]> Git Repo - qemu.git/blame - target/arm/vec_helper.c
target/arm: Convert Neon VADD, VSUB, VABD 3-reg-same insns to decodetree
[qemu.git] / target / arm / vec_helper.c
CommitLineData
d9061ec3
RH
1/*
2 * ARM AdvSIMD / SVE Vector Operations
3 *
4 * Copyright (c) 2018 Linaro
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
21#include "cpu.h"
d9061ec3
RH
22#include "exec/helper-proto.h"
23#include "tcg/tcg-gvec-desc.h"
1695cd61 24#include "fpu/softfloat.h"
d9061ec3
RH
25
26
1695cd61
RH
27/* Note that vector data is stored in host-endian 64-bit chunks,
28 so addressing units smaller than that needs a host-endian fixup. */
29#ifdef HOST_WORDS_BIGENDIAN
30#define H1(x) ((x) ^ 7)
31#define H2(x) ((x) ^ 3)
32#define H4(x) ((x) ^ 1)
33#else
34#define H1(x) (x)
35#define H2(x) (x)
36#define H4(x) (x)
37#endif
38
e7186d82
RH
39static void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz)
40{
41 uint64_t *d = vd + opr_sz;
42 uintptr_t i;
43
44 for (i = opr_sz; i < max_sz; i += 8) {
45 *d++ = 0;
46 }
47}
48
d9061ec3 49/* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
e286bf4a
RH
50static int16_t inl_qrdmlah_s16(int16_t src1, int16_t src2,
51 int16_t src3, uint32_t *sat)
d9061ec3
RH
52{
53 /* Simplify:
54 * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
55 * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
56 */
57 int32_t ret = (int32_t)src1 * src2;
58 ret = ((int32_t)src3 << 15) + ret + (1 << 14);
59 ret >>= 15;
60 if (ret != (int16_t)ret) {
e286bf4a 61 *sat = 1;
d9061ec3
RH
62 ret = (ret < 0 ? -0x8000 : 0x7fff);
63 }
64 return ret;
65}
66
67uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
68 uint32_t src2, uint32_t src3)
69{
e286bf4a
RH
70 uint32_t *sat = &env->vfp.qc[0];
71 uint16_t e1 = inl_qrdmlah_s16(src1, src2, src3, sat);
72 uint16_t e2 = inl_qrdmlah_s16(src1 >> 16, src2 >> 16, src3 >> 16, sat);
d9061ec3
RH
73 return deposit32(e1, 16, 16, e2);
74}
75
e7186d82 76void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
e286bf4a 77 void *vq, uint32_t desc)
e7186d82
RH
78{
79 uintptr_t opr_sz = simd_oprsz(desc);
80 int16_t *d = vd;
81 int16_t *n = vn;
82 int16_t *m = vm;
e7186d82
RH
83 uintptr_t i;
84
85 for (i = 0; i < opr_sz / 2; ++i) {
e286bf4a 86 d[i] = inl_qrdmlah_s16(n[i], m[i], d[i], vq);
e7186d82
RH
87 }
88 clear_tail(d, opr_sz, simd_maxsz(desc));
89}
90
d9061ec3 91/* Signed saturating rounding doubling multiply-subtract high half, 16-bit */
e286bf4a
RH
92static int16_t inl_qrdmlsh_s16(int16_t src1, int16_t src2,
93 int16_t src3, uint32_t *sat)
d9061ec3
RH
94{
95 /* Similarly, using subtraction:
96 * = ((a3 << 16) - ((e1 * e2) << 1) + (1 << 15)) >> 16
97 * = ((a3 << 15) - (e1 * e2) + (1 << 14)) >> 15
98 */
99 int32_t ret = (int32_t)src1 * src2;
100 ret = ((int32_t)src3 << 15) - ret + (1 << 14);
101 ret >>= 15;
102 if (ret != (int16_t)ret) {
e286bf4a 103 *sat = 1;
d9061ec3
RH
104 ret = (ret < 0 ? -0x8000 : 0x7fff);
105 }
106 return ret;
107}
108
109uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
110 uint32_t src2, uint32_t src3)
111{
e286bf4a
RH
112 uint32_t *sat = &env->vfp.qc[0];
113 uint16_t e1 = inl_qrdmlsh_s16(src1, src2, src3, sat);
114 uint16_t e2 = inl_qrdmlsh_s16(src1 >> 16, src2 >> 16, src3 >> 16, sat);
d9061ec3
RH
115 return deposit32(e1, 16, 16, e2);
116}
117
e7186d82 118void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
e286bf4a 119 void *vq, uint32_t desc)
e7186d82
RH
120{
121 uintptr_t opr_sz = simd_oprsz(desc);
122 int16_t *d = vd;
123 int16_t *n = vn;
124 int16_t *m = vm;
e7186d82
RH
125 uintptr_t i;
126
127 for (i = 0; i < opr_sz / 2; ++i) {
e286bf4a 128 d[i] = inl_qrdmlsh_s16(n[i], m[i], d[i], vq);
e7186d82
RH
129 }
130 clear_tail(d, opr_sz, simd_maxsz(desc));
131}
132
d9061ec3 133/* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
e286bf4a
RH
134static int32_t inl_qrdmlah_s32(int32_t src1, int32_t src2,
135 int32_t src3, uint32_t *sat)
d9061ec3
RH
136{
137 /* Simplify similarly to int_qrdmlah_s16 above. */
138 int64_t ret = (int64_t)src1 * src2;
139 ret = ((int64_t)src3 << 31) + ret + (1 << 30);
140 ret >>= 31;
141 if (ret != (int32_t)ret) {
e286bf4a 142 *sat = 1;
d9061ec3
RH
143 ret = (ret < 0 ? INT32_MIN : INT32_MAX);
144 }
145 return ret;
146}
147
e286bf4a
RH
148uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
149 int32_t src2, int32_t src3)
150{
151 uint32_t *sat = &env->vfp.qc[0];
152 return inl_qrdmlah_s32(src1, src2, src3, sat);
153}
154
e7186d82 155void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
e286bf4a 156 void *vq, uint32_t desc)
e7186d82
RH
157{
158 uintptr_t opr_sz = simd_oprsz(desc);
159 int32_t *d = vd;
160 int32_t *n = vn;
161 int32_t *m = vm;
e7186d82
RH
162 uintptr_t i;
163
164 for (i = 0; i < opr_sz / 4; ++i) {
e286bf4a 165 d[i] = inl_qrdmlah_s32(n[i], m[i], d[i], vq);
e7186d82
RH
166 }
167 clear_tail(d, opr_sz, simd_maxsz(desc));
168}
169
d9061ec3 170/* Signed saturating rounding doubling multiply-subtract high half, 32-bit */
e286bf4a
RH
171static int32_t inl_qrdmlsh_s32(int32_t src1, int32_t src2,
172 int32_t src3, uint32_t *sat)
d9061ec3
RH
173{
174 /* Simplify similarly to int_qrdmlsh_s16 above. */
175 int64_t ret = (int64_t)src1 * src2;
176 ret = ((int64_t)src3 << 31) - ret + (1 << 30);
177 ret >>= 31;
178 if (ret != (int32_t)ret) {
e286bf4a 179 *sat = 1;
d9061ec3
RH
180 ret = (ret < 0 ? INT32_MIN : INT32_MAX);
181 }
182 return ret;
183}
e7186d82 184
e286bf4a
RH
185uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
186 int32_t src2, int32_t src3)
187{
188 uint32_t *sat = &env->vfp.qc[0];
189 return inl_qrdmlsh_s32(src1, src2, src3, sat);
190}
191
e7186d82 192void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
e286bf4a 193 void *vq, uint32_t desc)
e7186d82
RH
194{
195 uintptr_t opr_sz = simd_oprsz(desc);
196 int32_t *d = vd;
197 int32_t *n = vn;
198 int32_t *m = vm;
e7186d82
RH
199 uintptr_t i;
200
201 for (i = 0; i < opr_sz / 4; ++i) {
e286bf4a 202 d[i] = inl_qrdmlsh_s32(n[i], m[i], d[i], vq);
e7186d82
RH
203 }
204 clear_tail(d, opr_sz, simd_maxsz(desc));
205}
1695cd61 206
d730ecaa
RH
207/* Integer 8 and 16-bit dot-product.
208 *
209 * Note that for the loops herein, host endianness does not matter
210 * with respect to the ordering of data within the 64-bit lanes.
211 * All elements are treated equally, no matter where they are.
212 */
213
214void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc)
215{
216 intptr_t i, opr_sz = simd_oprsz(desc);
217 uint32_t *d = vd;
218 int8_t *n = vn, *m = vm;
219
220 for (i = 0; i < opr_sz / 4; ++i) {
221 d[i] += n[i * 4 + 0] * m[i * 4 + 0]
222 + n[i * 4 + 1] * m[i * 4 + 1]
223 + n[i * 4 + 2] * m[i * 4 + 2]
224 + n[i * 4 + 3] * m[i * 4 + 3];
225 }
226 clear_tail(d, opr_sz, simd_maxsz(desc));
227}
228
229void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc)
230{
231 intptr_t i, opr_sz = simd_oprsz(desc);
232 uint32_t *d = vd;
233 uint8_t *n = vn, *m = vm;
234
235 for (i = 0; i < opr_sz / 4; ++i) {
236 d[i] += n[i * 4 + 0] * m[i * 4 + 0]
237 + n[i * 4 + 1] * m[i * 4 + 1]
238 + n[i * 4 + 2] * m[i * 4 + 2]
239 + n[i * 4 + 3] * m[i * 4 + 3];
240 }
241 clear_tail(d, opr_sz, simd_maxsz(desc));
242}
243
244void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc)
245{
246 intptr_t i, opr_sz = simd_oprsz(desc);
247 uint64_t *d = vd;
248 int16_t *n = vn, *m = vm;
249
250 for (i = 0; i < opr_sz / 8; ++i) {
251 d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0]
252 + (int64_t)n[i * 4 + 1] * m[i * 4 + 1]
253 + (int64_t)n[i * 4 + 2] * m[i * 4 + 2]
254 + (int64_t)n[i * 4 + 3] * m[i * 4 + 3];
255 }
256 clear_tail(d, opr_sz, simd_maxsz(desc));
257}
258
259void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc)
260{
261 intptr_t i, opr_sz = simd_oprsz(desc);
262 uint64_t *d = vd;
263 uint16_t *n = vn, *m = vm;
264
265 for (i = 0; i < opr_sz / 8; ++i) {
266 d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0]
267 + (uint64_t)n[i * 4 + 1] * m[i * 4 + 1]
268 + (uint64_t)n[i * 4 + 2] * m[i * 4 + 2]
269 + (uint64_t)n[i * 4 + 3] * m[i * 4 + 3];
270 }
271 clear_tail(d, opr_sz, simd_maxsz(desc));
272}
273
16fcfdc7
RH
274void HELPER(gvec_sdot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
275{
276 intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
277 intptr_t index = simd_data(desc);
278 uint32_t *d = vd;
279 int8_t *n = vn;
280 int8_t *m_indexed = (int8_t *)vm + index * 4;
281
282 /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
283 * Otherwise opr_sz is a multiple of 16.
284 */
285 segend = MIN(4, opr_sz_4);
286 i = 0;
287 do {
288 int8_t m0 = m_indexed[i * 4 + 0];
289 int8_t m1 = m_indexed[i * 4 + 1];
290 int8_t m2 = m_indexed[i * 4 + 2];
291 int8_t m3 = m_indexed[i * 4 + 3];
292
293 do {
294 d[i] += n[i * 4 + 0] * m0
295 + n[i * 4 + 1] * m1
296 + n[i * 4 + 2] * m2
297 + n[i * 4 + 3] * m3;
298 } while (++i < segend);
299 segend = i + 4;
300 } while (i < opr_sz_4);
301
302 clear_tail(d, opr_sz, simd_maxsz(desc));
303}
304
305void HELPER(gvec_udot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
306{
307 intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
308 intptr_t index = simd_data(desc);
309 uint32_t *d = vd;
310 uint8_t *n = vn;
311 uint8_t *m_indexed = (uint8_t *)vm + index * 4;
312
313 /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
314 * Otherwise opr_sz is a multiple of 16.
315 */
316 segend = MIN(4, opr_sz_4);
317 i = 0;
318 do {
319 uint8_t m0 = m_indexed[i * 4 + 0];
320 uint8_t m1 = m_indexed[i * 4 + 1];
321 uint8_t m2 = m_indexed[i * 4 + 2];
322 uint8_t m3 = m_indexed[i * 4 + 3];
323
324 do {
325 d[i] += n[i * 4 + 0] * m0
326 + n[i * 4 + 1] * m1
327 + n[i * 4 + 2] * m2
328 + n[i * 4 + 3] * m3;
329 } while (++i < segend);
330 segend = i + 4;
331 } while (i < opr_sz_4);
332
333 clear_tail(d, opr_sz, simd_maxsz(desc));
334}
335
336void HELPER(gvec_sdot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
337{
338 intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
339 intptr_t index = simd_data(desc);
340 uint64_t *d = vd;
341 int16_t *n = vn;
342 int16_t *m_indexed = (int16_t *)vm + index * 4;
343
344 /* This is supported by SVE only, so opr_sz is always a multiple of 16.
345 * Process the entire segment all at once, writing back the results
346 * only after we've consumed all of the inputs.
347 */
348 for (i = 0; i < opr_sz_8 ; i += 2) {
349 uint64_t d0, d1;
350
351 d0 = n[i * 4 + 0] * (int64_t)m_indexed[i * 4 + 0];
352 d0 += n[i * 4 + 1] * (int64_t)m_indexed[i * 4 + 1];
353 d0 += n[i * 4 + 2] * (int64_t)m_indexed[i * 4 + 2];
354 d0 += n[i * 4 + 3] * (int64_t)m_indexed[i * 4 + 3];
355 d1 = n[i * 4 + 4] * (int64_t)m_indexed[i * 4 + 0];
356 d1 += n[i * 4 + 5] * (int64_t)m_indexed[i * 4 + 1];
357 d1 += n[i * 4 + 6] * (int64_t)m_indexed[i * 4 + 2];
358 d1 += n[i * 4 + 7] * (int64_t)m_indexed[i * 4 + 3];
359
360 d[i + 0] += d0;
361 d[i + 1] += d1;
362 }
363
364 clear_tail(d, opr_sz, simd_maxsz(desc));
365}
366
367void HELPER(gvec_udot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
368{
369 intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
370 intptr_t index = simd_data(desc);
371 uint64_t *d = vd;
372 uint16_t *n = vn;
373 uint16_t *m_indexed = (uint16_t *)vm + index * 4;
374
375 /* This is supported by SVE only, so opr_sz is always a multiple of 16.
376 * Process the entire segment all at once, writing back the results
377 * only after we've consumed all of the inputs.
378 */
379 for (i = 0; i < opr_sz_8 ; i += 2) {
380 uint64_t d0, d1;
381
382 d0 = n[i * 4 + 0] * (uint64_t)m_indexed[i * 4 + 0];
383 d0 += n[i * 4 + 1] * (uint64_t)m_indexed[i * 4 + 1];
384 d0 += n[i * 4 + 2] * (uint64_t)m_indexed[i * 4 + 2];
385 d0 += n[i * 4 + 3] * (uint64_t)m_indexed[i * 4 + 3];
386 d1 = n[i * 4 + 4] * (uint64_t)m_indexed[i * 4 + 0];
387 d1 += n[i * 4 + 5] * (uint64_t)m_indexed[i * 4 + 1];
388 d1 += n[i * 4 + 6] * (uint64_t)m_indexed[i * 4 + 2];
389 d1 += n[i * 4 + 7] * (uint64_t)m_indexed[i * 4 + 3];
390
391 d[i + 0] += d0;
392 d[i + 1] += d1;
393 }
394
395 clear_tail(d, opr_sz, simd_maxsz(desc));
396}
397
1695cd61
RH
398void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
399 void *vfpst, uint32_t desc)
400{
401 uintptr_t opr_sz = simd_oprsz(desc);
402 float16 *d = vd;
403 float16 *n = vn;
404 float16 *m = vm;
405 float_status *fpst = vfpst;
406 uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
407 uint32_t neg_imag = neg_real ^ 1;
408 uintptr_t i;
409
410 /* Shift boolean to the sign bit so we can xor to negate. */
411 neg_real <<= 15;
412 neg_imag <<= 15;
413
414 for (i = 0; i < opr_sz / 2; i += 2) {
415 float16 e0 = n[H2(i)];
416 float16 e1 = m[H2(i + 1)] ^ neg_imag;
417 float16 e2 = n[H2(i + 1)];
418 float16 e3 = m[H2(i)] ^ neg_real;
419
420 d[H2(i)] = float16_add(e0, e1, fpst);
421 d[H2(i + 1)] = float16_add(e2, e3, fpst);
422 }
423 clear_tail(d, opr_sz, simd_maxsz(desc));
424}
425
426void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
427 void *vfpst, uint32_t desc)
428{
429 uintptr_t opr_sz = simd_oprsz(desc);
430 float32 *d = vd;
431 float32 *n = vn;
432 float32 *m = vm;
433 float_status *fpst = vfpst;
434 uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
435 uint32_t neg_imag = neg_real ^ 1;
436 uintptr_t i;
437
438 /* Shift boolean to the sign bit so we can xor to negate. */
439 neg_real <<= 31;
440 neg_imag <<= 31;
441
442 for (i = 0; i < opr_sz / 4; i += 2) {
443 float32 e0 = n[H4(i)];
444 float32 e1 = m[H4(i + 1)] ^ neg_imag;
445 float32 e2 = n[H4(i + 1)];
446 float32 e3 = m[H4(i)] ^ neg_real;
447
448 d[H4(i)] = float32_add(e0, e1, fpst);
449 d[H4(i + 1)] = float32_add(e2, e3, fpst);
450 }
451 clear_tail(d, opr_sz, simd_maxsz(desc));
452}
453
454void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
455 void *vfpst, uint32_t desc)
456{
457 uintptr_t opr_sz = simd_oprsz(desc);
458 float64 *d = vd;
459 float64 *n = vn;
460 float64 *m = vm;
461 float_status *fpst = vfpst;
462 uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
463 uint64_t neg_imag = neg_real ^ 1;
464 uintptr_t i;
465
466 /* Shift boolean to the sign bit so we can xor to negate. */
467 neg_real <<= 63;
468 neg_imag <<= 63;
469
470 for (i = 0; i < opr_sz / 8; i += 2) {
471 float64 e0 = n[i];
472 float64 e1 = m[i + 1] ^ neg_imag;
473 float64 e2 = n[i + 1];
474 float64 e3 = m[i] ^ neg_real;
475
476 d[i] = float64_add(e0, e1, fpst);
477 d[i + 1] = float64_add(e2, e3, fpst);
478 }
479 clear_tail(d, opr_sz, simd_maxsz(desc));
480}
d17b7cdc
RH
481
482void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
483 void *vfpst, uint32_t desc)
484{
485 uintptr_t opr_sz = simd_oprsz(desc);
486 float16 *d = vd;
487 float16 *n = vn;
488 float16 *m = vm;
489 float_status *fpst = vfpst;
490 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
491 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
492 uint32_t neg_real = flip ^ neg_imag;
493 uintptr_t i;
494
495 /* Shift boolean to the sign bit so we can xor to negate. */
496 neg_real <<= 15;
497 neg_imag <<= 15;
498
499 for (i = 0; i < opr_sz / 2; i += 2) {
500 float16 e2 = n[H2(i + flip)];
501 float16 e1 = m[H2(i + flip)] ^ neg_real;
502 float16 e4 = e2;
503 float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
504
505 d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
506 d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
507 }
508 clear_tail(d, opr_sz, simd_maxsz(desc));
509}
510
511void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
512 void *vfpst, uint32_t desc)
513{
514 uintptr_t opr_sz = simd_oprsz(desc);
515 float16 *d = vd;
516 float16 *n = vn;
517 float16 *m = vm;
518 float_status *fpst = vfpst;
519 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
520 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
2cc99919 521 intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
d17b7cdc 522 uint32_t neg_real = flip ^ neg_imag;
18fc2405
RH
523 intptr_t elements = opr_sz / sizeof(float16);
524 intptr_t eltspersegment = 16 / sizeof(float16);
525 intptr_t i, j;
d17b7cdc
RH
526
527 /* Shift boolean to the sign bit so we can xor to negate. */
528 neg_real <<= 15;
529 neg_imag <<= 15;
d17b7cdc 530
18fc2405
RH
531 for (i = 0; i < elements; i += eltspersegment) {
532 float16 mr = m[H2(i + 2 * index + 0)];
533 float16 mi = m[H2(i + 2 * index + 1)];
534 float16 e1 = neg_real ^ (flip ? mi : mr);
535 float16 e3 = neg_imag ^ (flip ? mr : mi);
d17b7cdc 536
18fc2405
RH
537 for (j = i; j < i + eltspersegment; j += 2) {
538 float16 e2 = n[H2(j + flip)];
539 float16 e4 = e2;
540
541 d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst);
542 d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst);
543 }
d17b7cdc
RH
544 }
545 clear_tail(d, opr_sz, simd_maxsz(desc));
546}
547
548void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
549 void *vfpst, uint32_t desc)
550{
551 uintptr_t opr_sz = simd_oprsz(desc);
552 float32 *d = vd;
553 float32 *n = vn;
554 float32 *m = vm;
555 float_status *fpst = vfpst;
556 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
557 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
558 uint32_t neg_real = flip ^ neg_imag;
559 uintptr_t i;
560
561 /* Shift boolean to the sign bit so we can xor to negate. */
562 neg_real <<= 31;
563 neg_imag <<= 31;
564
565 for (i = 0; i < opr_sz / 4; i += 2) {
566 float32 e2 = n[H4(i + flip)];
567 float32 e1 = m[H4(i + flip)] ^ neg_real;
568 float32 e4 = e2;
569 float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
570
571 d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
572 d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
573 }
574 clear_tail(d, opr_sz, simd_maxsz(desc));
575}
576
577void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
578 void *vfpst, uint32_t desc)
579{
580 uintptr_t opr_sz = simd_oprsz(desc);
581 float32 *d = vd;
582 float32 *n = vn;
583 float32 *m = vm;
584 float_status *fpst = vfpst;
585 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
586 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
2cc99919 587 intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
d17b7cdc 588 uint32_t neg_real = flip ^ neg_imag;
18fc2405
RH
589 intptr_t elements = opr_sz / sizeof(float32);
590 intptr_t eltspersegment = 16 / sizeof(float32);
591 intptr_t i, j;
d17b7cdc
RH
592
593 /* Shift boolean to the sign bit so we can xor to negate. */
594 neg_real <<= 31;
595 neg_imag <<= 31;
d17b7cdc 596
18fc2405
RH
597 for (i = 0; i < elements; i += eltspersegment) {
598 float32 mr = m[H4(i + 2 * index + 0)];
599 float32 mi = m[H4(i + 2 * index + 1)];
600 float32 e1 = neg_real ^ (flip ? mi : mr);
601 float32 e3 = neg_imag ^ (flip ? mr : mi);
d17b7cdc 602
18fc2405
RH
603 for (j = i; j < i + eltspersegment; j += 2) {
604 float32 e2 = n[H4(j + flip)];
605 float32 e4 = e2;
606
607 d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst);
608 d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst);
609 }
d17b7cdc
RH
610 }
611 clear_tail(d, opr_sz, simd_maxsz(desc));
612}
613
614void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
615 void *vfpst, uint32_t desc)
616{
617 uintptr_t opr_sz = simd_oprsz(desc);
618 float64 *d = vd;
619 float64 *n = vn;
620 float64 *m = vm;
621 float_status *fpst = vfpst;
622 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
623 uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
624 uint64_t neg_real = flip ^ neg_imag;
625 uintptr_t i;
626
627 /* Shift boolean to the sign bit so we can xor to negate. */
628 neg_real <<= 63;
629 neg_imag <<= 63;
630
631 for (i = 0; i < opr_sz / 8; i += 2) {
632 float64 e2 = n[i + flip];
633 float64 e1 = m[i + flip] ^ neg_real;
634 float64 e4 = e2;
635 float64 e3 = m[i + 1 - flip] ^ neg_imag;
636
637 d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
638 d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
639 }
640 clear_tail(d, opr_sz, simd_maxsz(desc));
641}
29b80469 642
3887c038
RH
643#define DO_2OP(NAME, FUNC, TYPE) \
644void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
645{ \
646 intptr_t i, oprsz = simd_oprsz(desc); \
647 TYPE *d = vd, *n = vn; \
648 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
649 d[i] = FUNC(n[i], stat); \
650 } \
d8efe78e 651 clear_tail(d, oprsz, simd_maxsz(desc)); \
3887c038
RH
652}
653
654DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
655DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
656DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
657
658DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
659DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
660DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
661
662#undef DO_2OP
663
29b80469
RH
664/* Floating-point trigonometric starting value.
665 * See the ARM ARM pseudocode function FPTrigSMul.
666 */
667static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
668{
669 float16 result = float16_mul(op1, op1, stat);
670 if (!float16_is_any_nan(result)) {
671 result = float16_set_sign(result, op2 & 1);
672 }
673 return result;
674}
675
676static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
677{
678 float32 result = float32_mul(op1, op1, stat);
679 if (!float32_is_any_nan(result)) {
680 result = float32_set_sign(result, op2 & 1);
681 }
682 return result;
683}
684
685static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
686{
687 float64 result = float64_mul(op1, op1, stat);
688 if (!float64_is_any_nan(result)) {
689 result = float64_set_sign(result, op2 & 1);
690 }
691 return result;
692}
693
a26a352b
PM
694static float32 float32_abd(float32 op1, float32 op2, float_status *stat)
695{
696 return float32_abs(float32_sub(op1, op2, stat));
697}
698
29b80469
RH
699#define DO_3OP(NAME, FUNC, TYPE) \
700void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
701{ \
702 intptr_t i, oprsz = simd_oprsz(desc); \
703 TYPE *d = vd, *n = vn, *m = vm; \
704 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
705 d[i] = FUNC(n[i], m[i], stat); \
706 } \
d8efe78e 707 clear_tail(d, oprsz, simd_maxsz(desc)); \
29b80469
RH
708}
709
710DO_3OP(gvec_fadd_h, float16_add, float16)
711DO_3OP(gvec_fadd_s, float32_add, float32)
712DO_3OP(gvec_fadd_d, float64_add, float64)
713
714DO_3OP(gvec_fsub_h, float16_sub, float16)
715DO_3OP(gvec_fsub_s, float32_sub, float32)
716DO_3OP(gvec_fsub_d, float64_sub, float64)
717
718DO_3OP(gvec_fmul_h, float16_mul, float16)
719DO_3OP(gvec_fmul_s, float32_mul, float32)
720DO_3OP(gvec_fmul_d, float64_mul, float64)
721
722DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
723DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
724DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
725
a26a352b
PM
726DO_3OP(gvec_fabd_s, float32_abd, float32)
727
29b80469
RH
728#ifdef TARGET_AARCH64
729
730DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
731DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
732DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
733
734DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
735DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
736DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
737
738#endif
739#undef DO_3OP
ca40a6e6
RH
740
741/* For the indexed ops, SVE applies the index per 128-bit vector segment.
742 * For AdvSIMD, there is of course only one such vector segment.
743 */
744
745#define DO_MUL_IDX(NAME, TYPE, H) \
746void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
747{ \
748 intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \
749 intptr_t idx = simd_data(desc); \
750 TYPE *d = vd, *n = vn, *m = vm; \
751 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
752 TYPE mm = m[H(i + idx)]; \
753 for (j = 0; j < segment; j++) { \
754 d[i + j] = TYPE##_mul(n[i + j], mm, stat); \
755 } \
756 } \
525d9b6d 757 clear_tail(d, oprsz, simd_maxsz(desc)); \
ca40a6e6
RH
758}
759
760DO_MUL_IDX(gvec_fmul_idx_h, float16, H2)
761DO_MUL_IDX(gvec_fmul_idx_s, float32, H4)
762DO_MUL_IDX(gvec_fmul_idx_d, float64, )
763
764#undef DO_MUL_IDX
765
766#define DO_FMLA_IDX(NAME, TYPE, H) \
767void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, \
768 void *stat, uint32_t desc) \
769{ \
770 intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \
771 TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1); \
772 intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1); \
773 TYPE *d = vd, *n = vn, *m = vm, *a = va; \
774 op1_neg <<= (8 * sizeof(TYPE) - 1); \
775 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
776 TYPE mm = m[H(i + idx)]; \
777 for (j = 0; j < segment; j++) { \
778 d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg, \
779 mm, a[i + j], 0, stat); \
780 } \
781 } \
525d9b6d 782 clear_tail(d, oprsz, simd_maxsz(desc)); \
ca40a6e6
RH
783}
784
785DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
786DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
787DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
788
789#undef DO_FMLA_IDX
89e68b57
RH
790
791#define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \
792void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc) \
793{ \
794 intptr_t i, oprsz = simd_oprsz(desc); \
795 TYPEN *d = vd, *n = vn; TYPEM *m = vm; \
796 bool q = false; \
797 for (i = 0; i < oprsz / sizeof(TYPEN); i++) { \
798 WTYPE dd = (WTYPE)n[i] OP m[i]; \
799 if (dd < MIN) { \
800 dd = MIN; \
801 q = true; \
802 } else if (dd > MAX) { \
803 dd = MAX; \
804 q = true; \
805 } \
806 d[i] = dd; \
807 } \
808 if (q) { \
809 uint32_t *qc = vq; \
810 qc[0] = 1; \
811 } \
812 clear_tail(d, oprsz, simd_maxsz(desc)); \
813}
814
815DO_SAT(gvec_uqadd_b, int, uint8_t, uint8_t, +, 0, UINT8_MAX)
816DO_SAT(gvec_uqadd_h, int, uint16_t, uint16_t, +, 0, UINT16_MAX)
817DO_SAT(gvec_uqadd_s, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX)
818
819DO_SAT(gvec_sqadd_b, int, int8_t, int8_t, +, INT8_MIN, INT8_MAX)
820DO_SAT(gvec_sqadd_h, int, int16_t, int16_t, +, INT16_MIN, INT16_MAX)
821DO_SAT(gvec_sqadd_s, int64_t, int32_t, int32_t, +, INT32_MIN, INT32_MAX)
822
823DO_SAT(gvec_uqsub_b, int, uint8_t, uint8_t, -, 0, UINT8_MAX)
824DO_SAT(gvec_uqsub_h, int, uint16_t, uint16_t, -, 0, UINT16_MAX)
825DO_SAT(gvec_uqsub_s, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX)
826
827DO_SAT(gvec_sqsub_b, int, int8_t, int8_t, -, INT8_MIN, INT8_MAX)
828DO_SAT(gvec_sqsub_h, int, int16_t, int16_t, -, INT16_MIN, INT16_MAX)
829DO_SAT(gvec_sqsub_s, int64_t, int32_t, int32_t, -, INT32_MIN, INT32_MAX)
830
831#undef DO_SAT
832
833void HELPER(gvec_uqadd_d)(void *vd, void *vq, void *vn,
834 void *vm, uint32_t desc)
835{
836 intptr_t i, oprsz = simd_oprsz(desc);
837 uint64_t *d = vd, *n = vn, *m = vm;
838 bool q = false;
839
840 for (i = 0; i < oprsz / 8; i++) {
841 uint64_t nn = n[i], mm = m[i], dd = nn + mm;
842 if (dd < nn) {
843 dd = UINT64_MAX;
844 q = true;
845 }
846 d[i] = dd;
847 }
848 if (q) {
849 uint32_t *qc = vq;
850 qc[0] = 1;
851 }
852 clear_tail(d, oprsz, simd_maxsz(desc));
853}
854
855void HELPER(gvec_uqsub_d)(void *vd, void *vq, void *vn,
856 void *vm, uint32_t desc)
857{
858 intptr_t i, oprsz = simd_oprsz(desc);
859 uint64_t *d = vd, *n = vn, *m = vm;
860 bool q = false;
861
862 for (i = 0; i < oprsz / 8; i++) {
863 uint64_t nn = n[i], mm = m[i], dd = nn - mm;
864 if (nn < mm) {
865 dd = 0;
866 q = true;
867 }
868 d[i] = dd;
869 }
870 if (q) {
871 uint32_t *qc = vq;
872 qc[0] = 1;
873 }
874 clear_tail(d, oprsz, simd_maxsz(desc));
875}
876
877void HELPER(gvec_sqadd_d)(void *vd, void *vq, void *vn,
878 void *vm, uint32_t desc)
879{
880 intptr_t i, oprsz = simd_oprsz(desc);
881 int64_t *d = vd, *n = vn, *m = vm;
882 bool q = false;
883
884 for (i = 0; i < oprsz / 8; i++) {
885 int64_t nn = n[i], mm = m[i], dd = nn + mm;
886 if (((dd ^ nn) & ~(nn ^ mm)) & INT64_MIN) {
887 dd = (nn >> 63) ^ ~INT64_MIN;
888 q = true;
889 }
890 d[i] = dd;
891 }
892 if (q) {
893 uint32_t *qc = vq;
894 qc[0] = 1;
895 }
896 clear_tail(d, oprsz, simd_maxsz(desc));
897}
898
899void HELPER(gvec_sqsub_d)(void *vd, void *vq, void *vn,
900 void *vm, uint32_t desc)
901{
902 intptr_t i, oprsz = simd_oprsz(desc);
903 int64_t *d = vd, *n = vn, *m = vm;
904 bool q = false;
905
906 for (i = 0; i < oprsz / 8; i++) {
907 int64_t nn = n[i], mm = m[i], dd = nn - mm;
908 if (((dd ^ nn) & (nn ^ mm)) & INT64_MIN) {
909 dd = (nn >> 63) ^ ~INT64_MIN;
910 q = true;
911 }
912 d[i] = dd;
913 }
914 if (q) {
915 uint32_t *qc = vq;
916 qc[0] = 1;
917 }
918 clear_tail(d, oprsz, simd_maxsz(desc));
919}
a4e943a7 920
631e5654
RH
921
922#define DO_SRA(NAME, TYPE) \
923void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
924{ \
925 intptr_t i, oprsz = simd_oprsz(desc); \
926 int shift = simd_data(desc); \
927 TYPE *d = vd, *n = vn; \
928 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
929 d[i] += n[i] >> shift; \
930 } \
931 clear_tail(d, oprsz, simd_maxsz(desc)); \
932}
933
934DO_SRA(gvec_ssra_b, int8_t)
935DO_SRA(gvec_ssra_h, int16_t)
936DO_SRA(gvec_ssra_s, int32_t)
937DO_SRA(gvec_ssra_d, int64_t)
938
939DO_SRA(gvec_usra_b, uint8_t)
940DO_SRA(gvec_usra_h, uint16_t)
941DO_SRA(gvec_usra_s, uint32_t)
942DO_SRA(gvec_usra_d, uint64_t)
943
944#undef DO_SRA
945
6ccd48d4
RH
946#define DO_RSHR(NAME, TYPE) \
947void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
948{ \
949 intptr_t i, oprsz = simd_oprsz(desc); \
950 int shift = simd_data(desc); \
951 TYPE *d = vd, *n = vn; \
952 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
953 TYPE tmp = n[i] >> (shift - 1); \
954 d[i] = (tmp >> 1) + (tmp & 1); \
955 } \
956 clear_tail(d, oprsz, simd_maxsz(desc)); \
957}
958
959DO_RSHR(gvec_srshr_b, int8_t)
960DO_RSHR(gvec_srshr_h, int16_t)
961DO_RSHR(gvec_srshr_s, int32_t)
962DO_RSHR(gvec_srshr_d, int64_t)
963
964DO_RSHR(gvec_urshr_b, uint8_t)
965DO_RSHR(gvec_urshr_h, uint16_t)
966DO_RSHR(gvec_urshr_s, uint32_t)
967DO_RSHR(gvec_urshr_d, uint64_t)
968
969#undef DO_RSHR
970
971#define DO_RSRA(NAME, TYPE) \
972void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
973{ \
974 intptr_t i, oprsz = simd_oprsz(desc); \
975 int shift = simd_data(desc); \
976 TYPE *d = vd, *n = vn; \
977 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
978 TYPE tmp = n[i] >> (shift - 1); \
979 d[i] += (tmp >> 1) + (tmp & 1); \
980 } \
981 clear_tail(d, oprsz, simd_maxsz(desc)); \
982}
983
984DO_RSRA(gvec_srsra_b, int8_t)
985DO_RSRA(gvec_srsra_h, int16_t)
986DO_RSRA(gvec_srsra_s, int32_t)
987DO_RSRA(gvec_srsra_d, int64_t)
988
989DO_RSRA(gvec_ursra_b, uint8_t)
990DO_RSRA(gvec_ursra_h, uint16_t)
991DO_RSRA(gvec_ursra_s, uint32_t)
992DO_RSRA(gvec_ursra_d, uint64_t)
993
994#undef DO_RSRA
995
893ab054
RH
996#define DO_SRI(NAME, TYPE) \
997void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
998{ \
999 intptr_t i, oprsz = simd_oprsz(desc); \
1000 int shift = simd_data(desc); \
1001 TYPE *d = vd, *n = vn; \
1002 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
1003 d[i] = deposit64(d[i], 0, sizeof(TYPE) * 8 - shift, n[i] >> shift); \
1004 } \
1005 clear_tail(d, oprsz, simd_maxsz(desc)); \
1006}
1007
1008DO_SRI(gvec_sri_b, uint8_t)
1009DO_SRI(gvec_sri_h, uint16_t)
1010DO_SRI(gvec_sri_s, uint32_t)
1011DO_SRI(gvec_sri_d, uint64_t)
1012
1013#undef DO_SRI
1014
1015#define DO_SLI(NAME, TYPE) \
1016void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1017{ \
1018 intptr_t i, oprsz = simd_oprsz(desc); \
1019 int shift = simd_data(desc); \
1020 TYPE *d = vd, *n = vn; \
1021 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
1022 d[i] = deposit64(d[i], shift, sizeof(TYPE) * 8 - shift, n[i]); \
1023 } \
1024 clear_tail(d, oprsz, simd_maxsz(desc)); \
1025}
1026
1027DO_SLI(gvec_sli_b, uint8_t)
1028DO_SLI(gvec_sli_h, uint16_t)
1029DO_SLI(gvec_sli_s, uint32_t)
1030DO_SLI(gvec_sli_d, uint64_t)
1031
1032#undef DO_SLI
1033
a4e943a7
RH
1034/*
1035 * Convert float16 to float32, raising no exceptions and
1036 * preserving exceptional values, including SNaN.
1037 * This is effectively an unpack+repack operation.
1038 */
1039static float32 float16_to_float32_by_bits(uint32_t f16, bool fz16)
1040{
1041 const int f16_bias = 15;
1042 const int f32_bias = 127;
1043 uint32_t sign = extract32(f16, 15, 1);
1044 uint32_t exp = extract32(f16, 10, 5);
1045 uint32_t frac = extract32(f16, 0, 10);
1046
1047 if (exp == 0x1f) {
1048 /* Inf or NaN */
1049 exp = 0xff;
1050 } else if (exp == 0) {
1051 /* Zero or denormal. */
1052 if (frac != 0) {
1053 if (fz16) {
1054 frac = 0;
1055 } else {
1056 /*
1057 * Denormal; these are all normal float32.
1058 * Shift the fraction so that the msb is at bit 11,
1059 * then remove bit 11 as the implicit bit of the
1060 * normalized float32. Note that we still go through
1061 * the shift for normal numbers below, to put the
1062 * float32 fraction at the right place.
1063 */
1064 int shift = clz32(frac) - 21;
1065 frac = (frac << shift) & 0x3ff;
1066 exp = f32_bias - f16_bias - shift + 1;
1067 }
1068 }
1069 } else {
1070 /* Normal number; adjust the bias. */
1071 exp += f32_bias - f16_bias;
1072 }
1073 sign <<= 31;
1074 exp <<= 23;
1075 frac <<= 23 - 10;
1076
1077 return sign | exp | frac;
1078}
1079
1080static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2)
1081{
1082 /*
1083 * Branchless load of u32[0], u64[0], u32[1], or u64[1].
1084 * Load the 2nd qword iff is_q & is_2.
1085 * Shift to the 2nd dword iff !is_q & is_2.
1086 * For !is_q & !is_2, the upper bits of the result are garbage.
1087 */
1088 return ptr[is_q & is_2] >> ((is_2 & ~is_q) << 5);
1089}
1090
1091/*
1092 * Note that FMLAL requires oprsz == 8 or oprsz == 16,
1093 * as there is not yet SVE versions that might use blocking.
1094 */
1095
1096static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst,
1097 uint32_t desc, bool fz16)
1098{
1099 intptr_t i, oprsz = simd_oprsz(desc);
1100 int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1101 int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1102 int is_q = oprsz == 16;
1103 uint64_t n_4, m_4;
1104
1105 /* Pre-load all of the f16 data, avoiding overlap issues. */
1106 n_4 = load4_f16(vn, is_q, is_2);
1107 m_4 = load4_f16(vm, is_q, is_2);
1108
1109 /* Negate all inputs for FMLSL at once. */
1110 if (is_s) {
1111 n_4 ^= 0x8000800080008000ull;
1112 }
1113
1114 for (i = 0; i < oprsz / 4; i++) {
1115 float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1116 float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16);
1117 d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1118 }
1119 clear_tail(d, oprsz, simd_maxsz(desc));
1120}
1121
1122void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm,
1123 void *venv, uint32_t desc)
1124{
1125 CPUARMState *env = venv;
1126 do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1127 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1128}
1129
1130void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm,
1131 void *venv, uint32_t desc)
1132{
1133 CPUARMState *env = venv;
1134 do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc,
1135 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1136}
1137
1138static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst,
1139 uint32_t desc, bool fz16)
1140{
1141 intptr_t i, oprsz = simd_oprsz(desc);
1142 int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1143 int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1144 int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3);
1145 int is_q = oprsz == 16;
1146 uint64_t n_4;
1147 float32 m_1;
1148
1149 /* Pre-load all of the f16 data, avoiding overlap issues. */
1150 n_4 = load4_f16(vn, is_q, is_2);
1151
1152 /* Negate all inputs for FMLSL at once. */
1153 if (is_s) {
1154 n_4 ^= 0x8000800080008000ull;
1155 }
1156
1157 m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16);
1158
1159 for (i = 0; i < oprsz / 4; i++) {
1160 float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1161 d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1162 }
1163 clear_tail(d, oprsz, simd_maxsz(desc));
1164}
1165
1166void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm,
1167 void *venv, uint32_t desc)
1168{
1169 CPUARMState *env = venv;
1170 do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1171 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1172}
1173
1174void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm,
1175 void *venv, uint32_t desc)
1176{
1177 CPUARMState *env = venv;
1178 do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc,
1179 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1180}
87b74e8b
RH
1181
1182void HELPER(gvec_sshl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1183{
1184 intptr_t i, opr_sz = simd_oprsz(desc);
1185 int8_t *d = vd, *n = vn, *m = vm;
1186
1187 for (i = 0; i < opr_sz; ++i) {
1188 int8_t mm = m[i];
1189 int8_t nn = n[i];
1190 int8_t res = 0;
1191 if (mm >= 0) {
1192 if (mm < 8) {
1193 res = nn << mm;
1194 }
1195 } else {
1196 res = nn >> (mm > -8 ? -mm : 7);
1197 }
1198 d[i] = res;
1199 }
1200 clear_tail(d, opr_sz, simd_maxsz(desc));
1201}
1202
1203void HELPER(gvec_sshl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1204{
1205 intptr_t i, opr_sz = simd_oprsz(desc);
1206 int16_t *d = vd, *n = vn, *m = vm;
1207
1208 for (i = 0; i < opr_sz / 2; ++i) {
1209 int8_t mm = m[i]; /* only 8 bits of shift are significant */
1210 int16_t nn = n[i];
1211 int16_t res = 0;
1212 if (mm >= 0) {
1213 if (mm < 16) {
1214 res = nn << mm;
1215 }
1216 } else {
1217 res = nn >> (mm > -16 ? -mm : 15);
1218 }
1219 d[i] = res;
1220 }
1221 clear_tail(d, opr_sz, simd_maxsz(desc));
1222}
1223
1224void HELPER(gvec_ushl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1225{
1226 intptr_t i, opr_sz = simd_oprsz(desc);
1227 uint8_t *d = vd, *n = vn, *m = vm;
1228
1229 for (i = 0; i < opr_sz; ++i) {
1230 int8_t mm = m[i];
1231 uint8_t nn = n[i];
1232 uint8_t res = 0;
1233 if (mm >= 0) {
1234 if (mm < 8) {
1235 res = nn << mm;
1236 }
1237 } else {
1238 if (mm > -8) {
1239 res = nn >> -mm;
1240 }
1241 }
1242 d[i] = res;
1243 }
1244 clear_tail(d, opr_sz, simd_maxsz(desc));
1245}
1246
1247void HELPER(gvec_ushl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1248{
1249 intptr_t i, opr_sz = simd_oprsz(desc);
1250 uint16_t *d = vd, *n = vn, *m = vm;
1251
1252 for (i = 0; i < opr_sz / 2; ++i) {
1253 int8_t mm = m[i]; /* only 8 bits of shift are significant */
1254 uint16_t nn = n[i];
1255 uint16_t res = 0;
1256 if (mm >= 0) {
1257 if (mm < 16) {
1258 res = nn << mm;
1259 }
1260 } else {
1261 if (mm > -16) {
1262 res = nn >> -mm;
1263 }
1264 }
1265 d[i] = res;
1266 }
1267 clear_tail(d, opr_sz, simd_maxsz(desc));
1268}
a21bb78e
RH
1269
1270/*
1271 * 8x8->8 polynomial multiply.
1272 *
1273 * Polynomial multiplication is like integer multiplication except the
1274 * partial products are XORed, not added.
1275 *
1276 * TODO: expose this as a generic vector operation, as it is a common
1277 * crypto building block.
1278 */
1279void HELPER(gvec_pmul_b)(void *vd, void *vn, void *vm, uint32_t desc)
1280{
1281 intptr_t i, j, opr_sz = simd_oprsz(desc);
1282 uint64_t *d = vd, *n = vn, *m = vm;
1283
1284 for (i = 0; i < opr_sz / 8; ++i) {
1285 uint64_t nn = n[i];
1286 uint64_t mm = m[i];
1287 uint64_t rr = 0;
1288
1289 for (j = 0; j < 8; ++j) {
1290 uint64_t mask = (nn & 0x0101010101010101ull) * 0xff;
1291 rr ^= mm & mask;
1292 mm = (mm << 1) & 0xfefefefefefefefeull;
1293 nn >>= 1;
1294 }
1295 d[i] = rr;
1296 }
1297 clear_tail(d, opr_sz, simd_maxsz(desc));
1298}
b9ed510e
RH
1299
1300/*
1301 * 64x64->128 polynomial multiply.
1302 * Because of the lanes are not accessed in strict columns,
1303 * this probably cannot be turned into a generic helper.
1304 */
1305void HELPER(gvec_pmull_q)(void *vd, void *vn, void *vm, uint32_t desc)
1306{
1307 intptr_t i, j, opr_sz = simd_oprsz(desc);
1308 intptr_t hi = simd_data(desc);
1309 uint64_t *d = vd, *n = vn, *m = vm;
1310
1311 for (i = 0; i < opr_sz / 8; i += 2) {
1312 uint64_t nn = n[i + hi];
1313 uint64_t mm = m[i + hi];
1314 uint64_t rhi = 0;
1315 uint64_t rlo = 0;
1316
1317 /* Bit 0 can only influence the low 64-bit result. */
1318 if (nn & 1) {
1319 rlo = mm;
1320 }
1321
1322 for (j = 1; j < 64; ++j) {
1323 uint64_t mask = -((nn >> j) & 1);
1324 rlo ^= (mm << j) & mask;
1325 rhi ^= (mm >> (64 - j)) & mask;
1326 }
1327 d[i] = rlo;
1328 d[i + 1] = rhi;
1329 }
1330 clear_tail(d, opr_sz, simd_maxsz(desc));
1331}
e7e96fc5
RH
1332
1333/*
1334 * 8x8->16 polynomial multiply.
1335 *
1336 * The byte inputs are expanded to (or extracted from) half-words.
1337 * Note that neon and sve2 get the inputs from different positions.
1338 * This allows 4 bytes to be processed in parallel with uint64_t.
1339 */
1340
1341static uint64_t expand_byte_to_half(uint64_t x)
1342{
1343 return (x & 0x000000ff)
1344 | ((x & 0x0000ff00) << 8)
1345 | ((x & 0x00ff0000) << 16)
1346 | ((x & 0xff000000) << 24);
1347}
1348
1349static uint64_t pmull_h(uint64_t op1, uint64_t op2)
1350{
1351 uint64_t result = 0;
1352 int i;
1353
1354 for (i = 0; i < 8; ++i) {
1355 uint64_t mask = (op1 & 0x0001000100010001ull) * 0xffff;
1356 result ^= op2 & mask;
1357 op1 >>= 1;
1358 op2 <<= 1;
1359 }
1360 return result;
1361}
1362
1363void HELPER(neon_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1364{
1365 int hi = simd_data(desc);
1366 uint64_t *d = vd, *n = vn, *m = vm;
1367 uint64_t nn = n[hi], mm = m[hi];
1368
1369 d[0] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1370 nn >>= 32;
1371 mm >>= 32;
1372 d[1] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1373
1374 clear_tail(d, 16, simd_maxsz(desc));
1375}
1376
1377#ifdef TARGET_AARCH64
1378void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1379{
1380 int shift = simd_data(desc) * 8;
1381 intptr_t i, opr_sz = simd_oprsz(desc);
1382 uint64_t *d = vd, *n = vn, *m = vm;
1383
1384 for (i = 0; i < opr_sz / 8; ++i) {
1385 uint64_t nn = (n[i] >> shift) & 0x00ff00ff00ff00ffull;
1386 uint64_t mm = (m[i] >> shift) & 0x00ff00ff00ff00ffull;
1387
1388 d[i] = pmull_h(nn, mm);
1389 }
1390}
1391#endif
6b375d35
RH
1392
1393#define DO_CMP0(NAME, TYPE, OP) \
1394void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1395{ \
1396 intptr_t i, opr_sz = simd_oprsz(desc); \
1397 for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \
1398 TYPE nn = *(TYPE *)(vn + i); \
1399 *(TYPE *)(vd + i) = -(nn OP 0); \
1400 } \
1401 clear_tail(vd, opr_sz, simd_maxsz(desc)); \
1402}
1403
1404DO_CMP0(gvec_ceq0_b, int8_t, ==)
1405DO_CMP0(gvec_clt0_b, int8_t, <)
1406DO_CMP0(gvec_cle0_b, int8_t, <=)
1407DO_CMP0(gvec_cgt0_b, int8_t, >)
1408DO_CMP0(gvec_cge0_b, int8_t, >=)
1409
1410DO_CMP0(gvec_ceq0_h, int16_t, ==)
1411DO_CMP0(gvec_clt0_h, int16_t, <)
1412DO_CMP0(gvec_cle0_h, int16_t, <=)
1413DO_CMP0(gvec_cgt0_h, int16_t, >)
1414DO_CMP0(gvec_cge0_h, int16_t, >=)
1415
1416#undef DO_CMP0
50c160d4
RH
1417
1418#define DO_ABD(NAME, TYPE) \
1419void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
1420{ \
1421 intptr_t i, opr_sz = simd_oprsz(desc); \
1422 TYPE *d = vd, *n = vn, *m = vm; \
1423 \
1424 for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \
1425 d[i] = n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \
1426 } \
1427 clear_tail(d, opr_sz, simd_maxsz(desc)); \
1428}
1429
1430DO_ABD(gvec_sabd_b, int8_t)
1431DO_ABD(gvec_sabd_h, int16_t)
1432DO_ABD(gvec_sabd_s, int32_t)
1433DO_ABD(gvec_sabd_d, int64_t)
1434
1435DO_ABD(gvec_uabd_b, uint8_t)
1436DO_ABD(gvec_uabd_h, uint16_t)
1437DO_ABD(gvec_uabd_s, uint32_t)
1438DO_ABD(gvec_uabd_d, uint64_t)
1439
1440#undef DO_ABD
cfdb2c0c
RH
1441
1442#define DO_ABA(NAME, TYPE) \
1443void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
1444{ \
1445 intptr_t i, opr_sz = simd_oprsz(desc); \
1446 TYPE *d = vd, *n = vn, *m = vm; \
1447 \
1448 for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \
1449 d[i] += n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \
1450 } \
1451 clear_tail(d, opr_sz, simd_maxsz(desc)); \
1452}
1453
1454DO_ABA(gvec_saba_b, int8_t)
1455DO_ABA(gvec_saba_h, int16_t)
1456DO_ABA(gvec_saba_s, int32_t)
1457DO_ABA(gvec_saba_d, int64_t)
1458
1459DO_ABA(gvec_uaba_b, uint8_t)
1460DO_ABA(gvec_uaba_h, uint16_t)
1461DO_ABA(gvec_uaba_s, uint32_t)
1462DO_ABA(gvec_uaba_d, uint64_t)
1463
1464#undef DO_ABA
This page took 0.345927 seconds and 4 git commands to generate.