]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
fd6ce8f6 | 2 | * virtual page mapping and translated block handling |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
19 | */ | |
67b915a5 | 20 | #include "config.h" |
d5a8f07c | 21 | #ifdef _WIN32 |
4fddf62a | 22 | #define WIN32_LEAN_AND_MEAN |
d5a8f07c FB |
23 | #include <windows.h> |
24 | #else | |
a98d49b1 | 25 | #include <sys/types.h> |
d5a8f07c FB |
26 | #include <sys/mman.h> |
27 | #endif | |
54936004 FB |
28 | #include <stdlib.h> |
29 | #include <stdio.h> | |
30 | #include <stdarg.h> | |
31 | #include <string.h> | |
32 | #include <errno.h> | |
33 | #include <unistd.h> | |
34 | #include <inttypes.h> | |
35 | ||
6180a181 FB |
36 | #include "cpu.h" |
37 | #include "exec-all.h" | |
ca10f867 | 38 | #include "qemu-common.h" |
b67d9a52 | 39 | #include "tcg.h" |
b3c7724c | 40 | #include "hw/hw.h" |
74576198 | 41 | #include "osdep.h" |
7ba1e619 | 42 | #include "kvm.h" |
53a5960a PB |
43 | #if defined(CONFIG_USER_ONLY) |
44 | #include <qemu.h> | |
45 | #endif | |
54936004 | 46 | |
fd6ce8f6 | 47 | //#define DEBUG_TB_INVALIDATE |
66e85a21 | 48 | //#define DEBUG_FLUSH |
9fa3e853 | 49 | //#define DEBUG_TLB |
67d3b957 | 50 | //#define DEBUG_UNASSIGNED |
fd6ce8f6 FB |
51 | |
52 | /* make various TB consistency checks */ | |
5fafdf24 TS |
53 | //#define DEBUG_TB_CHECK |
54 | //#define DEBUG_TLB_CHECK | |
fd6ce8f6 | 55 | |
1196be37 | 56 | //#define DEBUG_IOPORT |
db7b5426 | 57 | //#define DEBUG_SUBPAGE |
1196be37 | 58 | |
99773bd4 PB |
59 | #if !defined(CONFIG_USER_ONLY) |
60 | /* TB consistency checks only implemented for usermode emulation. */ | |
61 | #undef DEBUG_TB_CHECK | |
62 | #endif | |
63 | ||
9fa3e853 FB |
64 | #define SMC_BITMAP_USE_THRESHOLD 10 |
65 | ||
66 | #define MMAP_AREA_START 0x00000000 | |
67 | #define MMAP_AREA_END 0xa8000000 | |
fd6ce8f6 | 68 | |
108c49b8 FB |
69 | #if defined(TARGET_SPARC64) |
70 | #define TARGET_PHYS_ADDR_SPACE_BITS 41 | |
5dcb6b91 BS |
71 | #elif defined(TARGET_SPARC) |
72 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
bedb69ea JM |
73 | #elif defined(TARGET_ALPHA) |
74 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
75 | #define TARGET_VIRT_ADDR_SPACE_BITS 42 | |
108c49b8 FB |
76 | #elif defined(TARGET_PPC64) |
77 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
00f82b8a AJ |
78 | #elif defined(TARGET_X86_64) && !defined(USE_KQEMU) |
79 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
80 | #elif defined(TARGET_I386) && !defined(USE_KQEMU) | |
81 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
108c49b8 FB |
82 | #else |
83 | /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */ | |
84 | #define TARGET_PHYS_ADDR_SPACE_BITS 32 | |
85 | #endif | |
86 | ||
bdaf78e0 | 87 | static TranslationBlock *tbs; |
26a5f13b | 88 | int code_gen_max_blocks; |
9fa3e853 | 89 | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; |
bdaf78e0 | 90 | static int nb_tbs; |
eb51d102 FB |
91 | /* any access to the tbs or the page table must use this lock */ |
92 | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED; | |
fd6ce8f6 | 93 | |
141ac468 BS |
94 | #if defined(__arm__) || defined(__sparc_v9__) |
95 | /* The prologue must be reachable with a direct jump. ARM and Sparc64 | |
96 | have limited branch ranges (possibly also PPC) so place it in a | |
d03d860b BS |
97 | section close to code segment. */ |
98 | #define code_gen_section \ | |
99 | __attribute__((__section__(".gen_code"))) \ | |
100 | __attribute__((aligned (32))) | |
101 | #else | |
102 | #define code_gen_section \ | |
103 | __attribute__((aligned (32))) | |
104 | #endif | |
105 | ||
106 | uint8_t code_gen_prologue[1024] code_gen_section; | |
bdaf78e0 BS |
107 | static uint8_t *code_gen_buffer; |
108 | static unsigned long code_gen_buffer_size; | |
26a5f13b | 109 | /* threshold to flush the translated code buffer */ |
bdaf78e0 | 110 | static unsigned long code_gen_buffer_max_size; |
fd6ce8f6 FB |
111 | uint8_t *code_gen_ptr; |
112 | ||
e2eef170 | 113 | #if !defined(CONFIG_USER_ONLY) |
00f82b8a | 114 | ram_addr_t phys_ram_size; |
9fa3e853 FB |
115 | int phys_ram_fd; |
116 | uint8_t *phys_ram_base; | |
1ccde1cb | 117 | uint8_t *phys_ram_dirty; |
74576198 | 118 | static int in_migration; |
e9a1ab19 | 119 | static ram_addr_t phys_ram_alloc_offset = 0; |
e2eef170 | 120 | #endif |
9fa3e853 | 121 | |
6a00d601 FB |
122 | CPUState *first_cpu; |
123 | /* current CPU in the current thread. It is only valid inside | |
124 | cpu_exec() */ | |
5fafdf24 | 125 | CPUState *cpu_single_env; |
2e70f6ef | 126 | /* 0 = Do not count executed instructions. |
bf20dc07 | 127 | 1 = Precise instruction counting. |
2e70f6ef PB |
128 | 2 = Adaptive rate instruction counting. */ |
129 | int use_icount = 0; | |
130 | /* Current instruction counter. While executing translated code this may | |
131 | include some instructions that have not yet been executed. */ | |
132 | int64_t qemu_icount; | |
6a00d601 | 133 | |
54936004 | 134 | typedef struct PageDesc { |
92e873b9 | 135 | /* list of TBs intersecting this ram page */ |
fd6ce8f6 | 136 | TranslationBlock *first_tb; |
9fa3e853 FB |
137 | /* in order to optimize self modifying code, we count the number |
138 | of lookups we do to a given page to use a bitmap */ | |
139 | unsigned int code_write_count; | |
140 | uint8_t *code_bitmap; | |
141 | #if defined(CONFIG_USER_ONLY) | |
142 | unsigned long flags; | |
143 | #endif | |
54936004 FB |
144 | } PageDesc; |
145 | ||
92e873b9 | 146 | typedef struct PhysPageDesc { |
0f459d16 | 147 | /* offset in host memory of the page + io_index in the low bits */ |
00f82b8a | 148 | ram_addr_t phys_offset; |
92e873b9 FB |
149 | } PhysPageDesc; |
150 | ||
54936004 | 151 | #define L2_BITS 10 |
bedb69ea JM |
152 | #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS) |
153 | /* XXX: this is a temporary hack for alpha target. | |
154 | * In the future, this is to be replaced by a multi-level table | |
155 | * to actually be able to handle the complete 64 bits address space. | |
156 | */ | |
157 | #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS) | |
158 | #else | |
03875444 | 159 | #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS) |
bedb69ea | 160 | #endif |
54936004 FB |
161 | |
162 | #define L1_SIZE (1 << L1_BITS) | |
163 | #define L2_SIZE (1 << L2_BITS) | |
164 | ||
83fb7adf FB |
165 | unsigned long qemu_real_host_page_size; |
166 | unsigned long qemu_host_page_bits; | |
167 | unsigned long qemu_host_page_size; | |
168 | unsigned long qemu_host_page_mask; | |
54936004 | 169 | |
92e873b9 | 170 | /* XXX: for system emulation, it could just be an array */ |
54936004 | 171 | static PageDesc *l1_map[L1_SIZE]; |
bdaf78e0 | 172 | static PhysPageDesc **l1_phys_map; |
54936004 | 173 | |
e2eef170 PB |
174 | #if !defined(CONFIG_USER_ONLY) |
175 | static void io_mem_init(void); | |
176 | ||
33417e70 | 177 | /* io memory support */ |
33417e70 FB |
178 | CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; |
179 | CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; | |
a4193c8a | 180 | void *io_mem_opaque[IO_MEM_NB_ENTRIES]; |
33417e70 | 181 | static int io_mem_nb; |
6658ffb8 PB |
182 | static int io_mem_watch; |
183 | #endif | |
33417e70 | 184 | |
34865134 | 185 | /* log support */ |
d9b630fd | 186 | static const char *logfilename = "/tmp/qemu.log"; |
34865134 FB |
187 | FILE *logfile; |
188 | int loglevel; | |
e735b91c | 189 | static int log_append = 0; |
34865134 | 190 | |
e3db7226 FB |
191 | /* statistics */ |
192 | static int tlb_flush_count; | |
193 | static int tb_flush_count; | |
194 | static int tb_phys_invalidate_count; | |
195 | ||
db7b5426 BS |
196 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
197 | typedef struct subpage_t { | |
198 | target_phys_addr_t base; | |
3ee89922 BS |
199 | CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4]; |
200 | CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4]; | |
201 | void *opaque[TARGET_PAGE_SIZE][2][4]; | |
db7b5426 BS |
202 | } subpage_t; |
203 | ||
7cb69cae FB |
204 | #ifdef _WIN32 |
205 | static void map_exec(void *addr, long size) | |
206 | { | |
207 | DWORD old_protect; | |
208 | VirtualProtect(addr, size, | |
209 | PAGE_EXECUTE_READWRITE, &old_protect); | |
210 | ||
211 | } | |
212 | #else | |
213 | static void map_exec(void *addr, long size) | |
214 | { | |
4369415f | 215 | unsigned long start, end, page_size; |
7cb69cae | 216 | |
4369415f | 217 | page_size = getpagesize(); |
7cb69cae | 218 | start = (unsigned long)addr; |
4369415f | 219 | start &= ~(page_size - 1); |
7cb69cae FB |
220 | |
221 | end = (unsigned long)addr + size; | |
4369415f FB |
222 | end += page_size - 1; |
223 | end &= ~(page_size - 1); | |
7cb69cae FB |
224 | |
225 | mprotect((void *)start, end - start, | |
226 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
227 | } | |
228 | #endif | |
229 | ||
b346ff46 | 230 | static void page_init(void) |
54936004 | 231 | { |
83fb7adf | 232 | /* NOTE: we can always suppose that qemu_host_page_size >= |
54936004 | 233 | TARGET_PAGE_SIZE */ |
c2b48b69 AL |
234 | #ifdef _WIN32 |
235 | { | |
236 | SYSTEM_INFO system_info; | |
237 | ||
238 | GetSystemInfo(&system_info); | |
239 | qemu_real_host_page_size = system_info.dwPageSize; | |
240 | } | |
241 | #else | |
242 | qemu_real_host_page_size = getpagesize(); | |
243 | #endif | |
83fb7adf FB |
244 | if (qemu_host_page_size == 0) |
245 | qemu_host_page_size = qemu_real_host_page_size; | |
246 | if (qemu_host_page_size < TARGET_PAGE_SIZE) | |
247 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
248 | qemu_host_page_bits = 0; | |
249 | while ((1 << qemu_host_page_bits) < qemu_host_page_size) | |
250 | qemu_host_page_bits++; | |
251 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |
108c49b8 FB |
252 | l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *)); |
253 | memset(l1_phys_map, 0, L1_SIZE * sizeof(void *)); | |
50a9569b AZ |
254 | |
255 | #if !defined(_WIN32) && defined(CONFIG_USER_ONLY) | |
256 | { | |
257 | long long startaddr, endaddr; | |
258 | FILE *f; | |
259 | int n; | |
260 | ||
c8a706fe | 261 | mmap_lock(); |
0776590d | 262 | last_brk = (unsigned long)sbrk(0); |
50a9569b AZ |
263 | f = fopen("/proc/self/maps", "r"); |
264 | if (f) { | |
265 | do { | |
266 | n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr); | |
267 | if (n == 2) { | |
e0b8d65a BS |
268 | startaddr = MIN(startaddr, |
269 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
270 | endaddr = MIN(endaddr, | |
271 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
b5fc909e | 272 | page_set_flags(startaddr & TARGET_PAGE_MASK, |
50a9569b AZ |
273 | TARGET_PAGE_ALIGN(endaddr), |
274 | PAGE_RESERVED); | |
275 | } | |
276 | } while (!feof(f)); | |
277 | fclose(f); | |
278 | } | |
c8a706fe | 279 | mmap_unlock(); |
50a9569b AZ |
280 | } |
281 | #endif | |
54936004 FB |
282 | } |
283 | ||
434929bf | 284 | static inline PageDesc **page_l1_map(target_ulong index) |
54936004 | 285 | { |
17e2377a PB |
286 | #if TARGET_LONG_BITS > 32 |
287 | /* Host memory outside guest VM. For 32-bit targets we have already | |
288 | excluded high addresses. */ | |
d8173e0f | 289 | if (index > ((target_ulong)L2_SIZE * L1_SIZE)) |
17e2377a PB |
290 | return NULL; |
291 | #endif | |
434929bf AL |
292 | return &l1_map[index >> L2_BITS]; |
293 | } | |
294 | ||
295 | static inline PageDesc *page_find_alloc(target_ulong index) | |
296 | { | |
297 | PageDesc **lp, *p; | |
298 | lp = page_l1_map(index); | |
299 | if (!lp) | |
300 | return NULL; | |
301 | ||
54936004 FB |
302 | p = *lp; |
303 | if (!p) { | |
304 | /* allocate if not found */ | |
17e2377a PB |
305 | #if defined(CONFIG_USER_ONLY) |
306 | unsigned long addr; | |
307 | size_t len = sizeof(PageDesc) * L2_SIZE; | |
308 | /* Don't use qemu_malloc because it may recurse. */ | |
309 | p = mmap(0, len, PROT_READ | PROT_WRITE, | |
310 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
54936004 | 311 | *lp = p; |
17e2377a PB |
312 | addr = h2g(p); |
313 | if (addr == (target_ulong)addr) { | |
314 | page_set_flags(addr & TARGET_PAGE_MASK, | |
315 | TARGET_PAGE_ALIGN(addr + len), | |
316 | PAGE_RESERVED); | |
317 | } | |
318 | #else | |
319 | p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE); | |
320 | *lp = p; | |
321 | #endif | |
54936004 FB |
322 | } |
323 | return p + (index & (L2_SIZE - 1)); | |
324 | } | |
325 | ||
00f82b8a | 326 | static inline PageDesc *page_find(target_ulong index) |
54936004 | 327 | { |
434929bf AL |
328 | PageDesc **lp, *p; |
329 | lp = page_l1_map(index); | |
330 | if (!lp) | |
331 | return NULL; | |
54936004 | 332 | |
434929bf | 333 | p = *lp; |
54936004 FB |
334 | if (!p) |
335 | return 0; | |
fd6ce8f6 FB |
336 | return p + (index & (L2_SIZE - 1)); |
337 | } | |
338 | ||
108c49b8 | 339 | static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc) |
92e873b9 | 340 | { |
108c49b8 | 341 | void **lp, **p; |
e3f4e2a4 | 342 | PhysPageDesc *pd; |
92e873b9 | 343 | |
108c49b8 FB |
344 | p = (void **)l1_phys_map; |
345 | #if TARGET_PHYS_ADDR_SPACE_BITS > 32 | |
346 | ||
347 | #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS) | |
348 | #error unsupported TARGET_PHYS_ADDR_SPACE_BITS | |
349 | #endif | |
350 | lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1)); | |
92e873b9 FB |
351 | p = *lp; |
352 | if (!p) { | |
353 | /* allocate if not found */ | |
108c49b8 FB |
354 | if (!alloc) |
355 | return NULL; | |
356 | p = qemu_vmalloc(sizeof(void *) * L1_SIZE); | |
357 | memset(p, 0, sizeof(void *) * L1_SIZE); | |
358 | *lp = p; | |
359 | } | |
360 | #endif | |
361 | lp = p + ((index >> L2_BITS) & (L1_SIZE - 1)); | |
e3f4e2a4 PB |
362 | pd = *lp; |
363 | if (!pd) { | |
364 | int i; | |
108c49b8 FB |
365 | /* allocate if not found */ |
366 | if (!alloc) | |
367 | return NULL; | |
e3f4e2a4 PB |
368 | pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE); |
369 | *lp = pd; | |
370 | for (i = 0; i < L2_SIZE; i++) | |
371 | pd[i].phys_offset = IO_MEM_UNASSIGNED; | |
92e873b9 | 372 | } |
e3f4e2a4 | 373 | return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1)); |
92e873b9 FB |
374 | } |
375 | ||
108c49b8 | 376 | static inline PhysPageDesc *phys_page_find(target_phys_addr_t index) |
92e873b9 | 377 | { |
108c49b8 | 378 | return phys_page_find_alloc(index, 0); |
92e873b9 FB |
379 | } |
380 | ||
9fa3e853 | 381 | #if !defined(CONFIG_USER_ONLY) |
6a00d601 | 382 | static void tlb_protect_code(ram_addr_t ram_addr); |
5fafdf24 | 383 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 384 | target_ulong vaddr); |
c8a706fe PB |
385 | #define mmap_lock() do { } while(0) |
386 | #define mmap_unlock() do { } while(0) | |
9fa3e853 | 387 | #endif |
fd6ce8f6 | 388 | |
4369415f FB |
389 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024) |
390 | ||
391 | #if defined(CONFIG_USER_ONLY) | |
392 | /* Currently it is not recommanded to allocate big chunks of data in | |
393 | user mode. It will change when a dedicated libc will be used */ | |
394 | #define USE_STATIC_CODE_GEN_BUFFER | |
395 | #endif | |
396 | ||
397 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
398 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]; | |
399 | #endif | |
400 | ||
8fcd3692 | 401 | static void code_gen_alloc(unsigned long tb_size) |
26a5f13b | 402 | { |
4369415f FB |
403 | #ifdef USE_STATIC_CODE_GEN_BUFFER |
404 | code_gen_buffer = static_code_gen_buffer; | |
405 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
406 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
407 | #else | |
26a5f13b FB |
408 | code_gen_buffer_size = tb_size; |
409 | if (code_gen_buffer_size == 0) { | |
4369415f FB |
410 | #if defined(CONFIG_USER_ONLY) |
411 | /* in user mode, phys_ram_size is not meaningful */ | |
412 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
413 | #else | |
26a5f13b | 414 | /* XXX: needs ajustments */ |
174a9a1f | 415 | code_gen_buffer_size = (unsigned long)(phys_ram_size / 4); |
4369415f | 416 | #endif |
26a5f13b FB |
417 | } |
418 | if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE) | |
419 | code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE; | |
420 | /* The code gen buffer location may have constraints depending on | |
421 | the host cpu and OS */ | |
422 | #if defined(__linux__) | |
423 | { | |
424 | int flags; | |
141ac468 BS |
425 | void *start = NULL; |
426 | ||
26a5f13b FB |
427 | flags = MAP_PRIVATE | MAP_ANONYMOUS; |
428 | #if defined(__x86_64__) | |
429 | flags |= MAP_32BIT; | |
430 | /* Cannot map more than that */ | |
431 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
432 | code_gen_buffer_size = (800 * 1024 * 1024); | |
141ac468 BS |
433 | #elif defined(__sparc_v9__) |
434 | // Map the buffer below 2G, so we can use direct calls and branches | |
435 | flags |= MAP_FIXED; | |
436 | start = (void *) 0x60000000UL; | |
437 | if (code_gen_buffer_size > (512 * 1024 * 1024)) | |
438 | code_gen_buffer_size = (512 * 1024 * 1024); | |
26a5f13b | 439 | #endif |
141ac468 BS |
440 | code_gen_buffer = mmap(start, code_gen_buffer_size, |
441 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
26a5f13b FB |
442 | flags, -1, 0); |
443 | if (code_gen_buffer == MAP_FAILED) { | |
444 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
445 | exit(1); | |
446 | } | |
447 | } | |
06e67a82 AL |
448 | #elif defined(__FreeBSD__) |
449 | { | |
450 | int flags; | |
451 | void *addr = NULL; | |
452 | flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
453 | #if defined(__x86_64__) | |
454 | /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume | |
455 | * 0x40000000 is free */ | |
456 | flags |= MAP_FIXED; | |
457 | addr = (void *)0x40000000; | |
458 | /* Cannot map more than that */ | |
459 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
460 | code_gen_buffer_size = (800 * 1024 * 1024); | |
461 | #endif | |
462 | code_gen_buffer = mmap(addr, code_gen_buffer_size, | |
463 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
464 | flags, -1, 0); | |
465 | if (code_gen_buffer == MAP_FAILED) { | |
466 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
467 | exit(1); | |
468 | } | |
469 | } | |
26a5f13b FB |
470 | #else |
471 | code_gen_buffer = qemu_malloc(code_gen_buffer_size); | |
472 | if (!code_gen_buffer) { | |
473 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
474 | exit(1); | |
475 | } | |
476 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
477 | #endif | |
4369415f | 478 | #endif /* !USE_STATIC_CODE_GEN_BUFFER */ |
26a5f13b FB |
479 | map_exec(code_gen_prologue, sizeof(code_gen_prologue)); |
480 | code_gen_buffer_max_size = code_gen_buffer_size - | |
481 | code_gen_max_block_size(); | |
482 | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; | |
483 | tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock)); | |
484 | } | |
485 | ||
486 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
487 | (in bytes) allocated to the translation buffer. Zero means default | |
488 | size. */ | |
489 | void cpu_exec_init_all(unsigned long tb_size) | |
490 | { | |
26a5f13b FB |
491 | cpu_gen_init(); |
492 | code_gen_alloc(tb_size); | |
493 | code_gen_ptr = code_gen_buffer; | |
4369415f | 494 | page_init(); |
e2eef170 | 495 | #if !defined(CONFIG_USER_ONLY) |
26a5f13b | 496 | io_mem_init(); |
e2eef170 | 497 | #endif |
26a5f13b FB |
498 | } |
499 | ||
9656f324 PB |
500 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
501 | ||
502 | #define CPU_COMMON_SAVE_VERSION 1 | |
503 | ||
504 | static void cpu_common_save(QEMUFile *f, void *opaque) | |
505 | { | |
506 | CPUState *env = opaque; | |
507 | ||
508 | qemu_put_be32s(f, &env->halted); | |
509 | qemu_put_be32s(f, &env->interrupt_request); | |
510 | } | |
511 | ||
512 | static int cpu_common_load(QEMUFile *f, void *opaque, int version_id) | |
513 | { | |
514 | CPUState *env = opaque; | |
515 | ||
516 | if (version_id != CPU_COMMON_SAVE_VERSION) | |
517 | return -EINVAL; | |
518 | ||
519 | qemu_get_be32s(f, &env->halted); | |
75f482ae | 520 | qemu_get_be32s(f, &env->interrupt_request); |
9656f324 PB |
521 | tlb_flush(env, 1); |
522 | ||
523 | return 0; | |
524 | } | |
525 | #endif | |
526 | ||
6a00d601 | 527 | void cpu_exec_init(CPUState *env) |
fd6ce8f6 | 528 | { |
6a00d601 FB |
529 | CPUState **penv; |
530 | int cpu_index; | |
531 | ||
6a00d601 FB |
532 | env->next_cpu = NULL; |
533 | penv = &first_cpu; | |
534 | cpu_index = 0; | |
535 | while (*penv != NULL) { | |
536 | penv = (CPUState **)&(*penv)->next_cpu; | |
537 | cpu_index++; | |
538 | } | |
539 | env->cpu_index = cpu_index; | |
540 | *penv = env; | |
b3c7724c | 541 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
9656f324 PB |
542 | register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION, |
543 | cpu_common_save, cpu_common_load, env); | |
b3c7724c PB |
544 | register_savevm("cpu", cpu_index, CPU_SAVE_VERSION, |
545 | cpu_save, cpu_load, env); | |
546 | #endif | |
fd6ce8f6 FB |
547 | } |
548 | ||
9fa3e853 FB |
549 | static inline void invalidate_page_bitmap(PageDesc *p) |
550 | { | |
551 | if (p->code_bitmap) { | |
59817ccb | 552 | qemu_free(p->code_bitmap); |
9fa3e853 FB |
553 | p->code_bitmap = NULL; |
554 | } | |
555 | p->code_write_count = 0; | |
556 | } | |
557 | ||
fd6ce8f6 FB |
558 | /* set to NULL all the 'first_tb' fields in all PageDescs */ |
559 | static void page_flush_tb(void) | |
560 | { | |
561 | int i, j; | |
562 | PageDesc *p; | |
563 | ||
564 | for(i = 0; i < L1_SIZE; i++) { | |
565 | p = l1_map[i]; | |
566 | if (p) { | |
9fa3e853 FB |
567 | for(j = 0; j < L2_SIZE; j++) { |
568 | p->first_tb = NULL; | |
569 | invalidate_page_bitmap(p); | |
570 | p++; | |
571 | } | |
fd6ce8f6 FB |
572 | } |
573 | } | |
574 | } | |
575 | ||
576 | /* flush all the translation blocks */ | |
d4e8164f | 577 | /* XXX: tb_flush is currently not thread safe */ |
6a00d601 | 578 | void tb_flush(CPUState *env1) |
fd6ce8f6 | 579 | { |
6a00d601 | 580 | CPUState *env; |
0124311e | 581 | #if defined(DEBUG_FLUSH) |
ab3d1727 BS |
582 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", |
583 | (unsigned long)(code_gen_ptr - code_gen_buffer), | |
584 | nb_tbs, nb_tbs > 0 ? | |
585 | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0); | |
fd6ce8f6 | 586 | #endif |
26a5f13b | 587 | if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size) |
a208e54a PB |
588 | cpu_abort(env1, "Internal error: code buffer overflow\n"); |
589 | ||
fd6ce8f6 | 590 | nb_tbs = 0; |
3b46e624 | 591 | |
6a00d601 FB |
592 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
593 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
594 | } | |
9fa3e853 | 595 | |
8a8a608f | 596 | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); |
fd6ce8f6 | 597 | page_flush_tb(); |
9fa3e853 | 598 | |
fd6ce8f6 | 599 | code_gen_ptr = code_gen_buffer; |
d4e8164f FB |
600 | /* XXX: flush processor icache at this point if cache flush is |
601 | expensive */ | |
e3db7226 | 602 | tb_flush_count++; |
fd6ce8f6 FB |
603 | } |
604 | ||
605 | #ifdef DEBUG_TB_CHECK | |
606 | ||
bc98a7ef | 607 | static void tb_invalidate_check(target_ulong address) |
fd6ce8f6 FB |
608 | { |
609 | TranslationBlock *tb; | |
610 | int i; | |
611 | address &= TARGET_PAGE_MASK; | |
99773bd4 PB |
612 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
613 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
614 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || |
615 | address >= tb->pc + tb->size)) { | |
616 | printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n", | |
99773bd4 | 617 | address, (long)tb->pc, tb->size); |
fd6ce8f6 FB |
618 | } |
619 | } | |
620 | } | |
621 | } | |
622 | ||
623 | /* verify that all the pages have correct rights for code */ | |
624 | static void tb_page_check(void) | |
625 | { | |
626 | TranslationBlock *tb; | |
627 | int i, flags1, flags2; | |
3b46e624 | 628 | |
99773bd4 PB |
629 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
630 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
631 | flags1 = page_get_flags(tb->pc); |
632 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
633 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
634 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
99773bd4 | 635 | (long)tb->pc, tb->size, flags1, flags2); |
fd6ce8f6 FB |
636 | } |
637 | } | |
638 | } | |
639 | } | |
640 | ||
bdaf78e0 | 641 | static void tb_jmp_check(TranslationBlock *tb) |
d4e8164f FB |
642 | { |
643 | TranslationBlock *tb1; | |
644 | unsigned int n1; | |
645 | ||
646 | /* suppress any remaining jumps to this TB */ | |
647 | tb1 = tb->jmp_first; | |
648 | for(;;) { | |
649 | n1 = (long)tb1 & 3; | |
650 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
651 | if (n1 == 2) | |
652 | break; | |
653 | tb1 = tb1->jmp_next[n1]; | |
654 | } | |
655 | /* check end of list */ | |
656 | if (tb1 != tb) { | |
657 | printf("ERROR: jmp_list from 0x%08lx\n", (long)tb); | |
658 | } | |
659 | } | |
660 | ||
fd6ce8f6 FB |
661 | #endif |
662 | ||
663 | /* invalidate one TB */ | |
664 | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb, | |
665 | int next_offset) | |
666 | { | |
667 | TranslationBlock *tb1; | |
668 | for(;;) { | |
669 | tb1 = *ptb; | |
670 | if (tb1 == tb) { | |
671 | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset); | |
672 | break; | |
673 | } | |
674 | ptb = (TranslationBlock **)((char *)tb1 + next_offset); | |
675 | } | |
676 | } | |
677 | ||
9fa3e853 FB |
678 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) |
679 | { | |
680 | TranslationBlock *tb1; | |
681 | unsigned int n1; | |
682 | ||
683 | for(;;) { | |
684 | tb1 = *ptb; | |
685 | n1 = (long)tb1 & 3; | |
686 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
687 | if (tb1 == tb) { | |
688 | *ptb = tb1->page_next[n1]; | |
689 | break; | |
690 | } | |
691 | ptb = &tb1->page_next[n1]; | |
692 | } | |
693 | } | |
694 | ||
d4e8164f FB |
695 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) |
696 | { | |
697 | TranslationBlock *tb1, **ptb; | |
698 | unsigned int n1; | |
699 | ||
700 | ptb = &tb->jmp_next[n]; | |
701 | tb1 = *ptb; | |
702 | if (tb1) { | |
703 | /* find tb(n) in circular list */ | |
704 | for(;;) { | |
705 | tb1 = *ptb; | |
706 | n1 = (long)tb1 & 3; | |
707 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
708 | if (n1 == n && tb1 == tb) | |
709 | break; | |
710 | if (n1 == 2) { | |
711 | ptb = &tb1->jmp_first; | |
712 | } else { | |
713 | ptb = &tb1->jmp_next[n1]; | |
714 | } | |
715 | } | |
716 | /* now we can suppress tb(n) from the list */ | |
717 | *ptb = tb->jmp_next[n]; | |
718 | ||
719 | tb->jmp_next[n] = NULL; | |
720 | } | |
721 | } | |
722 | ||
723 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
724 | another TB */ | |
725 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
726 | { | |
727 | tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n])); | |
728 | } | |
729 | ||
2e70f6ef | 730 | void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr) |
fd6ce8f6 | 731 | { |
6a00d601 | 732 | CPUState *env; |
8a40a180 | 733 | PageDesc *p; |
d4e8164f | 734 | unsigned int h, n1; |
00f82b8a | 735 | target_phys_addr_t phys_pc; |
8a40a180 | 736 | TranslationBlock *tb1, *tb2; |
3b46e624 | 737 | |
8a40a180 FB |
738 | /* remove the TB from the hash list */ |
739 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
740 | h = tb_phys_hash_func(phys_pc); | |
5fafdf24 | 741 | tb_remove(&tb_phys_hash[h], tb, |
8a40a180 FB |
742 | offsetof(TranslationBlock, phys_hash_next)); |
743 | ||
744 | /* remove the TB from the page list */ | |
745 | if (tb->page_addr[0] != page_addr) { | |
746 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
747 | tb_page_remove(&p->first_tb, tb); | |
748 | invalidate_page_bitmap(p); | |
749 | } | |
750 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
751 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
752 | tb_page_remove(&p->first_tb, tb); | |
753 | invalidate_page_bitmap(p); | |
754 | } | |
755 | ||
36bdbe54 | 756 | tb_invalidated_flag = 1; |
59817ccb | 757 | |
fd6ce8f6 | 758 | /* remove the TB from the hash list */ |
8a40a180 | 759 | h = tb_jmp_cache_hash_func(tb->pc); |
6a00d601 FB |
760 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
761 | if (env->tb_jmp_cache[h] == tb) | |
762 | env->tb_jmp_cache[h] = NULL; | |
763 | } | |
d4e8164f FB |
764 | |
765 | /* suppress this TB from the two jump lists */ | |
766 | tb_jmp_remove(tb, 0); | |
767 | tb_jmp_remove(tb, 1); | |
768 | ||
769 | /* suppress any remaining jumps to this TB */ | |
770 | tb1 = tb->jmp_first; | |
771 | for(;;) { | |
772 | n1 = (long)tb1 & 3; | |
773 | if (n1 == 2) | |
774 | break; | |
775 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
776 | tb2 = tb1->jmp_next[n1]; | |
777 | tb_reset_jump(tb1, n1); | |
778 | tb1->jmp_next[n1] = NULL; | |
779 | tb1 = tb2; | |
780 | } | |
781 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */ | |
9fa3e853 | 782 | |
e3db7226 | 783 | tb_phys_invalidate_count++; |
9fa3e853 FB |
784 | } |
785 | ||
786 | static inline void set_bits(uint8_t *tab, int start, int len) | |
787 | { | |
788 | int end, mask, end1; | |
789 | ||
790 | end = start + len; | |
791 | tab += start >> 3; | |
792 | mask = 0xff << (start & 7); | |
793 | if ((start & ~7) == (end & ~7)) { | |
794 | if (start < end) { | |
795 | mask &= ~(0xff << (end & 7)); | |
796 | *tab |= mask; | |
797 | } | |
798 | } else { | |
799 | *tab++ |= mask; | |
800 | start = (start + 8) & ~7; | |
801 | end1 = end & ~7; | |
802 | while (start < end1) { | |
803 | *tab++ = 0xff; | |
804 | start += 8; | |
805 | } | |
806 | if (start < end) { | |
807 | mask = ~(0xff << (end & 7)); | |
808 | *tab |= mask; | |
809 | } | |
810 | } | |
811 | } | |
812 | ||
813 | static void build_page_bitmap(PageDesc *p) | |
814 | { | |
815 | int n, tb_start, tb_end; | |
816 | TranslationBlock *tb; | |
3b46e624 | 817 | |
b2a7081a | 818 | p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8); |
9fa3e853 FB |
819 | if (!p->code_bitmap) |
820 | return; | |
9fa3e853 FB |
821 | |
822 | tb = p->first_tb; | |
823 | while (tb != NULL) { | |
824 | n = (long)tb & 3; | |
825 | tb = (TranslationBlock *)((long)tb & ~3); | |
826 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
827 | if (n == 0) { | |
828 | /* NOTE: tb_end may be after the end of the page, but | |
829 | it is not a problem */ | |
830 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
831 | tb_end = tb_start + tb->size; | |
832 | if (tb_end > TARGET_PAGE_SIZE) | |
833 | tb_end = TARGET_PAGE_SIZE; | |
834 | } else { | |
835 | tb_start = 0; | |
836 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
837 | } | |
838 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |
839 | tb = tb->page_next[n]; | |
840 | } | |
841 | } | |
842 | ||
2e70f6ef PB |
843 | TranslationBlock *tb_gen_code(CPUState *env, |
844 | target_ulong pc, target_ulong cs_base, | |
845 | int flags, int cflags) | |
d720b93d FB |
846 | { |
847 | TranslationBlock *tb; | |
848 | uint8_t *tc_ptr; | |
849 | target_ulong phys_pc, phys_page2, virt_page2; | |
850 | int code_gen_size; | |
851 | ||
c27004ec FB |
852 | phys_pc = get_phys_addr_code(env, pc); |
853 | tb = tb_alloc(pc); | |
d720b93d FB |
854 | if (!tb) { |
855 | /* flush must be done */ | |
856 | tb_flush(env); | |
857 | /* cannot fail at this point */ | |
c27004ec | 858 | tb = tb_alloc(pc); |
2e70f6ef PB |
859 | /* Don't forget to invalidate previous TB info. */ |
860 | tb_invalidated_flag = 1; | |
d720b93d FB |
861 | } |
862 | tc_ptr = code_gen_ptr; | |
863 | tb->tc_ptr = tc_ptr; | |
864 | tb->cs_base = cs_base; | |
865 | tb->flags = flags; | |
866 | tb->cflags = cflags; | |
d07bde88 | 867 | cpu_gen_code(env, tb, &code_gen_size); |
d720b93d | 868 | code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); |
3b46e624 | 869 | |
d720b93d | 870 | /* check next page if needed */ |
c27004ec | 871 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; |
d720b93d | 872 | phys_page2 = -1; |
c27004ec | 873 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { |
d720b93d FB |
874 | phys_page2 = get_phys_addr_code(env, virt_page2); |
875 | } | |
876 | tb_link_phys(tb, phys_pc, phys_page2); | |
2e70f6ef | 877 | return tb; |
d720b93d | 878 | } |
3b46e624 | 879 | |
9fa3e853 FB |
880 | /* invalidate all TBs which intersect with the target physical page |
881 | starting in range [start;end[. NOTE: start and end must refer to | |
d720b93d FB |
882 | the same physical page. 'is_cpu_write_access' should be true if called |
883 | from a real cpu write access: the virtual CPU will exit the current | |
884 | TB if code is modified inside this TB. */ | |
00f82b8a | 885 | void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, |
d720b93d FB |
886 | int is_cpu_write_access) |
887 | { | |
6b917547 | 888 | TranslationBlock *tb, *tb_next, *saved_tb; |
d720b93d | 889 | CPUState *env = cpu_single_env; |
9fa3e853 | 890 | target_ulong tb_start, tb_end; |
6b917547 AL |
891 | PageDesc *p; |
892 | int n; | |
893 | #ifdef TARGET_HAS_PRECISE_SMC | |
894 | int current_tb_not_found = is_cpu_write_access; | |
895 | TranslationBlock *current_tb = NULL; | |
896 | int current_tb_modified = 0; | |
897 | target_ulong current_pc = 0; | |
898 | target_ulong current_cs_base = 0; | |
899 | int current_flags = 0; | |
900 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
901 | |
902 | p = page_find(start >> TARGET_PAGE_BITS); | |
5fafdf24 | 903 | if (!p) |
9fa3e853 | 904 | return; |
5fafdf24 | 905 | if (!p->code_bitmap && |
d720b93d FB |
906 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && |
907 | is_cpu_write_access) { | |
9fa3e853 FB |
908 | /* build code bitmap */ |
909 | build_page_bitmap(p); | |
910 | } | |
911 | ||
912 | /* we remove all the TBs in the range [start, end[ */ | |
913 | /* XXX: see if in some cases it could be faster to invalidate all the code */ | |
914 | tb = p->first_tb; | |
915 | while (tb != NULL) { | |
916 | n = (long)tb & 3; | |
917 | tb = (TranslationBlock *)((long)tb & ~3); | |
918 | tb_next = tb->page_next[n]; | |
919 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
920 | if (n == 0) { | |
921 | /* NOTE: tb_end may be after the end of the page, but | |
922 | it is not a problem */ | |
923 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
924 | tb_end = tb_start + tb->size; | |
925 | } else { | |
926 | tb_start = tb->page_addr[1]; | |
927 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
928 | } | |
929 | if (!(tb_end <= start || tb_start >= end)) { | |
d720b93d FB |
930 | #ifdef TARGET_HAS_PRECISE_SMC |
931 | if (current_tb_not_found) { | |
932 | current_tb_not_found = 0; | |
933 | current_tb = NULL; | |
2e70f6ef | 934 | if (env->mem_io_pc) { |
d720b93d | 935 | /* now we have a real cpu fault */ |
2e70f6ef | 936 | current_tb = tb_find_pc(env->mem_io_pc); |
d720b93d FB |
937 | } |
938 | } | |
939 | if (current_tb == tb && | |
2e70f6ef | 940 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
941 | /* If we are modifying the current TB, we must stop |
942 | its execution. We could be more precise by checking | |
943 | that the modification is after the current PC, but it | |
944 | would require a specialized function to partially | |
945 | restore the CPU state */ | |
3b46e624 | 946 | |
d720b93d | 947 | current_tb_modified = 1; |
5fafdf24 | 948 | cpu_restore_state(current_tb, env, |
2e70f6ef | 949 | env->mem_io_pc, NULL); |
6b917547 AL |
950 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
951 | ¤t_flags); | |
d720b93d FB |
952 | } |
953 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
6f5a9f7e FB |
954 | /* we need to do that to handle the case where a signal |
955 | occurs while doing tb_phys_invalidate() */ | |
956 | saved_tb = NULL; | |
957 | if (env) { | |
958 | saved_tb = env->current_tb; | |
959 | env->current_tb = NULL; | |
960 | } | |
9fa3e853 | 961 | tb_phys_invalidate(tb, -1); |
6f5a9f7e FB |
962 | if (env) { |
963 | env->current_tb = saved_tb; | |
964 | if (env->interrupt_request && env->current_tb) | |
965 | cpu_interrupt(env, env->interrupt_request); | |
966 | } | |
9fa3e853 FB |
967 | } |
968 | tb = tb_next; | |
969 | } | |
970 | #if !defined(CONFIG_USER_ONLY) | |
971 | /* if no code remaining, no need to continue to use slow writes */ | |
972 | if (!p->first_tb) { | |
973 | invalidate_page_bitmap(p); | |
d720b93d | 974 | if (is_cpu_write_access) { |
2e70f6ef | 975 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); |
d720b93d FB |
976 | } |
977 | } | |
978 | #endif | |
979 | #ifdef TARGET_HAS_PRECISE_SMC | |
980 | if (current_tb_modified) { | |
981 | /* we generate a block containing just the instruction | |
982 | modifying the memory. It will ensure that it cannot modify | |
983 | itself */ | |
ea1c1802 | 984 | env->current_tb = NULL; |
2e70f6ef | 985 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d | 986 | cpu_resume_from_signal(env, NULL); |
9fa3e853 | 987 | } |
fd6ce8f6 | 988 | #endif |
9fa3e853 | 989 | } |
fd6ce8f6 | 990 | |
9fa3e853 | 991 | /* len must be <= 8 and start must be a multiple of len */ |
00f82b8a | 992 | static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len) |
9fa3e853 FB |
993 | { |
994 | PageDesc *p; | |
995 | int offset, b; | |
59817ccb | 996 | #if 0 |
a4193c8a FB |
997 | if (1) { |
998 | if (loglevel) { | |
5fafdf24 | 999 | fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n", |
2e70f6ef | 1000 | cpu_single_env->mem_io_vaddr, len, |
5fafdf24 | 1001 | cpu_single_env->eip, |
a4193c8a FB |
1002 | cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base); |
1003 | } | |
59817ccb FB |
1004 | } |
1005 | #endif | |
9fa3e853 | 1006 | p = page_find(start >> TARGET_PAGE_BITS); |
5fafdf24 | 1007 | if (!p) |
9fa3e853 FB |
1008 | return; |
1009 | if (p->code_bitmap) { | |
1010 | offset = start & ~TARGET_PAGE_MASK; | |
1011 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |
1012 | if (b & ((1 << len) - 1)) | |
1013 | goto do_invalidate; | |
1014 | } else { | |
1015 | do_invalidate: | |
d720b93d | 1016 | tb_invalidate_phys_page_range(start, start + len, 1); |
9fa3e853 FB |
1017 | } |
1018 | } | |
1019 | ||
9fa3e853 | 1020 | #if !defined(CONFIG_SOFTMMU) |
00f82b8a | 1021 | static void tb_invalidate_phys_page(target_phys_addr_t addr, |
d720b93d | 1022 | unsigned long pc, void *puc) |
9fa3e853 | 1023 | { |
6b917547 | 1024 | TranslationBlock *tb; |
9fa3e853 | 1025 | PageDesc *p; |
6b917547 | 1026 | int n; |
d720b93d | 1027 | #ifdef TARGET_HAS_PRECISE_SMC |
6b917547 | 1028 | TranslationBlock *current_tb = NULL; |
d720b93d | 1029 | CPUState *env = cpu_single_env; |
6b917547 AL |
1030 | int current_tb_modified = 0; |
1031 | target_ulong current_pc = 0; | |
1032 | target_ulong current_cs_base = 0; | |
1033 | int current_flags = 0; | |
d720b93d | 1034 | #endif |
9fa3e853 FB |
1035 | |
1036 | addr &= TARGET_PAGE_MASK; | |
1037 | p = page_find(addr >> TARGET_PAGE_BITS); | |
5fafdf24 | 1038 | if (!p) |
9fa3e853 FB |
1039 | return; |
1040 | tb = p->first_tb; | |
d720b93d FB |
1041 | #ifdef TARGET_HAS_PRECISE_SMC |
1042 | if (tb && pc != 0) { | |
1043 | current_tb = tb_find_pc(pc); | |
1044 | } | |
1045 | #endif | |
9fa3e853 FB |
1046 | while (tb != NULL) { |
1047 | n = (long)tb & 3; | |
1048 | tb = (TranslationBlock *)((long)tb & ~3); | |
d720b93d FB |
1049 | #ifdef TARGET_HAS_PRECISE_SMC |
1050 | if (current_tb == tb && | |
2e70f6ef | 1051 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
1052 | /* If we are modifying the current TB, we must stop |
1053 | its execution. We could be more precise by checking | |
1054 | that the modification is after the current PC, but it | |
1055 | would require a specialized function to partially | |
1056 | restore the CPU state */ | |
3b46e624 | 1057 | |
d720b93d FB |
1058 | current_tb_modified = 1; |
1059 | cpu_restore_state(current_tb, env, pc, puc); | |
6b917547 AL |
1060 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1061 | ¤t_flags); | |
d720b93d FB |
1062 | } |
1063 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
1064 | tb_phys_invalidate(tb, addr); |
1065 | tb = tb->page_next[n]; | |
1066 | } | |
fd6ce8f6 | 1067 | p->first_tb = NULL; |
d720b93d FB |
1068 | #ifdef TARGET_HAS_PRECISE_SMC |
1069 | if (current_tb_modified) { | |
1070 | /* we generate a block containing just the instruction | |
1071 | modifying the memory. It will ensure that it cannot modify | |
1072 | itself */ | |
ea1c1802 | 1073 | env->current_tb = NULL; |
2e70f6ef | 1074 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d FB |
1075 | cpu_resume_from_signal(env, puc); |
1076 | } | |
1077 | #endif | |
fd6ce8f6 | 1078 | } |
9fa3e853 | 1079 | #endif |
fd6ce8f6 FB |
1080 | |
1081 | /* add the tb in the target page and protect it if necessary */ | |
5fafdf24 | 1082 | static inline void tb_alloc_page(TranslationBlock *tb, |
53a5960a | 1083 | unsigned int n, target_ulong page_addr) |
fd6ce8f6 FB |
1084 | { |
1085 | PageDesc *p; | |
9fa3e853 FB |
1086 | TranslationBlock *last_first_tb; |
1087 | ||
1088 | tb->page_addr[n] = page_addr; | |
3a7d929e | 1089 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1090 | tb->page_next[n] = p->first_tb; |
1091 | last_first_tb = p->first_tb; | |
1092 | p->first_tb = (TranslationBlock *)((long)tb | n); | |
1093 | invalidate_page_bitmap(p); | |
fd6ce8f6 | 1094 | |
107db443 | 1095 | #if defined(TARGET_HAS_SMC) || 1 |
d720b93d | 1096 | |
9fa3e853 | 1097 | #if defined(CONFIG_USER_ONLY) |
fd6ce8f6 | 1098 | if (p->flags & PAGE_WRITE) { |
53a5960a PB |
1099 | target_ulong addr; |
1100 | PageDesc *p2; | |
9fa3e853 FB |
1101 | int prot; |
1102 | ||
fd6ce8f6 FB |
1103 | /* force the host page as non writable (writes will have a |
1104 | page fault + mprotect overhead) */ | |
53a5960a | 1105 | page_addr &= qemu_host_page_mask; |
fd6ce8f6 | 1106 | prot = 0; |
53a5960a PB |
1107 | for(addr = page_addr; addr < page_addr + qemu_host_page_size; |
1108 | addr += TARGET_PAGE_SIZE) { | |
1109 | ||
1110 | p2 = page_find (addr >> TARGET_PAGE_BITS); | |
1111 | if (!p2) | |
1112 | continue; | |
1113 | prot |= p2->flags; | |
1114 | p2->flags &= ~PAGE_WRITE; | |
1115 | page_get_flags(addr); | |
1116 | } | |
5fafdf24 | 1117 | mprotect(g2h(page_addr), qemu_host_page_size, |
fd6ce8f6 FB |
1118 | (prot & PAGE_BITS) & ~PAGE_WRITE); |
1119 | #ifdef DEBUG_TB_INVALIDATE | |
ab3d1727 | 1120 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", |
53a5960a | 1121 | page_addr); |
fd6ce8f6 | 1122 | #endif |
fd6ce8f6 | 1123 | } |
9fa3e853 FB |
1124 | #else |
1125 | /* if some code is already present, then the pages are already | |
1126 | protected. So we handle the case where only the first TB is | |
1127 | allocated in a physical page */ | |
1128 | if (!last_first_tb) { | |
6a00d601 | 1129 | tlb_protect_code(page_addr); |
9fa3e853 FB |
1130 | } |
1131 | #endif | |
d720b93d FB |
1132 | |
1133 | #endif /* TARGET_HAS_SMC */ | |
fd6ce8f6 FB |
1134 | } |
1135 | ||
1136 | /* Allocate a new translation block. Flush the translation buffer if | |
1137 | too many translation blocks or too much generated code. */ | |
c27004ec | 1138 | TranslationBlock *tb_alloc(target_ulong pc) |
fd6ce8f6 FB |
1139 | { |
1140 | TranslationBlock *tb; | |
fd6ce8f6 | 1141 | |
26a5f13b FB |
1142 | if (nb_tbs >= code_gen_max_blocks || |
1143 | (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size) | |
d4e8164f | 1144 | return NULL; |
fd6ce8f6 FB |
1145 | tb = &tbs[nb_tbs++]; |
1146 | tb->pc = pc; | |
b448f2f3 | 1147 | tb->cflags = 0; |
d4e8164f FB |
1148 | return tb; |
1149 | } | |
1150 | ||
2e70f6ef PB |
1151 | void tb_free(TranslationBlock *tb) |
1152 | { | |
bf20dc07 | 1153 | /* In practice this is mostly used for single use temporary TB |
2e70f6ef PB |
1154 | Ignore the hard cases and just back up if this TB happens to |
1155 | be the last one generated. */ | |
1156 | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) { | |
1157 | code_gen_ptr = tb->tc_ptr; | |
1158 | nb_tbs--; | |
1159 | } | |
1160 | } | |
1161 | ||
9fa3e853 FB |
1162 | /* add a new TB and link it to the physical page tables. phys_page2 is |
1163 | (-1) to indicate that only one page contains the TB. */ | |
5fafdf24 | 1164 | void tb_link_phys(TranslationBlock *tb, |
9fa3e853 | 1165 | target_ulong phys_pc, target_ulong phys_page2) |
d4e8164f | 1166 | { |
9fa3e853 FB |
1167 | unsigned int h; |
1168 | TranslationBlock **ptb; | |
1169 | ||
c8a706fe PB |
1170 | /* Grab the mmap lock to stop another thread invalidating this TB |
1171 | before we are done. */ | |
1172 | mmap_lock(); | |
9fa3e853 FB |
1173 | /* add in the physical hash table */ |
1174 | h = tb_phys_hash_func(phys_pc); | |
1175 | ptb = &tb_phys_hash[h]; | |
1176 | tb->phys_hash_next = *ptb; | |
1177 | *ptb = tb; | |
fd6ce8f6 FB |
1178 | |
1179 | /* add in the page list */ | |
9fa3e853 FB |
1180 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); |
1181 | if (phys_page2 != -1) | |
1182 | tb_alloc_page(tb, 1, phys_page2); | |
1183 | else | |
1184 | tb->page_addr[1] = -1; | |
9fa3e853 | 1185 | |
d4e8164f FB |
1186 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); |
1187 | tb->jmp_next[0] = NULL; | |
1188 | tb->jmp_next[1] = NULL; | |
1189 | ||
1190 | /* init original jump addresses */ | |
1191 | if (tb->tb_next_offset[0] != 0xffff) | |
1192 | tb_reset_jump(tb, 0); | |
1193 | if (tb->tb_next_offset[1] != 0xffff) | |
1194 | tb_reset_jump(tb, 1); | |
8a40a180 FB |
1195 | |
1196 | #ifdef DEBUG_TB_CHECK | |
1197 | tb_page_check(); | |
1198 | #endif | |
c8a706fe | 1199 | mmap_unlock(); |
fd6ce8f6 FB |
1200 | } |
1201 | ||
9fa3e853 FB |
1202 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < |
1203 | tb[1].tc_ptr. Return NULL if not found */ | |
1204 | TranslationBlock *tb_find_pc(unsigned long tc_ptr) | |
fd6ce8f6 | 1205 | { |
9fa3e853 FB |
1206 | int m_min, m_max, m; |
1207 | unsigned long v; | |
1208 | TranslationBlock *tb; | |
a513fe19 FB |
1209 | |
1210 | if (nb_tbs <= 0) | |
1211 | return NULL; | |
1212 | if (tc_ptr < (unsigned long)code_gen_buffer || | |
1213 | tc_ptr >= (unsigned long)code_gen_ptr) | |
1214 | return NULL; | |
1215 | /* binary search (cf Knuth) */ | |
1216 | m_min = 0; | |
1217 | m_max = nb_tbs - 1; | |
1218 | while (m_min <= m_max) { | |
1219 | m = (m_min + m_max) >> 1; | |
1220 | tb = &tbs[m]; | |
1221 | v = (unsigned long)tb->tc_ptr; | |
1222 | if (v == tc_ptr) | |
1223 | return tb; | |
1224 | else if (tc_ptr < v) { | |
1225 | m_max = m - 1; | |
1226 | } else { | |
1227 | m_min = m + 1; | |
1228 | } | |
5fafdf24 | 1229 | } |
a513fe19 FB |
1230 | return &tbs[m_max]; |
1231 | } | |
7501267e | 1232 | |
ea041c0e FB |
1233 | static void tb_reset_jump_recursive(TranslationBlock *tb); |
1234 | ||
1235 | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) | |
1236 | { | |
1237 | TranslationBlock *tb1, *tb_next, **ptb; | |
1238 | unsigned int n1; | |
1239 | ||
1240 | tb1 = tb->jmp_next[n]; | |
1241 | if (tb1 != NULL) { | |
1242 | /* find head of list */ | |
1243 | for(;;) { | |
1244 | n1 = (long)tb1 & 3; | |
1245 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1246 | if (n1 == 2) | |
1247 | break; | |
1248 | tb1 = tb1->jmp_next[n1]; | |
1249 | } | |
1250 | /* we are now sure now that tb jumps to tb1 */ | |
1251 | tb_next = tb1; | |
1252 | ||
1253 | /* remove tb from the jmp_first list */ | |
1254 | ptb = &tb_next->jmp_first; | |
1255 | for(;;) { | |
1256 | tb1 = *ptb; | |
1257 | n1 = (long)tb1 & 3; | |
1258 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1259 | if (n1 == n && tb1 == tb) | |
1260 | break; | |
1261 | ptb = &tb1->jmp_next[n1]; | |
1262 | } | |
1263 | *ptb = tb->jmp_next[n]; | |
1264 | tb->jmp_next[n] = NULL; | |
3b46e624 | 1265 | |
ea041c0e FB |
1266 | /* suppress the jump to next tb in generated code */ |
1267 | tb_reset_jump(tb, n); | |
1268 | ||
0124311e | 1269 | /* suppress jumps in the tb on which we could have jumped */ |
ea041c0e FB |
1270 | tb_reset_jump_recursive(tb_next); |
1271 | } | |
1272 | } | |
1273 | ||
1274 | static void tb_reset_jump_recursive(TranslationBlock *tb) | |
1275 | { | |
1276 | tb_reset_jump_recursive2(tb, 0); | |
1277 | tb_reset_jump_recursive2(tb, 1); | |
1278 | } | |
1279 | ||
1fddef4b | 1280 | #if defined(TARGET_HAS_ICE) |
d720b93d FB |
1281 | static void breakpoint_invalidate(CPUState *env, target_ulong pc) |
1282 | { | |
9b3c35e0 JM |
1283 | target_phys_addr_t addr; |
1284 | target_ulong pd; | |
c2f07f81 PB |
1285 | ram_addr_t ram_addr; |
1286 | PhysPageDesc *p; | |
d720b93d | 1287 | |
c2f07f81 PB |
1288 | addr = cpu_get_phys_page_debug(env, pc); |
1289 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
1290 | if (!p) { | |
1291 | pd = IO_MEM_UNASSIGNED; | |
1292 | } else { | |
1293 | pd = p->phys_offset; | |
1294 | } | |
1295 | ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK); | |
706cd4b5 | 1296 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
d720b93d | 1297 | } |
c27004ec | 1298 | #endif |
d720b93d | 1299 | |
6658ffb8 | 1300 | /* Add a watchpoint. */ |
a1d1bb31 AL |
1301 | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, |
1302 | int flags, CPUWatchpoint **watchpoint) | |
6658ffb8 | 1303 | { |
b4051334 | 1304 | target_ulong len_mask = ~(len - 1); |
2dc9f411 | 1305 | CPUWatchpoint *wp, *prev_wp; |
6658ffb8 | 1306 | |
b4051334 AL |
1307 | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ |
1308 | if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) { | |
1309 | fprintf(stderr, "qemu: tried to set invalid watchpoint at " | |
1310 | TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len); | |
1311 | return -EINVAL; | |
1312 | } | |
a1d1bb31 AL |
1313 | wp = qemu_malloc(sizeof(*wp)); |
1314 | if (!wp) | |
426cd5d6 | 1315 | return -ENOMEM; |
a1d1bb31 AL |
1316 | |
1317 | wp->vaddr = addr; | |
b4051334 | 1318 | wp->len_mask = len_mask; |
a1d1bb31 AL |
1319 | wp->flags = flags; |
1320 | ||
2dc9f411 AL |
1321 | /* keep all GDB-injected watchpoints in front */ |
1322 | if (!(flags & BP_GDB) && env->watchpoints) { | |
1323 | prev_wp = env->watchpoints; | |
1324 | while (prev_wp->next != NULL && (prev_wp->next->flags & BP_GDB)) | |
1325 | prev_wp = prev_wp->next; | |
1326 | } else { | |
1327 | prev_wp = NULL; | |
1328 | } | |
1329 | ||
1330 | /* Insert new watchpoint */ | |
1331 | if (prev_wp) { | |
1332 | wp->next = prev_wp->next; | |
1333 | prev_wp->next = wp; | |
1334 | } else { | |
1335 | wp->next = env->watchpoints; | |
1336 | env->watchpoints = wp; | |
1337 | } | |
a1d1bb31 AL |
1338 | if (wp->next) |
1339 | wp->next->prev = wp; | |
2dc9f411 | 1340 | wp->prev = prev_wp; |
6658ffb8 | 1341 | |
6658ffb8 | 1342 | tlb_flush_page(env, addr); |
a1d1bb31 AL |
1343 | |
1344 | if (watchpoint) | |
1345 | *watchpoint = wp; | |
1346 | return 0; | |
6658ffb8 PB |
1347 | } |
1348 | ||
a1d1bb31 AL |
1349 | /* Remove a specific watchpoint. */ |
1350 | int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len, | |
1351 | int flags) | |
6658ffb8 | 1352 | { |
b4051334 | 1353 | target_ulong len_mask = ~(len - 1); |
a1d1bb31 | 1354 | CPUWatchpoint *wp; |
6658ffb8 | 1355 | |
a1d1bb31 | 1356 | for (wp = env->watchpoints; wp != NULL; wp = wp->next) { |
b4051334 | 1357 | if (addr == wp->vaddr && len_mask == wp->len_mask |
6e140f28 | 1358 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
a1d1bb31 | 1359 | cpu_watchpoint_remove_by_ref(env, wp); |
6658ffb8 PB |
1360 | return 0; |
1361 | } | |
1362 | } | |
a1d1bb31 | 1363 | return -ENOENT; |
6658ffb8 PB |
1364 | } |
1365 | ||
a1d1bb31 AL |
1366 | /* Remove a specific watchpoint by reference. */ |
1367 | void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint) | |
1368 | { | |
1369 | if (watchpoint->next) | |
1370 | watchpoint->next->prev = watchpoint->prev; | |
1371 | if (watchpoint->prev) | |
1372 | watchpoint->prev->next = watchpoint->next; | |
1373 | else | |
1374 | env->watchpoints = watchpoint->next; | |
7d03f82f | 1375 | |
a1d1bb31 AL |
1376 | tlb_flush_page(env, watchpoint->vaddr); |
1377 | ||
1378 | qemu_free(watchpoint); | |
1379 | } | |
1380 | ||
1381 | /* Remove all matching watchpoints. */ | |
1382 | void cpu_watchpoint_remove_all(CPUState *env, int mask) | |
1383 | { | |
1384 | CPUWatchpoint *wp; | |
1385 | ||
1386 | for (wp = env->watchpoints; wp != NULL; wp = wp->next) | |
1387 | if (wp->flags & mask) | |
1388 | cpu_watchpoint_remove_by_ref(env, wp); | |
7d03f82f EI |
1389 | } |
1390 | ||
a1d1bb31 AL |
1391 | /* Add a breakpoint. */ |
1392 | int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags, | |
1393 | CPUBreakpoint **breakpoint) | |
4c3a88a2 | 1394 | { |
1fddef4b | 1395 | #if defined(TARGET_HAS_ICE) |
2dc9f411 | 1396 | CPUBreakpoint *bp, *prev_bp; |
3b46e624 | 1397 | |
a1d1bb31 AL |
1398 | bp = qemu_malloc(sizeof(*bp)); |
1399 | if (!bp) | |
426cd5d6 | 1400 | return -ENOMEM; |
4c3a88a2 | 1401 | |
a1d1bb31 AL |
1402 | bp->pc = pc; |
1403 | bp->flags = flags; | |
1404 | ||
2dc9f411 AL |
1405 | /* keep all GDB-injected breakpoints in front */ |
1406 | if (!(flags & BP_GDB) && env->breakpoints) { | |
1407 | prev_bp = env->breakpoints; | |
1408 | while (prev_bp->next != NULL && (prev_bp->next->flags & BP_GDB)) | |
1409 | prev_bp = prev_bp->next; | |
1410 | } else { | |
1411 | prev_bp = NULL; | |
1412 | } | |
1413 | ||
1414 | /* Insert new breakpoint */ | |
1415 | if (prev_bp) { | |
1416 | bp->next = prev_bp->next; | |
1417 | prev_bp->next = bp; | |
1418 | } else { | |
1419 | bp->next = env->breakpoints; | |
1420 | env->breakpoints = bp; | |
1421 | } | |
a1d1bb31 AL |
1422 | if (bp->next) |
1423 | bp->next->prev = bp; | |
2dc9f411 | 1424 | bp->prev = prev_bp; |
3b46e624 | 1425 | |
d720b93d | 1426 | breakpoint_invalidate(env, pc); |
a1d1bb31 AL |
1427 | |
1428 | if (breakpoint) | |
1429 | *breakpoint = bp; | |
4c3a88a2 FB |
1430 | return 0; |
1431 | #else | |
a1d1bb31 | 1432 | return -ENOSYS; |
4c3a88a2 FB |
1433 | #endif |
1434 | } | |
1435 | ||
a1d1bb31 AL |
1436 | /* Remove a specific breakpoint. */ |
1437 | int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags) | |
1438 | { | |
7d03f82f | 1439 | #if defined(TARGET_HAS_ICE) |
a1d1bb31 AL |
1440 | CPUBreakpoint *bp; |
1441 | ||
1442 | for (bp = env->breakpoints; bp != NULL; bp = bp->next) { | |
1443 | if (bp->pc == pc && bp->flags == flags) { | |
1444 | cpu_breakpoint_remove_by_ref(env, bp); | |
1445 | return 0; | |
1446 | } | |
7d03f82f | 1447 | } |
a1d1bb31 AL |
1448 | return -ENOENT; |
1449 | #else | |
1450 | return -ENOSYS; | |
7d03f82f EI |
1451 | #endif |
1452 | } | |
1453 | ||
a1d1bb31 AL |
1454 | /* Remove a specific breakpoint by reference. */ |
1455 | void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint) | |
4c3a88a2 | 1456 | { |
1fddef4b | 1457 | #if defined(TARGET_HAS_ICE) |
a1d1bb31 AL |
1458 | if (breakpoint->next) |
1459 | breakpoint->next->prev = breakpoint->prev; | |
1460 | if (breakpoint->prev) | |
1461 | breakpoint->prev->next = breakpoint->next; | |
1462 | else | |
1463 | env->breakpoints = breakpoint->next; | |
d720b93d | 1464 | |
a1d1bb31 AL |
1465 | breakpoint_invalidate(env, breakpoint->pc); |
1466 | ||
1467 | qemu_free(breakpoint); | |
1468 | #endif | |
1469 | } | |
1470 | ||
1471 | /* Remove all matching breakpoints. */ | |
1472 | void cpu_breakpoint_remove_all(CPUState *env, int mask) | |
1473 | { | |
1474 | #if defined(TARGET_HAS_ICE) | |
1475 | CPUBreakpoint *bp; | |
1476 | ||
1477 | for (bp = env->breakpoints; bp != NULL; bp = bp->next) | |
1478 | if (bp->flags & mask) | |
1479 | cpu_breakpoint_remove_by_ref(env, bp); | |
4c3a88a2 FB |
1480 | #endif |
1481 | } | |
1482 | ||
c33a346e FB |
1483 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
1484 | CPU loop after each instruction */ | |
1485 | void cpu_single_step(CPUState *env, int enabled) | |
1486 | { | |
1fddef4b | 1487 | #if defined(TARGET_HAS_ICE) |
c33a346e FB |
1488 | if (env->singlestep_enabled != enabled) { |
1489 | env->singlestep_enabled = enabled; | |
1490 | /* must flush all the translated code to avoid inconsistancies */ | |
9fa3e853 | 1491 | /* XXX: only flush what is necessary */ |
0124311e | 1492 | tb_flush(env); |
c33a346e FB |
1493 | } |
1494 | #endif | |
1495 | } | |
1496 | ||
34865134 FB |
1497 | /* enable or disable low levels log */ |
1498 | void cpu_set_log(int log_flags) | |
1499 | { | |
1500 | loglevel = log_flags; | |
1501 | if (loglevel && !logfile) { | |
11fcfab4 | 1502 | logfile = fopen(logfilename, log_append ? "a" : "w"); |
34865134 FB |
1503 | if (!logfile) { |
1504 | perror(logfilename); | |
1505 | _exit(1); | |
1506 | } | |
9fa3e853 FB |
1507 | #if !defined(CONFIG_SOFTMMU) |
1508 | /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ | |
1509 | { | |
b55266b5 | 1510 | static char logfile_buf[4096]; |
9fa3e853 FB |
1511 | setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); |
1512 | } | |
1513 | #else | |
34865134 | 1514 | setvbuf(logfile, NULL, _IOLBF, 0); |
9fa3e853 | 1515 | #endif |
e735b91c PB |
1516 | log_append = 1; |
1517 | } | |
1518 | if (!loglevel && logfile) { | |
1519 | fclose(logfile); | |
1520 | logfile = NULL; | |
34865134 FB |
1521 | } |
1522 | } | |
1523 | ||
1524 | void cpu_set_log_filename(const char *filename) | |
1525 | { | |
1526 | logfilename = strdup(filename); | |
e735b91c PB |
1527 | if (logfile) { |
1528 | fclose(logfile); | |
1529 | logfile = NULL; | |
1530 | } | |
1531 | cpu_set_log(loglevel); | |
34865134 | 1532 | } |
c33a346e | 1533 | |
0124311e | 1534 | /* mask must never be zero, except for A20 change call */ |
68a79315 | 1535 | void cpu_interrupt(CPUState *env, int mask) |
ea041c0e | 1536 | { |
d5975363 | 1537 | #if !defined(USE_NPTL) |
ea041c0e | 1538 | TranslationBlock *tb; |
15a51156 | 1539 | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; |
d5975363 | 1540 | #endif |
2e70f6ef | 1541 | int old_mask; |
59817ccb | 1542 | |
2e70f6ef | 1543 | old_mask = env->interrupt_request; |
d5975363 | 1544 | /* FIXME: This is probably not threadsafe. A different thread could |
bf20dc07 | 1545 | be in the middle of a read-modify-write operation. */ |
68a79315 | 1546 | env->interrupt_request |= mask; |
d5975363 PB |
1547 | #if defined(USE_NPTL) |
1548 | /* FIXME: TB unchaining isn't SMP safe. For now just ignore the | |
1549 | problem and hope the cpu will stop of its own accord. For userspace | |
1550 | emulation this often isn't actually as bad as it sounds. Often | |
1551 | signals are used primarily to interrupt blocking syscalls. */ | |
1552 | #else | |
2e70f6ef | 1553 | if (use_icount) { |
266910c4 | 1554 | env->icount_decr.u16.high = 0xffff; |
2e70f6ef PB |
1555 | #ifndef CONFIG_USER_ONLY |
1556 | /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means | |
1557 | an async event happened and we need to process it. */ | |
1558 | if (!can_do_io(env) | |
1559 | && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) { | |
1560 | cpu_abort(env, "Raised interrupt while not in I/O function"); | |
1561 | } | |
1562 | #endif | |
1563 | } else { | |
1564 | tb = env->current_tb; | |
1565 | /* if the cpu is currently executing code, we must unlink it and | |
1566 | all the potentially executing TB */ | |
1567 | if (tb && !testandset(&interrupt_lock)) { | |
1568 | env->current_tb = NULL; | |
1569 | tb_reset_jump_recursive(tb); | |
1570 | resetlock(&interrupt_lock); | |
1571 | } | |
ea041c0e | 1572 | } |
d5975363 | 1573 | #endif |
ea041c0e FB |
1574 | } |
1575 | ||
b54ad049 FB |
1576 | void cpu_reset_interrupt(CPUState *env, int mask) |
1577 | { | |
1578 | env->interrupt_request &= ~mask; | |
1579 | } | |
1580 | ||
c7cd6a37 | 1581 | const CPULogItem cpu_log_items[] = { |
5fafdf24 | 1582 | { CPU_LOG_TB_OUT_ASM, "out_asm", |
f193c797 FB |
1583 | "show generated host assembly code for each compiled TB" }, |
1584 | { CPU_LOG_TB_IN_ASM, "in_asm", | |
1585 | "show target assembly code for each compiled TB" }, | |
5fafdf24 | 1586 | { CPU_LOG_TB_OP, "op", |
57fec1fe | 1587 | "show micro ops for each compiled TB" }, |
f193c797 | 1588 | { CPU_LOG_TB_OP_OPT, "op_opt", |
e01a1157 BS |
1589 | "show micro ops " |
1590 | #ifdef TARGET_I386 | |
1591 | "before eflags optimization and " | |
f193c797 | 1592 | #endif |
e01a1157 | 1593 | "after liveness analysis" }, |
f193c797 FB |
1594 | { CPU_LOG_INT, "int", |
1595 | "show interrupts/exceptions in short format" }, | |
1596 | { CPU_LOG_EXEC, "exec", | |
1597 | "show trace before each executed TB (lots of logs)" }, | |
9fddaa0c | 1598 | { CPU_LOG_TB_CPU, "cpu", |
e91c8a77 | 1599 | "show CPU state before block translation" }, |
f193c797 FB |
1600 | #ifdef TARGET_I386 |
1601 | { CPU_LOG_PCALL, "pcall", | |
1602 | "show protected mode far calls/returns/exceptions" }, | |
1603 | #endif | |
8e3a9fd2 | 1604 | #ifdef DEBUG_IOPORT |
fd872598 FB |
1605 | { CPU_LOG_IOPORT, "ioport", |
1606 | "show all i/o ports accesses" }, | |
8e3a9fd2 | 1607 | #endif |
f193c797 FB |
1608 | { 0, NULL, NULL }, |
1609 | }; | |
1610 | ||
1611 | static int cmp1(const char *s1, int n, const char *s2) | |
1612 | { | |
1613 | if (strlen(s2) != n) | |
1614 | return 0; | |
1615 | return memcmp(s1, s2, n) == 0; | |
1616 | } | |
3b46e624 | 1617 | |
f193c797 FB |
1618 | /* takes a comma separated list of log masks. Return 0 if error. */ |
1619 | int cpu_str_to_log_mask(const char *str) | |
1620 | { | |
c7cd6a37 | 1621 | const CPULogItem *item; |
f193c797 FB |
1622 | int mask; |
1623 | const char *p, *p1; | |
1624 | ||
1625 | p = str; | |
1626 | mask = 0; | |
1627 | for(;;) { | |
1628 | p1 = strchr(p, ','); | |
1629 | if (!p1) | |
1630 | p1 = p + strlen(p); | |
8e3a9fd2 FB |
1631 | if(cmp1(p,p1-p,"all")) { |
1632 | for(item = cpu_log_items; item->mask != 0; item++) { | |
1633 | mask |= item->mask; | |
1634 | } | |
1635 | } else { | |
f193c797 FB |
1636 | for(item = cpu_log_items; item->mask != 0; item++) { |
1637 | if (cmp1(p, p1 - p, item->name)) | |
1638 | goto found; | |
1639 | } | |
1640 | return 0; | |
8e3a9fd2 | 1641 | } |
f193c797 FB |
1642 | found: |
1643 | mask |= item->mask; | |
1644 | if (*p1 != ',') | |
1645 | break; | |
1646 | p = p1 + 1; | |
1647 | } | |
1648 | return mask; | |
1649 | } | |
ea041c0e | 1650 | |
7501267e FB |
1651 | void cpu_abort(CPUState *env, const char *fmt, ...) |
1652 | { | |
1653 | va_list ap; | |
493ae1f0 | 1654 | va_list ap2; |
7501267e FB |
1655 | |
1656 | va_start(ap, fmt); | |
493ae1f0 | 1657 | va_copy(ap2, ap); |
7501267e FB |
1658 | fprintf(stderr, "qemu: fatal: "); |
1659 | vfprintf(stderr, fmt, ap); | |
1660 | fprintf(stderr, "\n"); | |
1661 | #ifdef TARGET_I386 | |
7fe48483 FB |
1662 | cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); |
1663 | #else | |
1664 | cpu_dump_state(env, stderr, fprintf, 0); | |
7501267e | 1665 | #endif |
924edcae | 1666 | if (logfile) { |
f9373291 | 1667 | fprintf(logfile, "qemu: fatal: "); |
493ae1f0 | 1668 | vfprintf(logfile, fmt, ap2); |
f9373291 JM |
1669 | fprintf(logfile, "\n"); |
1670 | #ifdef TARGET_I386 | |
1671 | cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); | |
1672 | #else | |
1673 | cpu_dump_state(env, logfile, fprintf, 0); | |
1674 | #endif | |
924edcae AZ |
1675 | fflush(logfile); |
1676 | fclose(logfile); | |
1677 | } | |
493ae1f0 | 1678 | va_end(ap2); |
f9373291 | 1679 | va_end(ap); |
7501267e FB |
1680 | abort(); |
1681 | } | |
1682 | ||
c5be9f08 TS |
1683 | CPUState *cpu_copy(CPUState *env) |
1684 | { | |
01ba9816 | 1685 | CPUState *new_env = cpu_init(env->cpu_model_str); |
c5be9f08 TS |
1686 | /* preserve chaining and index */ |
1687 | CPUState *next_cpu = new_env->next_cpu; | |
1688 | int cpu_index = new_env->cpu_index; | |
1689 | memcpy(new_env, env, sizeof(CPUState)); | |
1690 | new_env->next_cpu = next_cpu; | |
1691 | new_env->cpu_index = cpu_index; | |
1692 | return new_env; | |
1693 | } | |
1694 | ||
0124311e FB |
1695 | #if !defined(CONFIG_USER_ONLY) |
1696 | ||
5c751e99 EI |
1697 | static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr) |
1698 | { | |
1699 | unsigned int i; | |
1700 | ||
1701 | /* Discard jump cache entries for any tb which might potentially | |
1702 | overlap the flushed page. */ | |
1703 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
1704 | memset (&env->tb_jmp_cache[i], 0, | |
1705 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1706 | ||
1707 | i = tb_jmp_cache_hash_page(addr); | |
1708 | memset (&env->tb_jmp_cache[i], 0, | |
1709 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1710 | } | |
1711 | ||
ee8b7021 FB |
1712 | /* NOTE: if flush_global is true, also flush global entries (not |
1713 | implemented yet) */ | |
1714 | void tlb_flush(CPUState *env, int flush_global) | |
33417e70 | 1715 | { |
33417e70 | 1716 | int i; |
0124311e | 1717 | |
9fa3e853 FB |
1718 | #if defined(DEBUG_TLB) |
1719 | printf("tlb_flush:\n"); | |
1720 | #endif | |
0124311e FB |
1721 | /* must reset current TB so that interrupts cannot modify the |
1722 | links while we are modifying them */ | |
1723 | env->current_tb = NULL; | |
1724 | ||
33417e70 | 1725 | for(i = 0; i < CPU_TLB_SIZE; i++) { |
84b7b8e7 FB |
1726 | env->tlb_table[0][i].addr_read = -1; |
1727 | env->tlb_table[0][i].addr_write = -1; | |
1728 | env->tlb_table[0][i].addr_code = -1; | |
1729 | env->tlb_table[1][i].addr_read = -1; | |
1730 | env->tlb_table[1][i].addr_write = -1; | |
1731 | env->tlb_table[1][i].addr_code = -1; | |
6fa4cea9 JM |
1732 | #if (NB_MMU_MODES >= 3) |
1733 | env->tlb_table[2][i].addr_read = -1; | |
1734 | env->tlb_table[2][i].addr_write = -1; | |
1735 | env->tlb_table[2][i].addr_code = -1; | |
1736 | #if (NB_MMU_MODES == 4) | |
1737 | env->tlb_table[3][i].addr_read = -1; | |
1738 | env->tlb_table[3][i].addr_write = -1; | |
1739 | env->tlb_table[3][i].addr_code = -1; | |
1740 | #endif | |
1741 | #endif | |
33417e70 | 1742 | } |
9fa3e853 | 1743 | |
8a40a180 | 1744 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); |
9fa3e853 | 1745 | |
0a962c02 FB |
1746 | #ifdef USE_KQEMU |
1747 | if (env->kqemu_enabled) { | |
1748 | kqemu_flush(env, flush_global); | |
1749 | } | |
9fa3e853 | 1750 | #endif |
e3db7226 | 1751 | tlb_flush_count++; |
33417e70 FB |
1752 | } |
1753 | ||
274da6b2 | 1754 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) |
61382a50 | 1755 | { |
5fafdf24 | 1756 | if (addr == (tlb_entry->addr_read & |
84b7b8e7 | 1757 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1758 | addr == (tlb_entry->addr_write & |
84b7b8e7 | 1759 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1760 | addr == (tlb_entry->addr_code & |
84b7b8e7 FB |
1761 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
1762 | tlb_entry->addr_read = -1; | |
1763 | tlb_entry->addr_write = -1; | |
1764 | tlb_entry->addr_code = -1; | |
1765 | } | |
61382a50 FB |
1766 | } |
1767 | ||
2e12669a | 1768 | void tlb_flush_page(CPUState *env, target_ulong addr) |
33417e70 | 1769 | { |
8a40a180 | 1770 | int i; |
0124311e | 1771 | |
9fa3e853 | 1772 | #if defined(DEBUG_TLB) |
108c49b8 | 1773 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); |
9fa3e853 | 1774 | #endif |
0124311e FB |
1775 | /* must reset current TB so that interrupts cannot modify the |
1776 | links while we are modifying them */ | |
1777 | env->current_tb = NULL; | |
61382a50 FB |
1778 | |
1779 | addr &= TARGET_PAGE_MASK; | |
1780 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
84b7b8e7 FB |
1781 | tlb_flush_entry(&env->tlb_table[0][i], addr); |
1782 | tlb_flush_entry(&env->tlb_table[1][i], addr); | |
6fa4cea9 JM |
1783 | #if (NB_MMU_MODES >= 3) |
1784 | tlb_flush_entry(&env->tlb_table[2][i], addr); | |
1785 | #if (NB_MMU_MODES == 4) | |
1786 | tlb_flush_entry(&env->tlb_table[3][i], addr); | |
1787 | #endif | |
1788 | #endif | |
0124311e | 1789 | |
5c751e99 | 1790 | tlb_flush_jmp_cache(env, addr); |
9fa3e853 | 1791 | |
0a962c02 FB |
1792 | #ifdef USE_KQEMU |
1793 | if (env->kqemu_enabled) { | |
1794 | kqemu_flush_page(env, addr); | |
1795 | } | |
1796 | #endif | |
9fa3e853 FB |
1797 | } |
1798 | ||
9fa3e853 FB |
1799 | /* update the TLBs so that writes to code in the virtual page 'addr' |
1800 | can be detected */ | |
6a00d601 | 1801 | static void tlb_protect_code(ram_addr_t ram_addr) |
9fa3e853 | 1802 | { |
5fafdf24 | 1803 | cpu_physical_memory_reset_dirty(ram_addr, |
6a00d601 FB |
1804 | ram_addr + TARGET_PAGE_SIZE, |
1805 | CODE_DIRTY_FLAG); | |
9fa3e853 FB |
1806 | } |
1807 | ||
9fa3e853 | 1808 | /* update the TLB so that writes in physical page 'phys_addr' are no longer |
3a7d929e | 1809 | tested for self modifying code */ |
5fafdf24 | 1810 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 1811 | target_ulong vaddr) |
9fa3e853 | 1812 | { |
3a7d929e | 1813 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG; |
1ccde1cb FB |
1814 | } |
1815 | ||
5fafdf24 | 1816 | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, |
1ccde1cb FB |
1817 | unsigned long start, unsigned long length) |
1818 | { | |
1819 | unsigned long addr; | |
84b7b8e7 FB |
1820 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
1821 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | |
1ccde1cb | 1822 | if ((addr - start) < length) { |
0f459d16 | 1823 | tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY; |
1ccde1cb FB |
1824 | } |
1825 | } | |
1826 | } | |
1827 | ||
3a7d929e | 1828 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, |
0a962c02 | 1829 | int dirty_flags) |
1ccde1cb FB |
1830 | { |
1831 | CPUState *env; | |
4f2ac237 | 1832 | unsigned long length, start1; |
0a962c02 FB |
1833 | int i, mask, len; |
1834 | uint8_t *p; | |
1ccde1cb FB |
1835 | |
1836 | start &= TARGET_PAGE_MASK; | |
1837 | end = TARGET_PAGE_ALIGN(end); | |
1838 | ||
1839 | length = end - start; | |
1840 | if (length == 0) | |
1841 | return; | |
0a962c02 | 1842 | len = length >> TARGET_PAGE_BITS; |
3a7d929e | 1843 | #ifdef USE_KQEMU |
6a00d601 FB |
1844 | /* XXX: should not depend on cpu context */ |
1845 | env = first_cpu; | |
3a7d929e | 1846 | if (env->kqemu_enabled) { |
f23db169 FB |
1847 | ram_addr_t addr; |
1848 | addr = start; | |
1849 | for(i = 0; i < len; i++) { | |
1850 | kqemu_set_notdirty(env, addr); | |
1851 | addr += TARGET_PAGE_SIZE; | |
1852 | } | |
3a7d929e FB |
1853 | } |
1854 | #endif | |
f23db169 FB |
1855 | mask = ~dirty_flags; |
1856 | p = phys_ram_dirty + (start >> TARGET_PAGE_BITS); | |
1857 | for(i = 0; i < len; i++) | |
1858 | p[i] &= mask; | |
1859 | ||
1ccde1cb FB |
1860 | /* we modify the TLB cache so that the dirty bit will be set again |
1861 | when accessing the range */ | |
59817ccb | 1862 | start1 = start + (unsigned long)phys_ram_base; |
6a00d601 FB |
1863 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
1864 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
84b7b8e7 | 1865 | tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length); |
6a00d601 | 1866 | for(i = 0; i < CPU_TLB_SIZE; i++) |
84b7b8e7 | 1867 | tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length); |
6fa4cea9 JM |
1868 | #if (NB_MMU_MODES >= 3) |
1869 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1870 | tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length); | |
1871 | #if (NB_MMU_MODES == 4) | |
1872 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1873 | tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length); | |
1874 | #endif | |
1875 | #endif | |
6a00d601 | 1876 | } |
1ccde1cb FB |
1877 | } |
1878 | ||
74576198 AL |
1879 | int cpu_physical_memory_set_dirty_tracking(int enable) |
1880 | { | |
1881 | in_migration = enable; | |
1882 | return 0; | |
1883 | } | |
1884 | ||
1885 | int cpu_physical_memory_get_dirty_tracking(void) | |
1886 | { | |
1887 | return in_migration; | |
1888 | } | |
1889 | ||
2bec46dc AL |
1890 | void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr) |
1891 | { | |
1892 | if (kvm_enabled()) | |
1893 | kvm_physical_sync_dirty_bitmap(start_addr, end_addr); | |
1894 | } | |
1895 | ||
3a7d929e FB |
1896 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) |
1897 | { | |
1898 | ram_addr_t ram_addr; | |
1899 | ||
84b7b8e7 | 1900 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
5fafdf24 | 1901 | ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + |
3a7d929e FB |
1902 | tlb_entry->addend - (unsigned long)phys_ram_base; |
1903 | if (!cpu_physical_memory_is_dirty(ram_addr)) { | |
0f459d16 | 1904 | tlb_entry->addr_write |= TLB_NOTDIRTY; |
3a7d929e FB |
1905 | } |
1906 | } | |
1907 | } | |
1908 | ||
1909 | /* update the TLB according to the current state of the dirty bits */ | |
1910 | void cpu_tlb_update_dirty(CPUState *env) | |
1911 | { | |
1912 | int i; | |
1913 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
84b7b8e7 | 1914 | tlb_update_dirty(&env->tlb_table[0][i]); |
3a7d929e | 1915 | for(i = 0; i < CPU_TLB_SIZE; i++) |
84b7b8e7 | 1916 | tlb_update_dirty(&env->tlb_table[1][i]); |
6fa4cea9 JM |
1917 | #if (NB_MMU_MODES >= 3) |
1918 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1919 | tlb_update_dirty(&env->tlb_table[2][i]); | |
1920 | #if (NB_MMU_MODES == 4) | |
1921 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1922 | tlb_update_dirty(&env->tlb_table[3][i]); | |
1923 | #endif | |
1924 | #endif | |
3a7d929e FB |
1925 | } |
1926 | ||
0f459d16 | 1927 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) |
1ccde1cb | 1928 | { |
0f459d16 PB |
1929 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) |
1930 | tlb_entry->addr_write = vaddr; | |
1ccde1cb FB |
1931 | } |
1932 | ||
0f459d16 PB |
1933 | /* update the TLB corresponding to virtual page vaddr |
1934 | so that it is no longer dirty */ | |
1935 | static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr) | |
1ccde1cb | 1936 | { |
1ccde1cb FB |
1937 | int i; |
1938 | ||
0f459d16 | 1939 | vaddr &= TARGET_PAGE_MASK; |
1ccde1cb | 1940 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
0f459d16 PB |
1941 | tlb_set_dirty1(&env->tlb_table[0][i], vaddr); |
1942 | tlb_set_dirty1(&env->tlb_table[1][i], vaddr); | |
6fa4cea9 | 1943 | #if (NB_MMU_MODES >= 3) |
0f459d16 | 1944 | tlb_set_dirty1(&env->tlb_table[2][i], vaddr); |
6fa4cea9 | 1945 | #if (NB_MMU_MODES == 4) |
0f459d16 | 1946 | tlb_set_dirty1(&env->tlb_table[3][i], vaddr); |
6fa4cea9 JM |
1947 | #endif |
1948 | #endif | |
9fa3e853 FB |
1949 | } |
1950 | ||
59817ccb FB |
1951 | /* add a new TLB entry. At most one entry for a given virtual address |
1952 | is permitted. Return 0 if OK or 2 if the page could not be mapped | |
1953 | (can only happen in non SOFTMMU mode for I/O pages or pages | |
1954 | conflicting with the host address space). */ | |
5fafdf24 TS |
1955 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
1956 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 1957 | int mmu_idx, int is_softmmu) |
9fa3e853 | 1958 | { |
92e873b9 | 1959 | PhysPageDesc *p; |
4f2ac237 | 1960 | unsigned long pd; |
9fa3e853 | 1961 | unsigned int index; |
4f2ac237 | 1962 | target_ulong address; |
0f459d16 | 1963 | target_ulong code_address; |
108c49b8 | 1964 | target_phys_addr_t addend; |
9fa3e853 | 1965 | int ret; |
84b7b8e7 | 1966 | CPUTLBEntry *te; |
a1d1bb31 | 1967 | CPUWatchpoint *wp; |
0f459d16 | 1968 | target_phys_addr_t iotlb; |
9fa3e853 | 1969 | |
92e873b9 | 1970 | p = phys_page_find(paddr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1971 | if (!p) { |
1972 | pd = IO_MEM_UNASSIGNED; | |
9fa3e853 FB |
1973 | } else { |
1974 | pd = p->phys_offset; | |
9fa3e853 FB |
1975 | } |
1976 | #if defined(DEBUG_TLB) | |
6ebbf390 JM |
1977 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n", |
1978 | vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd); | |
9fa3e853 FB |
1979 | #endif |
1980 | ||
1981 | ret = 0; | |
0f459d16 PB |
1982 | address = vaddr; |
1983 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { | |
1984 | /* IO memory case (romd handled later) */ | |
1985 | address |= TLB_MMIO; | |
1986 | } | |
1987 | addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK); | |
1988 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) { | |
1989 | /* Normal RAM. */ | |
1990 | iotlb = pd & TARGET_PAGE_MASK; | |
1991 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM) | |
1992 | iotlb |= IO_MEM_NOTDIRTY; | |
1993 | else | |
1994 | iotlb |= IO_MEM_ROM; | |
1995 | } else { | |
1996 | /* IO handlers are currently passed a phsical address. | |
1997 | It would be nice to pass an offset from the base address | |
1998 | of that region. This would avoid having to special case RAM, | |
1999 | and avoid full address decoding in every device. | |
2000 | We can't use the high bits of pd for this because | |
2001 | IO_MEM_ROMD uses these as a ram address. */ | |
2002 | iotlb = (pd & ~TARGET_PAGE_MASK) + paddr; | |
2003 | } | |
2004 | ||
2005 | code_address = address; | |
2006 | /* Make accesses to pages with watchpoints go via the | |
2007 | watchpoint trap routines. */ | |
a1d1bb31 AL |
2008 | for (wp = env->watchpoints; wp != NULL; wp = wp->next) { |
2009 | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) { | |
0f459d16 PB |
2010 | iotlb = io_mem_watch + paddr; |
2011 | /* TODO: The memory case can be optimized by not trapping | |
2012 | reads of pages with a write breakpoint. */ | |
2013 | address |= TLB_MMIO; | |
6658ffb8 | 2014 | } |
0f459d16 | 2015 | } |
d79acba4 | 2016 | |
0f459d16 PB |
2017 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
2018 | env->iotlb[mmu_idx][index] = iotlb - vaddr; | |
2019 | te = &env->tlb_table[mmu_idx][index]; | |
2020 | te->addend = addend - vaddr; | |
2021 | if (prot & PAGE_READ) { | |
2022 | te->addr_read = address; | |
2023 | } else { | |
2024 | te->addr_read = -1; | |
2025 | } | |
5c751e99 | 2026 | |
0f459d16 PB |
2027 | if (prot & PAGE_EXEC) { |
2028 | te->addr_code = code_address; | |
2029 | } else { | |
2030 | te->addr_code = -1; | |
2031 | } | |
2032 | if (prot & PAGE_WRITE) { | |
2033 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || | |
2034 | (pd & IO_MEM_ROMD)) { | |
2035 | /* Write access calls the I/O callback. */ | |
2036 | te->addr_write = address | TLB_MMIO; | |
2037 | } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && | |
2038 | !cpu_physical_memory_is_dirty(pd)) { | |
2039 | te->addr_write = address | TLB_NOTDIRTY; | |
9fa3e853 | 2040 | } else { |
0f459d16 | 2041 | te->addr_write = address; |
9fa3e853 | 2042 | } |
0f459d16 PB |
2043 | } else { |
2044 | te->addr_write = -1; | |
9fa3e853 | 2045 | } |
9fa3e853 FB |
2046 | return ret; |
2047 | } | |
2048 | ||
0124311e FB |
2049 | #else |
2050 | ||
ee8b7021 | 2051 | void tlb_flush(CPUState *env, int flush_global) |
0124311e FB |
2052 | { |
2053 | } | |
2054 | ||
2e12669a | 2055 | void tlb_flush_page(CPUState *env, target_ulong addr) |
0124311e FB |
2056 | { |
2057 | } | |
2058 | ||
5fafdf24 TS |
2059 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
2060 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 2061 | int mmu_idx, int is_softmmu) |
9fa3e853 FB |
2062 | { |
2063 | return 0; | |
2064 | } | |
0124311e | 2065 | |
9fa3e853 FB |
2066 | /* dump memory mappings */ |
2067 | void page_dump(FILE *f) | |
33417e70 | 2068 | { |
9fa3e853 FB |
2069 | unsigned long start, end; |
2070 | int i, j, prot, prot1; | |
2071 | PageDesc *p; | |
33417e70 | 2072 | |
9fa3e853 FB |
2073 | fprintf(f, "%-8s %-8s %-8s %s\n", |
2074 | "start", "end", "size", "prot"); | |
2075 | start = -1; | |
2076 | end = -1; | |
2077 | prot = 0; | |
2078 | for(i = 0; i <= L1_SIZE; i++) { | |
2079 | if (i < L1_SIZE) | |
2080 | p = l1_map[i]; | |
2081 | else | |
2082 | p = NULL; | |
2083 | for(j = 0;j < L2_SIZE; j++) { | |
2084 | if (!p) | |
2085 | prot1 = 0; | |
2086 | else | |
2087 | prot1 = p[j].flags; | |
2088 | if (prot1 != prot) { | |
2089 | end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS); | |
2090 | if (start != -1) { | |
2091 | fprintf(f, "%08lx-%08lx %08lx %c%c%c\n", | |
5fafdf24 | 2092 | start, end, end - start, |
9fa3e853 FB |
2093 | prot & PAGE_READ ? 'r' : '-', |
2094 | prot & PAGE_WRITE ? 'w' : '-', | |
2095 | prot & PAGE_EXEC ? 'x' : '-'); | |
2096 | } | |
2097 | if (prot1 != 0) | |
2098 | start = end; | |
2099 | else | |
2100 | start = -1; | |
2101 | prot = prot1; | |
2102 | } | |
2103 | if (!p) | |
2104 | break; | |
2105 | } | |
33417e70 | 2106 | } |
33417e70 FB |
2107 | } |
2108 | ||
53a5960a | 2109 | int page_get_flags(target_ulong address) |
33417e70 | 2110 | { |
9fa3e853 FB |
2111 | PageDesc *p; |
2112 | ||
2113 | p = page_find(address >> TARGET_PAGE_BITS); | |
33417e70 | 2114 | if (!p) |
9fa3e853 FB |
2115 | return 0; |
2116 | return p->flags; | |
2117 | } | |
2118 | ||
2119 | /* modify the flags of a page and invalidate the code if | |
2120 | necessary. The flag PAGE_WRITE_ORG is positionned automatically | |
2121 | depending on PAGE_WRITE */ | |
53a5960a | 2122 | void page_set_flags(target_ulong start, target_ulong end, int flags) |
9fa3e853 FB |
2123 | { |
2124 | PageDesc *p; | |
53a5960a | 2125 | target_ulong addr; |
9fa3e853 | 2126 | |
c8a706fe | 2127 | /* mmap_lock should already be held. */ |
9fa3e853 FB |
2128 | start = start & TARGET_PAGE_MASK; |
2129 | end = TARGET_PAGE_ALIGN(end); | |
2130 | if (flags & PAGE_WRITE) | |
2131 | flags |= PAGE_WRITE_ORG; | |
9fa3e853 FB |
2132 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2133 | p = page_find_alloc(addr >> TARGET_PAGE_BITS); | |
17e2377a PB |
2134 | /* We may be called for host regions that are outside guest |
2135 | address space. */ | |
2136 | if (!p) | |
2137 | return; | |
9fa3e853 FB |
2138 | /* if the write protection is set, then we invalidate the code |
2139 | inside */ | |
5fafdf24 | 2140 | if (!(p->flags & PAGE_WRITE) && |
9fa3e853 FB |
2141 | (flags & PAGE_WRITE) && |
2142 | p->first_tb) { | |
d720b93d | 2143 | tb_invalidate_phys_page(addr, 0, NULL); |
9fa3e853 FB |
2144 | } |
2145 | p->flags = flags; | |
2146 | } | |
33417e70 FB |
2147 | } |
2148 | ||
3d97b40b TS |
2149 | int page_check_range(target_ulong start, target_ulong len, int flags) |
2150 | { | |
2151 | PageDesc *p; | |
2152 | target_ulong end; | |
2153 | target_ulong addr; | |
2154 | ||
55f280c9 AZ |
2155 | if (start + len < start) |
2156 | /* we've wrapped around */ | |
2157 | return -1; | |
2158 | ||
3d97b40b TS |
2159 | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */ |
2160 | start = start & TARGET_PAGE_MASK; | |
2161 | ||
3d97b40b TS |
2162 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2163 | p = page_find(addr >> TARGET_PAGE_BITS); | |
2164 | if( !p ) | |
2165 | return -1; | |
2166 | if( !(p->flags & PAGE_VALID) ) | |
2167 | return -1; | |
2168 | ||
dae3270c | 2169 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) |
3d97b40b | 2170 | return -1; |
dae3270c FB |
2171 | if (flags & PAGE_WRITE) { |
2172 | if (!(p->flags & PAGE_WRITE_ORG)) | |
2173 | return -1; | |
2174 | /* unprotect the page if it was put read-only because it | |
2175 | contains translated code */ | |
2176 | if (!(p->flags & PAGE_WRITE)) { | |
2177 | if (!page_unprotect(addr, 0, NULL)) | |
2178 | return -1; | |
2179 | } | |
2180 | return 0; | |
2181 | } | |
3d97b40b TS |
2182 | } |
2183 | return 0; | |
2184 | } | |
2185 | ||
9fa3e853 FB |
2186 | /* called from signal handler: invalidate the code and unprotect the |
2187 | page. Return TRUE if the fault was succesfully handled. */ | |
53a5960a | 2188 | int page_unprotect(target_ulong address, unsigned long pc, void *puc) |
9fa3e853 FB |
2189 | { |
2190 | unsigned int page_index, prot, pindex; | |
2191 | PageDesc *p, *p1; | |
53a5960a | 2192 | target_ulong host_start, host_end, addr; |
9fa3e853 | 2193 | |
c8a706fe PB |
2194 | /* Technically this isn't safe inside a signal handler. However we |
2195 | know this only ever happens in a synchronous SEGV handler, so in | |
2196 | practice it seems to be ok. */ | |
2197 | mmap_lock(); | |
2198 | ||
83fb7adf | 2199 | host_start = address & qemu_host_page_mask; |
9fa3e853 FB |
2200 | page_index = host_start >> TARGET_PAGE_BITS; |
2201 | p1 = page_find(page_index); | |
c8a706fe PB |
2202 | if (!p1) { |
2203 | mmap_unlock(); | |
9fa3e853 | 2204 | return 0; |
c8a706fe | 2205 | } |
83fb7adf | 2206 | host_end = host_start + qemu_host_page_size; |
9fa3e853 FB |
2207 | p = p1; |
2208 | prot = 0; | |
2209 | for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) { | |
2210 | prot |= p->flags; | |
2211 | p++; | |
2212 | } | |
2213 | /* if the page was really writable, then we change its | |
2214 | protection back to writable */ | |
2215 | if (prot & PAGE_WRITE_ORG) { | |
2216 | pindex = (address - host_start) >> TARGET_PAGE_BITS; | |
2217 | if (!(p1[pindex].flags & PAGE_WRITE)) { | |
5fafdf24 | 2218 | mprotect((void *)g2h(host_start), qemu_host_page_size, |
9fa3e853 FB |
2219 | (prot & PAGE_BITS) | PAGE_WRITE); |
2220 | p1[pindex].flags |= PAGE_WRITE; | |
2221 | /* and since the content will be modified, we must invalidate | |
2222 | the corresponding translated code. */ | |
d720b93d | 2223 | tb_invalidate_phys_page(address, pc, puc); |
9fa3e853 FB |
2224 | #ifdef DEBUG_TB_CHECK |
2225 | tb_invalidate_check(address); | |
2226 | #endif | |
c8a706fe | 2227 | mmap_unlock(); |
9fa3e853 FB |
2228 | return 1; |
2229 | } | |
2230 | } | |
c8a706fe | 2231 | mmap_unlock(); |
9fa3e853 FB |
2232 | return 0; |
2233 | } | |
2234 | ||
6a00d601 FB |
2235 | static inline void tlb_set_dirty(CPUState *env, |
2236 | unsigned long addr, target_ulong vaddr) | |
1ccde1cb FB |
2237 | { |
2238 | } | |
9fa3e853 FB |
2239 | #endif /* defined(CONFIG_USER_ONLY) */ |
2240 | ||
e2eef170 | 2241 | #if !defined(CONFIG_USER_ONLY) |
db7b5426 | 2242 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
00f82b8a AJ |
2243 | ram_addr_t memory); |
2244 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, | |
2245 | ram_addr_t orig_memory); | |
db7b5426 BS |
2246 | #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \ |
2247 | need_subpage) \ | |
2248 | do { \ | |
2249 | if (addr > start_addr) \ | |
2250 | start_addr2 = 0; \ | |
2251 | else { \ | |
2252 | start_addr2 = start_addr & ~TARGET_PAGE_MASK; \ | |
2253 | if (start_addr2 > 0) \ | |
2254 | need_subpage = 1; \ | |
2255 | } \ | |
2256 | \ | |
49e9fba2 | 2257 | if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \ |
db7b5426 BS |
2258 | end_addr2 = TARGET_PAGE_SIZE - 1; \ |
2259 | else { \ | |
2260 | end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \ | |
2261 | if (end_addr2 < TARGET_PAGE_SIZE - 1) \ | |
2262 | need_subpage = 1; \ | |
2263 | } \ | |
2264 | } while (0) | |
2265 | ||
33417e70 FB |
2266 | /* register physical memory. 'size' must be a multiple of the target |
2267 | page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an | |
2268 | io memory page */ | |
5fafdf24 | 2269 | void cpu_register_physical_memory(target_phys_addr_t start_addr, |
00f82b8a AJ |
2270 | ram_addr_t size, |
2271 | ram_addr_t phys_offset) | |
33417e70 | 2272 | { |
108c49b8 | 2273 | target_phys_addr_t addr, end_addr; |
92e873b9 | 2274 | PhysPageDesc *p; |
9d42037b | 2275 | CPUState *env; |
00f82b8a | 2276 | ram_addr_t orig_size = size; |
db7b5426 | 2277 | void *subpage; |
33417e70 | 2278 | |
da260249 FB |
2279 | #ifdef USE_KQEMU |
2280 | /* XXX: should not depend on cpu context */ | |
2281 | env = first_cpu; | |
2282 | if (env->kqemu_enabled) { | |
2283 | kqemu_set_phys_mem(start_addr, size, phys_offset); | |
2284 | } | |
2285 | #endif | |
7ba1e619 AL |
2286 | if (kvm_enabled()) |
2287 | kvm_set_phys_mem(start_addr, size, phys_offset); | |
2288 | ||
5fd386f6 | 2289 | size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK; |
49e9fba2 BS |
2290 | end_addr = start_addr + (target_phys_addr_t)size; |
2291 | for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) { | |
db7b5426 BS |
2292 | p = phys_page_find(addr >> TARGET_PAGE_BITS); |
2293 | if (p && p->phys_offset != IO_MEM_UNASSIGNED) { | |
00f82b8a | 2294 | ram_addr_t orig_memory = p->phys_offset; |
db7b5426 BS |
2295 | target_phys_addr_t start_addr2, end_addr2; |
2296 | int need_subpage = 0; | |
2297 | ||
2298 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, | |
2299 | need_subpage); | |
4254fab8 | 2300 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 BS |
2301 | if (!(orig_memory & IO_MEM_SUBPAGE)) { |
2302 | subpage = subpage_init((addr & TARGET_PAGE_MASK), | |
2303 | &p->phys_offset, orig_memory); | |
2304 | } else { | |
2305 | subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK) | |
2306 | >> IO_MEM_SHIFT]; | |
2307 | } | |
2308 | subpage_register(subpage, start_addr2, end_addr2, phys_offset); | |
2309 | } else { | |
2310 | p->phys_offset = phys_offset; | |
2311 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2312 | (phys_offset & IO_MEM_ROMD)) | |
2313 | phys_offset += TARGET_PAGE_SIZE; | |
2314 | } | |
2315 | } else { | |
2316 | p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
2317 | p->phys_offset = phys_offset; | |
2318 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2319 | (phys_offset & IO_MEM_ROMD)) | |
2320 | phys_offset += TARGET_PAGE_SIZE; | |
2321 | else { | |
2322 | target_phys_addr_t start_addr2, end_addr2; | |
2323 | int need_subpage = 0; | |
2324 | ||
2325 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, | |
2326 | end_addr2, need_subpage); | |
2327 | ||
4254fab8 | 2328 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 BS |
2329 | subpage = subpage_init((addr & TARGET_PAGE_MASK), |
2330 | &p->phys_offset, IO_MEM_UNASSIGNED); | |
2331 | subpage_register(subpage, start_addr2, end_addr2, | |
2332 | phys_offset); | |
2333 | } | |
2334 | } | |
2335 | } | |
33417e70 | 2336 | } |
3b46e624 | 2337 | |
9d42037b FB |
2338 | /* since each CPU stores ram addresses in its TLB cache, we must |
2339 | reset the modified entries */ | |
2340 | /* XXX: slow ! */ | |
2341 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
2342 | tlb_flush(env, 1); | |
2343 | } | |
33417e70 FB |
2344 | } |
2345 | ||
ba863458 | 2346 | /* XXX: temporary until new memory mapping API */ |
00f82b8a | 2347 | ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr) |
ba863458 FB |
2348 | { |
2349 | PhysPageDesc *p; | |
2350 | ||
2351 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2352 | if (!p) | |
2353 | return IO_MEM_UNASSIGNED; | |
2354 | return p->phys_offset; | |
2355 | } | |
2356 | ||
e9a1ab19 | 2357 | /* XXX: better than nothing */ |
00f82b8a | 2358 | ram_addr_t qemu_ram_alloc(ram_addr_t size) |
e9a1ab19 FB |
2359 | { |
2360 | ram_addr_t addr; | |
7fb4fdcf | 2361 | if ((phys_ram_alloc_offset + size) > phys_ram_size) { |
012a7045 | 2362 | fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n", |
ed441467 | 2363 | (uint64_t)size, (uint64_t)phys_ram_size); |
e9a1ab19 FB |
2364 | abort(); |
2365 | } | |
2366 | addr = phys_ram_alloc_offset; | |
2367 | phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size); | |
2368 | return addr; | |
2369 | } | |
2370 | ||
2371 | void qemu_ram_free(ram_addr_t addr) | |
2372 | { | |
2373 | } | |
2374 | ||
a4193c8a | 2375 | static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr) |
33417e70 | 2376 | { |
67d3b957 | 2377 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2378 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); |
b4f0a316 | 2379 | #endif |
e18231a3 BS |
2380 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) |
2381 | do_unassigned_access(addr, 0, 0, 0, 1); | |
2382 | #endif | |
2383 | return 0; | |
2384 | } | |
2385 | ||
2386 | static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr) | |
2387 | { | |
2388 | #ifdef DEBUG_UNASSIGNED | |
2389 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2390 | #endif | |
2391 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) | |
2392 | do_unassigned_access(addr, 0, 0, 0, 2); | |
2393 | #endif | |
2394 | return 0; | |
2395 | } | |
2396 | ||
2397 | static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr) | |
2398 | { | |
2399 | #ifdef DEBUG_UNASSIGNED | |
2400 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2401 | #endif | |
2402 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) | |
2403 | do_unassigned_access(addr, 0, 0, 0, 4); | |
67d3b957 | 2404 | #endif |
33417e70 FB |
2405 | return 0; |
2406 | } | |
2407 | ||
a4193c8a | 2408 | static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) |
33417e70 | 2409 | { |
67d3b957 | 2410 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2411 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); |
67d3b957 | 2412 | #endif |
e18231a3 BS |
2413 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) |
2414 | do_unassigned_access(addr, 1, 0, 0, 1); | |
2415 | #endif | |
2416 | } | |
2417 | ||
2418 | static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2419 | { | |
2420 | #ifdef DEBUG_UNASSIGNED | |
2421 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2422 | #endif | |
2423 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) | |
2424 | do_unassigned_access(addr, 1, 0, 0, 2); | |
2425 | #endif | |
2426 | } | |
2427 | ||
2428 | static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2429 | { | |
2430 | #ifdef DEBUG_UNASSIGNED | |
2431 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2432 | #endif | |
2433 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) | |
2434 | do_unassigned_access(addr, 1, 0, 0, 4); | |
b4f0a316 | 2435 | #endif |
33417e70 FB |
2436 | } |
2437 | ||
2438 | static CPUReadMemoryFunc *unassigned_mem_read[3] = { | |
2439 | unassigned_mem_readb, | |
e18231a3 BS |
2440 | unassigned_mem_readw, |
2441 | unassigned_mem_readl, | |
33417e70 FB |
2442 | }; |
2443 | ||
2444 | static CPUWriteMemoryFunc *unassigned_mem_write[3] = { | |
2445 | unassigned_mem_writeb, | |
e18231a3 BS |
2446 | unassigned_mem_writew, |
2447 | unassigned_mem_writel, | |
33417e70 FB |
2448 | }; |
2449 | ||
0f459d16 PB |
2450 | static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr, |
2451 | uint32_t val) | |
9fa3e853 | 2452 | { |
3a7d929e | 2453 | int dirty_flags; |
3a7d929e FB |
2454 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2455 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2456 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2457 | tb_invalidate_phys_page_fast(ram_addr, 1); |
2458 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2459 | #endif |
3a7d929e | 2460 | } |
0f459d16 | 2461 | stb_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2462 | #ifdef USE_KQEMU |
2463 | if (cpu_single_env->kqemu_enabled && | |
2464 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2465 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2466 | #endif | |
f23db169 FB |
2467 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2468 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2469 | /* we remove the notdirty callback only if the code has been | |
2470 | flushed */ | |
2471 | if (dirty_flags == 0xff) | |
2e70f6ef | 2472 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2473 | } |
2474 | ||
0f459d16 PB |
2475 | static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr, |
2476 | uint32_t val) | |
9fa3e853 | 2477 | { |
3a7d929e | 2478 | int dirty_flags; |
3a7d929e FB |
2479 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2480 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2481 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2482 | tb_invalidate_phys_page_fast(ram_addr, 2); |
2483 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2484 | #endif |
3a7d929e | 2485 | } |
0f459d16 | 2486 | stw_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2487 | #ifdef USE_KQEMU |
2488 | if (cpu_single_env->kqemu_enabled && | |
2489 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2490 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2491 | #endif | |
f23db169 FB |
2492 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2493 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2494 | /* we remove the notdirty callback only if the code has been | |
2495 | flushed */ | |
2496 | if (dirty_flags == 0xff) | |
2e70f6ef | 2497 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2498 | } |
2499 | ||
0f459d16 PB |
2500 | static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr, |
2501 | uint32_t val) | |
9fa3e853 | 2502 | { |
3a7d929e | 2503 | int dirty_flags; |
3a7d929e FB |
2504 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2505 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2506 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2507 | tb_invalidate_phys_page_fast(ram_addr, 4); |
2508 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2509 | #endif |
3a7d929e | 2510 | } |
0f459d16 | 2511 | stl_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2512 | #ifdef USE_KQEMU |
2513 | if (cpu_single_env->kqemu_enabled && | |
2514 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2515 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2516 | #endif | |
f23db169 FB |
2517 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2518 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2519 | /* we remove the notdirty callback only if the code has been | |
2520 | flushed */ | |
2521 | if (dirty_flags == 0xff) | |
2e70f6ef | 2522 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2523 | } |
2524 | ||
3a7d929e | 2525 | static CPUReadMemoryFunc *error_mem_read[3] = { |
9fa3e853 FB |
2526 | NULL, /* never used */ |
2527 | NULL, /* never used */ | |
2528 | NULL, /* never used */ | |
2529 | }; | |
2530 | ||
1ccde1cb FB |
2531 | static CPUWriteMemoryFunc *notdirty_mem_write[3] = { |
2532 | notdirty_mem_writeb, | |
2533 | notdirty_mem_writew, | |
2534 | notdirty_mem_writel, | |
2535 | }; | |
2536 | ||
0f459d16 | 2537 | /* Generate a debug exception if a watchpoint has been hit. */ |
b4051334 | 2538 | static void check_watchpoint(int offset, int len_mask, int flags) |
0f459d16 PB |
2539 | { |
2540 | CPUState *env = cpu_single_env; | |
06d55cc1 AL |
2541 | target_ulong pc, cs_base; |
2542 | TranslationBlock *tb; | |
0f459d16 | 2543 | target_ulong vaddr; |
a1d1bb31 | 2544 | CPUWatchpoint *wp; |
06d55cc1 | 2545 | int cpu_flags; |
0f459d16 | 2546 | |
06d55cc1 AL |
2547 | if (env->watchpoint_hit) { |
2548 | /* We re-entered the check after replacing the TB. Now raise | |
2549 | * the debug interrupt so that is will trigger after the | |
2550 | * current instruction. */ | |
2551 | cpu_interrupt(env, CPU_INTERRUPT_DEBUG); | |
2552 | return; | |
2553 | } | |
2e70f6ef | 2554 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
a1d1bb31 | 2555 | for (wp = env->watchpoints; wp != NULL; wp = wp->next) { |
b4051334 AL |
2556 | if ((vaddr == (wp->vaddr & len_mask) || |
2557 | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { | |
6e140f28 AL |
2558 | wp->flags |= BP_WATCHPOINT_HIT; |
2559 | if (!env->watchpoint_hit) { | |
2560 | env->watchpoint_hit = wp; | |
2561 | tb = tb_find_pc(env->mem_io_pc); | |
2562 | if (!tb) { | |
2563 | cpu_abort(env, "check_watchpoint: could not find TB for " | |
2564 | "pc=%p", (void *)env->mem_io_pc); | |
2565 | } | |
2566 | cpu_restore_state(tb, env, env->mem_io_pc, NULL); | |
2567 | tb_phys_invalidate(tb, -1); | |
2568 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
2569 | env->exception_index = EXCP_DEBUG; | |
2570 | } else { | |
2571 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
2572 | tb_gen_code(env, pc, cs_base, cpu_flags, 1); | |
2573 | } | |
2574 | cpu_resume_from_signal(env, NULL); | |
06d55cc1 | 2575 | } |
6e140f28 AL |
2576 | } else { |
2577 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2578 | } |
2579 | } | |
2580 | } | |
2581 | ||
6658ffb8 PB |
2582 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2583 | so these check for a hit then pass through to the normal out-of-line | |
2584 | phys routines. */ | |
2585 | static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr) | |
2586 | { | |
b4051334 | 2587 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ); |
6658ffb8 PB |
2588 | return ldub_phys(addr); |
2589 | } | |
2590 | ||
2591 | static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr) | |
2592 | { | |
b4051334 | 2593 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ); |
6658ffb8 PB |
2594 | return lduw_phys(addr); |
2595 | } | |
2596 | ||
2597 | static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr) | |
2598 | { | |
b4051334 | 2599 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ); |
6658ffb8 PB |
2600 | return ldl_phys(addr); |
2601 | } | |
2602 | ||
6658ffb8 PB |
2603 | static void watch_mem_writeb(void *opaque, target_phys_addr_t addr, |
2604 | uint32_t val) | |
2605 | { | |
b4051334 | 2606 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE); |
6658ffb8 PB |
2607 | stb_phys(addr, val); |
2608 | } | |
2609 | ||
2610 | static void watch_mem_writew(void *opaque, target_phys_addr_t addr, | |
2611 | uint32_t val) | |
2612 | { | |
b4051334 | 2613 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE); |
6658ffb8 PB |
2614 | stw_phys(addr, val); |
2615 | } | |
2616 | ||
2617 | static void watch_mem_writel(void *opaque, target_phys_addr_t addr, | |
2618 | uint32_t val) | |
2619 | { | |
b4051334 | 2620 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE); |
6658ffb8 PB |
2621 | stl_phys(addr, val); |
2622 | } | |
2623 | ||
2624 | static CPUReadMemoryFunc *watch_mem_read[3] = { | |
2625 | watch_mem_readb, | |
2626 | watch_mem_readw, | |
2627 | watch_mem_readl, | |
2628 | }; | |
2629 | ||
2630 | static CPUWriteMemoryFunc *watch_mem_write[3] = { | |
2631 | watch_mem_writeb, | |
2632 | watch_mem_writew, | |
2633 | watch_mem_writel, | |
2634 | }; | |
6658ffb8 | 2635 | |
db7b5426 BS |
2636 | static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr, |
2637 | unsigned int len) | |
2638 | { | |
db7b5426 BS |
2639 | uint32_t ret; |
2640 | unsigned int idx; | |
2641 | ||
2642 | idx = SUBPAGE_IDX(addr - mmio->base); | |
2643 | #if defined(DEBUG_SUBPAGE) | |
2644 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, | |
2645 | mmio, len, addr, idx); | |
2646 | #endif | |
3ee89922 | 2647 | ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr); |
db7b5426 BS |
2648 | |
2649 | return ret; | |
2650 | } | |
2651 | ||
2652 | static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr, | |
2653 | uint32_t value, unsigned int len) | |
2654 | { | |
db7b5426 BS |
2655 | unsigned int idx; |
2656 | ||
2657 | idx = SUBPAGE_IDX(addr - mmio->base); | |
2658 | #if defined(DEBUG_SUBPAGE) | |
2659 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__, | |
2660 | mmio, len, addr, idx, value); | |
2661 | #endif | |
3ee89922 | 2662 | (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value); |
db7b5426 BS |
2663 | } |
2664 | ||
2665 | static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr) | |
2666 | { | |
2667 | #if defined(DEBUG_SUBPAGE) | |
2668 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2669 | #endif | |
2670 | ||
2671 | return subpage_readlen(opaque, addr, 0); | |
2672 | } | |
2673 | ||
2674 | static void subpage_writeb (void *opaque, target_phys_addr_t addr, | |
2675 | uint32_t value) | |
2676 | { | |
2677 | #if defined(DEBUG_SUBPAGE) | |
2678 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2679 | #endif | |
2680 | subpage_writelen(opaque, addr, value, 0); | |
2681 | } | |
2682 | ||
2683 | static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr) | |
2684 | { | |
2685 | #if defined(DEBUG_SUBPAGE) | |
2686 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2687 | #endif | |
2688 | ||
2689 | return subpage_readlen(opaque, addr, 1); | |
2690 | } | |
2691 | ||
2692 | static void subpage_writew (void *opaque, target_phys_addr_t addr, | |
2693 | uint32_t value) | |
2694 | { | |
2695 | #if defined(DEBUG_SUBPAGE) | |
2696 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2697 | #endif | |
2698 | subpage_writelen(opaque, addr, value, 1); | |
2699 | } | |
2700 | ||
2701 | static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr) | |
2702 | { | |
2703 | #if defined(DEBUG_SUBPAGE) | |
2704 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2705 | #endif | |
2706 | ||
2707 | return subpage_readlen(opaque, addr, 2); | |
2708 | } | |
2709 | ||
2710 | static void subpage_writel (void *opaque, | |
2711 | target_phys_addr_t addr, uint32_t value) | |
2712 | { | |
2713 | #if defined(DEBUG_SUBPAGE) | |
2714 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2715 | #endif | |
2716 | subpage_writelen(opaque, addr, value, 2); | |
2717 | } | |
2718 | ||
2719 | static CPUReadMemoryFunc *subpage_read[] = { | |
2720 | &subpage_readb, | |
2721 | &subpage_readw, | |
2722 | &subpage_readl, | |
2723 | }; | |
2724 | ||
2725 | static CPUWriteMemoryFunc *subpage_write[] = { | |
2726 | &subpage_writeb, | |
2727 | &subpage_writew, | |
2728 | &subpage_writel, | |
2729 | }; | |
2730 | ||
2731 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
00f82b8a | 2732 | ram_addr_t memory) |
db7b5426 BS |
2733 | { |
2734 | int idx, eidx; | |
4254fab8 | 2735 | unsigned int i; |
db7b5426 BS |
2736 | |
2737 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2738 | return -1; | |
2739 | idx = SUBPAGE_IDX(start); | |
2740 | eidx = SUBPAGE_IDX(end); | |
2741 | #if defined(DEBUG_SUBPAGE) | |
2742 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__, | |
2743 | mmio, start, end, idx, eidx, memory); | |
2744 | #endif | |
2745 | memory >>= IO_MEM_SHIFT; | |
2746 | for (; idx <= eidx; idx++) { | |
4254fab8 | 2747 | for (i = 0; i < 4; i++) { |
3ee89922 BS |
2748 | if (io_mem_read[memory][i]) { |
2749 | mmio->mem_read[idx][i] = &io_mem_read[memory][i]; | |
2750 | mmio->opaque[idx][0][i] = io_mem_opaque[memory]; | |
2751 | } | |
2752 | if (io_mem_write[memory][i]) { | |
2753 | mmio->mem_write[idx][i] = &io_mem_write[memory][i]; | |
2754 | mmio->opaque[idx][1][i] = io_mem_opaque[memory]; | |
2755 | } | |
4254fab8 | 2756 | } |
db7b5426 BS |
2757 | } |
2758 | ||
2759 | return 0; | |
2760 | } | |
2761 | ||
00f82b8a AJ |
2762 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
2763 | ram_addr_t orig_memory) | |
db7b5426 BS |
2764 | { |
2765 | subpage_t *mmio; | |
2766 | int subpage_memory; | |
2767 | ||
2768 | mmio = qemu_mallocz(sizeof(subpage_t)); | |
2769 | if (mmio != NULL) { | |
2770 | mmio->base = base; | |
2771 | subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio); | |
2772 | #if defined(DEBUG_SUBPAGE) | |
2773 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, | |
2774 | mmio, base, TARGET_PAGE_SIZE, subpage_memory); | |
2775 | #endif | |
2776 | *phys = subpage_memory | IO_MEM_SUBPAGE; | |
2777 | subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory); | |
2778 | } | |
2779 | ||
2780 | return mmio; | |
2781 | } | |
2782 | ||
33417e70 FB |
2783 | static void io_mem_init(void) |
2784 | { | |
3a7d929e | 2785 | cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL); |
a4193c8a | 2786 | cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL); |
3a7d929e | 2787 | cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL); |
1ccde1cb FB |
2788 | io_mem_nb = 5; |
2789 | ||
0f459d16 | 2790 | io_mem_watch = cpu_register_io_memory(0, watch_mem_read, |
6658ffb8 | 2791 | watch_mem_write, NULL); |
1ccde1cb | 2792 | /* alloc dirty bits array */ |
0a962c02 | 2793 | phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS); |
3a7d929e | 2794 | memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS); |
33417e70 FB |
2795 | } |
2796 | ||
2797 | /* mem_read and mem_write are arrays of functions containing the | |
2798 | function to access byte (index 0), word (index 1) and dword (index | |
3ee89922 BS |
2799 | 2). Functions can be omitted with a NULL function pointer. The |
2800 | registered functions may be modified dynamically later. | |
2801 | If io_index is non zero, the corresponding io zone is | |
4254fab8 BS |
2802 | modified. If it is zero, a new io zone is allocated. The return |
2803 | value can be used with cpu_register_physical_memory(). (-1) is | |
2804 | returned if error. */ | |
33417e70 FB |
2805 | int cpu_register_io_memory(int io_index, |
2806 | CPUReadMemoryFunc **mem_read, | |
a4193c8a FB |
2807 | CPUWriteMemoryFunc **mem_write, |
2808 | void *opaque) | |
33417e70 | 2809 | { |
4254fab8 | 2810 | int i, subwidth = 0; |
33417e70 FB |
2811 | |
2812 | if (io_index <= 0) { | |
b5ff1b31 | 2813 | if (io_mem_nb >= IO_MEM_NB_ENTRIES) |
33417e70 FB |
2814 | return -1; |
2815 | io_index = io_mem_nb++; | |
2816 | } else { | |
2817 | if (io_index >= IO_MEM_NB_ENTRIES) | |
2818 | return -1; | |
2819 | } | |
b5ff1b31 | 2820 | |
33417e70 | 2821 | for(i = 0;i < 3; i++) { |
4254fab8 BS |
2822 | if (!mem_read[i] || !mem_write[i]) |
2823 | subwidth = IO_MEM_SUBWIDTH; | |
33417e70 FB |
2824 | io_mem_read[io_index][i] = mem_read[i]; |
2825 | io_mem_write[io_index][i] = mem_write[i]; | |
2826 | } | |
a4193c8a | 2827 | io_mem_opaque[io_index] = opaque; |
4254fab8 | 2828 | return (io_index << IO_MEM_SHIFT) | subwidth; |
33417e70 | 2829 | } |
61382a50 | 2830 | |
8926b517 FB |
2831 | CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index) |
2832 | { | |
2833 | return io_mem_write[io_index >> IO_MEM_SHIFT]; | |
2834 | } | |
2835 | ||
2836 | CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index) | |
2837 | { | |
2838 | return io_mem_read[io_index >> IO_MEM_SHIFT]; | |
2839 | } | |
2840 | ||
e2eef170 PB |
2841 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2842 | ||
13eb76e0 FB |
2843 | /* physical memory access (slow version, mainly for debug) */ |
2844 | #if defined(CONFIG_USER_ONLY) | |
5fafdf24 | 2845 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
2846 | int len, int is_write) |
2847 | { | |
2848 | int l, flags; | |
2849 | target_ulong page; | |
53a5960a | 2850 | void * p; |
13eb76e0 FB |
2851 | |
2852 | while (len > 0) { | |
2853 | page = addr & TARGET_PAGE_MASK; | |
2854 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2855 | if (l > len) | |
2856 | l = len; | |
2857 | flags = page_get_flags(page); | |
2858 | if (!(flags & PAGE_VALID)) | |
2859 | return; | |
2860 | if (is_write) { | |
2861 | if (!(flags & PAGE_WRITE)) | |
2862 | return; | |
579a97f7 | 2863 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2864 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
579a97f7 FB |
2865 | /* FIXME - should this return an error rather than just fail? */ |
2866 | return; | |
72fb7daa AJ |
2867 | memcpy(p, buf, l); |
2868 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2869 | } else { |
2870 | if (!(flags & PAGE_READ)) | |
2871 | return; | |
579a97f7 | 2872 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2873 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
579a97f7 FB |
2874 | /* FIXME - should this return an error rather than just fail? */ |
2875 | return; | |
72fb7daa | 2876 | memcpy(buf, p, l); |
5b257578 | 2877 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2878 | } |
2879 | len -= l; | |
2880 | buf += l; | |
2881 | addr += l; | |
2882 | } | |
2883 | } | |
8df1cd07 | 2884 | |
13eb76e0 | 2885 | #else |
5fafdf24 | 2886 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
2887 | int len, int is_write) |
2888 | { | |
2889 | int l, io_index; | |
2890 | uint8_t *ptr; | |
2891 | uint32_t val; | |
2e12669a FB |
2892 | target_phys_addr_t page; |
2893 | unsigned long pd; | |
92e873b9 | 2894 | PhysPageDesc *p; |
3b46e624 | 2895 | |
13eb76e0 FB |
2896 | while (len > 0) { |
2897 | page = addr & TARGET_PAGE_MASK; | |
2898 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2899 | if (l > len) | |
2900 | l = len; | |
92e873b9 | 2901 | p = phys_page_find(page >> TARGET_PAGE_BITS); |
13eb76e0 FB |
2902 | if (!p) { |
2903 | pd = IO_MEM_UNASSIGNED; | |
2904 | } else { | |
2905 | pd = p->phys_offset; | |
2906 | } | |
3b46e624 | 2907 | |
13eb76e0 | 2908 | if (is_write) { |
3a7d929e | 2909 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
13eb76e0 | 2910 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
6a00d601 FB |
2911 | /* XXX: could force cpu_single_env to NULL to avoid |
2912 | potential bugs */ | |
13eb76e0 | 2913 | if (l >= 4 && ((addr & 3) == 0)) { |
1c213d19 | 2914 | /* 32 bit write access */ |
c27004ec | 2915 | val = ldl_p(buf); |
a4193c8a | 2916 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
13eb76e0 FB |
2917 | l = 4; |
2918 | } else if (l >= 2 && ((addr & 1) == 0)) { | |
1c213d19 | 2919 | /* 16 bit write access */ |
c27004ec | 2920 | val = lduw_p(buf); |
a4193c8a | 2921 | io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val); |
13eb76e0 FB |
2922 | l = 2; |
2923 | } else { | |
1c213d19 | 2924 | /* 8 bit write access */ |
c27004ec | 2925 | val = ldub_p(buf); |
a4193c8a | 2926 | io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val); |
13eb76e0 FB |
2927 | l = 1; |
2928 | } | |
2929 | } else { | |
b448f2f3 FB |
2930 | unsigned long addr1; |
2931 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
13eb76e0 | 2932 | /* RAM case */ |
b448f2f3 | 2933 | ptr = phys_ram_base + addr1; |
13eb76e0 | 2934 | memcpy(ptr, buf, l); |
3a7d929e FB |
2935 | if (!cpu_physical_memory_is_dirty(addr1)) { |
2936 | /* invalidate code */ | |
2937 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
2938 | /* set dirty bit */ | |
5fafdf24 | 2939 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
f23db169 | 2940 | (0xff & ~CODE_DIRTY_FLAG); |
3a7d929e | 2941 | } |
13eb76e0 FB |
2942 | } |
2943 | } else { | |
5fafdf24 | 2944 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 2945 | !(pd & IO_MEM_ROMD)) { |
13eb76e0 FB |
2946 | /* I/O case */ |
2947 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
2948 | if (l >= 4 && ((addr & 3) == 0)) { | |
2949 | /* 32 bit read access */ | |
a4193c8a | 2950 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); |
c27004ec | 2951 | stl_p(buf, val); |
13eb76e0 FB |
2952 | l = 4; |
2953 | } else if (l >= 2 && ((addr & 1) == 0)) { | |
2954 | /* 16 bit read access */ | |
a4193c8a | 2955 | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr); |
c27004ec | 2956 | stw_p(buf, val); |
13eb76e0 FB |
2957 | l = 2; |
2958 | } else { | |
1c213d19 | 2959 | /* 8 bit read access */ |
a4193c8a | 2960 | val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr); |
c27004ec | 2961 | stb_p(buf, val); |
13eb76e0 FB |
2962 | l = 1; |
2963 | } | |
2964 | } else { | |
2965 | /* RAM case */ | |
5fafdf24 | 2966 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
13eb76e0 FB |
2967 | (addr & ~TARGET_PAGE_MASK); |
2968 | memcpy(buf, ptr, l); | |
2969 | } | |
2970 | } | |
2971 | len -= l; | |
2972 | buf += l; | |
2973 | addr += l; | |
2974 | } | |
2975 | } | |
8df1cd07 | 2976 | |
d0ecd2aa | 2977 | /* used for ROM loading : can write in RAM and ROM */ |
5fafdf24 | 2978 | void cpu_physical_memory_write_rom(target_phys_addr_t addr, |
d0ecd2aa FB |
2979 | const uint8_t *buf, int len) |
2980 | { | |
2981 | int l; | |
2982 | uint8_t *ptr; | |
2983 | target_phys_addr_t page; | |
2984 | unsigned long pd; | |
2985 | PhysPageDesc *p; | |
3b46e624 | 2986 | |
d0ecd2aa FB |
2987 | while (len > 0) { |
2988 | page = addr & TARGET_PAGE_MASK; | |
2989 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2990 | if (l > len) | |
2991 | l = len; | |
2992 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
2993 | if (!p) { | |
2994 | pd = IO_MEM_UNASSIGNED; | |
2995 | } else { | |
2996 | pd = p->phys_offset; | |
2997 | } | |
3b46e624 | 2998 | |
d0ecd2aa | 2999 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM && |
2a4188a3 FB |
3000 | (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM && |
3001 | !(pd & IO_MEM_ROMD)) { | |
d0ecd2aa FB |
3002 | /* do nothing */ |
3003 | } else { | |
3004 | unsigned long addr1; | |
3005 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3006 | /* ROM/RAM case */ | |
3007 | ptr = phys_ram_base + addr1; | |
3008 | memcpy(ptr, buf, l); | |
3009 | } | |
3010 | len -= l; | |
3011 | buf += l; | |
3012 | addr += l; | |
3013 | } | |
3014 | } | |
3015 | ||
3016 | ||
8df1cd07 FB |
3017 | /* warning: addr must be aligned */ |
3018 | uint32_t ldl_phys(target_phys_addr_t addr) | |
3019 | { | |
3020 | int io_index; | |
3021 | uint8_t *ptr; | |
3022 | uint32_t val; | |
3023 | unsigned long pd; | |
3024 | PhysPageDesc *p; | |
3025 | ||
3026 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3027 | if (!p) { | |
3028 | pd = IO_MEM_UNASSIGNED; | |
3029 | } else { | |
3030 | pd = p->phys_offset; | |
3031 | } | |
3b46e624 | 3032 | |
5fafdf24 | 3033 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 3034 | !(pd & IO_MEM_ROMD)) { |
8df1cd07 FB |
3035 | /* I/O case */ |
3036 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
3037 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
3038 | } else { | |
3039 | /* RAM case */ | |
5fafdf24 | 3040 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
8df1cd07 FB |
3041 | (addr & ~TARGET_PAGE_MASK); |
3042 | val = ldl_p(ptr); | |
3043 | } | |
3044 | return val; | |
3045 | } | |
3046 | ||
84b7b8e7 FB |
3047 | /* warning: addr must be aligned */ |
3048 | uint64_t ldq_phys(target_phys_addr_t addr) | |
3049 | { | |
3050 | int io_index; | |
3051 | uint8_t *ptr; | |
3052 | uint64_t val; | |
3053 | unsigned long pd; | |
3054 | PhysPageDesc *p; | |
3055 | ||
3056 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3057 | if (!p) { | |
3058 | pd = IO_MEM_UNASSIGNED; | |
3059 | } else { | |
3060 | pd = p->phys_offset; | |
3061 | } | |
3b46e624 | 3062 | |
2a4188a3 FB |
3063 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
3064 | !(pd & IO_MEM_ROMD)) { | |
84b7b8e7 FB |
3065 | /* I/O case */ |
3066 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
3067 | #ifdef TARGET_WORDS_BIGENDIAN | |
3068 | val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32; | |
3069 | val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4); | |
3070 | #else | |
3071 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
3072 | val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32; | |
3073 | #endif | |
3074 | } else { | |
3075 | /* RAM case */ | |
5fafdf24 | 3076 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
84b7b8e7 FB |
3077 | (addr & ~TARGET_PAGE_MASK); |
3078 | val = ldq_p(ptr); | |
3079 | } | |
3080 | return val; | |
3081 | } | |
3082 | ||
aab33094 FB |
3083 | /* XXX: optimize */ |
3084 | uint32_t ldub_phys(target_phys_addr_t addr) | |
3085 | { | |
3086 | uint8_t val; | |
3087 | cpu_physical_memory_read(addr, &val, 1); | |
3088 | return val; | |
3089 | } | |
3090 | ||
3091 | /* XXX: optimize */ | |
3092 | uint32_t lduw_phys(target_phys_addr_t addr) | |
3093 | { | |
3094 | uint16_t val; | |
3095 | cpu_physical_memory_read(addr, (uint8_t *)&val, 2); | |
3096 | return tswap16(val); | |
3097 | } | |
3098 | ||
8df1cd07 FB |
3099 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3100 | and the code inside is not invalidated. It is useful if the dirty | |
3101 | bits are used to track modified PTEs */ | |
3102 | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val) | |
3103 | { | |
3104 | int io_index; | |
3105 | uint8_t *ptr; | |
3106 | unsigned long pd; | |
3107 | PhysPageDesc *p; | |
3108 | ||
3109 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3110 | if (!p) { | |
3111 | pd = IO_MEM_UNASSIGNED; | |
3112 | } else { | |
3113 | pd = p->phys_offset; | |
3114 | } | |
3b46e624 | 3115 | |
3a7d929e | 3116 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 FB |
3117 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
3118 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3119 | } else { | |
74576198 AL |
3120 | unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
3121 | ptr = phys_ram_base + addr1; | |
8df1cd07 | 3122 | stl_p(ptr, val); |
74576198 AL |
3123 | |
3124 | if (unlikely(in_migration)) { | |
3125 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3126 | /* invalidate code */ | |
3127 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3128 | /* set dirty bit */ | |
3129 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3130 | (0xff & ~CODE_DIRTY_FLAG); | |
3131 | } | |
3132 | } | |
8df1cd07 FB |
3133 | } |
3134 | } | |
3135 | ||
bc98a7ef JM |
3136 | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val) |
3137 | { | |
3138 | int io_index; | |
3139 | uint8_t *ptr; | |
3140 | unsigned long pd; | |
3141 | PhysPageDesc *p; | |
3142 | ||
3143 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3144 | if (!p) { | |
3145 | pd = IO_MEM_UNASSIGNED; | |
3146 | } else { | |
3147 | pd = p->phys_offset; | |
3148 | } | |
3b46e624 | 3149 | |
bc98a7ef JM |
3150 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
3151 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
3152 | #ifdef TARGET_WORDS_BIGENDIAN | |
3153 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32); | |
3154 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val); | |
3155 | #else | |
3156 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3157 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32); | |
3158 | #endif | |
3159 | } else { | |
5fafdf24 | 3160 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
bc98a7ef JM |
3161 | (addr & ~TARGET_PAGE_MASK); |
3162 | stq_p(ptr, val); | |
3163 | } | |
3164 | } | |
3165 | ||
8df1cd07 | 3166 | /* warning: addr must be aligned */ |
8df1cd07 FB |
3167 | void stl_phys(target_phys_addr_t addr, uint32_t val) |
3168 | { | |
3169 | int io_index; | |
3170 | uint8_t *ptr; | |
3171 | unsigned long pd; | |
3172 | PhysPageDesc *p; | |
3173 | ||
3174 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3175 | if (!p) { | |
3176 | pd = IO_MEM_UNASSIGNED; | |
3177 | } else { | |
3178 | pd = p->phys_offset; | |
3179 | } | |
3b46e624 | 3180 | |
3a7d929e | 3181 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 FB |
3182 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
3183 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3184 | } else { | |
3185 | unsigned long addr1; | |
3186 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3187 | /* RAM case */ | |
3188 | ptr = phys_ram_base + addr1; | |
3189 | stl_p(ptr, val); | |
3a7d929e FB |
3190 | if (!cpu_physical_memory_is_dirty(addr1)) { |
3191 | /* invalidate code */ | |
3192 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3193 | /* set dirty bit */ | |
f23db169 FB |
3194 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
3195 | (0xff & ~CODE_DIRTY_FLAG); | |
3a7d929e | 3196 | } |
8df1cd07 FB |
3197 | } |
3198 | } | |
3199 | ||
aab33094 FB |
3200 | /* XXX: optimize */ |
3201 | void stb_phys(target_phys_addr_t addr, uint32_t val) | |
3202 | { | |
3203 | uint8_t v = val; | |
3204 | cpu_physical_memory_write(addr, &v, 1); | |
3205 | } | |
3206 | ||
3207 | /* XXX: optimize */ | |
3208 | void stw_phys(target_phys_addr_t addr, uint32_t val) | |
3209 | { | |
3210 | uint16_t v = tswap16(val); | |
3211 | cpu_physical_memory_write(addr, (const uint8_t *)&v, 2); | |
3212 | } | |
3213 | ||
3214 | /* XXX: optimize */ | |
3215 | void stq_phys(target_phys_addr_t addr, uint64_t val) | |
3216 | { | |
3217 | val = tswap64(val); | |
3218 | cpu_physical_memory_write(addr, (const uint8_t *)&val, 8); | |
3219 | } | |
3220 | ||
13eb76e0 FB |
3221 | #endif |
3222 | ||
3223 | /* virtual memory access for debug */ | |
5fafdf24 | 3224 | int cpu_memory_rw_debug(CPUState *env, target_ulong addr, |
b448f2f3 | 3225 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3226 | { |
3227 | int l; | |
9b3c35e0 JM |
3228 | target_phys_addr_t phys_addr; |
3229 | target_ulong page; | |
13eb76e0 FB |
3230 | |
3231 | while (len > 0) { | |
3232 | page = addr & TARGET_PAGE_MASK; | |
3233 | phys_addr = cpu_get_phys_page_debug(env, page); | |
3234 | /* if no physical page mapped, return an error */ | |
3235 | if (phys_addr == -1) | |
3236 | return -1; | |
3237 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3238 | if (l > len) | |
3239 | l = len; | |
5fafdf24 | 3240 | cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK), |
b448f2f3 | 3241 | buf, l, is_write); |
13eb76e0 FB |
3242 | len -= l; |
3243 | buf += l; | |
3244 | addr += l; | |
3245 | } | |
3246 | return 0; | |
3247 | } | |
3248 | ||
2e70f6ef PB |
3249 | /* in deterministic execution mode, instructions doing device I/Os |
3250 | must be at the end of the TB */ | |
3251 | void cpu_io_recompile(CPUState *env, void *retaddr) | |
3252 | { | |
3253 | TranslationBlock *tb; | |
3254 | uint32_t n, cflags; | |
3255 | target_ulong pc, cs_base; | |
3256 | uint64_t flags; | |
3257 | ||
3258 | tb = tb_find_pc((unsigned long)retaddr); | |
3259 | if (!tb) { | |
3260 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | |
3261 | retaddr); | |
3262 | } | |
3263 | n = env->icount_decr.u16.low + tb->icount; | |
3264 | cpu_restore_state(tb, env, (unsigned long)retaddr, NULL); | |
3265 | /* Calculate how many instructions had been executed before the fault | |
bf20dc07 | 3266 | occurred. */ |
2e70f6ef PB |
3267 | n = n - env->icount_decr.u16.low; |
3268 | /* Generate a new TB ending on the I/O insn. */ | |
3269 | n++; | |
3270 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
3271 | they were already the first instruction in the TB. If this is not | |
bf20dc07 | 3272 | the first instruction in a TB then re-execute the preceding |
2e70f6ef PB |
3273 | branch. */ |
3274 | #if defined(TARGET_MIPS) | |
3275 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
3276 | env->active_tc.PC -= 4; | |
3277 | env->icount_decr.u16.low++; | |
3278 | env->hflags &= ~MIPS_HFLAG_BMASK; | |
3279 | } | |
3280 | #elif defined(TARGET_SH4) | |
3281 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
3282 | && n > 1) { | |
3283 | env->pc -= 2; | |
3284 | env->icount_decr.u16.low++; | |
3285 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | |
3286 | } | |
3287 | #endif | |
3288 | /* This should never happen. */ | |
3289 | if (n > CF_COUNT_MASK) | |
3290 | cpu_abort(env, "TB too big during recompile"); | |
3291 | ||
3292 | cflags = n | CF_LAST_IO; | |
3293 | pc = tb->pc; | |
3294 | cs_base = tb->cs_base; | |
3295 | flags = tb->flags; | |
3296 | tb_phys_invalidate(tb, -1); | |
3297 | /* FIXME: In theory this could raise an exception. In practice | |
3298 | we have already translated the block once so it's probably ok. */ | |
3299 | tb_gen_code(env, pc, cs_base, flags, cflags); | |
bf20dc07 | 3300 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not |
2e70f6ef PB |
3301 | the first in the TB) then we end up generating a whole new TB and |
3302 | repeating the fault, which is horribly inefficient. | |
3303 | Better would be to execute just this insn uncached, or generate a | |
3304 | second new TB. */ | |
3305 | cpu_resume_from_signal(env, NULL); | |
3306 | } | |
3307 | ||
e3db7226 FB |
3308 | void dump_exec_info(FILE *f, |
3309 | int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) | |
3310 | { | |
3311 | int i, target_code_size, max_target_code_size; | |
3312 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
3313 | TranslationBlock *tb; | |
3b46e624 | 3314 | |
e3db7226 FB |
3315 | target_code_size = 0; |
3316 | max_target_code_size = 0; | |
3317 | cross_page = 0; | |
3318 | direct_jmp_count = 0; | |
3319 | direct_jmp2_count = 0; | |
3320 | for(i = 0; i < nb_tbs; i++) { | |
3321 | tb = &tbs[i]; | |
3322 | target_code_size += tb->size; | |
3323 | if (tb->size > max_target_code_size) | |
3324 | max_target_code_size = tb->size; | |
3325 | if (tb->page_addr[1] != -1) | |
3326 | cross_page++; | |
3327 | if (tb->tb_next_offset[0] != 0xffff) { | |
3328 | direct_jmp_count++; | |
3329 | if (tb->tb_next_offset[1] != 0xffff) { | |
3330 | direct_jmp2_count++; | |
3331 | } | |
3332 | } | |
3333 | } | |
3334 | /* XXX: avoid using doubles ? */ | |
57fec1fe | 3335 | cpu_fprintf(f, "Translation buffer state:\n"); |
26a5f13b FB |
3336 | cpu_fprintf(f, "gen code size %ld/%ld\n", |
3337 | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size); | |
3338 | cpu_fprintf(f, "TB count %d/%d\n", | |
3339 | nb_tbs, code_gen_max_blocks); | |
5fafdf24 | 3340 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", |
e3db7226 FB |
3341 | nb_tbs ? target_code_size / nb_tbs : 0, |
3342 | max_target_code_size); | |
5fafdf24 | 3343 | cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n", |
e3db7226 FB |
3344 | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0, |
3345 | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0); | |
5fafdf24 TS |
3346 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", |
3347 | cross_page, | |
e3db7226 FB |
3348 | nb_tbs ? (cross_page * 100) / nb_tbs : 0); |
3349 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", | |
5fafdf24 | 3350 | direct_jmp_count, |
e3db7226 FB |
3351 | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0, |
3352 | direct_jmp2_count, | |
3353 | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0); | |
57fec1fe | 3354 | cpu_fprintf(f, "\nStatistics:\n"); |
e3db7226 FB |
3355 | cpu_fprintf(f, "TB flush count %d\n", tb_flush_count); |
3356 | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count); | |
3357 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); | |
b67d9a52 | 3358 | tcg_dump_info(f, cpu_fprintf); |
e3db7226 FB |
3359 | } |
3360 | ||
5fafdf24 | 3361 | #if !defined(CONFIG_USER_ONLY) |
61382a50 FB |
3362 | |
3363 | #define MMUSUFFIX _cmmu | |
3364 | #define GETPC() NULL | |
3365 | #define env cpu_single_env | |
b769d8fe | 3366 | #define SOFTMMU_CODE_ACCESS |
61382a50 FB |
3367 | |
3368 | #define SHIFT 0 | |
3369 | #include "softmmu_template.h" | |
3370 | ||
3371 | #define SHIFT 1 | |
3372 | #include "softmmu_template.h" | |
3373 | ||
3374 | #define SHIFT 2 | |
3375 | #include "softmmu_template.h" | |
3376 | ||
3377 | #define SHIFT 3 | |
3378 | #include "softmmu_template.h" | |
3379 | ||
3380 | #undef env | |
3381 | ||
3382 | #endif |