]> Git Repo - qemu.git/blame - hw/wdt_i6300esb.c
Pass boot device list to firmware.
[qemu.git] / hw / wdt_i6300esb.c
CommitLineData
9dd986cc
RJ
1/*
2 * Virtual hardware watchdog.
3 *
4 * Copyright (C) 2009 Red Hat Inc.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
8167ee88 17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
9dd986cc
RJ
18 *
19 * By Richard W.M. Jones ([email protected]).
20 */
21
22#include <inttypes.h>
23
24#include "qemu-common.h"
25#include "qemu-timer.h"
26#include "watchdog.h"
27#include "hw.h"
9dd986cc
RJ
28#include "pci.h"
29
30/*#define I6300ESB_DEBUG 1*/
31
32#ifdef I6300ESB_DEBUG
33#define i6300esb_debug(fs,...) \
34 fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
35#else
36#define i6300esb_debug(fs,...)
37#endif
38
9dd986cc
RJ
39/* PCI configuration registers */
40#define ESB_CONFIG_REG 0x60 /* Config register */
41#define ESB_LOCK_REG 0x68 /* WDT lock register */
42
43/* Memory mapped registers (offset from base address) */
44#define ESB_TIMER1_REG 0x00 /* Timer1 value after each reset */
45#define ESB_TIMER2_REG 0x04 /* Timer2 value after each reset */
46#define ESB_GINTSR_REG 0x08 /* General Interrupt Status Register */
47#define ESB_RELOAD_REG 0x0c /* Reload register */
48
49/* Lock register bits */
50#define ESB_WDT_FUNC (0x01 << 2) /* Watchdog functionality */
51#define ESB_WDT_ENABLE (0x01 << 1) /* Enable WDT */
52#define ESB_WDT_LOCK (0x01 << 0) /* Lock (nowayout) */
53
54/* Config register bits */
55#define ESB_WDT_REBOOT (0x01 << 5) /* Enable reboot on timeout */
56#define ESB_WDT_FREQ (0x01 << 2) /* Decrement frequency */
57#define ESB_WDT_INTTYPE (0x11 << 0) /* Interrupt type on timer1 timeout */
58
59/* Reload register bits */
60#define ESB_WDT_RELOAD (0x01 << 8) /* prevent timeout */
61
62/* Magic constants */
63#define ESB_UNLOCK1 0x80 /* Step 1 to unlock reset registers */
64#define ESB_UNLOCK2 0x86 /* Step 2 to unlock reset registers */
65
66/* Device state. */
67struct I6300State {
9d472d51 68 PCIDevice dev;
9dd986cc
RJ
69
70 int reboot_enabled; /* "Reboot" on timer expiry. The real action
71 * performed depends on the -watchdog-action
72 * param passed on QEMU command line.
73 */
74 int clock_scale; /* Clock scale. */
75#define CLOCK_SCALE_1KHZ 0
76#define CLOCK_SCALE_1MHZ 1
77
78 int int_type; /* Interrupt type generated. */
79#define INT_TYPE_IRQ 0 /* APIC 1, INT 10 */
80#define INT_TYPE_SMI 2
81#define INT_TYPE_DISABLED 3
82
83 int free_run; /* If true, reload timer on expiry. */
84 int locked; /* If true, enabled field cannot be changed. */
85 int enabled; /* If true, watchdog is enabled. */
86
87 QEMUTimer *timer; /* The actual watchdog timer. */
88
89 uint32_t timer1_preload; /* Values preloaded into timer1, timer2. */
90 uint32_t timer2_preload;
91 int stage; /* Stage (1 or 2). */
92
93 int unlock_state; /* Guest writes 0x80, 0x86 to unlock the
94 * registers, and we transition through
95 * states 0 -> 1 -> 2 when this happens.
96 */
97
98 int previous_reboot_flag; /* If the watchdog caused the previous
99 * reboot, this flag will be set.
100 */
101};
102
103typedef struct I6300State I6300State;
104
105/* This function is called when the watchdog has either been enabled
106 * (hence it starts counting down) or has been keep-alived.
107 */
108static void i6300esb_restart_timer(I6300State *d, int stage)
109{
110 int64_t timeout;
111
112 if (!d->enabled)
113 return;
114
115 d->stage = stage;
116
117 if (d->stage <= 1)
118 timeout = d->timer1_preload;
119 else
120 timeout = d->timer2_preload;
121
122 if (d->clock_scale == CLOCK_SCALE_1KHZ)
123 timeout <<= 15;
124 else
125 timeout <<= 5;
126
127 /* Get the timeout in units of ticks_per_sec. */
6ee093c9 128 timeout = get_ticks_per_sec() * timeout / 33000000;
9dd986cc
RJ
129
130 i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
131
132 qemu_mod_timer(d->timer, qemu_get_clock(vm_clock) + timeout);
133}
134
135/* This is called when the guest disables the watchdog. */
136static void i6300esb_disable_timer(I6300State *d)
137{
138 i6300esb_debug("timer disabled\n");
139
140 qemu_del_timer(d->timer);
141}
142
fa82e9c3 143static void i6300esb_reset(DeviceState *dev)
9dd986cc 144{
fa82e9c3
BK
145 PCIDevice *pdev = DO_UPCAST(PCIDevice, qdev, dev);
146 I6300State *d = DO_UPCAST(I6300State, dev, pdev);
147
148 i6300esb_debug("I6300State = %p\n", d);
149
9dd986cc 150 i6300esb_disable_timer(d);
fa82e9c3
BK
151
152 d->reboot_enabled = 1;
153 d->clock_scale = CLOCK_SCALE_1KHZ;
154 d->int_type = INT_TYPE_IRQ;
155 d->free_run = 0;
156 d->locked = 0;
157 d->enabled = 0;
158 d->timer1_preload = 0xfffff;
159 d->timer2_preload = 0xfffff;
160 d->stage = 1;
161 d->unlock_state = 0;
162 d->previous_reboot_flag = 0;
9dd986cc
RJ
163}
164
165/* This function is called when the watchdog expires. Note that
166 * the hardware has two timers, and so expiry happens in two stages.
167 * If d->stage == 1 then we perform the first stage action (usually,
168 * sending an interrupt) and then restart the timer again for the
169 * second stage. If the second stage expires then the watchdog
170 * really has run out.
171 */
172static void i6300esb_timer_expired(void *vp)
173{
4f423e81 174 I6300State *d = vp;
9dd986cc
RJ
175
176 i6300esb_debug("stage %d\n", d->stage);
177
178 if (d->stage == 1) {
179 /* What to do at the end of stage 1? */
180 switch (d->int_type) {
181 case INT_TYPE_IRQ:
182 fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
183 break;
184 case INT_TYPE_SMI:
185 fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
186 break;
187 }
188
189 /* Start the second stage. */
190 i6300esb_restart_timer(d, 2);
191 } else {
192 /* Second stage expired, reboot for real. */
193 if (d->reboot_enabled) {
194 d->previous_reboot_flag = 1;
195 watchdog_perform_action(); /* This reboots, exits, etc */
9dd986cc
RJ
196 }
197
198 /* In "free running mode" we start stage 1 again. */
199 if (d->free_run)
200 i6300esb_restart_timer(d, 1);
201 }
202}
203
204static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
205 uint32_t data, int len)
206{
d03f09cc 207 I6300State *d = DO_UPCAST(I6300State, dev, dev);
9dd986cc
RJ
208 int old;
209
210 i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
211
212 if (addr == ESB_CONFIG_REG && len == 2) {
213 d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
214 d->clock_scale =
215 (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
216 d->int_type = (data & ESB_WDT_INTTYPE);
217 } else if (addr == ESB_LOCK_REG && len == 1) {
218 if (!d->locked) {
219 d->locked = (data & ESB_WDT_LOCK) != 0;
220 d->free_run = (data & ESB_WDT_FUNC) != 0;
221 old = d->enabled;
222 d->enabled = (data & ESB_WDT_ENABLE) != 0;
223 if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
224 i6300esb_restart_timer(d, 1);
225 else if (!d->enabled)
226 i6300esb_disable_timer(d);
227 }
228 } else {
229 pci_default_write_config(dev, addr, data, len);
230 }
231}
232
233static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
234{
d03f09cc 235 I6300State *d = DO_UPCAST(I6300State, dev, dev);
9dd986cc
RJ
236 uint32_t data;
237
238 i6300esb_debug ("addr = %x, len = %d\n", addr, len);
239
240 if (addr == ESB_CONFIG_REG && len == 2) {
241 data =
242 (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
243 (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
244 d->int_type;
245 return data;
246 } else if (addr == ESB_LOCK_REG && len == 1) {
247 data =
248 (d->free_run ? ESB_WDT_FUNC : 0) |
249 (d->locked ? ESB_WDT_LOCK : 0) |
250 (d->enabled ? ESB_WDT_ENABLE : 0);
251 return data;
252 } else {
253 return pci_default_read_config(dev, addr, len);
254 }
255}
256
c227f099 257static uint32_t i6300esb_mem_readb(void *vp, target_phys_addr_t addr)
9dd986cc
RJ
258{
259 i6300esb_debug ("addr = %x\n", (int) addr);
260
261 return 0;
262}
263
c227f099 264static uint32_t i6300esb_mem_readw(void *vp, target_phys_addr_t addr)
9dd986cc
RJ
265{
266 uint32_t data = 0;
4f423e81 267 I6300State *d = vp;
9dd986cc
RJ
268
269 i6300esb_debug("addr = %x\n", (int) addr);
270
271 if (addr == 0xc) {
272 /* The previous reboot flag is really bit 9, but there is
273 * a bug in the Linux driver where it thinks it's bit 12.
274 * Set both.
275 */
276 data = d->previous_reboot_flag ? 0x1200 : 0;
277 }
278
279 return data;
280}
281
c227f099 282static uint32_t i6300esb_mem_readl(void *vp, target_phys_addr_t addr)
9dd986cc
RJ
283{
284 i6300esb_debug("addr = %x\n", (int) addr);
285
286 return 0;
287}
288
c227f099 289static void i6300esb_mem_writeb(void *vp, target_phys_addr_t addr, uint32_t val)
9dd986cc 290{
4f423e81 291 I6300State *d = vp;
9dd986cc
RJ
292
293 i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
294
295 if (addr == 0xc && val == 0x80)
296 d->unlock_state = 1;
297 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
298 d->unlock_state = 2;
299}
300
c227f099 301static void i6300esb_mem_writew(void *vp, target_phys_addr_t addr, uint32_t val)
9dd986cc 302{
4f423e81 303 I6300State *d = vp;
9dd986cc
RJ
304
305 i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
306
307 if (addr == 0xc && val == 0x80)
308 d->unlock_state = 1;
309 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
310 d->unlock_state = 2;
311 else {
312 if (d->unlock_state == 2) {
313 if (addr == 0xc) {
314 if ((val & 0x100) != 0)
315 /* This is the "ping" from the userspace watchdog in
316 * the guest ...
317 */
318 i6300esb_restart_timer(d, 1);
319
320 /* Setting bit 9 resets the previous reboot flag.
321 * There's a bug in the Linux driver where it sets
322 * bit 12 instead.
323 */
324 if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
325 d->previous_reboot_flag = 0;
326 }
327 }
328
329 d->unlock_state = 0;
330 }
331 }
332}
333
c227f099 334static void i6300esb_mem_writel(void *vp, target_phys_addr_t addr, uint32_t val)
9dd986cc 335{
4f423e81 336 I6300State *d = vp;
9dd986cc
RJ
337
338 i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
339
340 if (addr == 0xc && val == 0x80)
341 d->unlock_state = 1;
342 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
343 d->unlock_state = 2;
344 else {
345 if (d->unlock_state == 2) {
346 if (addr == 0)
347 d->timer1_preload = val & 0xfffff;
348 else if (addr == 4)
349 d->timer2_preload = val & 0xfffff;
350
351 d->unlock_state = 0;
352 }
353 }
354}
355
356static void i6300esb_map(PCIDevice *dev, int region_num,
6e355d90 357 pcibus_t addr, pcibus_t size, int type)
9dd986cc 358{
d60efc6b 359 static CPUReadMemoryFunc * const mem_read[3] = {
9dd986cc
RJ
360 i6300esb_mem_readb,
361 i6300esb_mem_readw,
362 i6300esb_mem_readl,
363 };
d60efc6b 364 static CPUWriteMemoryFunc * const mem_write[3] = {
9dd986cc
RJ
365 i6300esb_mem_writeb,
366 i6300esb_mem_writew,
367 i6300esb_mem_writel,
368 };
d03f09cc 369 I6300State *d = DO_UPCAST(I6300State, dev, dev);
9dd986cc
RJ
370 int io_mem;
371
89e8b13c
IY
372 i6300esb_debug("addr = %"FMT_PCIBUS", size = %"FMT_PCIBUS", type = %d\n",
373 addr, size, type);
9dd986cc 374
2507c12a
AG
375 io_mem = cpu_register_io_memory(mem_read, mem_write, d,
376 DEVICE_NATIVE_ENDIAN);
9dd986cc
RJ
377 cpu_register_physical_memory (addr, 0x10, io_mem);
378 /* qemu_register_coalesced_mmio (addr, 0x10); ? */
379}
380
95c90a0e
JQ
381static const VMStateDescription vmstate_i6300esb = {
382 .name = "i6300esb_wdt",
383 .version_id = sizeof(I6300State),
384 .minimum_version_id = sizeof(I6300State),
385 .minimum_version_id_old = sizeof(I6300State),
386 .fields = (VMStateField []) {
387 VMSTATE_PCI_DEVICE(dev, I6300State),
388 VMSTATE_INT32(reboot_enabled, I6300State),
389 VMSTATE_INT32(clock_scale, I6300State),
390 VMSTATE_INT32(int_type, I6300State),
391 VMSTATE_INT32(free_run, I6300State),
392 VMSTATE_INT32(locked, I6300State),
393 VMSTATE_INT32(enabled, I6300State),
394 VMSTATE_TIMER(timer, I6300State),
395 VMSTATE_UINT32(timer1_preload, I6300State),
396 VMSTATE_UINT32(timer2_preload, I6300State),
397 VMSTATE_INT32(stage, I6300State),
398 VMSTATE_INT32(unlock_state, I6300State),
399 VMSTATE_INT32(previous_reboot_flag, I6300State),
400 VMSTATE_END_OF_LIST()
401 }
402};
9dd986cc 403
81a322d4 404static int i6300esb_init(PCIDevice *dev)
9dd986cc 405{
d03f09cc 406 I6300State *d = DO_UPCAST(I6300State, dev, dev);
9dd986cc
RJ
407 uint8_t *pci_conf;
408
fa82e9c3
BK
409 i6300esb_debug("I6300State = %p\n", d);
410
9dd986cc 411 d->timer = qemu_new_timer(vm_clock, i6300esb_timer_expired, d);
9dd986cc
RJ
412
413 pci_conf = d->dev.config;
414 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
415 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_ESB_9);
416 pci_config_set_class(pci_conf, PCI_CLASS_SYSTEM_OTHER);
9dd986cc 417
28c2c264 418 pci_register_bar(&d->dev, 0, 0x10,
0392a017 419 PCI_BASE_ADDRESS_SPACE_MEMORY, i6300esb_map);
9dd986cc 420
81a322d4 421 return 0;
9dd986cc
RJ
422}
423
424static WatchdogTimerModel model = {
425 .wdt_name = "i6300esb",
426 .wdt_description = "Intel 6300ESB",
9dd986cc
RJ
427};
428
09aaa160
MA
429static PCIDeviceInfo i6300esb_info = {
430 .qdev.name = "i6300esb",
431 .qdev.size = sizeof(I6300State),
be73cfe2 432 .qdev.vmsd = &vmstate_i6300esb,
fa82e9c3 433 .qdev.reset = i6300esb_reset,
09aaa160
MA
434 .config_read = i6300esb_config_read,
435 .config_write = i6300esb_config_write,
436 .init = i6300esb_init,
437};
438
439static void i6300esb_register_devices(void)
9dd986cc
RJ
440{
441 watchdog_add_model(&model);
09aaa160 442 pci_qdev_register(&i6300esb_info);
9dd986cc 443}
09aaa160
MA
444
445device_init(i6300esb_register_devices);
This page took 0.39206 seconds and 4 git commands to generate.