr;
90260c6c
JK
416}
417
79e2b9ae 418/* Called from RCU critical section */
90260c6c 419MemoryRegionSection *
9d82b5a7
PB
420address_space_translate_for_iotlb(CPUState *cpu, hwaddr addr,
421 hwaddr *xlat, hwaddr *plen)
90260c6c 422{
30951157 423 MemoryRegionSection *section;
9d82b5a7
PB
424 section = address_space_translate_internal(cpu->memory_dispatch,
425 addr, xlat, plen, false);
30951157
AK
426
427 assert(!section->mr->iommu_ops);
428 return section;
90260c6c 429}
5b6dd868 430#endif
fd6ce8f6 431
5b6dd868 432void cpu_exec_init_all(void)
fdbb84d1 433{
5b6dd868 434#if !defined(CONFIG_USER_ONLY)
b2a8658e 435 qemu_mutex_init(&ram_list.mutex);
5b6dd868
BS
436 memory_map_init();
437 io_mem_init();
fdbb84d1 438#endif
5b6dd868 439}
fdbb84d1 440
b170fce3 441#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
442
443static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 444{
259186a7 445 CPUState *cpu = opaque;
a513fe19 446
5b6dd868
BS
447 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
448 version_id is increased. */
259186a7 449 cpu->interrupt_request &= ~0x01;
c01a71c1 450 tlb_flush(cpu, 1);
5b6dd868
BS
451
452 return 0;
a513fe19 453}
7501267e 454
6c3bff0e
PD
455static int cpu_common_pre_load(void *opaque)
456{
457 CPUState *cpu = opaque;
458
adee6424 459 cpu->exception_index = -1;
6c3bff0e
PD
460
461 return 0;
462}
463
464static bool cpu_common_exception_index_needed(void *opaque)
465{
466 CPUState *cpu = opaque;
467
adee6424 468 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
469}
470
471static const VMStateDescription vmstate_cpu_common_exception_index = {
472 .name = "cpu_common/exception_index",
473 .version_id = 1,
474 .minimum_version_id = 1,
475 .fields = (VMStateField[]) {
476 VMSTATE_INT32(exception_index, CPUState),
477 VMSTATE_END_OF_LIST()
478 }
479};
480
1a1562f5 481const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
482 .name = "cpu_common",
483 .version_id = 1,
484 .minimum_version_id = 1,
6c3bff0e 485 .pre_load = cpu_common_pre_load,
5b6dd868 486 .post_load = cpu_common_post_load,
35d08458 487 .fields = (VMStateField[]) {
259186a7
AF
488 VMSTATE_UINT32(halted, CPUState),
489 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 490 VMSTATE_END_OF_LIST()
6c3bff0e
PD
491 },
492 .subsections = (VMStateSubsection[]) {
493 {
494 .vmsd = &vmstate_cpu_common_exception_index,
495 .needed = cpu_common_exception_index_needed,
496 } , {
497 /* empty */
498 }
5b6dd868
BS
499 }
500};
1a1562f5 501
5b6dd868 502#endif
ea041c0e 503
38d8f5c8 504CPUState *qemu_get_cpu(int index)
ea041c0e 505{
bdc44640 506 CPUState *cpu;
ea041c0e 507
bdc44640 508 CPU_FOREACH(cpu) {
55e5c285 509 if (cpu->cpu_index == index) {
bdc44640 510 return cpu;
55e5c285 511 }
ea041c0e 512 }
5b6dd868 513
bdc44640 514 return NULL;
ea041c0e
FB
515}
516
09daed84
EI
517#if !defined(CONFIG_USER_ONLY)
518void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as)
519{
520 /* We only support one address space per cpu at the moment. */
521 assert(cpu->as == as);
522
523 if (cpu->tcg_as_listener) {
524 memory_listener_unregister(cpu->tcg_as_listener);
525 } else {
526 cpu->tcg_as_listener = g_new0(MemoryListener, 1);
527 }
528 cpu->tcg_as_listener->commit = tcg_commit;
529 memory_listener_register(cpu->tcg_as_listener, as);
530}
531#endif
532
5b6dd868 533void cpu_exec_init(CPUArchState *env)
ea041c0e 534{
5b6dd868 535 CPUState *cpu = ENV_GET_CPU(env);
b170fce3 536 CPUClass *cc = CPU_GET_CLASS(cpu);
bdc44640 537 CPUState *some_cpu;
5b6dd868
BS
538 int cpu_index;
539
540#if defined(CONFIG_USER_ONLY)
541 cpu_list_lock();
542#endif
5b6dd868 543 cpu_index = 0;
bdc44640 544 CPU_FOREACH(some_cpu) {
5b6dd868
BS
545 cpu_index++;
546 }
55e5c285 547 cpu->cpu_index = cpu_index;
1b1ed8dc 548 cpu->numa_node = 0;
f0c3c505 549 QTAILQ_INIT(&cpu->breakpoints);
ff4700b0 550 QTAILQ_INIT(&cpu->watchpoints);
5b6dd868 551#ifndef CONFIG_USER_ONLY
09daed84 552 cpu->as = &address_space_memory;
5b6dd868 553 cpu->thread_id = qemu_get_thread_id();
cba70549 554 cpu_reload_memory_map(cpu);
5b6dd868 555#endif
bdc44640 556 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
557#if defined(CONFIG_USER_ONLY)
558 cpu_list_unlock();
559#endif
e0d47944
AF
560 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
561 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
562 }
5b6dd868 563#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868
BS
564 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
565 cpu_save, cpu_load, env);
b170fce3 566 assert(cc->vmsd == NULL);
e0d47944 567 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
5b6dd868 568#endif
b170fce3
AF
569 if (cc->vmsd != NULL) {
570 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
571 }
ea041c0e
FB
572}
573
94df27fd 574#if defined(CONFIG_USER_ONLY)
00b941e5 575static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
576{
577 tb_invalidate_phys_page_range(pc, pc + 1, 0);
578}
579#else
00b941e5 580static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 581{
e8262a1b
MF
582 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
583 if (phys != -1) {
09daed84 584 tb_invalidate_phys_addr(cpu->as,
29d8ec7b 585 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 586 }
1e7855a5 587}
c27004ec 588#endif
d720b93d 589
c527ee8f 590#if defined(CONFIG_USER_ONLY)
75a34036 591void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
592
593{
594}
595
3ee887e8
PM
596int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
597 int flags)
598{
599 return -ENOSYS;
600}
601
602void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
603{
604}
605
75a34036 606int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
607 int flags, CPUWatchpoint **watchpoint)
608{
609 return -ENOSYS;
610}
611#else
6658ffb8 612/* Add a watchpoint. */
75a34036 613int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 614 int flags, CPUWatchpoint **watchpoint)
6658ffb8 615{
c0ce998e 616 CPUWatchpoint *wp;
6658ffb8 617
05068c0d 618 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 619 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
620 error_report("tried to set invalid watchpoint at %"
621 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
622 return -EINVAL;
623 }
7267c094 624 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
625
626 wp->vaddr = addr;
05068c0d 627 wp->len = len;
a1d1bb31
AL
628 wp->flags = flags;
629
2dc9f411 630 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
631 if (flags & BP_GDB) {
632 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
633 } else {
634 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
635 }
6658ffb8 636
31b030d4 637 tlb_flush_page(cpu, addr);
a1d1bb31
AL
638
639 if (watchpoint)
640 *watchpoint = wp;
641 return 0;
6658ffb8
PB
642}
643
a1d1bb31 644/* Remove a specific watchpoint. */
75a34036 645int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 646 int flags)
6658ffb8 647{
a1d1bb31 648 CPUWatchpoint *wp;
6658ffb8 649
ff4700b0 650 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 651 if (addr == wp->vaddr && len == wp->len
6e140f28 652 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 653 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
654 return 0;
655 }
656 }
a1d1bb31 657 return -ENOENT;
6658ffb8
PB
658}
659
a1d1bb31 660/* Remove a specific watchpoint by reference. */
75a34036 661void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 662{
ff4700b0 663 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 664
31b030d4 665 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 666
7267c094 667 g_free(watchpoint);
a1d1bb31
AL
668}
669
670/* Remove all matching watchpoints. */
75a34036 671void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 672{
c0ce998e 673 CPUWatchpoint *wp, *next;
a1d1bb31 674
ff4700b0 675 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
676 if (wp->flags & mask) {
677 cpu_watchpoint_remove_by_ref(cpu, wp);
678 }
c0ce998e 679 }
7d03f82f 680}
05068c0d
PM
681
682/* Return true if this watchpoint address matches the specified
683 * access (ie the address range covered by the watchpoint overlaps
684 * partially or completely with the address range covered by the
685 * access).
686 */
687static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
688 vaddr addr,
689 vaddr len)
690{
691 /* We know the lengths are non-zero, but a little caution is
692 * required to avoid errors in the case where the range ends
693 * exactly at the top of the address space and so addr + len
694 * wraps round to zero.
695 */
696 vaddr wpend = wp->vaddr + wp->len - 1;
697 vaddr addrend = addr + len - 1;
698
699 return !(addr > wpend || wp->vaddr > addrend);
700}
701
c527ee8f 702#endif
7d03f82f 703
a1d1bb31 704/* Add a breakpoint. */
b3310ab3 705int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 706 CPUBreakpoint **breakpoint)
4c3a88a2 707{
c0ce998e 708 CPUBreakpoint *bp;
3b46e624 709
7267c094 710 bp = g_malloc(sizeof(*bp));
4c3a88a2 711
a1d1bb31
AL
712 bp->pc = pc;
713 bp->flags = flags;
714
2dc9f411 715 /* keep all GDB-injected breakpoints in front */
00b941e5 716 if (flags & BP_GDB) {
f0c3c505 717 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 718 } else {
f0c3c505 719 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 720 }
3b46e624 721
f0c3c505 722 breakpoint_invalidate(cpu, pc);
a1d1bb31 723
00b941e5 724 if (breakpoint) {
a1d1bb31 725 *breakpoint = bp;
00b941e5 726 }
4c3a88a2 727 return 0;
4c3a88a2
FB
728}
729
a1d1bb31 730/* Remove a specific breakpoint. */
b3310ab3 731int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 732{
a1d1bb31
AL
733 CPUBreakpoint *bp;
734
f0c3c505 735 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 736 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 737 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
738 return 0;
739 }
7d03f82f 740 }
a1d1bb31 741 return -ENOENT;
7d03f82f
EI
742}
743
a1d1bb31 744/* Remove a specific breakpoint by reference. */
b3310ab3 745void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 746{
f0c3c505
AF
747 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
748
749 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 750
7267c094 751 g_free(breakpoint);
a1d1bb31
AL
752}
753
754/* Remove all matching breakpoints. */
b3310ab3 755void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 756{
c0ce998e 757 CPUBreakpoint *bp, *next;
a1d1bb31 758
f0c3c505 759 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
760 if (bp->flags & mask) {
761 cpu_breakpoint_remove_by_ref(cpu, bp);
762 }
c0ce998e 763 }
4c3a88a2
FB
764}
765
c33a346e
FB
766/* enable or disable single step mode. EXCP_DEBUG is returned by the
767 CPU loop after each instruction */
3825b28f 768void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 769{
ed2803da
AF
770 if (cpu->singlestep_enabled != enabled) {
771 cpu->singlestep_enabled = enabled;
772 if (kvm_enabled()) {
38e478ec 773 kvm_update_guest_debug(cpu, 0);
ed2803da 774 } else {
ccbb4d44 775 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 776 /* XXX: only flush what is necessary */
38e478ec 777 CPUArchState *env = cpu->env_ptr;
e22a25c9
AL
778 tb_flush(env);
779 }
c33a346e 780 }
c33a346e
FB
781}
782
a47dddd7 783void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
784{
785 va_list ap;
493ae1f0 786 va_list ap2;
7501267e
FB
787
788 va_start(ap, fmt);
493ae1f0 789 va_copy(ap2, ap);
7501267e
FB
790 fprintf(stderr, "qemu: fatal: ");
791 vfprintf(stderr, fmt, ap);
792 fprintf(stderr, "\n");
878096ee 793 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
794 if (qemu_log_enabled()) {
795 qemu_log("qemu: fatal: ");
796 qemu_log_vprintf(fmt, ap2);
797 qemu_log("\n");
a0762859 798 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 799 qemu_log_flush();
93fcfe39 800 qemu_log_close();
924edcae 801 }
493ae1f0 802 va_end(ap2);
f9373291 803 va_end(ap);
fd052bf6
RV
804#if defined(CONFIG_USER_ONLY)
805 {
806 struct sigaction act;
807 sigfillset(&act.sa_mask);
808 act.sa_handler = SIG_DFL;
809 sigaction(SIGABRT, &act, NULL);
810 }
811#endif
7501267e
FB
812 abort();
813}
814
0124311e 815#if !defined(CONFIG_USER_ONLY)
0dc3f44a 816/* Called from RCU critical section */
041603fe
PB
817static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
818{
819 RAMBlock *block;
820
43771539 821 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 822 if (block && addr - block->offset < block->max_length) {
041603fe
PB
823 goto found;
824 }
0dc3f44a 825 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 826 if (addr - block->offset < block->max_length) {
041603fe
PB
827 goto found;
828 }
829 }
830
831 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
832 abort();
833
834found:
43771539
PB
835 /* It is safe to write mru_block outside the iothread lock. This
836 * is what happens:
837 *
838 * mru_block = xxx
839 * rcu_read_unlock()
840 * xxx removed from list
841 * rcu_read_lock()
842 * read mru_block
843 * mru_block = NULL;
844 * call_rcu(reclaim_ramblock, xxx);
845 * rcu_read_unlock()
846 *
847 * atomic_rcu_set is not needed here. The block was already published
848 * when it was placed into the list. Here we're just making an extra
849 * copy of the pointer.
850 */
041603fe
PB
851 ram_list.mru_block = block;
852 return block;
853}
854
a2f4d5be 855static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 856{
041603fe 857 ram_addr_t start1;
a2f4d5be
JQ
858 RAMBlock *block;
859 ram_addr_t end;
860
861 end = TARGET_PAGE_ALIGN(start + length);
862 start &= TARGET_PAGE_MASK;
d24981d3 863
0dc3f44a 864 rcu_read_lock();
041603fe
PB
865 block = qemu_get_ram_block(start);
866 assert(block == qemu_get_ram_block(end - 1));
1240be24 867 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
041603fe 868 cpu_tlb_reset_dirty_all(start1, length);
0dc3f44a 869 rcu_read_unlock();
d24981d3
JQ
870}
871
5579c7f3 872/* Note: start and end must be within the same ram block. */
a2f4d5be 873void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length,
52159192 874 unsigned client)
1ccde1cb 875{
1ccde1cb
FB
876 if (length == 0)
877 return;
c8d6f66a 878 cpu_physical_memory_clear_dirty_range_type(start, length, client);
f23db169 879
d24981d3 880 if (tcg_enabled()) {
a2f4d5be 881 tlb_reset_dirty_range_all(start, length);
5579c7f3 882 }
1ccde1cb
FB
883}
884
981fdf23 885static void cpu_physical_memory_set_dirty_tracking(bool enable)
74576198
AL
886{
887 in_migration = enable;
74576198
AL
888}
889
79e2b9ae 890/* Called from RCU critical section */
bb0e627a 891hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
892 MemoryRegionSection *section,
893 target_ulong vaddr,
894 hwaddr paddr, hwaddr xlat,
895 int prot,
896 target_ulong *address)
e5548617 897{
a8170e5e 898 hwaddr iotlb;
e5548617
BS
899 CPUWatchpoint *wp;
900
cc5bea60 901 if (memory_region_is_ram(section->mr)) {
e5548617
BS
902 /* Normal RAM. */
903 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 904 + xlat;
e5548617 905 if (!section->readonly) {
b41aac4f 906 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 907 } else {
b41aac4f 908 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
909 }
910 } else {
1b3fb98f 911 iotlb = section - section->address_space->dispatch->map.sections;
149f54b5 912 iotlb += xlat;
e5548617
BS
913 }
914
915 /* Make accesses to pages with watchpoints go via the
916 watchpoint trap routines. */
ff4700b0 917 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 918 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
919 /* Avoid trapping reads of pages with a write breakpoint. */
920 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 921 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
922 *address |= TLB_MMIO;
923 break;
924 }
925 }
926 }
927
928 return iotlb;
929}
9fa3e853
FB
930#endif /* defined(CONFIG_USER_ONLY) */
931
e2eef170 932#if !defined(CONFIG_USER_ONLY)
8da3ff18 933
c227f099 934static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 935 uint16_t section);
acc9d80b 936static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 937
a2b257d6
IM
938static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
939 qemu_anon_ram_alloc;
91138037
MA
940
941/*
942 * Set a custom physical guest memory alloator.
943 * Accelerators with unusual needs may need this. Hopefully, we can
944 * get rid of it eventually.
945 */
a2b257d6 946void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
947{
948 phys_mem_alloc = alloc;
949}
950
53cb28cb
MA
951static uint16_t phys_section_add(PhysPageMap *map,
952 MemoryRegionSection *section)
5312bd8b 953{
68f3f65b
PB
954 /* The physical section number is ORed with a page-aligned
955 * pointer to produce the iotlb entries. Thus it should
956 * never overflow into the page-aligned value.
957 */
53cb28cb 958 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 959
53cb28cb
MA
960 if (map->sections_nb == map->sections_nb_alloc) {
961 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
962 map->sections = g_renew(MemoryRegionSection, map->sections,
963 map->sections_nb_alloc);
5312bd8b 964 }
53cb28cb 965 map->sections[map->sections_nb] = *section;
dfde4e6e 966 memory_region_ref(section->mr);
53cb28cb 967 return map->sections_nb++;
5312bd8b
AK
968}
969
058bc4b5
PB
970static void phys_section_destroy(MemoryRegion *mr)
971{
dfde4e6e
PB
972 memory_region_unref(mr);
973
058bc4b5
PB
974 if (mr->subpage) {
975 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 976 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
977 g_free(subpage);
978 }
979}
980
6092666e 981static void phys_sections_free(PhysPageMap *map)
5312bd8b 982{
9affd6fc
PB
983 while (map->sections_nb > 0) {
984 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
985 phys_section_destroy(section->mr);
986 }
9affd6fc
PB
987 g_free(map->sections);
988 g_free(map->nodes);
5312bd8b
AK
989}
990
ac1970fb 991static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
992{
993 subpage_t *subpage;
a8170e5e 994 hwaddr base = section->offset_within_address_space
0f0cb164 995 & TARGET_PAGE_MASK;
97115a8d 996 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 997 d->map.nodes, d->map.sections);
0f0cb164
AK
998 MemoryRegionSection subsection = {
999 .offset_within_address_space = base,
052e87b0 1000 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1001 };
a8170e5e 1002 hwaddr start, end;
0f0cb164 1003
f3705d53 1004 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1005
f3705d53 1006 if (!(existing->mr->subpage)) {
acc9d80b 1007 subpage = subpage_init(d->as, base);
3be91e86 1008 subsection.address_space = d->as;
0f0cb164 1009 subsection.mr = &subpage->iomem;
ac1970fb 1010 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1011 phys_section_add(&d->map, &subsection));
0f0cb164 1012 } else {
f3705d53 1013 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1014 }
1015 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1016 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1017 subpage_register(subpage, start, end,
1018 phys_section_add(&d->map, section));
0f0cb164
AK
1019}
1020
1021
052e87b0
PB
1022static void register_multipage(AddressSpaceDispatch *d,
1023 MemoryRegionSection *section)
33417e70 1024{
a8170e5e 1025 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1026 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1027 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1028 TARGET_PAGE_BITS));
dd81124b 1029
733d5ef5
PB
1030 assert(num_pages);
1031 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1032}
1033
ac1970fb 1034static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1035{
89ae337a 1036 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1037 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1038 MemoryRegionSection now = *section, remain = *section;
052e87b0 1039 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1040
733d5ef5
PB
1041 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1042 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1043 - now.offset_within_address_space;
1044
052e87b0 1045 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1046 register_subpage(d, &now);
733d5ef5 1047 } else {
052e87b0 1048 now.size = int128_zero();
733d5ef5 1049 }
052e87b0
PB
1050 while (int128_ne(remain.size, now.size)) {
1051 remain.size = int128_sub(remain.size, now.size);
1052 remain.offset_within_address_space += int128_get64(now.size);
1053 remain.offset_within_region += int128_get64(now.size);
69b67646 1054 now = remain;
052e87b0 1055 if (int128_lt(remain.size, page_size)) {
733d5ef5 1056 register_subpage(d, &now);
88266249 1057 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1058 now.size = page_size;
ac1970fb 1059 register_subpage(d, &now);
69b67646 1060 } else {
052e87b0 1061 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1062 register_multipage(d, &now);
69b67646 1063 }
0f0cb164
AK
1064 }
1065}
1066
62a2744c
SY
1067void qemu_flush_coalesced_mmio_buffer(void)
1068{
1069 if (kvm_enabled())
1070 kvm_flush_coalesced_mmio_buffer();
1071}
1072
b2a8658e
UD
1073void qemu_mutex_lock_ramlist(void)
1074{
1075 qemu_mutex_lock(&ram_list.mutex);
1076}
1077
1078void qemu_mutex_unlock_ramlist(void)
1079{
1080 qemu_mutex_unlock(&ram_list.mutex);
1081}
1082
e1e84ba0 1083#ifdef __linux__
c902760f
MT
1084
1085#include <sys/vfs.h>
1086
1087#define HUGETLBFS_MAGIC 0x958458f6
1088
fc7a5800 1089static long gethugepagesize(const char *path, Error **errp)
c902760f
MT
1090{
1091 struct statfs fs;
1092 int ret;
1093
1094 do {
9742bf26 1095 ret = statfs(path, &fs);
c902760f
MT
1096 } while (ret != 0 && errno == EINTR);
1097
1098 if (ret != 0) {
fc7a5800
HT
1099 error_setg_errno(errp, errno, "failed to get page size of file %s",
1100 path);
9742bf26 1101 return 0;
c902760f
MT
1102 }
1103
1104 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 1105 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
1106
1107 return fs.f_bsize;
1108}
1109
04b16653
AW
1110static void *file_ram_alloc(RAMBlock *block,
1111 ram_addr_t memory,
7f56e740
PB
1112 const char *path,
1113 Error **errp)
c902760f
MT
1114{
1115 char *filename;
8ca761f6
PF
1116 char *sanitized_name;
1117 char *c;
557529dd 1118 void *area = NULL;
c902760f 1119 int fd;
557529dd 1120 uint64_t hpagesize;
fc7a5800 1121 Error *local_err = NULL;
c902760f 1122
fc7a5800
HT
1123 hpagesize = gethugepagesize(path, &local_err);
1124 if (local_err) {
1125 error_propagate(errp, local_err);
f9a49dfa 1126 goto error;
c902760f 1127 }
a2b257d6 1128 block->mr->align = hpagesize;
c902760f
MT
1129
1130 if (memory < hpagesize) {
557529dd
HT
1131 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1132 "or larger than huge page size 0x%" PRIx64,
1133 memory, hpagesize);
1134 goto error;
c902760f
MT
1135 }
1136
1137 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1138 error_setg(errp,
1139 "host lacks kvm mmu notifiers, -mem-path unsupported");
f9a49dfa 1140 goto error;
c902760f
MT
1141 }
1142
8ca761f6 1143 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
83234bf2 1144 sanitized_name = g_strdup(memory_region_name(block->mr));
8ca761f6
PF
1145 for (c = sanitized_name; *c != '\0'; c++) {
1146 if (*c == '/')
1147 *c = '_';
1148 }
1149
1150 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1151 sanitized_name);
1152 g_free(sanitized_name);
c902760f
MT
1153
1154 fd = mkstemp(filename);
1155 if (fd < 0) {
7f56e740
PB
1156 error_setg_errno(errp, errno,
1157 "unable to create backing store for hugepages");
e4ada482 1158 g_free(filename);
f9a49dfa 1159 goto error;
c902760f
MT
1160 }
1161 unlink(filename);
e4ada482 1162 g_free(filename);
c902760f
MT
1163
1164 memory = (memory+hpagesize-1) & ~(hpagesize-1);
1165
1166 /*
1167 * ftruncate is not supported by hugetlbfs in older
1168 * hosts, so don't bother bailing out on errors.
1169 * If anything goes wrong with it under other filesystems,
1170 * mmap will fail.
1171 */
7f56e740 1172 if (ftruncate(fd, memory)) {
9742bf26 1173 perror("ftruncate");
7f56e740 1174 }
c902760f 1175
dbcb8981
PB
1176 area = mmap(0, memory, PROT_READ | PROT_WRITE,
1177 (block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE),
1178 fd, 0);
c902760f 1179 if (area == MAP_FAILED) {
7f56e740
PB
1180 error_setg_errno(errp, errno,
1181 "unable to map backing store for hugepages");
9742bf26 1182 close(fd);
f9a49dfa 1183 goto error;
c902760f 1184 }
ef36fa14
MT
1185
1186 if (mem_prealloc) {
38183310 1187 os_mem_prealloc(fd, area, memory);
ef36fa14
MT
1188 }
1189
04b16653 1190 block->fd = fd;
c902760f 1191 return area;
f9a49dfa
MT
1192
1193error:
1194 if (mem_prealloc) {
81b07353 1195 error_report("%s", error_get_pretty(*errp));
f9a49dfa
MT
1196 exit(1);
1197 }
1198 return NULL;
c902760f
MT
1199}
1200#endif
1201
0dc3f44a 1202/* Called with the ramlist lock held. */
d17b5288 1203static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1204{
1205 RAMBlock *block, *next_block;
3e837b2c 1206 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1207
49cd9ac6
SH
1208 assert(size != 0); /* it would hand out same offset multiple times */
1209
0dc3f44a 1210 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1211 return 0;
0d53d9fe 1212 }
04b16653 1213
0dc3f44a 1214 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1215 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1216
62be4e3a 1217 end = block->offset + block->max_length;
04b16653 1218
0dc3f44a 1219 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1220 if (next_block->offset >= end) {
1221 next = MIN(next, next_block->offset);
1222 }
1223 }
1224 if (next - end >= size && next - end < mingap) {
3e837b2c 1225 offset = end;
04b16653
AW
1226 mingap = next - end;
1227 }
1228 }
3e837b2c
AW
1229
1230 if (offset == RAM_ADDR_MAX) {
1231 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1232 (uint64_t)size);
1233 abort();
1234 }
1235
04b16653
AW
1236 return offset;
1237}
1238
652d7ec2 1239ram_addr_t last_ram_offset(void)
d17b5288
AW
1240{
1241 RAMBlock *block;
1242 ram_addr_t last = 0;
1243
0dc3f44a
MD
1244 rcu_read_lock();
1245 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1246 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1247 }
0dc3f44a 1248 rcu_read_unlock();
d17b5288
AW
1249 return last;
1250}
1251
ddb97f1d
JB
1252static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1253{
1254 int ret;
ddb97f1d
JB
1255
1256 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1257 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1258 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1259 if (ret) {
1260 perror("qemu_madvise");
1261 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1262 "but dump_guest_core=off specified\n");
1263 }
1264 }
1265}
1266
0dc3f44a
MD
1267/* Called within an RCU critical section, or while the ramlist lock
1268 * is held.
1269 */
20cfe881 1270static RAMBlock *find_ram_block(ram_addr_t addr)
84b89d78 1271{
20cfe881 1272 RAMBlock *block;
84b89d78 1273
0dc3f44a 1274 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1275 if (block->offset == addr) {
20cfe881 1276 return block;
c5705a77
AK
1277 }
1278 }
20cfe881
HT
1279
1280 return NULL;
1281}
1282
ae3a7047 1283/* Called with iothread lock held. */
20cfe881
HT
1284void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1285{
ae3a7047 1286 RAMBlock *new_block, *block;
20cfe881 1287
0dc3f44a 1288 rcu_read_lock();
ae3a7047 1289 new_block = find_ram_block(addr);
c5705a77
AK
1290 assert(new_block);
1291 assert(!new_block->idstr[0]);
84b89d78 1292
09e5ab63
AL
1293 if (dev) {
1294 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1295 if (id) {
1296 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1297 g_free(id);
84b89d78
CM
1298 }
1299 }
1300 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1301
0dc3f44a 1302 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1303 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1304 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1305 new_block->idstr);
1306 abort();
1307 }
1308 }
0dc3f44a 1309 rcu_read_unlock();
c5705a77
AK
1310}
1311
ae3a7047 1312/* Called with iothread lock held. */
20cfe881
HT
1313void qemu_ram_unset_idstr(ram_addr_t addr)
1314{
ae3a7047 1315 RAMBlock *block;
20cfe881 1316
ae3a7047
MD
1317 /* FIXME: arch_init.c assumes that this is not called throughout
1318 * migration. Ignore the problem since hot-unplug during migration
1319 * does not work anyway.
1320 */
1321
0dc3f44a 1322 rcu_read_lock();
ae3a7047 1323 block = find_ram_block(addr);
20cfe881
HT
1324 if (block) {
1325 memset(block->idstr, 0, sizeof(block->idstr));
1326 }
0dc3f44a 1327 rcu_read_unlock();
20cfe881
HT
1328}
1329
8490fc78
LC
1330static int memory_try_enable_merging(void *addr, size_t len)
1331{
75cc7f01 1332 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1333 /* disabled by the user */
1334 return 0;
1335 }
1336
1337 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1338}
1339
62be4e3a
MT
1340/* Only legal before guest might have detected the memory size: e.g. on
1341 * incoming migration, or right after reset.
1342 *
1343 * As memory core doesn't know how is memory accessed, it is up to
1344 * resize callback to update device state and/or add assertions to detect
1345 * misuse, if necessary.
1346 */
1347int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1348{
1349 RAMBlock *block = find_ram_block(base);
1350
1351 assert(block);
1352
129ddaf3
MT
1353 newsize = TARGET_PAGE_ALIGN(newsize);
1354
62be4e3a
MT
1355 if (block->used_length == newsize) {
1356 return 0;
1357 }
1358
1359 if (!(block->flags & RAM_RESIZEABLE)) {
1360 error_setg_errno(errp, EINVAL,
1361 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1362 " in != 0x" RAM_ADDR_FMT, block->idstr,
1363 newsize, block->used_length);
1364 return -EINVAL;
1365 }
1366
1367 if (block->max_length < newsize) {
1368 error_setg_errno(errp, EINVAL,
1369 "Length too large: %s: 0x" RAM_ADDR_FMT
1370 " > 0x" RAM_ADDR_FMT, block->idstr,
1371 newsize, block->max_length);
1372 return -EINVAL;
1373 }
1374
1375 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1376 block->used_length = newsize;
1377 cpu_physical_memory_set_dirty_range(block->offset, block->used_length);
1378 memory_region_set_size(block->mr, newsize);
1379 if (block->resized) {
1380 block->resized(block->idstr, newsize, block->host);
1381 }
1382 return 0;
1383}
1384
ef701d7b 1385static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1386{
e1c57ab8 1387 RAMBlock *block;
0d53d9fe 1388 RAMBlock *last_block = NULL;
2152f5ca
JQ
1389 ram_addr_t old_ram_size, new_ram_size;
1390
1391 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1392
b2a8658e 1393 qemu_mutex_lock_ramlist();
9b8424d5 1394 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1395
1396 if (!new_block->host) {
1397 if (xen_enabled()) {
9b8424d5
MT
1398 xen_ram_alloc(new_block->offset, new_block->max_length,
1399 new_block->mr);
e1c57ab8 1400 } else {
9b8424d5 1401 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1402 &new_block->mr->align);
39228250 1403 if (!new_block->host) {
ef701d7b
HT
1404 error_setg_errno(errp, errno,
1405 "cannot set up guest memory '%s'",
1406 memory_region_name(new_block->mr));
1407 qemu_mutex_unlock_ramlist();
1408 return -1;
39228250 1409 }
9b8424d5 1410 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1411 }
c902760f 1412 }
94a6b54f 1413
0d53d9fe
MD
1414 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1415 * QLIST (which has an RCU-friendly variant) does not have insertion at
1416 * tail, so save the last element in last_block.
1417 */
0dc3f44a 1418 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1419 last_block = block;
9b8424d5 1420 if (block->max_length < new_block->max_length) {
abb26d63
PB
1421 break;
1422 }
1423 }
1424 if (block) {
0dc3f44a 1425 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1426 } else if (last_block) {
0dc3f44a 1427 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1428 } else { /* list is empty */
0dc3f44a 1429 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1430 }
0d6d3c87 1431 ram_list.mru_block = NULL;
94a6b54f 1432
0dc3f44a
MD
1433 /* Write list before version */
1434 smp_wmb();
f798b07f 1435 ram_list.version++;
b2a8658e 1436 qemu_mutex_unlock_ramlist();
f798b07f 1437
2152f5ca
JQ
1438 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1439
1440 if (new_ram_size > old_ram_size) {
1ab4c8ce 1441 int i;
ae3a7047
MD
1442
1443 /* ram_list.dirty_memory[] is protected by the iothread lock. */
1ab4c8ce
JQ
1444 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1445 ram_list.dirty_memory[i] =
1446 bitmap_zero_extend(ram_list.dirty_memory[i],
1447 old_ram_size, new_ram_size);
1448 }
2152f5ca 1449 }
9b8424d5
MT
1450 cpu_physical_memory_set_dirty_range(new_block->offset,
1451 new_block->used_length);
94a6b54f 1452
a904c911
PB
1453 if (new_block->host) {
1454 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1455 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1456 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1457 if (kvm_enabled()) {
1458 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1459 }
e1c57ab8 1460 }
6f0437e8 1461
94a6b54f
PB
1462 return new_block->offset;
1463}
e9a1ab19 1464
0b183fc8 1465#ifdef __linux__
e1c57ab8 1466ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
dbcb8981 1467 bool share, const char *mem_path,
7f56e740 1468 Error **errp)
e1c57ab8
PB
1469{
1470 RAMBlock *new_block;
ef701d7b
HT
1471 ram_addr_t addr;
1472 Error *local_err = NULL;
e1c57ab8
PB
1473
1474 if (xen_enabled()) {
7f56e740
PB
1475 error_setg(errp, "-mem-path not supported with Xen");
1476 return -1;
e1c57ab8
PB
1477 }
1478
1479 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1480 /*
1481 * file_ram_alloc() needs to allocate just like
1482 * phys_mem_alloc, but we haven't bothered to provide
1483 * a hook there.
1484 */
7f56e740
PB
1485 error_setg(errp,
1486 "-mem-path not supported with this accelerator");
1487 return -1;
e1c57ab8
PB
1488 }
1489
1490 size = TARGET_PAGE_ALIGN(size);
1491 new_block = g_malloc0(sizeof(*new_block));
1492 new_block->mr = mr;
9b8424d5
MT
1493 new_block->used_length = size;
1494 new_block->max_length = size;
dbcb8981 1495 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1496 new_block->host = file_ram_alloc(new_block, size,
1497 mem_path, errp);
1498 if (!new_block->host) {
1499 g_free(new_block);
1500 return -1;
1501 }
1502
ef701d7b
HT
1503 addr = ram_block_add(new_block, &local_err);
1504 if (local_err) {
1505 g_free(new_block);
1506 error_propagate(errp, local_err);
1507 return -1;
1508 }
1509 return addr;
e1c57ab8 1510}
0b183fc8 1511#endif
e1c57ab8 1512
62be4e3a
MT
1513static
1514ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1515 void (*resized)(const char*,
1516 uint64_t length,
1517 void *host),
1518 void *host, bool resizeable,
ef701d7b 1519 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1520{
1521 RAMBlock *new_block;
ef701d7b
HT
1522 ram_addr_t addr;
1523 Error *local_err = NULL;
e1c57ab8
PB
1524
1525 size = TARGET_PAGE_ALIGN(size);
62be4e3a 1526 max_size = TARGET_PAGE_ALIGN(max_size);
e1c57ab8
PB
1527 new_block = g_malloc0(sizeof(*new_block));
1528 new_block->mr = mr;
62be4e3a 1529 new_block->resized = resized;
9b8424d5
MT
1530 new_block->used_length = size;
1531 new_block->max_length = max_size;
62be4e3a 1532 assert(max_size >= size);
e1c57ab8
PB
1533 new_block->fd = -1;
1534 new_block->host = host;
1535 if (host) {
7bd4f430 1536 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1537 }
62be4e3a
MT
1538 if (resizeable) {
1539 new_block->flags |= RAM_RESIZEABLE;
1540 }
ef701d7b
HT
1541 addr = ram_block_add(new_block, &local_err);
1542 if (local_err) {
1543 g_free(new_block);
1544 error_propagate(errp, local_err);
1545 return -1;
1546 }
1547 return addr;
e1c57ab8
PB
1548}
1549
62be4e3a
MT
1550ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1551 MemoryRegion *mr, Error **errp)
1552{
1553 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1554}
1555
ef701d7b 1556ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1557{
62be4e3a
MT
1558 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1559}
1560
1561ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1562 void (*resized)(const char*,
1563 uint64_t length,
1564 void *host),
1565 MemoryRegion *mr, Error **errp)
1566{
1567 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1568}
1569
1f2e98b6
AW
1570void qemu_ram_free_from_ptr(ram_addr_t addr)
1571{
1572 RAMBlock *block;
1573
b2a8658e 1574 qemu_mutex_lock_ramlist();
0dc3f44a 1575 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1f2e98b6 1576 if (addr == block->offset) {
0dc3f44a 1577 QLIST_REMOVE_RCU(block, next);
0d6d3c87 1578 ram_list.mru_block = NULL;
0dc3f44a
MD
1579 /* Write list before version */
1580 smp_wmb();
f798b07f 1581 ram_list.version++;
43771539 1582 g_free_rcu(block, rcu);
b2a8658e 1583 break;
1f2e98b6
AW
1584 }
1585 }
b2a8658e 1586 qemu_mutex_unlock_ramlist();
1f2e98b6
AW
1587}
1588
43771539
PB
1589static void reclaim_ramblock(RAMBlock *block)
1590{
1591 if (block->flags & RAM_PREALLOC) {
1592 ;
1593 } else if (xen_enabled()) {
1594 xen_invalidate_map_cache_entry(block->host);
1595#ifndef _WIN32
1596 } else if (block->fd >= 0) {
1597 munmap(block->host, block->max_length);
1598 close(block->fd);
1599#endif
1600 } else {
1601 qemu_anon_ram_free(block->host, block->max_length);
1602 }
1603 g_free(block);
1604}
1605
c227f099 1606void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1607{
04b16653
AW
1608 RAMBlock *block;
1609
b2a8658e 1610 qemu_mutex_lock_ramlist();
0dc3f44a 1611 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
04b16653 1612 if (addr == block->offset) {
0dc3f44a 1613 QLIST_REMOVE_RCU(block, next);
0d6d3c87 1614 ram_list.mru_block = NULL;
0dc3f44a
MD
1615 /* Write list before version */
1616 smp_wmb();
f798b07f 1617 ram_list.version++;
43771539 1618 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1619 break;
04b16653
AW
1620 }
1621 }
b2a8658e 1622 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1623}
1624
cd19cfa2
HY
1625#ifndef _WIN32
1626void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1627{
1628 RAMBlock *block;
1629 ram_addr_t offset;
1630 int flags;
1631 void *area, *vaddr;
1632
0dc3f44a 1633 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1634 offset = addr - block->offset;
9b8424d5 1635 if (offset < block->max_length) {
1240be24 1636 vaddr = ramblock_ptr(block, offset);
7bd4f430 1637 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1638 ;
dfeaf2ab
MA
1639 } else if (xen_enabled()) {
1640 abort();
cd19cfa2
HY
1641 } else {
1642 flags = MAP_FIXED;
1643 munmap(vaddr, length);
3435f395 1644 if (block->fd >= 0) {
dbcb8981
PB
1645 flags |= (block->flags & RAM_SHARED ?
1646 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1647 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1648 flags, block->fd, offset);
cd19cfa2 1649 } else {
2eb9fbaa
MA
1650 /*
1651 * Remap needs to match alloc. Accelerators that
1652 * set phys_mem_alloc never remap. If they did,
1653 * we'd need a remap hook here.
1654 */
1655 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1656
cd19cfa2
HY
1657 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1658 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1659 flags, -1, 0);
cd19cfa2
HY
1660 }
1661 if (area != vaddr) {
f15fbc4b
AP
1662 fprintf(stderr, "Could not remap addr: "
1663 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1664 length, addr);
1665 exit(1);
1666 }
8490fc78 1667 memory_try_enable_merging(vaddr, length);
ddb97f1d 1668 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1669 }
cd19cfa2
HY
1670 }
1671 }
1672}
1673#endif /* !_WIN32 */
1674
a35ba7be
PB
1675int qemu_get_ram_fd(ram_addr_t addr)
1676{
ae3a7047
MD
1677 RAMBlock *block;
1678 int fd;
a35ba7be 1679
0dc3f44a 1680 rcu_read_lock();
ae3a7047
MD
1681 block = qemu_get_ram_block(addr);
1682 fd = block->fd;
0dc3f44a 1683 rcu_read_unlock();
ae3a7047 1684 return fd;
a35ba7be
PB
1685}
1686
3fd74b84
DM
1687void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1688{
ae3a7047
MD
1689 RAMBlock *block;
1690 void *ptr;
3fd74b84 1691
0dc3f44a 1692 rcu_read_lock();
ae3a7047
MD
1693 block = qemu_get_ram_block(addr);
1694 ptr = ramblock_ptr(block, 0);
0dc3f44a 1695 rcu_read_unlock();
ae3a7047 1696 return ptr;
3fd74b84
DM
1697}
1698
1b5ec234 1699/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1700 * This should not be used for general purpose DMA. Use address_space_map
1701 * or address_space_rw instead. For local memory (e.g. video ram) that the
1702 * device owns, use memory_region_get_ram_ptr.
0dc3f44a
MD
1703 *
1704 * By the time this function returns, the returned pointer is not protected
1705 * by RCU anymore. If the caller is not within an RCU critical section and
1706 * does not hold the iothread lock, it must have other means of protecting the
1707 * pointer, such as a reference to the region that includes the incoming
1708 * ram_addr_t.
1b5ec234
PB
1709 */
1710void *qemu_get_ram_ptr(ram_addr_t addr)
1711{
ae3a7047
MD
1712 RAMBlock *block;
1713 void *ptr;
1b5ec234 1714
0dc3f44a 1715 rcu_read_lock();
ae3a7047
MD
1716 block = qemu_get_ram_block(addr);
1717
1718 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
1719 /* We need to check if the requested address is in the RAM
1720 * because we don't want to map the entire memory in QEMU.
1721 * In that case just map until the end of the page.
1722 */
1723 if (block->offset == 0) {
ae3a7047 1724 ptr = xen_map_cache(addr, 0, 0);
0dc3f44a 1725 goto unlock;
0d6d3c87 1726 }
ae3a7047
MD
1727
1728 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 1729 }
ae3a7047
MD
1730 ptr = ramblock_ptr(block, addr - block->offset);
1731
0dc3f44a
MD
1732unlock:
1733 rcu_read_unlock();
ae3a7047 1734 return ptr;
dc828ca1
PB
1735}
1736
38bee5dc 1737/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
ae3a7047 1738 * but takes a size argument.
0dc3f44a
MD
1739 *
1740 * By the time this function returns, the returned pointer is not protected
1741 * by RCU anymore. If the caller is not within an RCU critical section and
1742 * does not hold the iothread lock, it must have other means of protecting the
1743 * pointer, such as a reference to the region that includes the incoming
1744 * ram_addr_t.
ae3a7047 1745 */
cb85f7ab 1746static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
38bee5dc 1747{
ae3a7047 1748 void *ptr;
8ab934f9
SS
1749 if (*size == 0) {
1750 return NULL;
1751 }
868bb33f 1752 if (xen_enabled()) {
e41d7c69 1753 return xen_map_cache(addr, *size, 1);
868bb33f 1754 } else {
38bee5dc 1755 RAMBlock *block;
0dc3f44a
MD
1756 rcu_read_lock();
1757 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5
MT
1758 if (addr - block->offset < block->max_length) {
1759 if (addr - block->offset + *size > block->max_length)
1760 *size = block->max_length - addr + block->offset;
ae3a7047 1761 ptr = ramblock_ptr(block, addr - block->offset);
0dc3f44a 1762 rcu_read_unlock();
ae3a7047 1763 return ptr;
38bee5dc
SS
1764 }
1765 }
1766
1767 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1768 abort();
38bee5dc
SS
1769 }
1770}
1771
7443b437 1772/* Some of the softmmu routines need to translate from a host pointer
ae3a7047
MD
1773 * (typically a TLB entry) back to a ram offset.
1774 *
1775 * By the time this function returns, the returned pointer is not protected
1776 * by RCU anymore. If the caller is not within an RCU critical section and
1777 * does not hold the iothread lock, it must have other means of protecting the
1778 * pointer, such as a reference to the region that includes the incoming
1779 * ram_addr_t.
1780 */
1b5ec234 1781MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 1782{
94a6b54f
PB
1783 RAMBlock *block;
1784 uint8_t *host = ptr;
ae3a7047 1785 MemoryRegion *mr;
94a6b54f 1786
868bb33f 1787 if (xen_enabled()) {
0dc3f44a 1788 rcu_read_lock();
e41d7c69 1789 *ram_addr = xen_ram_addr_from_mapcache(ptr);
ae3a7047 1790 mr = qemu_get_ram_block(*ram_addr)->mr;
0dc3f44a 1791 rcu_read_unlock();
ae3a7047 1792 return mr;
712c2b41
SS
1793 }
1794
0dc3f44a
MD
1795 rcu_read_lock();
1796 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1797 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
1798 goto found;
1799 }
1800
0dc3f44a 1801 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
1802 /* This case append when the block is not mapped. */
1803 if (block->host == NULL) {
1804 continue;
1805 }
9b8424d5 1806 if (host - block->host < block->max_length) {
23887b79 1807 goto found;
f471a17e 1808 }
94a6b54f 1809 }
432d268c 1810
0dc3f44a 1811 rcu_read_unlock();
1b5ec234 1812 return NULL;
23887b79
PB
1813
1814found:
1815 *ram_addr = block->offset + (host - block->host);
ae3a7047 1816 mr = block->mr;
0dc3f44a 1817 rcu_read_unlock();
ae3a7047 1818 return mr;
e890261f 1819}
f471a17e 1820
a8170e5e 1821static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1822 uint64_t val, unsigned size)
9fa3e853 1823{
52159192 1824 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 1825 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 1826 }
0e0df1e2
AK
1827 switch (size) {
1828 case 1:
1829 stb_p(qemu_get_ram_ptr(ram_addr), val);
1830 break;
1831 case 2:
1832 stw_p(qemu_get_ram_ptr(ram_addr), val);
1833 break;
1834 case 4:
1835 stl_p(qemu_get_ram_ptr(ram_addr), val);
1836 break;
1837 default:
1838 abort();
3a7d929e 1839 }
6886867e 1840 cpu_physical_memory_set_dirty_range_nocode(ram_addr, size);
f23db169
FB
1841 /* we remove the notdirty callback only if the code has been
1842 flushed */
a2cd8c85 1843 if (!cpu_physical_memory_is_clean(ram_addr)) {
4917cf44 1844 CPUArchState *env = current_cpu->env_ptr;
93afeade 1845 tlb_set_dirty(env, current_cpu->mem_io_vaddr);
4917cf44 1846 }
9fa3e853
FB
1847}
1848
b018ddf6
PB
1849static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1850 unsigned size, bool is_write)
1851{
1852 return is_write;
1853}
1854
0e0df1e2 1855static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1856 .write = notdirty_mem_write,
b018ddf6 1857 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1858 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1859};
1860
0f459d16 1861/* Generate a debug exception if a watchpoint has been hit. */
05068c0d 1862static void check_watchpoint(int offset, int len, int flags)
0f459d16 1863{
93afeade
AF
1864 CPUState *cpu = current_cpu;
1865 CPUArchState *env = cpu->env_ptr;
06d55cc1 1866 target_ulong pc, cs_base;
0f459d16 1867 target_ulong vaddr;
a1d1bb31 1868 CPUWatchpoint *wp;
06d55cc1 1869 int cpu_flags;
0f459d16 1870
ff4700b0 1871 if (cpu->watchpoint_hit) {
06d55cc1
AL
1872 /* We re-entered the check after replacing the TB. Now raise
1873 * the debug interrupt so that is will trigger after the
1874 * current instruction. */
93afeade 1875 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
1876 return;
1877 }
93afeade 1878 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
ff4700b0 1879 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
1880 if (cpu_watchpoint_address_matches(wp, vaddr, len)
1881 && (wp->flags & flags)) {
08225676
PM
1882 if (flags == BP_MEM_READ) {
1883 wp->flags |= BP_WATCHPOINT_HIT_READ;
1884 } else {
1885 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
1886 }
1887 wp->hitaddr = vaddr;
ff4700b0
AF
1888 if (!cpu->watchpoint_hit) {
1889 cpu->watchpoint_hit = wp;
239c51a5 1890 tb_check_watchpoint(cpu);
6e140f28 1891 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 1892 cpu->exception_index = EXCP_DEBUG;
5638d180 1893 cpu_loop_exit(cpu);
6e140f28
AL
1894 } else {
1895 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 1896 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
0ea8cb88 1897 cpu_resume_from_signal(cpu, NULL);
6e140f28 1898 }
06d55cc1 1899 }
6e140f28
AL
1900 } else {
1901 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
1902 }
1903 }
1904}
1905
6658ffb8
PB
1906/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1907 so these check for a hit then pass through to the normal out-of-line
1908 phys routines. */
a8170e5e 1909static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1ec9b909 1910 unsigned size)
6658ffb8 1911{
05068c0d 1912 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, BP_MEM_READ);
1ec9b909 1913 switch (size) {
2c17449b 1914 case 1: return ldub_phys(&address_space_memory, addr);
41701aa4 1915 case 2: return lduw_phys(&address_space_memory, addr);
fdfba1a2 1916 case 4: return ldl_phys(&address_space_memory, addr);
1ec9b909
AK
1917 default: abort();
1918 }
6658ffb8
PB
1919}
1920
a8170e5e 1921static void watch_mem_write(void *opaque, hwaddr addr,
1ec9b909 1922 uint64_t val, unsigned size)
6658ffb8 1923{
05068c0d 1924 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, BP_MEM_WRITE);
1ec9b909 1925 switch (size) {
67364150 1926 case 1:
db3be60d 1927 stb_phys(&address_space_memory, addr, val);
67364150
MF
1928 break;
1929 case 2:
5ce5944d 1930 stw_phys(&address_space_memory, addr, val);
67364150
MF
1931 break;
1932 case 4:
ab1da857 1933 stl_phys(&address_space_memory, addr, val);
67364150 1934 break;
1ec9b909
AK
1935 default: abort();
1936 }
6658ffb8
PB
1937}
1938
1ec9b909
AK
1939static const MemoryRegionOps watch_mem_ops = {
1940 .read = watch_mem_read,
1941 .write = watch_mem_write,
1942 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 1943};
6658ffb8 1944
a8170e5e 1945static uint64_t subpage_read(void *opaque, hwaddr addr,
70c68e44 1946 unsigned len)
db7b5426 1947{
acc9d80b 1948 subpage_t *subpage = opaque;
ff6cff75 1949 uint8_t buf[8];
791af8c8 1950
db7b5426 1951#if defined(DEBUG_SUBPAGE)
016e9d62 1952 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 1953 subpage, len, addr);
db7b5426 1954#endif
acc9d80b
JK
1955 address_space_read(subpage->as, addr + subpage->base, buf, len);
1956 switch (len) {
1957 case 1:
1958 return ldub_p(buf);
1959 case 2:
1960 return lduw_p(buf);
1961 case 4:
1962 return ldl_p(buf);
ff6cff75
PB
1963 case 8:
1964 return ldq_p(buf);
acc9d80b
JK
1965 default:
1966 abort();
1967 }
db7b5426
BS
1968}
1969
a8170e5e 1970static void subpage_write(void *opaque, hwaddr addr,
70c68e44 1971 uint64_t value, unsigned len)
db7b5426 1972{
acc9d80b 1973 subpage_t *subpage = opaque;
ff6cff75 1974 uint8_t buf[8];
acc9d80b 1975
db7b5426 1976#if defined(DEBUG_SUBPAGE)
016e9d62 1977 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
1978 " value %"PRIx64"\n",
1979 __func__, subpage, len, addr, value);
db7b5426 1980#endif
acc9d80b
JK
1981 switch (len) {
1982 case 1:
1983 stb_p(buf, value);
1984 break;
1985 case 2:
1986 stw_p(buf, value);
1987 break;
1988 case 4:
1989 stl_p(buf, value);
1990 break;
ff6cff75
PB
1991 case 8:
1992 stq_p(buf, value);
1993 break;
acc9d80b
JK
1994 default:
1995 abort();
1996 }
1997 address_space_write(subpage->as, addr + subpage->base, buf, len);
db7b5426
BS
1998}
1999
c353e4cc 2000static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2001 unsigned len, bool is_write)
c353e4cc 2002{
acc9d80b 2003 subpage_t *subpage = opaque;
c353e4cc 2004#if defined(DEBUG_SUBPAGE)
016e9d62 2005 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2006 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2007#endif
2008
acc9d80b 2009 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2010 len, is_write);
c353e4cc
PB
2011}
2012
70c68e44
AK
2013static const MemoryRegionOps subpage_ops = {
2014 .read = subpage_read,
2015 .write = subpage_write,
ff6cff75
PB
2016 .impl.min_access_size = 1,
2017 .impl.max_access_size = 8,
2018 .valid.min_access_size = 1,
2019 .valid.max_access_size = 8,
c353e4cc 2020 .valid.accepts = subpage_accepts,
70c68e44 2021 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2022};
2023
c227f099 2024static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2025 uint16_t section)
db7b5426
BS
2026{
2027 int idx, eidx;
2028
2029 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2030 return -1;
2031 idx = SUBPAGE_IDX(start);
2032 eidx = SUBPAGE_IDX(end);
2033#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2034 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2035 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2036#endif
db7b5426 2037 for (; idx <= eidx; idx++) {
5312bd8b 2038 mmio->sub_section[idx] = section;
db7b5426
BS
2039 }
2040
2041 return 0;
2042}
2043
acc9d80b 2044static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2045{
c227f099 2046 subpage_t *mmio;
db7b5426 2047
7267c094 2048 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 2049
acc9d80b 2050 mmio->as = as;
1eec614b 2051 mmio->base = base;
2c9b15ca 2052 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2053 NULL, TARGET_PAGE_SIZE);
b3b00c78 2054 mmio->iomem.subpage = true;
db7b5426 2055#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2056 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2057 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2058#endif
b41aac4f 2059 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2060
2061 return mmio;
2062}
2063
a656e22f
PC
2064static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2065 MemoryRegion *mr)
5312bd8b 2066{
a656e22f 2067 assert(as);
5312bd8b 2068 MemoryRegionSection section = {
a656e22f 2069 .address_space = as,
5312bd8b
AK
2070 .mr = mr,
2071 .offset_within_address_space = 0,
2072 .offset_within_region = 0,
052e87b0 2073 .size = int128_2_64(),
5312bd8b
AK
2074 };
2075
53cb28cb 2076 return phys_section_add(map, &section);
5312bd8b
AK
2077}
2078
9d82b5a7 2079MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index)
aa102231 2080{
79e2b9ae
PB
2081 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->memory_dispatch);
2082 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2083
2084 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2085}
2086
e9179ce1
AK
2087static void io_mem_init(void)
2088{
1f6245e5 2089 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2090 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2091 NULL, UINT64_MAX);
2c9b15ca 2092 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2093 NULL, UINT64_MAX);
2c9b15ca 2094 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2095 NULL, UINT64_MAX);
e9179ce1
AK
2096}
2097
ac1970fb 2098static void mem_begin(MemoryListener *listener)
00752703
PB
2099{
2100 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2101 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2102 uint16_t n;
2103
a656e22f 2104 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2105 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2106 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2107 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2108 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2109 assert(n == PHYS_SECTION_ROM);
a656e22f 2110 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2111 assert(n == PHYS_SECTION_WATCH);
00752703 2112
9736e55b 2113 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2114 d->as = as;
2115 as->next_dispatch = d;
2116}
2117
79e2b9ae
PB
2118static void address_space_dispatch_free(AddressSpaceDispatch *d)
2119{
2120 phys_sections_free(&d->map);
2121 g_free(d);
2122}
2123
00752703 2124static void mem_commit(MemoryListener *listener)
ac1970fb 2125{
89ae337a 2126 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2127 AddressSpaceDispatch *cur = as->dispatch;
2128 AddressSpaceDispatch *next = as->next_dispatch;
2129
53cb28cb 2130 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2131
79e2b9ae 2132 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2133 if (cur) {
79e2b9ae 2134 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2135 }
9affd6fc
PB
2136}
2137
1d71148e 2138static void tcg_commit(MemoryListener *listener)
50c1e149 2139{
182735ef 2140 CPUState *cpu;
117712c3
AK
2141
2142 /* since each CPU stores ram addresses in its TLB cache, we must
2143 reset the modified entries */
2144 /* XXX: slow ! */
bdc44640 2145 CPU_FOREACH(cpu) {
33bde2e1
EI
2146 /* FIXME: Disentangle the cpu.h circular files deps so we can
2147 directly get the right CPU from listener. */
2148 if (cpu->tcg_as_listener != listener) {
2149 continue;
2150 }
76e5c76f 2151 cpu_reload_memory_map(cpu);
117712c3 2152 }
50c1e149
AK
2153}
2154
93632747
AK
2155static void core_log_global_start(MemoryListener *listener)
2156{
981fdf23 2157 cpu_physical_memory_set_dirty_tracking(true);
93632747
AK
2158}
2159
2160static void core_log_global_stop(MemoryListener *listener)
2161{
981fdf23 2162 cpu_physical_memory_set_dirty_tracking(false);
93632747
AK
2163}
2164
93632747 2165static MemoryListener core_memory_listener = {
93632747
AK
2166 .log_global_start = core_log_global_start,
2167 .log_global_stop = core_log_global_stop,
ac1970fb 2168 .priority = 1,
93632747
AK
2169};
2170
ac1970fb
AK
2171void address_space_init_dispatch(AddressSpace *as)
2172{
00752703 2173 as->dispatch = NULL;
89ae337a 2174 as->dispatch_listener = (MemoryListener) {
ac1970fb 2175 .begin = mem_begin,
00752703 2176 .commit = mem_commit,
ac1970fb
AK
2177 .region_add = mem_add,
2178 .region_nop = mem_add,
2179 .priority = 0,
2180 };
89ae337a 2181 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2182}
2183
6e48e8f9
PB
2184void address_space_unregister(AddressSpace *as)
2185{
2186 memory_listener_unregister(&as->dispatch_listener);
2187}
2188
83f3c251
AK
2189void address_space_destroy_dispatch(AddressSpace *as)
2190{
2191 AddressSpaceDispatch *d = as->dispatch;
2192
79e2b9ae
PB
2193 atomic_rcu_set(&as->dispatch, NULL);
2194 if (d) {
2195 call_rcu(d, address_space_dispatch_free, rcu);
2196 }
83f3c251
AK
2197}
2198
62152b8a
AK
2199static void memory_map_init(void)
2200{
7267c094 2201 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2202
57271d63 2203 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2204 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2205
7267c094 2206 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2207 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2208 65536);
7dca8043 2209 address_space_init(&address_space_io, system_io, "I/O");
93632747 2210
f6790af6 2211 memory_listener_register(&core_memory_listener, &address_space_memory);
62152b8a
AK
2212}
2213
2214MemoryRegion *get_system_memory(void)
2215{
2216 return system_memory;
2217}
2218
309cb471
AK
2219MemoryRegion *get_system_io(void)
2220{
2221 return system_io;
2222}
2223
e2eef170
PB
2224#endif /* !defined(CONFIG_USER_ONLY) */
2225
13eb76e0
FB
2226/* physical memory access (slow version, mainly for debug) */
2227#if defined(CONFIG_USER_ONLY)
f17ec444 2228int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2229 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2230{
2231 int l, flags;
2232 target_ulong page;
53a5960a 2233 void * p;
13eb76e0
FB
2234
2235 while (len > 0) {
2236 page = addr & TARGET_PAGE_MASK;
2237 l = (page + TARGET_PAGE_SIZE) - addr;
2238 if (l > len)
2239 l = len;
2240 flags = page_get_flags(page);
2241 if (!(flags & PAGE_VALID))
a68fe89c 2242 return -1;
13eb76e0
FB
2243 if (is_write) {
2244 if (!(flags & PAGE_WRITE))
a68fe89c 2245 return -1;
579a97f7 2246 /* XXX: this code should not depend on lock_user */
72fb7daa 2247 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2248 return -1;
72fb7daa
AJ
2249 memcpy(p, buf, l);
2250 unlock_user(p, addr, l);
13eb76e0
FB
2251 } else {
2252 if (!(flags & PAGE_READ))
a68fe89c 2253 return -1;
579a97f7 2254 /* XXX: this code should not depend on lock_user */
72fb7daa 2255 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2256 return -1;
72fb7daa 2257 memcpy(buf, p, l);
5b257578 2258 unlock_user(p, addr, 0);
13eb76e0
FB
2259 }
2260 len -= l;
2261 buf += l;
2262 addr += l;
2263 }
a68fe89c 2264 return 0;
13eb76e0 2265}
8df1cd07 2266
13eb76e0 2267#else
51d7a9eb 2268
a8170e5e
AK
2269static void invalidate_and_set_dirty(hwaddr addr,
2270 hwaddr length)
51d7a9eb 2271{
f874bf90
PM
2272 if (cpu_physical_memory_range_includes_clean(addr, length)) {
2273 tb_invalidate_phys_range(addr, addr + length, 0);
6886867e 2274 cpu_physical_memory_set_dirty_range_nocode(addr, length);
51d7a9eb 2275 }
e226939d 2276 xen_modified_memory(addr, length);
51d7a9eb
AP
2277}
2278
23326164 2279static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2280{
e1622f4b 2281 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2282
2283 /* Regions are assumed to support 1-4 byte accesses unless
2284 otherwise specified. */
23326164
RH
2285 if (access_size_max == 0) {
2286 access_size_max = 4;
2287 }
2288
2289 /* Bound the maximum access by the alignment of the address. */
2290 if (!mr->ops->impl.unaligned) {
2291 unsigned align_size_max = addr & -addr;
2292 if (align_size_max != 0 && align_size_max < access_size_max) {
2293 access_size_max = align_size_max;
2294 }
82f2563f 2295 }
23326164
RH
2296
2297 /* Don't attempt accesses larger than the maximum. */
2298 if (l > access_size_max) {
2299 l = access_size_max;
82f2563f 2300 }
098178f2
PB
2301 if (l & (l - 1)) {
2302 l = 1 << (qemu_fls(l) - 1);
2303 }
23326164
RH
2304
2305 return l;
82f2563f
PB
2306}
2307
fd8aaa76 2308bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
ac1970fb 2309 int len, bool is_write)
13eb76e0 2310{
149f54b5 2311 hwaddr l;
13eb76e0 2312 uint8_t *ptr;
791af8c8 2313 uint64_t val;
149f54b5 2314 hwaddr addr1;
5c8a00ce 2315 MemoryRegion *mr;
fd8aaa76 2316 bool error = false;
3b46e624 2317
13eb76e0 2318 while (len > 0) {
149f54b5 2319 l = len;
5c8a00ce 2320 mr = address_space_translate(as, addr, &addr1, &l, is_write);
3b46e624 2321
13eb76e0 2322 if (is_write) {
5c8a00ce
PB
2323 if (!memory_access_is_direct(mr, is_write)) {
2324 l = memory_access_size(mr, l, addr1);
4917cf44 2325 /* XXX: could force current_cpu to NULL to avoid
6a00d601 2326 potential bugs */
23326164
RH
2327 switch (l) {
2328 case 8:
2329 /* 64 bit write access */
2330 val = ldq_p(buf);
2331 error |= io_mem_write(mr, addr1, val, 8);
2332 break;
2333 case 4:
1c213d19 2334 /* 32 bit write access */
c27004ec 2335 val = ldl_p(buf);
5c8a00ce 2336 error |= io_mem_write(mr, addr1, val, 4);
23326164
RH
2337 break;
2338 case 2:
1c213d19 2339 /* 16 bit write access */
c27004ec 2340 val = lduw_p(buf);
5c8a00ce 2341 error |= io_mem_write(mr, addr1, val, 2);
23326164
RH
2342 break;
2343 case 1:
1c213d19 2344 /* 8 bit write access */
c27004ec 2345 val = ldub_p(buf);
5c8a00ce 2346 error |= io_mem_write(mr, addr1, val, 1);
23326164
RH
2347 break;
2348 default:
2349 abort();
13eb76e0 2350 }
2bbfa05d 2351 } else {
5c8a00ce 2352 addr1 += memory_region_get_ram_addr(mr);
13eb76e0 2353 /* RAM case */
5579c7f3 2354 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 2355 memcpy(ptr, buf, l);
51d7a9eb 2356 invalidate_and_set_dirty(addr1, l);
13eb76e0
FB
2357 }
2358 } else {
5c8a00ce 2359 if (!memory_access_is_direct(mr, is_write)) {
13eb76e0 2360 /* I/O case */
5c8a00ce 2361 l = memory_access_size(mr, l, addr1);
23326164
RH
2362 switch (l) {
2363 case 8:
2364 /* 64 bit read access */
2365 error |= io_mem_read(mr, addr1, &val, 8);
2366 stq_p(buf, val);
2367 break;
2368 case 4:
13eb76e0 2369 /* 32 bit read access */
5c8a00ce 2370 error |= io_mem_read(mr, addr1, &val, 4);
c27004ec 2371 stl_p(buf, val);
23326164
RH
2372 break;
2373 case 2:
13eb76e0 2374 /* 16 bit read access */
5c8a00ce 2375 error |= io_mem_read(mr, addr1, &val, 2);
c27004ec 2376 stw_p(buf, val);
23326164
RH
2377 break;
2378 case 1:
1c213d19 2379 /* 8 bit read access */
5c8a00ce 2380 error |= io_mem_read(mr, addr1, &val, 1);
c27004ec 2381 stb_p(buf, val);
23326164
RH
2382 break;
2383 default:
2384 abort();
13eb76e0
FB
2385 }
2386 } else {
2387 /* RAM case */
5c8a00ce 2388 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
f3705d53 2389 memcpy(buf, ptr, l);
13eb76e0
FB
2390 }
2391 }
2392 len -= l;
2393 buf += l;
2394 addr += l;
2395 }
fd8aaa76
PB
2396
2397 return error;
13eb76e0 2398}
8df1cd07 2399
fd8aaa76 2400bool address_space_write(AddressSpace *as, hwaddr addr,
ac1970fb
AK
2401 const uint8_t *buf, int len)
2402{
fd8aaa76 2403 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
ac1970fb
AK
2404}
2405
fd8aaa76 2406bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
ac1970fb 2407{
fd8aaa76 2408 return address_space_rw(as, addr, buf, len, false);
ac1970fb
AK
2409}
2410
2411
a8170e5e 2412void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2413 int len, int is_write)
2414{
fd8aaa76 2415 address_space_rw(&address_space_memory, addr, buf, len, is_write);
ac1970fb
AK
2416}
2417
582b55a9
AG
2418enum write_rom_type {
2419 WRITE_DATA,
2420 FLUSH_CACHE,
2421};
2422
2a221651 2423static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2424 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2425{
149f54b5 2426 hwaddr l;
d0ecd2aa 2427 uint8_t *ptr;
149f54b5 2428 hwaddr addr1;
5c8a00ce 2429 MemoryRegion *mr;
3b46e624 2430
d0ecd2aa 2431 while (len > 0) {
149f54b5 2432 l = len;
2a221651 2433 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2434
5c8a00ce
PB
2435 if (!(memory_region_is_ram(mr) ||
2436 memory_region_is_romd(mr))) {
d0ecd2aa
FB
2437 /* do nothing */
2438 } else {
5c8a00ce 2439 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2440 /* ROM/RAM case */
5579c7f3 2441 ptr = qemu_get_ram_ptr(addr1);
582b55a9
AG
2442 switch (type) {
2443 case WRITE_DATA:
2444 memcpy(ptr, buf, l);
2445 invalidate_and_set_dirty(addr1, l);
2446 break;
2447 case FLUSH_CACHE:
2448 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2449 break;
2450 }
d0ecd2aa
FB
2451 }
2452 len -= l;
2453 buf += l;
2454 addr += l;
2455 }
2456}
2457
582b55a9 2458/* used for ROM loading : can write in RAM and ROM */
2a221651 2459void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2460 const uint8_t *buf, int len)
2461{
2a221651 2462 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2463}
2464
2465void cpu_flush_icache_range(hwaddr start, int len)
2466{
2467 /*
2468 * This function should do the same thing as an icache flush that was
2469 * triggered from within the guest. For TCG we are always cache coherent,
2470 * so there is no need to flush anything. For KVM / Xen we need to flush
2471 * the host's instruction cache at least.
2472 */
2473 if (tcg_enabled()) {
2474 return;
2475 }
2476
2a221651
EI
2477 cpu_physical_memory_write_rom_internal(&address_space_memory,
2478 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2479}
2480
6d16c2f8 2481typedef struct {
d3e71559 2482 MemoryRegion *mr;
6d16c2f8 2483 void *buffer;
a8170e5e
AK
2484 hwaddr addr;
2485 hwaddr len;
6d16c2f8
AL
2486} BounceBuffer;
2487
2488static BounceBuffer bounce;
2489
ba223c29
AL
2490typedef struct MapClient {
2491 void *opaque;
2492 void (*callback)(void *opaque);
72cf2d4f 2493 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2494} MapClient;
2495
72cf2d4f
BS
2496static QLIST_HEAD(map_client_list, MapClient) map_client_list
2497 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
2498
2499void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2500{
7267c094 2501 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
2502
2503 client->opaque = opaque;
2504 client->callback = callback;
72cf2d4f 2505 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
2506 return client;
2507}
2508
8b9c99d9 2509static void cpu_unregister_map_client(void *_client)
ba223c29
AL
2510{
2511 MapClient *client = (MapClient *)_client;
2512
72cf2d4f 2513 QLIST_REMOVE(client, link);
7267c094 2514 g_free(client);
ba223c29
AL
2515}
2516
2517static void cpu_notify_map_clients(void)
2518{
2519 MapClient *client;
2520
72cf2d4f
BS
2521 while (!QLIST_EMPTY(&map_client_list)) {
2522 client = QLIST_FIRST(&map_client_list);
ba223c29 2523 client->callback(client->opaque);
34d5e948 2524 cpu_unregister_map_client(client);
ba223c29
AL
2525 }
2526}
2527
51644ab7
PB
2528bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2529{
5c8a00ce 2530 MemoryRegion *mr;
51644ab7
PB
2531 hwaddr l, xlat;
2532
2533 while (len > 0) {
2534 l = len;
5c8a00ce
PB
2535 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2536 if (!memory_access_is_direct(mr, is_write)) {
2537 l = memory_access_size(mr, l, addr);
2538 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2539 return false;
2540 }
2541 }
2542
2543 len -= l;
2544 addr += l;
2545 }
2546 return true;
2547}
2548
6d16c2f8
AL
2549/* Map a physical memory region into a host virtual address.
2550 * May map a subset of the requested range, given by and returned in *plen.
2551 * May return NULL if resources needed to perform the mapping are exhausted.
2552 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2553 * Use cpu_register_map_client() to know when retrying the map operation is
2554 * likely to succeed.
6d16c2f8 2555 */
ac1970fb 2556void *address_space_map(AddressSpace *as,
a8170e5e
AK
2557 hwaddr addr,
2558 hwaddr *plen,
ac1970fb 2559 bool is_write)
6d16c2f8 2560{
a8170e5e 2561 hwaddr len = *plen;
e3127ae0
PB
2562 hwaddr done = 0;
2563 hwaddr l, xlat, base;
2564 MemoryRegion *mr, *this_mr;
2565 ram_addr_t raddr;
6d16c2f8 2566
e3127ae0
PB
2567 if (len == 0) {
2568 return NULL;
2569 }
38bee5dc 2570
e3127ae0
PB
2571 l = len;
2572 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2573 if (!memory_access_is_direct(mr, is_write)) {
2574 if (bounce.buffer) {
2575 return NULL;
6d16c2f8 2576 }
e85d9db5
KW
2577 /* Avoid unbounded allocations */
2578 l = MIN(l, TARGET_PAGE_SIZE);
2579 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2580 bounce.addr = addr;
2581 bounce.len = l;
d3e71559
PB
2582
2583 memory_region_ref(mr);
2584 bounce.mr = mr;
e3127ae0
PB
2585 if (!is_write) {
2586 address_space_read(as, addr, bounce.buffer, l);
8ab934f9 2587 }
6d16c2f8 2588
e3127ae0
PB
2589 *plen = l;
2590 return bounce.buffer;
2591 }
2592
2593 base = xlat;
2594 raddr = memory_region_get_ram_addr(mr);
2595
2596 for (;;) {
6d16c2f8
AL
2597 len -= l;
2598 addr += l;
e3127ae0
PB
2599 done += l;
2600 if (len == 0) {
2601 break;
2602 }
2603
2604 l = len;
2605 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2606 if (this_mr != mr || xlat != base + done) {
2607 break;
2608 }
6d16c2f8 2609 }
e3127ae0 2610
d3e71559 2611 memory_region_ref(mr);
e3127ae0
PB
2612 *plen = done;
2613 return qemu_ram_ptr_length(raddr + base, plen);
6d16c2f8
AL
2614}
2615
ac1970fb 2616/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2617 * Will also mark the memory as dirty if is_write == 1. access_len gives
2618 * the amount of memory that was actually read or written by the caller.
2619 */
a8170e5e
AK
2620void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2621 int is_write, hwaddr access_len)
6d16c2f8
AL
2622{
2623 if (buffer != bounce.buffer) {
d3e71559
PB
2624 MemoryRegion *mr;
2625 ram_addr_t addr1;
2626
2627 mr = qemu_ram_addr_from_host(buffer, &addr1);
2628 assert(mr != NULL);
6d16c2f8 2629 if (is_write) {
6886867e 2630 invalidate_and_set_dirty(addr1, access_len);
6d16c2f8 2631 }
868bb33f 2632 if (xen_enabled()) {
e41d7c69 2633 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2634 }
d3e71559 2635 memory_region_unref(mr);
6d16c2f8
AL
2636 return;
2637 }
2638 if (is_write) {
ac1970fb 2639 address_space_write(as, bounce.addr, bounce.buffer, access_len);
6d16c2f8 2640 }
f8a83245 2641 qemu_vfree(bounce.buffer);
6d16c2f8 2642 bounce.buffer = NULL;
d3e71559 2643 memory_region_unref(bounce.mr);
ba223c29 2644 cpu_notify_map_clients();
6d16c2f8 2645}
d0ecd2aa 2646
a8170e5e
AK
2647void *cpu_physical_memory_map(hwaddr addr,
2648 hwaddr *plen,
ac1970fb
AK
2649 int is_write)
2650{
2651 return address_space_map(&address_space_memory, addr, plen, is_write);
2652}
2653
a8170e5e
AK
2654void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2655 int is_write, hwaddr access_len)
ac1970fb
AK
2656{
2657 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2658}
2659
8df1cd07 2660/* warning: addr must be aligned */
fdfba1a2 2661static inline uint32_t ldl_phys_internal(AddressSpace *as, hwaddr addr,
1e78bcc1 2662 enum device_endian endian)
8df1cd07 2663{
8df1cd07 2664 uint8_t *ptr;
791af8c8 2665 uint64_t val;
5c8a00ce 2666 MemoryRegion *mr;
149f54b5
PB
2667 hwaddr l = 4;
2668 hwaddr addr1;
8df1cd07 2669
fdfba1a2 2670 mr = address_space_translate(as, addr, &addr1, &l, false);
5c8a00ce 2671 if (l < 4 || !memory_access_is_direct(mr, false)) {
8df1cd07 2672 /* I/O case */
5c8a00ce 2673 io_mem_read(mr, addr1, &val, 4);
1e78bcc1
AG
2674#if defined(TARGET_WORDS_BIGENDIAN)
2675 if (endian == DEVICE_LITTLE_ENDIAN) {
2676 val = bswap32(val);
2677 }
2678#else
2679 if (endian == DEVICE_BIG_ENDIAN) {
2680 val = bswap32(val);
2681 }
2682#endif
8df1cd07
FB
2683 } else {
2684 /* RAM case */
5c8a00ce 2685 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2686 & TARGET_PAGE_MASK)
149f54b5 2687 + addr1);
1e78bcc1
AG
2688 switch (endian) {
2689 case DEVICE_LITTLE_ENDIAN:
2690 val = ldl_le_p(ptr);
2691 break;
2692 case DEVICE_BIG_ENDIAN:
2693 val = ldl_be_p(ptr);
2694 break;
2695 default:
2696 val = ldl_p(ptr);
2697 break;
2698 }
8df1cd07
FB
2699 }
2700 return val;
2701}
2702
fdfba1a2 2703uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2704{
fdfba1a2 2705 return ldl_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
1e78bcc1
AG
2706}
2707
fdfba1a2 2708uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2709{
fdfba1a2 2710 return ldl_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
1e78bcc1
AG
2711}
2712
fdfba1a2 2713uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2714{
fdfba1a2 2715 return ldl_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
1e78bcc1
AG
2716}
2717
84b7b8e7 2718/* warning: addr must be aligned */
2c17449b 2719static inline uint64_t ldq_phys_internal(AddressSpace *as, hwaddr addr,
1e78bcc1 2720 enum device_endian endian)
84b7b8e7 2721{
84b7b8e7
FB
2722 uint8_t *ptr;
2723 uint64_t val;
5c8a00ce 2724 MemoryRegion *mr;
149f54b5
PB
2725 hwaddr l = 8;
2726 hwaddr addr1;
84b7b8e7 2727
2c17449b 2728 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
2729 false);
2730 if (l < 8 || !memory_access_is_direct(mr, false)) {
84b7b8e7 2731 /* I/O case */
5c8a00ce 2732 io_mem_read(mr, addr1, &val, 8);
968a5627
PB
2733#if defined(TARGET_WORDS_BIGENDIAN)
2734 if (endian == DEVICE_LITTLE_ENDIAN) {
2735 val = bswap64(val);
2736 }
2737#else
2738 if (endian == DEVICE_BIG_ENDIAN) {
2739 val = bswap64(val);
2740 }
84b7b8e7
FB
2741#endif
2742 } else {
2743 /* RAM case */
5c8a00ce 2744 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2745 & TARGET_PAGE_MASK)
149f54b5 2746 + addr1);
1e78bcc1
AG
2747 switch (endian) {
2748 case DEVICE_LITTLE_ENDIAN:
2749 val = ldq_le_p(ptr);
2750 break;
2751 case DEVICE_BIG_ENDIAN:
2752 val = ldq_be_p(ptr);
2753 break;
2754 default:
2755 val = ldq_p(ptr);
2756 break;
2757 }
84b7b8e7
FB
2758 }
2759 return val;
2760}
2761
2c17449b 2762uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2763{
2c17449b 2764 return ldq_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
1e78bcc1
AG
2765}
2766
2c17449b 2767uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2768{
2c17449b 2769 return ldq_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
1e78bcc1
AG
2770}
2771
2c17449b 2772uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2773{
2c17449b 2774 return ldq_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
1e78bcc1
AG
2775}
2776
aab33094 2777/* XXX: optimize */
2c17449b 2778uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
aab33094
FB
2779{
2780 uint8_t val;
2c17449b 2781 address_space_rw(as, addr, &val, 1, 0);
aab33094
FB
2782 return val;
2783}
2784
733f0b02 2785/* warning: addr must be aligned */
41701aa4 2786static inline uint32_t lduw_phys_internal(AddressSpace *as, hwaddr addr,
1e78bcc1 2787 enum device_endian endian)
aab33094 2788{
733f0b02
MT
2789 uint8_t *ptr;
2790 uint64_t val;
5c8a00ce 2791 MemoryRegion *mr;
149f54b5
PB
2792 hwaddr l = 2;
2793 hwaddr addr1;
733f0b02 2794
41701aa4 2795 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
2796 false);
2797 if (l < 2 || !memory_access_is_direct(mr, false)) {
733f0b02 2798 /* I/O case */
5c8a00ce 2799 io_mem_read(mr, addr1, &val, 2);
1e78bcc1
AG
2800#if defined(TARGET_WORDS_BIGENDIAN)
2801 if (endian == DEVICE_LITTLE_ENDIAN) {
2802 val = bswap16(val);
2803 }
2804#else
2805 if (endian == DEVICE_BIG_ENDIAN) {
2806 val = bswap16(val);
2807 }
2808#endif
733f0b02
MT
2809 } else {
2810 /* RAM case */
5c8a00ce 2811 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2812 & TARGET_PAGE_MASK)
149f54b5 2813 + addr1);
1e78bcc1
AG
2814 switch (endian) {
2815 case DEVICE_LITTLE_ENDIAN:
2816 val = lduw_le_p(ptr);
2817 break;
2818 case DEVICE_BIG_ENDIAN:
2819 val = lduw_be_p(ptr);
2820 break;
2821 default:
2822 val = lduw_p(ptr);
2823 break;
2824 }
733f0b02
MT
2825 }
2826 return val;
aab33094
FB
2827}
2828
41701aa4 2829uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2830{
41701aa4 2831 return lduw_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
1e78bcc1
AG
2832}
2833
41701aa4 2834uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2835{
41701aa4 2836 return lduw_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
1e78bcc1
AG
2837}
2838
41701aa4 2839uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2840{
41701aa4 2841 return lduw_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
1e78bcc1
AG
2842}
2843
8df1cd07
FB
2844/* warning: addr must be aligned. The ram page is not masked as dirty
2845 and the code inside is not invalidated. It is useful if the dirty
2846 bits are used to track modified PTEs */
2198a121 2847void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
8df1cd07 2848{
8df1cd07 2849 uint8_t *ptr;
5c8a00ce 2850 MemoryRegion *mr;
149f54b5
PB
2851 hwaddr l = 4;
2852 hwaddr addr1;
8df1cd07 2853
2198a121 2854 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
2855 true);
2856 if (l < 4 || !memory_access_is_direct(mr, true)) {
2857 io_mem_write(mr, addr1, val, 4);
8df1cd07 2858 } else {
5c8a00ce 2859 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2860 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 2861 stl_p(ptr, val);
74576198
AL
2862
2863 if (unlikely(in_migration)) {
a2cd8c85 2864 if (cpu_physical_memory_is_clean(addr1)) {
74576198
AL
2865 /* invalidate code */
2866 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2867 /* set dirty bit */
6886867e 2868 cpu_physical_memory_set_dirty_range_nocode(addr1, 4);
74576198
AL
2869 }
2870 }
8df1cd07
FB
2871 }
2872}
2873
2874/* warning: addr must be aligned */
ab1da857
EI
2875static inline void stl_phys_internal(AddressSpace *as,
2876 hwaddr addr, uint32_t val,
1e78bcc1 2877 enum device_endian endian)
8df1cd07 2878{
8df1cd07 2879 uint8_t *ptr;
5c8a00ce 2880 MemoryRegion *mr;
149f54b5
PB
2881 hwaddr l = 4;
2882 hwaddr addr1;
8df1cd07 2883
ab1da857 2884 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
2885 true);
2886 if (l < 4 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2887#if defined(TARGET_WORDS_BIGENDIAN)
2888 if (endian == DEVICE_LITTLE_ENDIAN) {
2889 val = bswap32(val);
2890 }
2891#else
2892 if (endian == DEVICE_BIG_ENDIAN) {
2893 val = bswap32(val);
2894 }
2895#endif
5c8a00ce 2896 io_mem_write(mr, addr1, val, 4);
8df1cd07 2897 } else {
8df1cd07 2898 /* RAM case */
5c8a00ce 2899 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2900 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2901 switch (endian) {
2902 case DEVICE_LITTLE_ENDIAN:
2903 stl_le_p(ptr, val);
2904 break;
2905 case DEVICE_BIG_ENDIAN:
2906 stl_be_p(ptr, val);
2907 break;
2908 default:
2909 stl_p(ptr, val);
2910 break;
2911 }
51d7a9eb 2912 invalidate_and_set_dirty(addr1, 4);
8df1cd07
FB
2913 }
2914}
2915
ab1da857 2916void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 2917{
ab1da857 2918 stl_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN);
1e78bcc1
AG
2919}
2920
ab1da857 2921void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 2922{
ab1da857 2923 stl_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN);
1e78bcc1
AG
2924}
2925
ab1da857 2926void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 2927{
ab1da857 2928 stl_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN);
1e78bcc1
AG
2929}
2930
aab33094 2931/* XXX: optimize */
db3be60d 2932void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
aab33094
FB
2933{
2934 uint8_t v = val;
db3be60d 2935 address_space_rw(as, addr, &v, 1, 1);
aab33094
FB
2936}
2937
733f0b02 2938/* warning: addr must be aligned */
5ce5944d
EI
2939static inline void stw_phys_internal(AddressSpace *as,
2940 hwaddr addr, uint32_t val,
1e78bcc1 2941 enum device_endian endian)
aab33094 2942{
733f0b02 2943 uint8_t *ptr;
5c8a00ce 2944 MemoryRegion *mr;
149f54b5
PB
2945 hwaddr l = 2;
2946 hwaddr addr1;
733f0b02 2947
5ce5944d 2948 mr = address_space_translate(as, addr, &addr1, &l, true);
5c8a00ce 2949 if (l < 2 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2950#if defined(TARGET_WORDS_BIGENDIAN)
2951 if (endian == DEVICE_LITTLE_ENDIAN) {
2952 val = bswap16(val);
2953 }
2954#else
2955 if (endian == DEVICE_BIG_ENDIAN) {
2956 val = bswap16(val);
2957 }
2958#endif
5c8a00ce 2959 io_mem_write(mr, addr1, val, 2);
733f0b02 2960 } else {
733f0b02 2961 /* RAM case */
5c8a00ce 2962 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 2963 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2964 switch (endian) {
2965 case DEVICE_LITTLE_ENDIAN:
2966 stw_le_p(ptr, val);
2967 break;
2968 case DEVICE_BIG_ENDIAN:
2969 stw_be_p(ptr, val);
2970 break;
2971 default:
2972 stw_p(ptr, val);
2973 break;
2974 }
51d7a9eb 2975 invalidate_and_set_dirty(addr1, 2);
733f0b02 2976 }
aab33094
FB
2977}
2978
5ce5944d 2979void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 2980{
5ce5944d 2981 stw_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN);
1e78bcc1
AG
2982}
2983
5ce5944d 2984void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 2985{
5ce5944d 2986 stw_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN);
1e78bcc1
AG
2987}
2988
5ce5944d 2989void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 2990{
5ce5944d 2991 stw_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN);
1e78bcc1
AG
2992}
2993
aab33094 2994/* XXX: optimize */
f606604f 2995void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
aab33094
FB
2996{
2997 val = tswap64(val);
f606604f 2998 address_space_rw(as, addr, (void *) &val, 8, 1);
aab33094
FB
2999}
3000
f606604f 3001void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1
AG
3002{
3003 val = cpu_to_le64(val);
f606604f 3004 address_space_rw(as, addr, (void *) &val, 8, 1);
1e78bcc1
AG
3005}
3006
f606604f 3007void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1
AG
3008{
3009 val = cpu_to_be64(val);
f606604f 3010 address_space_rw(as, addr, (void *) &val, 8, 1);
1e78bcc1
AG
3011}
3012
5e2972fd 3013/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3014int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3015 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3016{
3017 int l;
a8170e5e 3018 hwaddr phys_addr;
9b3c35e0 3019 target_ulong page;
13eb76e0
FB
3020
3021 while (len > 0) {
3022 page = addr & TARGET_PAGE_MASK;
f17ec444 3023 phys_addr = cpu_get_phys_page_debug(cpu, page);
13eb76e0
FB
3024 /* if no physical page mapped, return an error */
3025 if (phys_addr == -1)
3026 return -1;
3027 l = (page + TARGET_PAGE_SIZE) - addr;
3028 if (l > len)
3029 l = len;
5e2972fd 3030 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b
EI
3031 if (is_write) {
3032 cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l);
3033 } else {
3034 address_space_rw(cpu->as, phys_addr, buf, l, 0);
3035 }
13eb76e0
FB
3036 len -= l;
3037 buf += l;
3038 addr += l;
3039 }
3040 return 0;
3041}
a68fe89c 3042#endif
13eb76e0 3043
8e4a424b
BS
3044/*
3045 * A helper function for the _utterly broken_ virtio device model to find out if
3046 * it's running on a big endian machine. Don't do this at home kids!
3047 */
98ed8ecf
GK
3048bool target_words_bigendian(void);
3049bool target_words_bigendian(void)
8e4a424b
BS
3050{
3051#if defined(TARGET_WORDS_BIGENDIAN)
3052 return true;
3053#else
3054 return false;
3055#endif
3056}
3057
76f35538 3058#ifndef CONFIG_USER_ONLY
a8170e5e 3059bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3060{
5c8a00ce 3061 MemoryRegion*mr;
149f54b5 3062 hwaddr l = 1;
76f35538 3063
5c8a00ce
PB
3064 mr = address_space_translate(&address_space_memory,
3065 phys_addr, &phys_addr, &l, false);
76f35538 3066
5c8a00ce
PB
3067 return !(memory_region_is_ram(mr) ||
3068 memory_region_is_romd(mr));
76f35538 3069}
bd2fa51f
MH
3070
3071void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3072{
3073 RAMBlock *block;
3074
0dc3f44a
MD
3075 rcu_read_lock();
3076 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 3077 func(block->host, block->offset, block->used_length, opaque);
bd2fa51f 3078 }
0dc3f44a 3079 rcu_read_unlock();
bd2fa51f 3080}
ec3f8c99 3081#endif
This page took 1.406447 seconds and 4 git commands to generate.