]> Git Repo - qemu.git/blame - hw/xtensa/xtfpga.c
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[qemu.git] / hw / xtensa / xtfpga.c
CommitLineData
0200db65
MF
1/*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
9c17d615 28#include "sysemu/sysemu.h"
83c9f4ca
PB
29#include "hw/boards.h"
30#include "hw/loader.h"
0200db65 31#include "elf.h"
022c62cb
PB
32#include "exec/memory.h"
33#include "exec/address-spaces.h"
0d09e41a 34#include "hw/char/serial.h"
1422e32d 35#include "net/net.h"
83c9f4ca 36#include "hw/sysbus.h"
0d09e41a 37#include "hw/block/flash.h"
fa1d36df 38#include "sysemu/block-backend.h"
dccfcd0e 39#include "sysemu/char.h"
996dfe98 40#include "sysemu/device_tree.h"
8488ab02 41#include "qemu/error-report.h"
b707ab75 42#include "bootparam.h"
82b25dc8
MF
43
44typedef struct LxBoardDesc {
e0db904d 45 hwaddr flash_base;
82b25dc8 46 size_t flash_size;
37ed7c4b 47 size_t flash_boot_base;
82b25dc8
MF
48 size_t flash_sector_size;
49 size_t sram_size;
50} LxBoardDesc;
0200db65
MF
51
52typedef struct Lx60FpgaState {
53 MemoryRegion iomem;
54 uint32_t leds;
55 uint32_t switches;
56} Lx60FpgaState;
57
58static void lx60_fpga_reset(void *opaque)
59{
60 Lx60FpgaState *s = opaque;
61
62 s->leds = 0;
63 s->switches = 0;
64}
65
a8170e5e 66static uint64_t lx60_fpga_read(void *opaque, hwaddr addr,
0200db65
MF
67 unsigned size)
68{
69 Lx60FpgaState *s = opaque;
70
71 switch (addr) {
72 case 0x0: /*build date code*/
556ba668 73 return 0x09272011;
0200db65
MF
74
75 case 0x4: /*processor clock frequency, Hz*/
76 return 10000000;
77
78 case 0x8: /*LEDs (off = 0, on = 1)*/
79 return s->leds;
80
81 case 0xc: /*DIP switches (off = 0, on = 1)*/
82 return s->switches;
83 }
84 return 0;
85}
86
a8170e5e 87static void lx60_fpga_write(void *opaque, hwaddr addr,
0200db65
MF
88 uint64_t val, unsigned size)
89{
90 Lx60FpgaState *s = opaque;
91
92 switch (addr) {
93 case 0x8: /*LEDs (off = 0, on = 1)*/
94 s->leds = val;
95 break;
96
97 case 0x10: /*board reset*/
98 if (val == 0xdead) {
99 qemu_system_reset_request();
100 }
101 break;
102 }
103}
104
105static const MemoryRegionOps lx60_fpga_ops = {
106 .read = lx60_fpga_read,
107 .write = lx60_fpga_write,
108 .endianness = DEVICE_NATIVE_ENDIAN,
109};
110
111static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
a8170e5e 112 hwaddr base)
0200db65
MF
113{
114 Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
115
2c9b15ca 116 memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s,
556ba668 117 "lx60.fpga", 0x10000);
0200db65
MF
118 memory_region_add_subregion(address_space, base, &s->iomem);
119 lx60_fpga_reset(s);
120 qemu_register_reset(lx60_fpga_reset, s);
121 return s;
122}
123
124static void lx60_net_init(MemoryRegion *address_space,
a8170e5e
AK
125 hwaddr base,
126 hwaddr descriptors,
127 hwaddr buffers,
0200db65
MF
128 qemu_irq irq, NICInfo *nd)
129{
130 DeviceState *dev;
131 SysBusDevice *s;
132 MemoryRegion *ram;
133
134 dev = qdev_create(NULL, "open_eth");
135 qdev_set_nic_properties(dev, nd);
136 qdev_init_nofail(dev);
137
1356b98d 138 s = SYS_BUS_DEVICE(dev);
0200db65
MF
139 sysbus_connect_irq(s, 0, irq);
140 memory_region_add_subregion(address_space, base,
141 sysbus_mmio_get_region(s, 0));
142 memory_region_add_subregion(address_space, descriptors,
143 sysbus_mmio_get_region(s, 1));
144
145 ram = g_malloc(sizeof(*ram));
f8ed85ac
MA
146 memory_region_init_ram(ram, OBJECT(s), "open_eth.ram", 16384,
147 &error_fatal);
c5705a77 148 vmstate_register_ram_global(ram);
0200db65
MF
149 memory_region_add_subregion(address_space, buffers, ram);
150}
151
00b941e5 152static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
0200db65 153{
00b941e5
AF
154 XtensaCPU *cpu = opaque;
155
156 return cpu_get_phys_page_debug(CPU(cpu), addr);
0200db65
MF
157}
158
1bba0dc9 159static void lx60_reset(void *opaque)
0200db65 160{
eded1267 161 XtensaCPU *cpu = opaque;
1bba0dc9 162
eded1267 163 cpu_reset(CPU(cpu));
0200db65
MF
164}
165
8bb3b575
MF
166static uint64_t lx60_io_read(void *opaque, hwaddr addr,
167 unsigned size)
168{
169 return 0;
170}
171
172static void lx60_io_write(void *opaque, hwaddr addr,
173 uint64_t val, unsigned size)
174{
175}
176
177static const MemoryRegionOps lx60_io_ops = {
178 .read = lx60_io_read,
179 .write = lx60_io_write,
180 .endianness = DEVICE_NATIVE_ENDIAN,
181};
182
3ef96221 183static void lx_init(const LxBoardDesc *board, MachineState *machine)
0200db65
MF
184{
185#ifdef TARGET_WORDS_BIGENDIAN
186 int be = 1;
187#else
188 int be = 0;
189#endif
190 MemoryRegion *system_memory = get_system_memory();
adbb0f75 191 XtensaCPU *cpu = NULL;
5bfcb36e 192 CPUXtensaState *env = NULL;
0200db65 193 MemoryRegion *ram, *rom, *system_io;
82b25dc8
MF
194 DriveInfo *dinfo;
195 pflash_t *flash = NULL;
37b259d0 196 QemuOpts *machine_opts = qemu_get_machine_opts();
3ef96221 197 const char *cpu_model = machine->cpu_model;
37b259d0
MF
198 const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
199 const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
996dfe98 200 const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
f55b32e7 201 const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
0200db65
MF
202 int n;
203
82b25dc8 204 if (!cpu_model) {
e38077ff 205 cpu_model = XTENSA_DEFAULT_CPU_MODEL;
82b25dc8
MF
206 }
207
0200db65 208 for (n = 0; n < smp_cpus; n++) {
adbb0f75
AF
209 cpu = cpu_xtensa_init(cpu_model);
210 if (cpu == NULL) {
ebbb419a 211 error_report("unable to find CPU definition '%s'",
8488ab02
MF
212 cpu_model);
213 exit(EXIT_FAILURE);
0200db65 214 }
adbb0f75
AF
215 env = &cpu->env;
216
0200db65 217 env->sregs[PRID] = n;
eded1267 218 qemu_register_reset(lx60_reset, cpu);
0200db65
MF
219 /* Need MMU initialized prior to ELF loading,
220 * so that ELF gets loaded into virtual addresses
221 */
adbb0f75 222 cpu_reset(CPU(cpu));
0200db65
MF
223 }
224
225 ram = g_malloc(sizeof(*ram));
49946538 226 memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size,
f8ed85ac 227 &error_fatal);
c5705a77 228 vmstate_register_ram_global(ram);
0200db65
MF
229 memory_region_add_subregion(system_memory, 0, ram);
230
0200db65 231 system_io = g_malloc(sizeof(*system_io));
8bb3b575
MF
232 memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io",
233 224 * 1024 * 1024);
0200db65
MF
234 memory_region_add_subregion(system_memory, 0xf0000000, system_io);
235 lx60_fpga_init(system_io, 0x0d020000);
a005d073 236 if (nd_table[0].used) {
0200db65
MF
237 lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
238 xtensa_get_extint(env, 1), nd_table);
239 }
240
241 if (!serial_hds[0]) {
242 serial_hds[0] = qemu_chr_new("serial0", "null", NULL);
243 }
244
245 serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
246 115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
247
82b25dc8
MF
248 dinfo = drive_get(IF_PFLASH, 0, 0);
249 if (dinfo) {
e0db904d 250 flash = pflash_cfi01_register(board->flash_base,
82b25dc8 251 NULL, "lx60.io.flash", board->flash_size,
4be74634 252 blk_by_legacy_dinfo(dinfo),
fa1d36df 253 board->flash_sector_size,
82b25dc8
MF
254 board->flash_size / board->flash_sector_size,
255 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
256 if (flash == NULL) {
ebbb419a 257 error_report("unable to mount pflash");
8488ab02 258 exit(EXIT_FAILURE);
82b25dc8
MF
259 }
260 }
261
262 /* Use presence of kernel file name as 'boot from SRAM' switch. */
0200db65 263 if (kernel_filename) {
364d4802 264 uint32_t entry_point = env->pc;
b6edea8b 265 size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
a9a28591
MF
266 uint32_t tagptr = 0xfe000000 + board->sram_size;
267 uint32_t cur_tagptr;
b6edea8b
MF
268 BpMemInfo memory_location = {
269 .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
270 .start = tswap32(0),
271 .end = tswap32(machine->ram_size),
272 };
996dfe98
MF
273 uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
274 machine->ram_size : 0x08000000;
275 uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
a9a28591 276
292627bb 277 rom = g_malloc(sizeof(*rom));
49946538 278 memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size,
f8ed85ac 279 &error_fatal);
c5705a77 280 vmstate_register_ram_global(rom);
292627bb
MF
281 memory_region_add_subregion(system_memory, 0xfe000000, rom);
282
a9a28591
MF
283 if (kernel_cmdline) {
284 bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
285 }
996dfe98
MF
286 if (dtb_filename) {
287 bp_size += get_tag_size(sizeof(uint32_t));
288 }
f55b32e7
MF
289 if (initrd_filename) {
290 bp_size += get_tag_size(sizeof(BpMemInfo));
291 }
a9a28591 292
292627bb 293 /* Put kernel bootparameters to the end of that SRAM */
a9a28591
MF
294 tagptr = (tagptr - bp_size) & ~0xff;
295 cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
b6edea8b
MF
296 cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
297 sizeof(memory_location), &memory_location);
a9a28591 298
292627bb 299 if (kernel_cmdline) {
a9a28591
MF
300 cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
301 strlen(kernel_cmdline) + 1, kernel_cmdline);
292627bb 302 }
996dfe98
MF
303 if (dtb_filename) {
304 int fdt_size;
305 void *fdt = load_device_tree(dtb_filename, &fdt_size);
306 uint32_t dtb_addr = tswap32(cur_lowmem);
307
308 if (!fdt) {
ebbb419a 309 error_report("could not load DTB '%s'", dtb_filename);
996dfe98
MF
310 exit(EXIT_FAILURE);
311 }
312
313 cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
314 cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
315 sizeof(dtb_addr), &dtb_addr);
316 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
317 }
f55b32e7
MF
318 if (initrd_filename) {
319 BpMemInfo initrd_location = { 0 };
320 int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
321 lowmem_end - cur_lowmem);
322
323 if (initrd_size < 0) {
324 initrd_size = load_image_targphys(initrd_filename,
325 cur_lowmem,
326 lowmem_end - cur_lowmem);
327 }
328 if (initrd_size < 0) {
ebbb419a 329 error_report("could not load initrd '%s'", initrd_filename);
f55b32e7
MF
330 exit(EXIT_FAILURE);
331 }
332 initrd_location.start = tswap32(cur_lowmem);
333 initrd_location.end = tswap32(cur_lowmem + initrd_size);
334 cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
335 sizeof(initrd_location), &initrd_location);
336 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
337 }
a9a28591
MF
338 cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
339 env->regs[2] = tagptr;
340
0200db65
MF
341 uint64_t elf_entry;
342 uint64_t elf_lowaddr;
00b941e5 343 int success = load_elf(kernel_filename, translate_phys_addr, cpu,
943cd387 344 &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0);
0200db65 345 if (success > 0) {
364d4802
MF
346 entry_point = elf_entry;
347 } else {
348 hwaddr ep;
349 int is_linux;
25bda50a 350 success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
6d2e4530 351 translate_phys_addr, cpu);
364d4802
MF
352 if (success > 0 && is_linux) {
353 entry_point = ep;
354 } else {
ebbb419a 355 error_report("could not load kernel '%s'",
364d4802
MF
356 kernel_filename);
357 exit(EXIT_FAILURE);
358 }
359 }
360 if (entry_point != env->pc) {
361 static const uint8_t jx_a0[] = {
362#ifdef TARGET_WORDS_BIGENDIAN
363 0x0a, 0, 0,
364#else
365 0xa0, 0, 0,
366#endif
367 };
368 env->regs[0] = entry_point;
369 cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
0200db65 370 }
82b25dc8
MF
371 } else {
372 if (flash) {
373 MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
374 MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
375
2c9b15ca 376 memory_region_init_alias(flash_io, NULL, "lx60.flash",
37ed7c4b
MF
377 flash_mr, board->flash_boot_base,
378 board->flash_size - board->flash_boot_base < 0x02000000 ?
379 board->flash_size - board->flash_boot_base : 0x02000000);
82b25dc8
MF
380 memory_region_add_subregion(system_memory, 0xfe000000,
381 flash_io);
382 }
0200db65
MF
383 }
384}
385
3ef96221 386static void xtensa_lx60_init(MachineState *machine)
0200db65 387{
82b25dc8 388 static const LxBoardDesc lx60_board = {
e0db904d
MF
389 .flash_base = 0xf8000000,
390 .flash_size = 0x00400000,
82b25dc8
MF
391 .flash_sector_size = 0x10000,
392 .sram_size = 0x20000,
393 };
3ef96221 394 lx_init(&lx60_board, machine);
82b25dc8
MF
395}
396
3ef96221 397static void xtensa_lx200_init(MachineState *machine)
82b25dc8
MF
398{
399 static const LxBoardDesc lx200_board = {
e0db904d
MF
400 .flash_base = 0xf8000000,
401 .flash_size = 0x01000000,
82b25dc8
MF
402 .flash_sector_size = 0x20000,
403 .sram_size = 0x2000000,
404 };
3ef96221 405 lx_init(&lx200_board, machine);
0200db65
MF
406}
407
3ef96221 408static void xtensa_ml605_init(MachineState *machine)
e0db904d
MF
409{
410 static const LxBoardDesc ml605_board = {
411 .flash_base = 0xf8000000,
12004c9e 412 .flash_size = 0x01000000,
e0db904d
MF
413 .flash_sector_size = 0x20000,
414 .sram_size = 0x2000000,
415 };
3ef96221 416 lx_init(&ml605_board, machine);
e0db904d
MF
417}
418
3ef96221 419static void xtensa_kc705_init(MachineState *machine)
e0db904d
MF
420{
421 static const LxBoardDesc kc705_board = {
422 .flash_base = 0xf0000000,
423 .flash_size = 0x08000000,
37ed7c4b 424 .flash_boot_base = 0x06000000,
e0db904d
MF
425 .flash_sector_size = 0x20000,
426 .sram_size = 0x2000000,
427 };
3ef96221 428 lx_init(&kc705_board, machine);
e0db904d
MF
429}
430
8a661aea 431static void xtensa_lx60_class_init(ObjectClass *oc, void *data)
e264d29d 432{
8a661aea
AF
433 MachineClass *mc = MACHINE_CLASS(oc);
434
e264d29d
EH
435 mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
436 mc->init = xtensa_lx60_init;
437 mc->max_cpus = 4;
438}
0200db65 439
8a661aea
AF
440static const TypeInfo xtensa_lx60_type = {
441 .name = MACHINE_TYPE_NAME("lx60"),
442 .parent = TYPE_MACHINE,
443 .class_init = xtensa_lx60_class_init,
444};
82b25dc8 445
8a661aea 446static void xtensa_lx200_class_init(ObjectClass *oc, void *data)
e264d29d 447{
8a661aea
AF
448 MachineClass *mc = MACHINE_CLASS(oc);
449
e264d29d
EH
450 mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
451 mc->init = xtensa_lx200_init;
452 mc->max_cpus = 4;
453}
e0db904d 454
8a661aea
AF
455static const TypeInfo xtensa_lx200_type = {
456 .name = MACHINE_TYPE_NAME("lx200"),
457 .parent = TYPE_MACHINE,
458 .class_init = xtensa_lx200_class_init,
459};
e264d29d 460
8a661aea 461static void xtensa_ml605_class_init(ObjectClass *oc, void *data)
e264d29d 462{
8a661aea
AF
463 MachineClass *mc = MACHINE_CLASS(oc);
464
e264d29d
EH
465 mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
466 mc->init = xtensa_ml605_init;
467 mc->max_cpus = 4;
468}
469
8a661aea
AF
470static const TypeInfo xtensa_ml605_type = {
471 .name = MACHINE_TYPE_NAME("ml605"),
472 .parent = TYPE_MACHINE,
473 .class_init = xtensa_ml605_class_init,
474};
e0db904d 475
8a661aea 476static void xtensa_kc705_class_init(ObjectClass *oc, void *data)
0200db65 477{
8a661aea
AF
478 MachineClass *mc = MACHINE_CLASS(oc);
479
e264d29d
EH
480 mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
481 mc->init = xtensa_kc705_init;
482 mc->max_cpus = 4;
0200db65
MF
483}
484
8a661aea
AF
485static const TypeInfo xtensa_kc705_type = {
486 .name = MACHINE_TYPE_NAME("kc705"),
487 .parent = TYPE_MACHINE,
488 .class_init = xtensa_kc705_class_init,
489};
490
491static void xtensa_lx_machines_init(void)
492{
493 type_register_static(&xtensa_lx60_type);
494 type_register_static(&xtensa_lx200_type);
495 type_register_static(&xtensa_ml605_type);
496 type_register_static(&xtensa_kc705_type);
497}
498
499machine_init(xtensa_lx_machines_init)
This page took 0.437574 seconds and 4 git commands to generate.