]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
fd6ce8f6 | 2 | * virtual page mapping and translated block handling |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
19 | */ | |
67b915a5 | 20 | #include "config.h" |
d5a8f07c | 21 | #ifdef _WIN32 |
4fddf62a | 22 | #define WIN32_LEAN_AND_MEAN |
d5a8f07c FB |
23 | #include <windows.h> |
24 | #else | |
a98d49b1 | 25 | #include <sys/types.h> |
d5a8f07c FB |
26 | #include <sys/mman.h> |
27 | #endif | |
54936004 FB |
28 | #include <stdlib.h> |
29 | #include <stdio.h> | |
30 | #include <stdarg.h> | |
31 | #include <string.h> | |
32 | #include <errno.h> | |
33 | #include <unistd.h> | |
34 | #include <inttypes.h> | |
35 | ||
6180a181 FB |
36 | #include "cpu.h" |
37 | #include "exec-all.h" | |
ca10f867 | 38 | #include "qemu-common.h" |
b67d9a52 | 39 | #include "tcg.h" |
b3c7724c | 40 | #include "hw/hw.h" |
74576198 | 41 | #include "osdep.h" |
53a5960a PB |
42 | #if defined(CONFIG_USER_ONLY) |
43 | #include <qemu.h> | |
44 | #endif | |
54936004 | 45 | |
fd6ce8f6 | 46 | //#define DEBUG_TB_INVALIDATE |
66e85a21 | 47 | //#define DEBUG_FLUSH |
9fa3e853 | 48 | //#define DEBUG_TLB |
67d3b957 | 49 | //#define DEBUG_UNASSIGNED |
fd6ce8f6 FB |
50 | |
51 | /* make various TB consistency checks */ | |
5fafdf24 TS |
52 | //#define DEBUG_TB_CHECK |
53 | //#define DEBUG_TLB_CHECK | |
fd6ce8f6 | 54 | |
1196be37 | 55 | //#define DEBUG_IOPORT |
db7b5426 | 56 | //#define DEBUG_SUBPAGE |
1196be37 | 57 | |
99773bd4 PB |
58 | #if !defined(CONFIG_USER_ONLY) |
59 | /* TB consistency checks only implemented for usermode emulation. */ | |
60 | #undef DEBUG_TB_CHECK | |
61 | #endif | |
62 | ||
9fa3e853 FB |
63 | #define SMC_BITMAP_USE_THRESHOLD 10 |
64 | ||
65 | #define MMAP_AREA_START 0x00000000 | |
66 | #define MMAP_AREA_END 0xa8000000 | |
fd6ce8f6 | 67 | |
108c49b8 FB |
68 | #if defined(TARGET_SPARC64) |
69 | #define TARGET_PHYS_ADDR_SPACE_BITS 41 | |
5dcb6b91 BS |
70 | #elif defined(TARGET_SPARC) |
71 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
bedb69ea JM |
72 | #elif defined(TARGET_ALPHA) |
73 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
74 | #define TARGET_VIRT_ADDR_SPACE_BITS 42 | |
108c49b8 FB |
75 | #elif defined(TARGET_PPC64) |
76 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
00f82b8a AJ |
77 | #elif defined(TARGET_X86_64) && !defined(USE_KQEMU) |
78 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
79 | #elif defined(TARGET_I386) && !defined(USE_KQEMU) | |
80 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
108c49b8 FB |
81 | #else |
82 | /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */ | |
83 | #define TARGET_PHYS_ADDR_SPACE_BITS 32 | |
84 | #endif | |
85 | ||
bdaf78e0 | 86 | static TranslationBlock *tbs; |
26a5f13b | 87 | int code_gen_max_blocks; |
9fa3e853 | 88 | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; |
bdaf78e0 | 89 | static int nb_tbs; |
eb51d102 FB |
90 | /* any access to the tbs or the page table must use this lock */ |
91 | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED; | |
fd6ce8f6 | 92 | |
141ac468 BS |
93 | #if defined(__arm__) || defined(__sparc_v9__) |
94 | /* The prologue must be reachable with a direct jump. ARM and Sparc64 | |
95 | have limited branch ranges (possibly also PPC) so place it in a | |
d03d860b BS |
96 | section close to code segment. */ |
97 | #define code_gen_section \ | |
98 | __attribute__((__section__(".gen_code"))) \ | |
99 | __attribute__((aligned (32))) | |
100 | #else | |
101 | #define code_gen_section \ | |
102 | __attribute__((aligned (32))) | |
103 | #endif | |
104 | ||
105 | uint8_t code_gen_prologue[1024] code_gen_section; | |
bdaf78e0 BS |
106 | static uint8_t *code_gen_buffer; |
107 | static unsigned long code_gen_buffer_size; | |
26a5f13b | 108 | /* threshold to flush the translated code buffer */ |
bdaf78e0 | 109 | static unsigned long code_gen_buffer_max_size; |
fd6ce8f6 FB |
110 | uint8_t *code_gen_ptr; |
111 | ||
e2eef170 | 112 | #if !defined(CONFIG_USER_ONLY) |
00f82b8a | 113 | ram_addr_t phys_ram_size; |
9fa3e853 FB |
114 | int phys_ram_fd; |
115 | uint8_t *phys_ram_base; | |
1ccde1cb | 116 | uint8_t *phys_ram_dirty; |
74576198 | 117 | static int in_migration; |
e9a1ab19 | 118 | static ram_addr_t phys_ram_alloc_offset = 0; |
e2eef170 | 119 | #endif |
9fa3e853 | 120 | |
6a00d601 FB |
121 | CPUState *first_cpu; |
122 | /* current CPU in the current thread. It is only valid inside | |
123 | cpu_exec() */ | |
5fafdf24 | 124 | CPUState *cpu_single_env; |
2e70f6ef | 125 | /* 0 = Do not count executed instructions. |
bf20dc07 | 126 | 1 = Precise instruction counting. |
2e70f6ef PB |
127 | 2 = Adaptive rate instruction counting. */ |
128 | int use_icount = 0; | |
129 | /* Current instruction counter. While executing translated code this may | |
130 | include some instructions that have not yet been executed. */ | |
131 | int64_t qemu_icount; | |
6a00d601 | 132 | |
54936004 | 133 | typedef struct PageDesc { |
92e873b9 | 134 | /* list of TBs intersecting this ram page */ |
fd6ce8f6 | 135 | TranslationBlock *first_tb; |
9fa3e853 FB |
136 | /* in order to optimize self modifying code, we count the number |
137 | of lookups we do to a given page to use a bitmap */ | |
138 | unsigned int code_write_count; | |
139 | uint8_t *code_bitmap; | |
140 | #if defined(CONFIG_USER_ONLY) | |
141 | unsigned long flags; | |
142 | #endif | |
54936004 FB |
143 | } PageDesc; |
144 | ||
92e873b9 | 145 | typedef struct PhysPageDesc { |
0f459d16 | 146 | /* offset in host memory of the page + io_index in the low bits */ |
00f82b8a | 147 | ram_addr_t phys_offset; |
92e873b9 FB |
148 | } PhysPageDesc; |
149 | ||
54936004 | 150 | #define L2_BITS 10 |
bedb69ea JM |
151 | #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS) |
152 | /* XXX: this is a temporary hack for alpha target. | |
153 | * In the future, this is to be replaced by a multi-level table | |
154 | * to actually be able to handle the complete 64 bits address space. | |
155 | */ | |
156 | #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS) | |
157 | #else | |
03875444 | 158 | #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS) |
bedb69ea | 159 | #endif |
54936004 FB |
160 | |
161 | #define L1_SIZE (1 << L1_BITS) | |
162 | #define L2_SIZE (1 << L2_BITS) | |
163 | ||
83fb7adf FB |
164 | unsigned long qemu_real_host_page_size; |
165 | unsigned long qemu_host_page_bits; | |
166 | unsigned long qemu_host_page_size; | |
167 | unsigned long qemu_host_page_mask; | |
54936004 | 168 | |
92e873b9 | 169 | /* XXX: for system emulation, it could just be an array */ |
54936004 | 170 | static PageDesc *l1_map[L1_SIZE]; |
bdaf78e0 | 171 | static PhysPageDesc **l1_phys_map; |
54936004 | 172 | |
e2eef170 PB |
173 | #if !defined(CONFIG_USER_ONLY) |
174 | static void io_mem_init(void); | |
175 | ||
33417e70 | 176 | /* io memory support */ |
33417e70 FB |
177 | CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; |
178 | CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; | |
a4193c8a | 179 | void *io_mem_opaque[IO_MEM_NB_ENTRIES]; |
33417e70 | 180 | static int io_mem_nb; |
6658ffb8 PB |
181 | static int io_mem_watch; |
182 | #endif | |
33417e70 | 183 | |
34865134 | 184 | /* log support */ |
d9b630fd | 185 | static const char *logfilename = "/tmp/qemu.log"; |
34865134 FB |
186 | FILE *logfile; |
187 | int loglevel; | |
e735b91c | 188 | static int log_append = 0; |
34865134 | 189 | |
e3db7226 FB |
190 | /* statistics */ |
191 | static int tlb_flush_count; | |
192 | static int tb_flush_count; | |
193 | static int tb_phys_invalidate_count; | |
194 | ||
db7b5426 BS |
195 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
196 | typedef struct subpage_t { | |
197 | target_phys_addr_t base; | |
3ee89922 BS |
198 | CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4]; |
199 | CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4]; | |
200 | void *opaque[TARGET_PAGE_SIZE][2][4]; | |
db7b5426 BS |
201 | } subpage_t; |
202 | ||
7cb69cae FB |
203 | #ifdef _WIN32 |
204 | static void map_exec(void *addr, long size) | |
205 | { | |
206 | DWORD old_protect; | |
207 | VirtualProtect(addr, size, | |
208 | PAGE_EXECUTE_READWRITE, &old_protect); | |
209 | ||
210 | } | |
211 | #else | |
212 | static void map_exec(void *addr, long size) | |
213 | { | |
4369415f | 214 | unsigned long start, end, page_size; |
7cb69cae | 215 | |
4369415f | 216 | page_size = getpagesize(); |
7cb69cae | 217 | start = (unsigned long)addr; |
4369415f | 218 | start &= ~(page_size - 1); |
7cb69cae FB |
219 | |
220 | end = (unsigned long)addr + size; | |
4369415f FB |
221 | end += page_size - 1; |
222 | end &= ~(page_size - 1); | |
7cb69cae FB |
223 | |
224 | mprotect((void *)start, end - start, | |
225 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
226 | } | |
227 | #endif | |
228 | ||
b346ff46 | 229 | static void page_init(void) |
54936004 | 230 | { |
83fb7adf | 231 | /* NOTE: we can always suppose that qemu_host_page_size >= |
54936004 | 232 | TARGET_PAGE_SIZE */ |
67b915a5 | 233 | #ifdef _WIN32 |
d5a8f07c FB |
234 | { |
235 | SYSTEM_INFO system_info; | |
236 | DWORD old_protect; | |
3b46e624 | 237 | |
d5a8f07c FB |
238 | GetSystemInfo(&system_info); |
239 | qemu_real_host_page_size = system_info.dwPageSize; | |
d5a8f07c | 240 | } |
67b915a5 | 241 | #else |
83fb7adf | 242 | qemu_real_host_page_size = getpagesize(); |
67b915a5 | 243 | #endif |
83fb7adf FB |
244 | if (qemu_host_page_size == 0) |
245 | qemu_host_page_size = qemu_real_host_page_size; | |
246 | if (qemu_host_page_size < TARGET_PAGE_SIZE) | |
247 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
248 | qemu_host_page_bits = 0; | |
249 | while ((1 << qemu_host_page_bits) < qemu_host_page_size) | |
250 | qemu_host_page_bits++; | |
251 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |
108c49b8 FB |
252 | l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *)); |
253 | memset(l1_phys_map, 0, L1_SIZE * sizeof(void *)); | |
50a9569b AZ |
254 | |
255 | #if !defined(_WIN32) && defined(CONFIG_USER_ONLY) | |
256 | { | |
257 | long long startaddr, endaddr; | |
258 | FILE *f; | |
259 | int n; | |
260 | ||
c8a706fe | 261 | mmap_lock(); |
0776590d | 262 | last_brk = (unsigned long)sbrk(0); |
50a9569b AZ |
263 | f = fopen("/proc/self/maps", "r"); |
264 | if (f) { | |
265 | do { | |
266 | n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr); | |
267 | if (n == 2) { | |
e0b8d65a BS |
268 | startaddr = MIN(startaddr, |
269 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
270 | endaddr = MIN(endaddr, | |
271 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
b5fc909e | 272 | page_set_flags(startaddr & TARGET_PAGE_MASK, |
50a9569b AZ |
273 | TARGET_PAGE_ALIGN(endaddr), |
274 | PAGE_RESERVED); | |
275 | } | |
276 | } while (!feof(f)); | |
277 | fclose(f); | |
278 | } | |
c8a706fe | 279 | mmap_unlock(); |
50a9569b AZ |
280 | } |
281 | #endif | |
54936004 FB |
282 | } |
283 | ||
434929bf | 284 | static inline PageDesc **page_l1_map(target_ulong index) |
54936004 | 285 | { |
17e2377a PB |
286 | #if TARGET_LONG_BITS > 32 |
287 | /* Host memory outside guest VM. For 32-bit targets we have already | |
288 | excluded high addresses. */ | |
d8173e0f | 289 | if (index > ((target_ulong)L2_SIZE * L1_SIZE)) |
17e2377a PB |
290 | return NULL; |
291 | #endif | |
434929bf AL |
292 | return &l1_map[index >> L2_BITS]; |
293 | } | |
294 | ||
295 | static inline PageDesc *page_find_alloc(target_ulong index) | |
296 | { | |
297 | PageDesc **lp, *p; | |
298 | lp = page_l1_map(index); | |
299 | if (!lp) | |
300 | return NULL; | |
301 | ||
54936004 FB |
302 | p = *lp; |
303 | if (!p) { | |
304 | /* allocate if not found */ | |
17e2377a PB |
305 | #if defined(CONFIG_USER_ONLY) |
306 | unsigned long addr; | |
307 | size_t len = sizeof(PageDesc) * L2_SIZE; | |
308 | /* Don't use qemu_malloc because it may recurse. */ | |
309 | p = mmap(0, len, PROT_READ | PROT_WRITE, | |
310 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
54936004 | 311 | *lp = p; |
17e2377a PB |
312 | addr = h2g(p); |
313 | if (addr == (target_ulong)addr) { | |
314 | page_set_flags(addr & TARGET_PAGE_MASK, | |
315 | TARGET_PAGE_ALIGN(addr + len), | |
316 | PAGE_RESERVED); | |
317 | } | |
318 | #else | |
319 | p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE); | |
320 | *lp = p; | |
321 | #endif | |
54936004 FB |
322 | } |
323 | return p + (index & (L2_SIZE - 1)); | |
324 | } | |
325 | ||
00f82b8a | 326 | static inline PageDesc *page_find(target_ulong index) |
54936004 | 327 | { |
434929bf AL |
328 | PageDesc **lp, *p; |
329 | lp = page_l1_map(index); | |
330 | if (!lp) | |
331 | return NULL; | |
54936004 | 332 | |
434929bf | 333 | p = *lp; |
54936004 FB |
334 | if (!p) |
335 | return 0; | |
fd6ce8f6 FB |
336 | return p + (index & (L2_SIZE - 1)); |
337 | } | |
338 | ||
108c49b8 | 339 | static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc) |
92e873b9 | 340 | { |
108c49b8 | 341 | void **lp, **p; |
e3f4e2a4 | 342 | PhysPageDesc *pd; |
92e873b9 | 343 | |
108c49b8 FB |
344 | p = (void **)l1_phys_map; |
345 | #if TARGET_PHYS_ADDR_SPACE_BITS > 32 | |
346 | ||
347 | #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS) | |
348 | #error unsupported TARGET_PHYS_ADDR_SPACE_BITS | |
349 | #endif | |
350 | lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1)); | |
92e873b9 FB |
351 | p = *lp; |
352 | if (!p) { | |
353 | /* allocate if not found */ | |
108c49b8 FB |
354 | if (!alloc) |
355 | return NULL; | |
356 | p = qemu_vmalloc(sizeof(void *) * L1_SIZE); | |
357 | memset(p, 0, sizeof(void *) * L1_SIZE); | |
358 | *lp = p; | |
359 | } | |
360 | #endif | |
361 | lp = p + ((index >> L2_BITS) & (L1_SIZE - 1)); | |
e3f4e2a4 PB |
362 | pd = *lp; |
363 | if (!pd) { | |
364 | int i; | |
108c49b8 FB |
365 | /* allocate if not found */ |
366 | if (!alloc) | |
367 | return NULL; | |
e3f4e2a4 PB |
368 | pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE); |
369 | *lp = pd; | |
370 | for (i = 0; i < L2_SIZE; i++) | |
371 | pd[i].phys_offset = IO_MEM_UNASSIGNED; | |
92e873b9 | 372 | } |
e3f4e2a4 | 373 | return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1)); |
92e873b9 FB |
374 | } |
375 | ||
108c49b8 | 376 | static inline PhysPageDesc *phys_page_find(target_phys_addr_t index) |
92e873b9 | 377 | { |
108c49b8 | 378 | return phys_page_find_alloc(index, 0); |
92e873b9 FB |
379 | } |
380 | ||
9fa3e853 | 381 | #if !defined(CONFIG_USER_ONLY) |
6a00d601 | 382 | static void tlb_protect_code(ram_addr_t ram_addr); |
5fafdf24 | 383 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 384 | target_ulong vaddr); |
c8a706fe PB |
385 | #define mmap_lock() do { } while(0) |
386 | #define mmap_unlock() do { } while(0) | |
9fa3e853 | 387 | #endif |
fd6ce8f6 | 388 | |
4369415f FB |
389 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024) |
390 | ||
391 | #if defined(CONFIG_USER_ONLY) | |
392 | /* Currently it is not recommanded to allocate big chunks of data in | |
393 | user mode. It will change when a dedicated libc will be used */ | |
394 | #define USE_STATIC_CODE_GEN_BUFFER | |
395 | #endif | |
396 | ||
397 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
398 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]; | |
399 | #endif | |
400 | ||
8fcd3692 | 401 | static void code_gen_alloc(unsigned long tb_size) |
26a5f13b | 402 | { |
4369415f FB |
403 | #ifdef USE_STATIC_CODE_GEN_BUFFER |
404 | code_gen_buffer = static_code_gen_buffer; | |
405 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
406 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
407 | #else | |
26a5f13b FB |
408 | code_gen_buffer_size = tb_size; |
409 | if (code_gen_buffer_size == 0) { | |
4369415f FB |
410 | #if defined(CONFIG_USER_ONLY) |
411 | /* in user mode, phys_ram_size is not meaningful */ | |
412 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
413 | #else | |
26a5f13b | 414 | /* XXX: needs ajustments */ |
174a9a1f | 415 | code_gen_buffer_size = (unsigned long)(phys_ram_size / 4); |
4369415f | 416 | #endif |
26a5f13b FB |
417 | } |
418 | if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE) | |
419 | code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE; | |
420 | /* The code gen buffer location may have constraints depending on | |
421 | the host cpu and OS */ | |
422 | #if defined(__linux__) | |
423 | { | |
424 | int flags; | |
141ac468 BS |
425 | void *start = NULL; |
426 | ||
26a5f13b FB |
427 | flags = MAP_PRIVATE | MAP_ANONYMOUS; |
428 | #if defined(__x86_64__) | |
429 | flags |= MAP_32BIT; | |
430 | /* Cannot map more than that */ | |
431 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
432 | code_gen_buffer_size = (800 * 1024 * 1024); | |
141ac468 BS |
433 | #elif defined(__sparc_v9__) |
434 | // Map the buffer below 2G, so we can use direct calls and branches | |
435 | flags |= MAP_FIXED; | |
436 | start = (void *) 0x60000000UL; | |
437 | if (code_gen_buffer_size > (512 * 1024 * 1024)) | |
438 | code_gen_buffer_size = (512 * 1024 * 1024); | |
26a5f13b | 439 | #endif |
141ac468 BS |
440 | code_gen_buffer = mmap(start, code_gen_buffer_size, |
441 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
26a5f13b FB |
442 | flags, -1, 0); |
443 | if (code_gen_buffer == MAP_FAILED) { | |
444 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
445 | exit(1); | |
446 | } | |
447 | } | |
06e67a82 AL |
448 | #elif defined(__FreeBSD__) |
449 | { | |
450 | int flags; | |
451 | void *addr = NULL; | |
452 | flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
453 | #if defined(__x86_64__) | |
454 | /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume | |
455 | * 0x40000000 is free */ | |
456 | flags |= MAP_FIXED; | |
457 | addr = (void *)0x40000000; | |
458 | /* Cannot map more than that */ | |
459 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
460 | code_gen_buffer_size = (800 * 1024 * 1024); | |
461 | #endif | |
462 | code_gen_buffer = mmap(addr, code_gen_buffer_size, | |
463 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
464 | flags, -1, 0); | |
465 | if (code_gen_buffer == MAP_FAILED) { | |
466 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
467 | exit(1); | |
468 | } | |
469 | } | |
26a5f13b FB |
470 | #else |
471 | code_gen_buffer = qemu_malloc(code_gen_buffer_size); | |
472 | if (!code_gen_buffer) { | |
473 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
474 | exit(1); | |
475 | } | |
476 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
477 | #endif | |
4369415f | 478 | #endif /* !USE_STATIC_CODE_GEN_BUFFER */ |
26a5f13b FB |
479 | map_exec(code_gen_prologue, sizeof(code_gen_prologue)); |
480 | code_gen_buffer_max_size = code_gen_buffer_size - | |
481 | code_gen_max_block_size(); | |
482 | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; | |
483 | tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock)); | |
484 | } | |
485 | ||
486 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
487 | (in bytes) allocated to the translation buffer. Zero means default | |
488 | size. */ | |
489 | void cpu_exec_init_all(unsigned long tb_size) | |
490 | { | |
26a5f13b FB |
491 | cpu_gen_init(); |
492 | code_gen_alloc(tb_size); | |
493 | code_gen_ptr = code_gen_buffer; | |
4369415f | 494 | page_init(); |
e2eef170 | 495 | #if !defined(CONFIG_USER_ONLY) |
26a5f13b | 496 | io_mem_init(); |
e2eef170 | 497 | #endif |
26a5f13b FB |
498 | } |
499 | ||
9656f324 PB |
500 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
501 | ||
502 | #define CPU_COMMON_SAVE_VERSION 1 | |
503 | ||
504 | static void cpu_common_save(QEMUFile *f, void *opaque) | |
505 | { | |
506 | CPUState *env = opaque; | |
507 | ||
508 | qemu_put_be32s(f, &env->halted); | |
509 | qemu_put_be32s(f, &env->interrupt_request); | |
510 | } | |
511 | ||
512 | static int cpu_common_load(QEMUFile *f, void *opaque, int version_id) | |
513 | { | |
514 | CPUState *env = opaque; | |
515 | ||
516 | if (version_id != CPU_COMMON_SAVE_VERSION) | |
517 | return -EINVAL; | |
518 | ||
519 | qemu_get_be32s(f, &env->halted); | |
75f482ae | 520 | qemu_get_be32s(f, &env->interrupt_request); |
9656f324 PB |
521 | tlb_flush(env, 1); |
522 | ||
523 | return 0; | |
524 | } | |
525 | #endif | |
526 | ||
6a00d601 | 527 | void cpu_exec_init(CPUState *env) |
fd6ce8f6 | 528 | { |
6a00d601 FB |
529 | CPUState **penv; |
530 | int cpu_index; | |
531 | ||
6a00d601 FB |
532 | env->next_cpu = NULL; |
533 | penv = &first_cpu; | |
534 | cpu_index = 0; | |
535 | while (*penv != NULL) { | |
536 | penv = (CPUState **)&(*penv)->next_cpu; | |
537 | cpu_index++; | |
538 | } | |
539 | env->cpu_index = cpu_index; | |
6658ffb8 | 540 | env->nb_watchpoints = 0; |
6a00d601 | 541 | *penv = env; |
b3c7724c | 542 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
9656f324 PB |
543 | register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION, |
544 | cpu_common_save, cpu_common_load, env); | |
b3c7724c PB |
545 | register_savevm("cpu", cpu_index, CPU_SAVE_VERSION, |
546 | cpu_save, cpu_load, env); | |
547 | #endif | |
fd6ce8f6 FB |
548 | } |
549 | ||
9fa3e853 FB |
550 | static inline void invalidate_page_bitmap(PageDesc *p) |
551 | { | |
552 | if (p->code_bitmap) { | |
59817ccb | 553 | qemu_free(p->code_bitmap); |
9fa3e853 FB |
554 | p->code_bitmap = NULL; |
555 | } | |
556 | p->code_write_count = 0; | |
557 | } | |
558 | ||
fd6ce8f6 FB |
559 | /* set to NULL all the 'first_tb' fields in all PageDescs */ |
560 | static void page_flush_tb(void) | |
561 | { | |
562 | int i, j; | |
563 | PageDesc *p; | |
564 | ||
565 | for(i = 0; i < L1_SIZE; i++) { | |
566 | p = l1_map[i]; | |
567 | if (p) { | |
9fa3e853 FB |
568 | for(j = 0; j < L2_SIZE; j++) { |
569 | p->first_tb = NULL; | |
570 | invalidate_page_bitmap(p); | |
571 | p++; | |
572 | } | |
fd6ce8f6 FB |
573 | } |
574 | } | |
575 | } | |
576 | ||
577 | /* flush all the translation blocks */ | |
d4e8164f | 578 | /* XXX: tb_flush is currently not thread safe */ |
6a00d601 | 579 | void tb_flush(CPUState *env1) |
fd6ce8f6 | 580 | { |
6a00d601 | 581 | CPUState *env; |
0124311e | 582 | #if defined(DEBUG_FLUSH) |
ab3d1727 BS |
583 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", |
584 | (unsigned long)(code_gen_ptr - code_gen_buffer), | |
585 | nb_tbs, nb_tbs > 0 ? | |
586 | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0); | |
fd6ce8f6 | 587 | #endif |
26a5f13b | 588 | if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size) |
a208e54a PB |
589 | cpu_abort(env1, "Internal error: code buffer overflow\n"); |
590 | ||
fd6ce8f6 | 591 | nb_tbs = 0; |
3b46e624 | 592 | |
6a00d601 FB |
593 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
594 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
595 | } | |
9fa3e853 | 596 | |
8a8a608f | 597 | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); |
fd6ce8f6 | 598 | page_flush_tb(); |
9fa3e853 | 599 | |
fd6ce8f6 | 600 | code_gen_ptr = code_gen_buffer; |
d4e8164f FB |
601 | /* XXX: flush processor icache at this point if cache flush is |
602 | expensive */ | |
e3db7226 | 603 | tb_flush_count++; |
fd6ce8f6 FB |
604 | } |
605 | ||
606 | #ifdef DEBUG_TB_CHECK | |
607 | ||
bc98a7ef | 608 | static void tb_invalidate_check(target_ulong address) |
fd6ce8f6 FB |
609 | { |
610 | TranslationBlock *tb; | |
611 | int i; | |
612 | address &= TARGET_PAGE_MASK; | |
99773bd4 PB |
613 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
614 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
615 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || |
616 | address >= tb->pc + tb->size)) { | |
617 | printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n", | |
99773bd4 | 618 | address, (long)tb->pc, tb->size); |
fd6ce8f6 FB |
619 | } |
620 | } | |
621 | } | |
622 | } | |
623 | ||
624 | /* verify that all the pages have correct rights for code */ | |
625 | static void tb_page_check(void) | |
626 | { | |
627 | TranslationBlock *tb; | |
628 | int i, flags1, flags2; | |
3b46e624 | 629 | |
99773bd4 PB |
630 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
631 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
632 | flags1 = page_get_flags(tb->pc); |
633 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
634 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
635 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
99773bd4 | 636 | (long)tb->pc, tb->size, flags1, flags2); |
fd6ce8f6 FB |
637 | } |
638 | } | |
639 | } | |
640 | } | |
641 | ||
bdaf78e0 | 642 | static void tb_jmp_check(TranslationBlock *tb) |
d4e8164f FB |
643 | { |
644 | TranslationBlock *tb1; | |
645 | unsigned int n1; | |
646 | ||
647 | /* suppress any remaining jumps to this TB */ | |
648 | tb1 = tb->jmp_first; | |
649 | for(;;) { | |
650 | n1 = (long)tb1 & 3; | |
651 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
652 | if (n1 == 2) | |
653 | break; | |
654 | tb1 = tb1->jmp_next[n1]; | |
655 | } | |
656 | /* check end of list */ | |
657 | if (tb1 != tb) { | |
658 | printf("ERROR: jmp_list from 0x%08lx\n", (long)tb); | |
659 | } | |
660 | } | |
661 | ||
fd6ce8f6 FB |
662 | #endif |
663 | ||
664 | /* invalidate one TB */ | |
665 | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb, | |
666 | int next_offset) | |
667 | { | |
668 | TranslationBlock *tb1; | |
669 | for(;;) { | |
670 | tb1 = *ptb; | |
671 | if (tb1 == tb) { | |
672 | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset); | |
673 | break; | |
674 | } | |
675 | ptb = (TranslationBlock **)((char *)tb1 + next_offset); | |
676 | } | |
677 | } | |
678 | ||
9fa3e853 FB |
679 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) |
680 | { | |
681 | TranslationBlock *tb1; | |
682 | unsigned int n1; | |
683 | ||
684 | for(;;) { | |
685 | tb1 = *ptb; | |
686 | n1 = (long)tb1 & 3; | |
687 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
688 | if (tb1 == tb) { | |
689 | *ptb = tb1->page_next[n1]; | |
690 | break; | |
691 | } | |
692 | ptb = &tb1->page_next[n1]; | |
693 | } | |
694 | } | |
695 | ||
d4e8164f FB |
696 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) |
697 | { | |
698 | TranslationBlock *tb1, **ptb; | |
699 | unsigned int n1; | |
700 | ||
701 | ptb = &tb->jmp_next[n]; | |
702 | tb1 = *ptb; | |
703 | if (tb1) { | |
704 | /* find tb(n) in circular list */ | |
705 | for(;;) { | |
706 | tb1 = *ptb; | |
707 | n1 = (long)tb1 & 3; | |
708 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
709 | if (n1 == n && tb1 == tb) | |
710 | break; | |
711 | if (n1 == 2) { | |
712 | ptb = &tb1->jmp_first; | |
713 | } else { | |
714 | ptb = &tb1->jmp_next[n1]; | |
715 | } | |
716 | } | |
717 | /* now we can suppress tb(n) from the list */ | |
718 | *ptb = tb->jmp_next[n]; | |
719 | ||
720 | tb->jmp_next[n] = NULL; | |
721 | } | |
722 | } | |
723 | ||
724 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
725 | another TB */ | |
726 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
727 | { | |
728 | tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n])); | |
729 | } | |
730 | ||
2e70f6ef | 731 | void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr) |
fd6ce8f6 | 732 | { |
6a00d601 | 733 | CPUState *env; |
8a40a180 | 734 | PageDesc *p; |
d4e8164f | 735 | unsigned int h, n1; |
00f82b8a | 736 | target_phys_addr_t phys_pc; |
8a40a180 | 737 | TranslationBlock *tb1, *tb2; |
3b46e624 | 738 | |
8a40a180 FB |
739 | /* remove the TB from the hash list */ |
740 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
741 | h = tb_phys_hash_func(phys_pc); | |
5fafdf24 | 742 | tb_remove(&tb_phys_hash[h], tb, |
8a40a180 FB |
743 | offsetof(TranslationBlock, phys_hash_next)); |
744 | ||
745 | /* remove the TB from the page list */ | |
746 | if (tb->page_addr[0] != page_addr) { | |
747 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
748 | tb_page_remove(&p->first_tb, tb); | |
749 | invalidate_page_bitmap(p); | |
750 | } | |
751 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
752 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
753 | tb_page_remove(&p->first_tb, tb); | |
754 | invalidate_page_bitmap(p); | |
755 | } | |
756 | ||
36bdbe54 | 757 | tb_invalidated_flag = 1; |
59817ccb | 758 | |
fd6ce8f6 | 759 | /* remove the TB from the hash list */ |
8a40a180 | 760 | h = tb_jmp_cache_hash_func(tb->pc); |
6a00d601 FB |
761 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
762 | if (env->tb_jmp_cache[h] == tb) | |
763 | env->tb_jmp_cache[h] = NULL; | |
764 | } | |
d4e8164f FB |
765 | |
766 | /* suppress this TB from the two jump lists */ | |
767 | tb_jmp_remove(tb, 0); | |
768 | tb_jmp_remove(tb, 1); | |
769 | ||
770 | /* suppress any remaining jumps to this TB */ | |
771 | tb1 = tb->jmp_first; | |
772 | for(;;) { | |
773 | n1 = (long)tb1 & 3; | |
774 | if (n1 == 2) | |
775 | break; | |
776 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
777 | tb2 = tb1->jmp_next[n1]; | |
778 | tb_reset_jump(tb1, n1); | |
779 | tb1->jmp_next[n1] = NULL; | |
780 | tb1 = tb2; | |
781 | } | |
782 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */ | |
9fa3e853 | 783 | |
e3db7226 | 784 | tb_phys_invalidate_count++; |
9fa3e853 FB |
785 | } |
786 | ||
787 | static inline void set_bits(uint8_t *tab, int start, int len) | |
788 | { | |
789 | int end, mask, end1; | |
790 | ||
791 | end = start + len; | |
792 | tab += start >> 3; | |
793 | mask = 0xff << (start & 7); | |
794 | if ((start & ~7) == (end & ~7)) { | |
795 | if (start < end) { | |
796 | mask &= ~(0xff << (end & 7)); | |
797 | *tab |= mask; | |
798 | } | |
799 | } else { | |
800 | *tab++ |= mask; | |
801 | start = (start + 8) & ~7; | |
802 | end1 = end & ~7; | |
803 | while (start < end1) { | |
804 | *tab++ = 0xff; | |
805 | start += 8; | |
806 | } | |
807 | if (start < end) { | |
808 | mask = ~(0xff << (end & 7)); | |
809 | *tab |= mask; | |
810 | } | |
811 | } | |
812 | } | |
813 | ||
814 | static void build_page_bitmap(PageDesc *p) | |
815 | { | |
816 | int n, tb_start, tb_end; | |
817 | TranslationBlock *tb; | |
3b46e624 | 818 | |
b2a7081a | 819 | p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8); |
9fa3e853 FB |
820 | if (!p->code_bitmap) |
821 | return; | |
9fa3e853 FB |
822 | |
823 | tb = p->first_tb; | |
824 | while (tb != NULL) { | |
825 | n = (long)tb & 3; | |
826 | tb = (TranslationBlock *)((long)tb & ~3); | |
827 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
828 | if (n == 0) { | |
829 | /* NOTE: tb_end may be after the end of the page, but | |
830 | it is not a problem */ | |
831 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
832 | tb_end = tb_start + tb->size; | |
833 | if (tb_end > TARGET_PAGE_SIZE) | |
834 | tb_end = TARGET_PAGE_SIZE; | |
835 | } else { | |
836 | tb_start = 0; | |
837 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
838 | } | |
839 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |
840 | tb = tb->page_next[n]; | |
841 | } | |
842 | } | |
843 | ||
2e70f6ef PB |
844 | TranslationBlock *tb_gen_code(CPUState *env, |
845 | target_ulong pc, target_ulong cs_base, | |
846 | int flags, int cflags) | |
d720b93d FB |
847 | { |
848 | TranslationBlock *tb; | |
849 | uint8_t *tc_ptr; | |
850 | target_ulong phys_pc, phys_page2, virt_page2; | |
851 | int code_gen_size; | |
852 | ||
c27004ec FB |
853 | phys_pc = get_phys_addr_code(env, pc); |
854 | tb = tb_alloc(pc); | |
d720b93d FB |
855 | if (!tb) { |
856 | /* flush must be done */ | |
857 | tb_flush(env); | |
858 | /* cannot fail at this point */ | |
c27004ec | 859 | tb = tb_alloc(pc); |
2e70f6ef PB |
860 | /* Don't forget to invalidate previous TB info. */ |
861 | tb_invalidated_flag = 1; | |
d720b93d FB |
862 | } |
863 | tc_ptr = code_gen_ptr; | |
864 | tb->tc_ptr = tc_ptr; | |
865 | tb->cs_base = cs_base; | |
866 | tb->flags = flags; | |
867 | tb->cflags = cflags; | |
d07bde88 | 868 | cpu_gen_code(env, tb, &code_gen_size); |
d720b93d | 869 | code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); |
3b46e624 | 870 | |
d720b93d | 871 | /* check next page if needed */ |
c27004ec | 872 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; |
d720b93d | 873 | phys_page2 = -1; |
c27004ec | 874 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { |
d720b93d FB |
875 | phys_page2 = get_phys_addr_code(env, virt_page2); |
876 | } | |
877 | tb_link_phys(tb, phys_pc, phys_page2); | |
2e70f6ef | 878 | return tb; |
d720b93d | 879 | } |
3b46e624 | 880 | |
9fa3e853 FB |
881 | /* invalidate all TBs which intersect with the target physical page |
882 | starting in range [start;end[. NOTE: start and end must refer to | |
d720b93d FB |
883 | the same physical page. 'is_cpu_write_access' should be true if called |
884 | from a real cpu write access: the virtual CPU will exit the current | |
885 | TB if code is modified inside this TB. */ | |
00f82b8a | 886 | void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, |
d720b93d FB |
887 | int is_cpu_write_access) |
888 | { | |
889 | int n, current_tb_modified, current_tb_not_found, current_flags; | |
d720b93d | 890 | CPUState *env = cpu_single_env; |
9fa3e853 | 891 | PageDesc *p; |
ea1c1802 | 892 | TranslationBlock *tb, *tb_next, *current_tb, *saved_tb; |
9fa3e853 | 893 | target_ulong tb_start, tb_end; |
d720b93d | 894 | target_ulong current_pc, current_cs_base; |
9fa3e853 FB |
895 | |
896 | p = page_find(start >> TARGET_PAGE_BITS); | |
5fafdf24 | 897 | if (!p) |
9fa3e853 | 898 | return; |
5fafdf24 | 899 | if (!p->code_bitmap && |
d720b93d FB |
900 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && |
901 | is_cpu_write_access) { | |
9fa3e853 FB |
902 | /* build code bitmap */ |
903 | build_page_bitmap(p); | |
904 | } | |
905 | ||
906 | /* we remove all the TBs in the range [start, end[ */ | |
907 | /* XXX: see if in some cases it could be faster to invalidate all the code */ | |
d720b93d FB |
908 | current_tb_not_found = is_cpu_write_access; |
909 | current_tb_modified = 0; | |
910 | current_tb = NULL; /* avoid warning */ | |
911 | current_pc = 0; /* avoid warning */ | |
912 | current_cs_base = 0; /* avoid warning */ | |
913 | current_flags = 0; /* avoid warning */ | |
9fa3e853 FB |
914 | tb = p->first_tb; |
915 | while (tb != NULL) { | |
916 | n = (long)tb & 3; | |
917 | tb = (TranslationBlock *)((long)tb & ~3); | |
918 | tb_next = tb->page_next[n]; | |
919 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
920 | if (n == 0) { | |
921 | /* NOTE: tb_end may be after the end of the page, but | |
922 | it is not a problem */ | |
923 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
924 | tb_end = tb_start + tb->size; | |
925 | } else { | |
926 | tb_start = tb->page_addr[1]; | |
927 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
928 | } | |
929 | if (!(tb_end <= start || tb_start >= end)) { | |
d720b93d FB |
930 | #ifdef TARGET_HAS_PRECISE_SMC |
931 | if (current_tb_not_found) { | |
932 | current_tb_not_found = 0; | |
933 | current_tb = NULL; | |
2e70f6ef | 934 | if (env->mem_io_pc) { |
d720b93d | 935 | /* now we have a real cpu fault */ |
2e70f6ef | 936 | current_tb = tb_find_pc(env->mem_io_pc); |
d720b93d FB |
937 | } |
938 | } | |
939 | if (current_tb == tb && | |
2e70f6ef | 940 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
941 | /* If we are modifying the current TB, we must stop |
942 | its execution. We could be more precise by checking | |
943 | that the modification is after the current PC, but it | |
944 | would require a specialized function to partially | |
945 | restore the CPU state */ | |
3b46e624 | 946 | |
d720b93d | 947 | current_tb_modified = 1; |
5fafdf24 | 948 | cpu_restore_state(current_tb, env, |
2e70f6ef | 949 | env->mem_io_pc, NULL); |
d720b93d FB |
950 | #if defined(TARGET_I386) |
951 | current_flags = env->hflags; | |
952 | current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)); | |
953 | current_cs_base = (target_ulong)env->segs[R_CS].base; | |
954 | current_pc = current_cs_base + env->eip; | |
955 | #else | |
956 | #error unsupported CPU | |
957 | #endif | |
958 | } | |
959 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
6f5a9f7e FB |
960 | /* we need to do that to handle the case where a signal |
961 | occurs while doing tb_phys_invalidate() */ | |
962 | saved_tb = NULL; | |
963 | if (env) { | |
964 | saved_tb = env->current_tb; | |
965 | env->current_tb = NULL; | |
966 | } | |
9fa3e853 | 967 | tb_phys_invalidate(tb, -1); |
6f5a9f7e FB |
968 | if (env) { |
969 | env->current_tb = saved_tb; | |
970 | if (env->interrupt_request && env->current_tb) | |
971 | cpu_interrupt(env, env->interrupt_request); | |
972 | } | |
9fa3e853 FB |
973 | } |
974 | tb = tb_next; | |
975 | } | |
976 | #if !defined(CONFIG_USER_ONLY) | |
977 | /* if no code remaining, no need to continue to use slow writes */ | |
978 | if (!p->first_tb) { | |
979 | invalidate_page_bitmap(p); | |
d720b93d | 980 | if (is_cpu_write_access) { |
2e70f6ef | 981 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); |
d720b93d FB |
982 | } |
983 | } | |
984 | #endif | |
985 | #ifdef TARGET_HAS_PRECISE_SMC | |
986 | if (current_tb_modified) { | |
987 | /* we generate a block containing just the instruction | |
988 | modifying the memory. It will ensure that it cannot modify | |
989 | itself */ | |
ea1c1802 | 990 | env->current_tb = NULL; |
2e70f6ef | 991 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d | 992 | cpu_resume_from_signal(env, NULL); |
9fa3e853 | 993 | } |
fd6ce8f6 | 994 | #endif |
9fa3e853 | 995 | } |
fd6ce8f6 | 996 | |
9fa3e853 | 997 | /* len must be <= 8 and start must be a multiple of len */ |
00f82b8a | 998 | static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len) |
9fa3e853 FB |
999 | { |
1000 | PageDesc *p; | |
1001 | int offset, b; | |
59817ccb | 1002 | #if 0 |
a4193c8a FB |
1003 | if (1) { |
1004 | if (loglevel) { | |
5fafdf24 | 1005 | fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n", |
2e70f6ef | 1006 | cpu_single_env->mem_io_vaddr, len, |
5fafdf24 | 1007 | cpu_single_env->eip, |
a4193c8a FB |
1008 | cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base); |
1009 | } | |
59817ccb FB |
1010 | } |
1011 | #endif | |
9fa3e853 | 1012 | p = page_find(start >> TARGET_PAGE_BITS); |
5fafdf24 | 1013 | if (!p) |
9fa3e853 FB |
1014 | return; |
1015 | if (p->code_bitmap) { | |
1016 | offset = start & ~TARGET_PAGE_MASK; | |
1017 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |
1018 | if (b & ((1 << len) - 1)) | |
1019 | goto do_invalidate; | |
1020 | } else { | |
1021 | do_invalidate: | |
d720b93d | 1022 | tb_invalidate_phys_page_range(start, start + len, 1); |
9fa3e853 FB |
1023 | } |
1024 | } | |
1025 | ||
9fa3e853 | 1026 | #if !defined(CONFIG_SOFTMMU) |
00f82b8a | 1027 | static void tb_invalidate_phys_page(target_phys_addr_t addr, |
d720b93d | 1028 | unsigned long pc, void *puc) |
9fa3e853 | 1029 | { |
d720b93d FB |
1030 | int n, current_flags, current_tb_modified; |
1031 | target_ulong current_pc, current_cs_base; | |
9fa3e853 | 1032 | PageDesc *p; |
d720b93d FB |
1033 | TranslationBlock *tb, *current_tb; |
1034 | #ifdef TARGET_HAS_PRECISE_SMC | |
1035 | CPUState *env = cpu_single_env; | |
1036 | #endif | |
9fa3e853 FB |
1037 | |
1038 | addr &= TARGET_PAGE_MASK; | |
1039 | p = page_find(addr >> TARGET_PAGE_BITS); | |
5fafdf24 | 1040 | if (!p) |
9fa3e853 FB |
1041 | return; |
1042 | tb = p->first_tb; | |
d720b93d FB |
1043 | current_tb_modified = 0; |
1044 | current_tb = NULL; | |
1045 | current_pc = 0; /* avoid warning */ | |
1046 | current_cs_base = 0; /* avoid warning */ | |
1047 | current_flags = 0; /* avoid warning */ | |
1048 | #ifdef TARGET_HAS_PRECISE_SMC | |
1049 | if (tb && pc != 0) { | |
1050 | current_tb = tb_find_pc(pc); | |
1051 | } | |
1052 | #endif | |
9fa3e853 FB |
1053 | while (tb != NULL) { |
1054 | n = (long)tb & 3; | |
1055 | tb = (TranslationBlock *)((long)tb & ~3); | |
d720b93d FB |
1056 | #ifdef TARGET_HAS_PRECISE_SMC |
1057 | if (current_tb == tb && | |
2e70f6ef | 1058 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
1059 | /* If we are modifying the current TB, we must stop |
1060 | its execution. We could be more precise by checking | |
1061 | that the modification is after the current PC, but it | |
1062 | would require a specialized function to partially | |
1063 | restore the CPU state */ | |
3b46e624 | 1064 | |
d720b93d FB |
1065 | current_tb_modified = 1; |
1066 | cpu_restore_state(current_tb, env, pc, puc); | |
1067 | #if defined(TARGET_I386) | |
1068 | current_flags = env->hflags; | |
1069 | current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)); | |
1070 | current_cs_base = (target_ulong)env->segs[R_CS].base; | |
1071 | current_pc = current_cs_base + env->eip; | |
1072 | #else | |
1073 | #error unsupported CPU | |
1074 | #endif | |
1075 | } | |
1076 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
1077 | tb_phys_invalidate(tb, addr); |
1078 | tb = tb->page_next[n]; | |
1079 | } | |
fd6ce8f6 | 1080 | p->first_tb = NULL; |
d720b93d FB |
1081 | #ifdef TARGET_HAS_PRECISE_SMC |
1082 | if (current_tb_modified) { | |
1083 | /* we generate a block containing just the instruction | |
1084 | modifying the memory. It will ensure that it cannot modify | |
1085 | itself */ | |
ea1c1802 | 1086 | env->current_tb = NULL; |
2e70f6ef | 1087 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d FB |
1088 | cpu_resume_from_signal(env, puc); |
1089 | } | |
1090 | #endif | |
fd6ce8f6 | 1091 | } |
9fa3e853 | 1092 | #endif |
fd6ce8f6 FB |
1093 | |
1094 | /* add the tb in the target page and protect it if necessary */ | |
5fafdf24 | 1095 | static inline void tb_alloc_page(TranslationBlock *tb, |
53a5960a | 1096 | unsigned int n, target_ulong page_addr) |
fd6ce8f6 FB |
1097 | { |
1098 | PageDesc *p; | |
9fa3e853 FB |
1099 | TranslationBlock *last_first_tb; |
1100 | ||
1101 | tb->page_addr[n] = page_addr; | |
3a7d929e | 1102 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1103 | tb->page_next[n] = p->first_tb; |
1104 | last_first_tb = p->first_tb; | |
1105 | p->first_tb = (TranslationBlock *)((long)tb | n); | |
1106 | invalidate_page_bitmap(p); | |
fd6ce8f6 | 1107 | |
107db443 | 1108 | #if defined(TARGET_HAS_SMC) || 1 |
d720b93d | 1109 | |
9fa3e853 | 1110 | #if defined(CONFIG_USER_ONLY) |
fd6ce8f6 | 1111 | if (p->flags & PAGE_WRITE) { |
53a5960a PB |
1112 | target_ulong addr; |
1113 | PageDesc *p2; | |
9fa3e853 FB |
1114 | int prot; |
1115 | ||
fd6ce8f6 FB |
1116 | /* force the host page as non writable (writes will have a |
1117 | page fault + mprotect overhead) */ | |
53a5960a | 1118 | page_addr &= qemu_host_page_mask; |
fd6ce8f6 | 1119 | prot = 0; |
53a5960a PB |
1120 | for(addr = page_addr; addr < page_addr + qemu_host_page_size; |
1121 | addr += TARGET_PAGE_SIZE) { | |
1122 | ||
1123 | p2 = page_find (addr >> TARGET_PAGE_BITS); | |
1124 | if (!p2) | |
1125 | continue; | |
1126 | prot |= p2->flags; | |
1127 | p2->flags &= ~PAGE_WRITE; | |
1128 | page_get_flags(addr); | |
1129 | } | |
5fafdf24 | 1130 | mprotect(g2h(page_addr), qemu_host_page_size, |
fd6ce8f6 FB |
1131 | (prot & PAGE_BITS) & ~PAGE_WRITE); |
1132 | #ifdef DEBUG_TB_INVALIDATE | |
ab3d1727 | 1133 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", |
53a5960a | 1134 | page_addr); |
fd6ce8f6 | 1135 | #endif |
fd6ce8f6 | 1136 | } |
9fa3e853 FB |
1137 | #else |
1138 | /* if some code is already present, then the pages are already | |
1139 | protected. So we handle the case where only the first TB is | |
1140 | allocated in a physical page */ | |
1141 | if (!last_first_tb) { | |
6a00d601 | 1142 | tlb_protect_code(page_addr); |
9fa3e853 FB |
1143 | } |
1144 | #endif | |
d720b93d FB |
1145 | |
1146 | #endif /* TARGET_HAS_SMC */ | |
fd6ce8f6 FB |
1147 | } |
1148 | ||
1149 | /* Allocate a new translation block. Flush the translation buffer if | |
1150 | too many translation blocks or too much generated code. */ | |
c27004ec | 1151 | TranslationBlock *tb_alloc(target_ulong pc) |
fd6ce8f6 FB |
1152 | { |
1153 | TranslationBlock *tb; | |
fd6ce8f6 | 1154 | |
26a5f13b FB |
1155 | if (nb_tbs >= code_gen_max_blocks || |
1156 | (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size) | |
d4e8164f | 1157 | return NULL; |
fd6ce8f6 FB |
1158 | tb = &tbs[nb_tbs++]; |
1159 | tb->pc = pc; | |
b448f2f3 | 1160 | tb->cflags = 0; |
d4e8164f FB |
1161 | return tb; |
1162 | } | |
1163 | ||
2e70f6ef PB |
1164 | void tb_free(TranslationBlock *tb) |
1165 | { | |
bf20dc07 | 1166 | /* In practice this is mostly used for single use temporary TB |
2e70f6ef PB |
1167 | Ignore the hard cases and just back up if this TB happens to |
1168 | be the last one generated. */ | |
1169 | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) { | |
1170 | code_gen_ptr = tb->tc_ptr; | |
1171 | nb_tbs--; | |
1172 | } | |
1173 | } | |
1174 | ||
9fa3e853 FB |
1175 | /* add a new TB and link it to the physical page tables. phys_page2 is |
1176 | (-1) to indicate that only one page contains the TB. */ | |
5fafdf24 | 1177 | void tb_link_phys(TranslationBlock *tb, |
9fa3e853 | 1178 | target_ulong phys_pc, target_ulong phys_page2) |
d4e8164f | 1179 | { |
9fa3e853 FB |
1180 | unsigned int h; |
1181 | TranslationBlock **ptb; | |
1182 | ||
c8a706fe PB |
1183 | /* Grab the mmap lock to stop another thread invalidating this TB |
1184 | before we are done. */ | |
1185 | mmap_lock(); | |
9fa3e853 FB |
1186 | /* add in the physical hash table */ |
1187 | h = tb_phys_hash_func(phys_pc); | |
1188 | ptb = &tb_phys_hash[h]; | |
1189 | tb->phys_hash_next = *ptb; | |
1190 | *ptb = tb; | |
fd6ce8f6 FB |
1191 | |
1192 | /* add in the page list */ | |
9fa3e853 FB |
1193 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); |
1194 | if (phys_page2 != -1) | |
1195 | tb_alloc_page(tb, 1, phys_page2); | |
1196 | else | |
1197 | tb->page_addr[1] = -1; | |
9fa3e853 | 1198 | |
d4e8164f FB |
1199 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); |
1200 | tb->jmp_next[0] = NULL; | |
1201 | tb->jmp_next[1] = NULL; | |
1202 | ||
1203 | /* init original jump addresses */ | |
1204 | if (tb->tb_next_offset[0] != 0xffff) | |
1205 | tb_reset_jump(tb, 0); | |
1206 | if (tb->tb_next_offset[1] != 0xffff) | |
1207 | tb_reset_jump(tb, 1); | |
8a40a180 FB |
1208 | |
1209 | #ifdef DEBUG_TB_CHECK | |
1210 | tb_page_check(); | |
1211 | #endif | |
c8a706fe | 1212 | mmap_unlock(); |
fd6ce8f6 FB |
1213 | } |
1214 | ||
9fa3e853 FB |
1215 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < |
1216 | tb[1].tc_ptr. Return NULL if not found */ | |
1217 | TranslationBlock *tb_find_pc(unsigned long tc_ptr) | |
fd6ce8f6 | 1218 | { |
9fa3e853 FB |
1219 | int m_min, m_max, m; |
1220 | unsigned long v; | |
1221 | TranslationBlock *tb; | |
a513fe19 FB |
1222 | |
1223 | if (nb_tbs <= 0) | |
1224 | return NULL; | |
1225 | if (tc_ptr < (unsigned long)code_gen_buffer || | |
1226 | tc_ptr >= (unsigned long)code_gen_ptr) | |
1227 | return NULL; | |
1228 | /* binary search (cf Knuth) */ | |
1229 | m_min = 0; | |
1230 | m_max = nb_tbs - 1; | |
1231 | while (m_min <= m_max) { | |
1232 | m = (m_min + m_max) >> 1; | |
1233 | tb = &tbs[m]; | |
1234 | v = (unsigned long)tb->tc_ptr; | |
1235 | if (v == tc_ptr) | |
1236 | return tb; | |
1237 | else if (tc_ptr < v) { | |
1238 | m_max = m - 1; | |
1239 | } else { | |
1240 | m_min = m + 1; | |
1241 | } | |
5fafdf24 | 1242 | } |
a513fe19 FB |
1243 | return &tbs[m_max]; |
1244 | } | |
7501267e | 1245 | |
ea041c0e FB |
1246 | static void tb_reset_jump_recursive(TranslationBlock *tb); |
1247 | ||
1248 | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) | |
1249 | { | |
1250 | TranslationBlock *tb1, *tb_next, **ptb; | |
1251 | unsigned int n1; | |
1252 | ||
1253 | tb1 = tb->jmp_next[n]; | |
1254 | if (tb1 != NULL) { | |
1255 | /* find head of list */ | |
1256 | for(;;) { | |
1257 | n1 = (long)tb1 & 3; | |
1258 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1259 | if (n1 == 2) | |
1260 | break; | |
1261 | tb1 = tb1->jmp_next[n1]; | |
1262 | } | |
1263 | /* we are now sure now that tb jumps to tb1 */ | |
1264 | tb_next = tb1; | |
1265 | ||
1266 | /* remove tb from the jmp_first list */ | |
1267 | ptb = &tb_next->jmp_first; | |
1268 | for(;;) { | |
1269 | tb1 = *ptb; | |
1270 | n1 = (long)tb1 & 3; | |
1271 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1272 | if (n1 == n && tb1 == tb) | |
1273 | break; | |
1274 | ptb = &tb1->jmp_next[n1]; | |
1275 | } | |
1276 | *ptb = tb->jmp_next[n]; | |
1277 | tb->jmp_next[n] = NULL; | |
3b46e624 | 1278 | |
ea041c0e FB |
1279 | /* suppress the jump to next tb in generated code */ |
1280 | tb_reset_jump(tb, n); | |
1281 | ||
0124311e | 1282 | /* suppress jumps in the tb on which we could have jumped */ |
ea041c0e FB |
1283 | tb_reset_jump_recursive(tb_next); |
1284 | } | |
1285 | } | |
1286 | ||
1287 | static void tb_reset_jump_recursive(TranslationBlock *tb) | |
1288 | { | |
1289 | tb_reset_jump_recursive2(tb, 0); | |
1290 | tb_reset_jump_recursive2(tb, 1); | |
1291 | } | |
1292 | ||
1fddef4b | 1293 | #if defined(TARGET_HAS_ICE) |
d720b93d FB |
1294 | static void breakpoint_invalidate(CPUState *env, target_ulong pc) |
1295 | { | |
9b3c35e0 JM |
1296 | target_phys_addr_t addr; |
1297 | target_ulong pd; | |
c2f07f81 PB |
1298 | ram_addr_t ram_addr; |
1299 | PhysPageDesc *p; | |
d720b93d | 1300 | |
c2f07f81 PB |
1301 | addr = cpu_get_phys_page_debug(env, pc); |
1302 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
1303 | if (!p) { | |
1304 | pd = IO_MEM_UNASSIGNED; | |
1305 | } else { | |
1306 | pd = p->phys_offset; | |
1307 | } | |
1308 | ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK); | |
706cd4b5 | 1309 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
d720b93d | 1310 | } |
c27004ec | 1311 | #endif |
d720b93d | 1312 | |
6658ffb8 | 1313 | /* Add a watchpoint. */ |
0f459d16 | 1314 | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type) |
6658ffb8 PB |
1315 | { |
1316 | int i; | |
1317 | ||
1318 | for (i = 0; i < env->nb_watchpoints; i++) { | |
1319 | if (addr == env->watchpoint[i].vaddr) | |
1320 | return 0; | |
1321 | } | |
1322 | if (env->nb_watchpoints >= MAX_WATCHPOINTS) | |
1323 | return -1; | |
1324 | ||
1325 | i = env->nb_watchpoints++; | |
1326 | env->watchpoint[i].vaddr = addr; | |
0f459d16 | 1327 | env->watchpoint[i].type = type; |
6658ffb8 PB |
1328 | tlb_flush_page(env, addr); |
1329 | /* FIXME: This flush is needed because of the hack to make memory ops | |
1330 | terminate the TB. It can be removed once the proper IO trap and | |
1331 | re-execute bits are in. */ | |
1332 | tb_flush(env); | |
1333 | return i; | |
1334 | } | |
1335 | ||
1336 | /* Remove a watchpoint. */ | |
1337 | int cpu_watchpoint_remove(CPUState *env, target_ulong addr) | |
1338 | { | |
1339 | int i; | |
1340 | ||
1341 | for (i = 0; i < env->nb_watchpoints; i++) { | |
1342 | if (addr == env->watchpoint[i].vaddr) { | |
1343 | env->nb_watchpoints--; | |
1344 | env->watchpoint[i] = env->watchpoint[env->nb_watchpoints]; | |
1345 | tlb_flush_page(env, addr); | |
1346 | return 0; | |
1347 | } | |
1348 | } | |
1349 | return -1; | |
1350 | } | |
1351 | ||
7d03f82f EI |
1352 | /* Remove all watchpoints. */ |
1353 | void cpu_watchpoint_remove_all(CPUState *env) { | |
1354 | int i; | |
1355 | ||
1356 | for (i = 0; i < env->nb_watchpoints; i++) { | |
1357 | tlb_flush_page(env, env->watchpoint[i].vaddr); | |
1358 | } | |
1359 | env->nb_watchpoints = 0; | |
1360 | } | |
1361 | ||
c33a346e FB |
1362 | /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a |
1363 | breakpoint is reached */ | |
2e12669a | 1364 | int cpu_breakpoint_insert(CPUState *env, target_ulong pc) |
4c3a88a2 | 1365 | { |
1fddef4b | 1366 | #if defined(TARGET_HAS_ICE) |
4c3a88a2 | 1367 | int i; |
3b46e624 | 1368 | |
4c3a88a2 FB |
1369 | for(i = 0; i < env->nb_breakpoints; i++) { |
1370 | if (env->breakpoints[i] == pc) | |
1371 | return 0; | |
1372 | } | |
1373 | ||
1374 | if (env->nb_breakpoints >= MAX_BREAKPOINTS) | |
1375 | return -1; | |
1376 | env->breakpoints[env->nb_breakpoints++] = pc; | |
3b46e624 | 1377 | |
d720b93d | 1378 | breakpoint_invalidate(env, pc); |
4c3a88a2 FB |
1379 | return 0; |
1380 | #else | |
1381 | return -1; | |
1382 | #endif | |
1383 | } | |
1384 | ||
7d03f82f EI |
1385 | /* remove all breakpoints */ |
1386 | void cpu_breakpoint_remove_all(CPUState *env) { | |
1387 | #if defined(TARGET_HAS_ICE) | |
1388 | int i; | |
1389 | for(i = 0; i < env->nb_breakpoints; i++) { | |
1390 | breakpoint_invalidate(env, env->breakpoints[i]); | |
1391 | } | |
1392 | env->nb_breakpoints = 0; | |
1393 | #endif | |
1394 | } | |
1395 | ||
4c3a88a2 | 1396 | /* remove a breakpoint */ |
2e12669a | 1397 | int cpu_breakpoint_remove(CPUState *env, target_ulong pc) |
4c3a88a2 | 1398 | { |
1fddef4b | 1399 | #if defined(TARGET_HAS_ICE) |
4c3a88a2 FB |
1400 | int i; |
1401 | for(i = 0; i < env->nb_breakpoints; i++) { | |
1402 | if (env->breakpoints[i] == pc) | |
1403 | goto found; | |
1404 | } | |
1405 | return -1; | |
1406 | found: | |
4c3a88a2 | 1407 | env->nb_breakpoints--; |
1fddef4b FB |
1408 | if (i < env->nb_breakpoints) |
1409 | env->breakpoints[i] = env->breakpoints[env->nb_breakpoints]; | |
d720b93d FB |
1410 | |
1411 | breakpoint_invalidate(env, pc); | |
4c3a88a2 FB |
1412 | return 0; |
1413 | #else | |
1414 | return -1; | |
1415 | #endif | |
1416 | } | |
1417 | ||
c33a346e FB |
1418 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
1419 | CPU loop after each instruction */ | |
1420 | void cpu_single_step(CPUState *env, int enabled) | |
1421 | { | |
1fddef4b | 1422 | #if defined(TARGET_HAS_ICE) |
c33a346e FB |
1423 | if (env->singlestep_enabled != enabled) { |
1424 | env->singlestep_enabled = enabled; | |
1425 | /* must flush all the translated code to avoid inconsistancies */ | |
9fa3e853 | 1426 | /* XXX: only flush what is necessary */ |
0124311e | 1427 | tb_flush(env); |
c33a346e FB |
1428 | } |
1429 | #endif | |
1430 | } | |
1431 | ||
34865134 FB |
1432 | /* enable or disable low levels log */ |
1433 | void cpu_set_log(int log_flags) | |
1434 | { | |
1435 | loglevel = log_flags; | |
1436 | if (loglevel && !logfile) { | |
11fcfab4 | 1437 | logfile = fopen(logfilename, log_append ? "a" : "w"); |
34865134 FB |
1438 | if (!logfile) { |
1439 | perror(logfilename); | |
1440 | _exit(1); | |
1441 | } | |
9fa3e853 FB |
1442 | #if !defined(CONFIG_SOFTMMU) |
1443 | /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ | |
1444 | { | |
b55266b5 | 1445 | static char logfile_buf[4096]; |
9fa3e853 FB |
1446 | setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); |
1447 | } | |
1448 | #else | |
34865134 | 1449 | setvbuf(logfile, NULL, _IOLBF, 0); |
9fa3e853 | 1450 | #endif |
e735b91c PB |
1451 | log_append = 1; |
1452 | } | |
1453 | if (!loglevel && logfile) { | |
1454 | fclose(logfile); | |
1455 | logfile = NULL; | |
34865134 FB |
1456 | } |
1457 | } | |
1458 | ||
1459 | void cpu_set_log_filename(const char *filename) | |
1460 | { | |
1461 | logfilename = strdup(filename); | |
e735b91c PB |
1462 | if (logfile) { |
1463 | fclose(logfile); | |
1464 | logfile = NULL; | |
1465 | } | |
1466 | cpu_set_log(loglevel); | |
34865134 | 1467 | } |
c33a346e | 1468 | |
0124311e | 1469 | /* mask must never be zero, except for A20 change call */ |
68a79315 | 1470 | void cpu_interrupt(CPUState *env, int mask) |
ea041c0e | 1471 | { |
d5975363 | 1472 | #if !defined(USE_NPTL) |
ea041c0e | 1473 | TranslationBlock *tb; |
15a51156 | 1474 | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; |
d5975363 | 1475 | #endif |
2e70f6ef | 1476 | int old_mask; |
59817ccb | 1477 | |
2e70f6ef | 1478 | old_mask = env->interrupt_request; |
d5975363 | 1479 | /* FIXME: This is probably not threadsafe. A different thread could |
bf20dc07 | 1480 | be in the middle of a read-modify-write operation. */ |
68a79315 | 1481 | env->interrupt_request |= mask; |
d5975363 PB |
1482 | #if defined(USE_NPTL) |
1483 | /* FIXME: TB unchaining isn't SMP safe. For now just ignore the | |
1484 | problem and hope the cpu will stop of its own accord. For userspace | |
1485 | emulation this often isn't actually as bad as it sounds. Often | |
1486 | signals are used primarily to interrupt blocking syscalls. */ | |
1487 | #else | |
2e70f6ef | 1488 | if (use_icount) { |
266910c4 | 1489 | env->icount_decr.u16.high = 0xffff; |
2e70f6ef PB |
1490 | #ifndef CONFIG_USER_ONLY |
1491 | /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means | |
1492 | an async event happened and we need to process it. */ | |
1493 | if (!can_do_io(env) | |
1494 | && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) { | |
1495 | cpu_abort(env, "Raised interrupt while not in I/O function"); | |
1496 | } | |
1497 | #endif | |
1498 | } else { | |
1499 | tb = env->current_tb; | |
1500 | /* if the cpu is currently executing code, we must unlink it and | |
1501 | all the potentially executing TB */ | |
1502 | if (tb && !testandset(&interrupt_lock)) { | |
1503 | env->current_tb = NULL; | |
1504 | tb_reset_jump_recursive(tb); | |
1505 | resetlock(&interrupt_lock); | |
1506 | } | |
ea041c0e | 1507 | } |
d5975363 | 1508 | #endif |
ea041c0e FB |
1509 | } |
1510 | ||
b54ad049 FB |
1511 | void cpu_reset_interrupt(CPUState *env, int mask) |
1512 | { | |
1513 | env->interrupt_request &= ~mask; | |
1514 | } | |
1515 | ||
c7cd6a37 | 1516 | const CPULogItem cpu_log_items[] = { |
5fafdf24 | 1517 | { CPU_LOG_TB_OUT_ASM, "out_asm", |
f193c797 FB |
1518 | "show generated host assembly code for each compiled TB" }, |
1519 | { CPU_LOG_TB_IN_ASM, "in_asm", | |
1520 | "show target assembly code for each compiled TB" }, | |
5fafdf24 | 1521 | { CPU_LOG_TB_OP, "op", |
57fec1fe | 1522 | "show micro ops for each compiled TB" }, |
f193c797 | 1523 | { CPU_LOG_TB_OP_OPT, "op_opt", |
e01a1157 BS |
1524 | "show micro ops " |
1525 | #ifdef TARGET_I386 | |
1526 | "before eflags optimization and " | |
f193c797 | 1527 | #endif |
e01a1157 | 1528 | "after liveness analysis" }, |
f193c797 FB |
1529 | { CPU_LOG_INT, "int", |
1530 | "show interrupts/exceptions in short format" }, | |
1531 | { CPU_LOG_EXEC, "exec", | |
1532 | "show trace before each executed TB (lots of logs)" }, | |
9fddaa0c | 1533 | { CPU_LOG_TB_CPU, "cpu", |
e91c8a77 | 1534 | "show CPU state before block translation" }, |
f193c797 FB |
1535 | #ifdef TARGET_I386 |
1536 | { CPU_LOG_PCALL, "pcall", | |
1537 | "show protected mode far calls/returns/exceptions" }, | |
1538 | #endif | |
8e3a9fd2 | 1539 | #ifdef DEBUG_IOPORT |
fd872598 FB |
1540 | { CPU_LOG_IOPORT, "ioport", |
1541 | "show all i/o ports accesses" }, | |
8e3a9fd2 | 1542 | #endif |
f193c797 FB |
1543 | { 0, NULL, NULL }, |
1544 | }; | |
1545 | ||
1546 | static int cmp1(const char *s1, int n, const char *s2) | |
1547 | { | |
1548 | if (strlen(s2) != n) | |
1549 | return 0; | |
1550 | return memcmp(s1, s2, n) == 0; | |
1551 | } | |
3b46e624 | 1552 | |
f193c797 FB |
1553 | /* takes a comma separated list of log masks. Return 0 if error. */ |
1554 | int cpu_str_to_log_mask(const char *str) | |
1555 | { | |
c7cd6a37 | 1556 | const CPULogItem *item; |
f193c797 FB |
1557 | int mask; |
1558 | const char *p, *p1; | |
1559 | ||
1560 | p = str; | |
1561 | mask = 0; | |
1562 | for(;;) { | |
1563 | p1 = strchr(p, ','); | |
1564 | if (!p1) | |
1565 | p1 = p + strlen(p); | |
8e3a9fd2 FB |
1566 | if(cmp1(p,p1-p,"all")) { |
1567 | for(item = cpu_log_items; item->mask != 0; item++) { | |
1568 | mask |= item->mask; | |
1569 | } | |
1570 | } else { | |
f193c797 FB |
1571 | for(item = cpu_log_items; item->mask != 0; item++) { |
1572 | if (cmp1(p, p1 - p, item->name)) | |
1573 | goto found; | |
1574 | } | |
1575 | return 0; | |
8e3a9fd2 | 1576 | } |
f193c797 FB |
1577 | found: |
1578 | mask |= item->mask; | |
1579 | if (*p1 != ',') | |
1580 | break; | |
1581 | p = p1 + 1; | |
1582 | } | |
1583 | return mask; | |
1584 | } | |
ea041c0e | 1585 | |
7501267e FB |
1586 | void cpu_abort(CPUState *env, const char *fmt, ...) |
1587 | { | |
1588 | va_list ap; | |
493ae1f0 | 1589 | va_list ap2; |
7501267e FB |
1590 | |
1591 | va_start(ap, fmt); | |
493ae1f0 | 1592 | va_copy(ap2, ap); |
7501267e FB |
1593 | fprintf(stderr, "qemu: fatal: "); |
1594 | vfprintf(stderr, fmt, ap); | |
1595 | fprintf(stderr, "\n"); | |
1596 | #ifdef TARGET_I386 | |
7fe48483 FB |
1597 | cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); |
1598 | #else | |
1599 | cpu_dump_state(env, stderr, fprintf, 0); | |
7501267e | 1600 | #endif |
924edcae | 1601 | if (logfile) { |
f9373291 | 1602 | fprintf(logfile, "qemu: fatal: "); |
493ae1f0 | 1603 | vfprintf(logfile, fmt, ap2); |
f9373291 JM |
1604 | fprintf(logfile, "\n"); |
1605 | #ifdef TARGET_I386 | |
1606 | cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); | |
1607 | #else | |
1608 | cpu_dump_state(env, logfile, fprintf, 0); | |
1609 | #endif | |
924edcae AZ |
1610 | fflush(logfile); |
1611 | fclose(logfile); | |
1612 | } | |
493ae1f0 | 1613 | va_end(ap2); |
f9373291 | 1614 | va_end(ap); |
7501267e FB |
1615 | abort(); |
1616 | } | |
1617 | ||
c5be9f08 TS |
1618 | CPUState *cpu_copy(CPUState *env) |
1619 | { | |
01ba9816 | 1620 | CPUState *new_env = cpu_init(env->cpu_model_str); |
c5be9f08 TS |
1621 | /* preserve chaining and index */ |
1622 | CPUState *next_cpu = new_env->next_cpu; | |
1623 | int cpu_index = new_env->cpu_index; | |
1624 | memcpy(new_env, env, sizeof(CPUState)); | |
1625 | new_env->next_cpu = next_cpu; | |
1626 | new_env->cpu_index = cpu_index; | |
1627 | return new_env; | |
1628 | } | |
1629 | ||
0124311e FB |
1630 | #if !defined(CONFIG_USER_ONLY) |
1631 | ||
5c751e99 EI |
1632 | static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr) |
1633 | { | |
1634 | unsigned int i; | |
1635 | ||
1636 | /* Discard jump cache entries for any tb which might potentially | |
1637 | overlap the flushed page. */ | |
1638 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
1639 | memset (&env->tb_jmp_cache[i], 0, | |
1640 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1641 | ||
1642 | i = tb_jmp_cache_hash_page(addr); | |
1643 | memset (&env->tb_jmp_cache[i], 0, | |
1644 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1645 | } | |
1646 | ||
ee8b7021 FB |
1647 | /* NOTE: if flush_global is true, also flush global entries (not |
1648 | implemented yet) */ | |
1649 | void tlb_flush(CPUState *env, int flush_global) | |
33417e70 | 1650 | { |
33417e70 | 1651 | int i; |
0124311e | 1652 | |
9fa3e853 FB |
1653 | #if defined(DEBUG_TLB) |
1654 | printf("tlb_flush:\n"); | |
1655 | #endif | |
0124311e FB |
1656 | /* must reset current TB so that interrupts cannot modify the |
1657 | links while we are modifying them */ | |
1658 | env->current_tb = NULL; | |
1659 | ||
33417e70 | 1660 | for(i = 0; i < CPU_TLB_SIZE; i++) { |
84b7b8e7 FB |
1661 | env->tlb_table[0][i].addr_read = -1; |
1662 | env->tlb_table[0][i].addr_write = -1; | |
1663 | env->tlb_table[0][i].addr_code = -1; | |
1664 | env->tlb_table[1][i].addr_read = -1; | |
1665 | env->tlb_table[1][i].addr_write = -1; | |
1666 | env->tlb_table[1][i].addr_code = -1; | |
6fa4cea9 JM |
1667 | #if (NB_MMU_MODES >= 3) |
1668 | env->tlb_table[2][i].addr_read = -1; | |
1669 | env->tlb_table[2][i].addr_write = -1; | |
1670 | env->tlb_table[2][i].addr_code = -1; | |
1671 | #if (NB_MMU_MODES == 4) | |
1672 | env->tlb_table[3][i].addr_read = -1; | |
1673 | env->tlb_table[3][i].addr_write = -1; | |
1674 | env->tlb_table[3][i].addr_code = -1; | |
1675 | #endif | |
1676 | #endif | |
33417e70 | 1677 | } |
9fa3e853 | 1678 | |
8a40a180 | 1679 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); |
9fa3e853 | 1680 | |
0a962c02 FB |
1681 | #ifdef USE_KQEMU |
1682 | if (env->kqemu_enabled) { | |
1683 | kqemu_flush(env, flush_global); | |
1684 | } | |
9fa3e853 | 1685 | #endif |
e3db7226 | 1686 | tlb_flush_count++; |
33417e70 FB |
1687 | } |
1688 | ||
274da6b2 | 1689 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) |
61382a50 | 1690 | { |
5fafdf24 | 1691 | if (addr == (tlb_entry->addr_read & |
84b7b8e7 | 1692 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1693 | addr == (tlb_entry->addr_write & |
84b7b8e7 | 1694 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1695 | addr == (tlb_entry->addr_code & |
84b7b8e7 FB |
1696 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
1697 | tlb_entry->addr_read = -1; | |
1698 | tlb_entry->addr_write = -1; | |
1699 | tlb_entry->addr_code = -1; | |
1700 | } | |
61382a50 FB |
1701 | } |
1702 | ||
2e12669a | 1703 | void tlb_flush_page(CPUState *env, target_ulong addr) |
33417e70 | 1704 | { |
8a40a180 | 1705 | int i; |
0124311e | 1706 | |
9fa3e853 | 1707 | #if defined(DEBUG_TLB) |
108c49b8 | 1708 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); |
9fa3e853 | 1709 | #endif |
0124311e FB |
1710 | /* must reset current TB so that interrupts cannot modify the |
1711 | links while we are modifying them */ | |
1712 | env->current_tb = NULL; | |
61382a50 FB |
1713 | |
1714 | addr &= TARGET_PAGE_MASK; | |
1715 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
84b7b8e7 FB |
1716 | tlb_flush_entry(&env->tlb_table[0][i], addr); |
1717 | tlb_flush_entry(&env->tlb_table[1][i], addr); | |
6fa4cea9 JM |
1718 | #if (NB_MMU_MODES >= 3) |
1719 | tlb_flush_entry(&env->tlb_table[2][i], addr); | |
1720 | #if (NB_MMU_MODES == 4) | |
1721 | tlb_flush_entry(&env->tlb_table[3][i], addr); | |
1722 | #endif | |
1723 | #endif | |
0124311e | 1724 | |
5c751e99 | 1725 | tlb_flush_jmp_cache(env, addr); |
9fa3e853 | 1726 | |
0a962c02 FB |
1727 | #ifdef USE_KQEMU |
1728 | if (env->kqemu_enabled) { | |
1729 | kqemu_flush_page(env, addr); | |
1730 | } | |
1731 | #endif | |
9fa3e853 FB |
1732 | } |
1733 | ||
9fa3e853 FB |
1734 | /* update the TLBs so that writes to code in the virtual page 'addr' |
1735 | can be detected */ | |
6a00d601 | 1736 | static void tlb_protect_code(ram_addr_t ram_addr) |
9fa3e853 | 1737 | { |
5fafdf24 | 1738 | cpu_physical_memory_reset_dirty(ram_addr, |
6a00d601 FB |
1739 | ram_addr + TARGET_PAGE_SIZE, |
1740 | CODE_DIRTY_FLAG); | |
9fa3e853 FB |
1741 | } |
1742 | ||
9fa3e853 | 1743 | /* update the TLB so that writes in physical page 'phys_addr' are no longer |
3a7d929e | 1744 | tested for self modifying code */ |
5fafdf24 | 1745 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 1746 | target_ulong vaddr) |
9fa3e853 | 1747 | { |
3a7d929e | 1748 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG; |
1ccde1cb FB |
1749 | } |
1750 | ||
5fafdf24 | 1751 | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, |
1ccde1cb FB |
1752 | unsigned long start, unsigned long length) |
1753 | { | |
1754 | unsigned long addr; | |
84b7b8e7 FB |
1755 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
1756 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | |
1ccde1cb | 1757 | if ((addr - start) < length) { |
0f459d16 | 1758 | tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY; |
1ccde1cb FB |
1759 | } |
1760 | } | |
1761 | } | |
1762 | ||
3a7d929e | 1763 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, |
0a962c02 | 1764 | int dirty_flags) |
1ccde1cb FB |
1765 | { |
1766 | CPUState *env; | |
4f2ac237 | 1767 | unsigned long length, start1; |
0a962c02 FB |
1768 | int i, mask, len; |
1769 | uint8_t *p; | |
1ccde1cb FB |
1770 | |
1771 | start &= TARGET_PAGE_MASK; | |
1772 | end = TARGET_PAGE_ALIGN(end); | |
1773 | ||
1774 | length = end - start; | |
1775 | if (length == 0) | |
1776 | return; | |
0a962c02 | 1777 | len = length >> TARGET_PAGE_BITS; |
3a7d929e | 1778 | #ifdef USE_KQEMU |
6a00d601 FB |
1779 | /* XXX: should not depend on cpu context */ |
1780 | env = first_cpu; | |
3a7d929e | 1781 | if (env->kqemu_enabled) { |
f23db169 FB |
1782 | ram_addr_t addr; |
1783 | addr = start; | |
1784 | for(i = 0; i < len; i++) { | |
1785 | kqemu_set_notdirty(env, addr); | |
1786 | addr += TARGET_PAGE_SIZE; | |
1787 | } | |
3a7d929e FB |
1788 | } |
1789 | #endif | |
f23db169 FB |
1790 | mask = ~dirty_flags; |
1791 | p = phys_ram_dirty + (start >> TARGET_PAGE_BITS); | |
1792 | for(i = 0; i < len; i++) | |
1793 | p[i] &= mask; | |
1794 | ||
1ccde1cb FB |
1795 | /* we modify the TLB cache so that the dirty bit will be set again |
1796 | when accessing the range */ | |
59817ccb | 1797 | start1 = start + (unsigned long)phys_ram_base; |
6a00d601 FB |
1798 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
1799 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
84b7b8e7 | 1800 | tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length); |
6a00d601 | 1801 | for(i = 0; i < CPU_TLB_SIZE; i++) |
84b7b8e7 | 1802 | tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length); |
6fa4cea9 JM |
1803 | #if (NB_MMU_MODES >= 3) |
1804 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1805 | tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length); | |
1806 | #if (NB_MMU_MODES == 4) | |
1807 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1808 | tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length); | |
1809 | #endif | |
1810 | #endif | |
6a00d601 | 1811 | } |
1ccde1cb FB |
1812 | } |
1813 | ||
74576198 AL |
1814 | int cpu_physical_memory_set_dirty_tracking(int enable) |
1815 | { | |
1816 | in_migration = enable; | |
1817 | return 0; | |
1818 | } | |
1819 | ||
1820 | int cpu_physical_memory_get_dirty_tracking(void) | |
1821 | { | |
1822 | return in_migration; | |
1823 | } | |
1824 | ||
3a7d929e FB |
1825 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) |
1826 | { | |
1827 | ram_addr_t ram_addr; | |
1828 | ||
84b7b8e7 | 1829 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
5fafdf24 | 1830 | ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + |
3a7d929e FB |
1831 | tlb_entry->addend - (unsigned long)phys_ram_base; |
1832 | if (!cpu_physical_memory_is_dirty(ram_addr)) { | |
0f459d16 | 1833 | tlb_entry->addr_write |= TLB_NOTDIRTY; |
3a7d929e FB |
1834 | } |
1835 | } | |
1836 | } | |
1837 | ||
1838 | /* update the TLB according to the current state of the dirty bits */ | |
1839 | void cpu_tlb_update_dirty(CPUState *env) | |
1840 | { | |
1841 | int i; | |
1842 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
84b7b8e7 | 1843 | tlb_update_dirty(&env->tlb_table[0][i]); |
3a7d929e | 1844 | for(i = 0; i < CPU_TLB_SIZE; i++) |
84b7b8e7 | 1845 | tlb_update_dirty(&env->tlb_table[1][i]); |
6fa4cea9 JM |
1846 | #if (NB_MMU_MODES >= 3) |
1847 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1848 | tlb_update_dirty(&env->tlb_table[2][i]); | |
1849 | #if (NB_MMU_MODES == 4) | |
1850 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1851 | tlb_update_dirty(&env->tlb_table[3][i]); | |
1852 | #endif | |
1853 | #endif | |
3a7d929e FB |
1854 | } |
1855 | ||
0f459d16 | 1856 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) |
1ccde1cb | 1857 | { |
0f459d16 PB |
1858 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) |
1859 | tlb_entry->addr_write = vaddr; | |
1ccde1cb FB |
1860 | } |
1861 | ||
0f459d16 PB |
1862 | /* update the TLB corresponding to virtual page vaddr |
1863 | so that it is no longer dirty */ | |
1864 | static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr) | |
1ccde1cb | 1865 | { |
1ccde1cb FB |
1866 | int i; |
1867 | ||
0f459d16 | 1868 | vaddr &= TARGET_PAGE_MASK; |
1ccde1cb | 1869 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
0f459d16 PB |
1870 | tlb_set_dirty1(&env->tlb_table[0][i], vaddr); |
1871 | tlb_set_dirty1(&env->tlb_table[1][i], vaddr); | |
6fa4cea9 | 1872 | #if (NB_MMU_MODES >= 3) |
0f459d16 | 1873 | tlb_set_dirty1(&env->tlb_table[2][i], vaddr); |
6fa4cea9 | 1874 | #if (NB_MMU_MODES == 4) |
0f459d16 | 1875 | tlb_set_dirty1(&env->tlb_table[3][i], vaddr); |
6fa4cea9 JM |
1876 | #endif |
1877 | #endif | |
9fa3e853 FB |
1878 | } |
1879 | ||
59817ccb FB |
1880 | /* add a new TLB entry. At most one entry for a given virtual address |
1881 | is permitted. Return 0 if OK or 2 if the page could not be mapped | |
1882 | (can only happen in non SOFTMMU mode for I/O pages or pages | |
1883 | conflicting with the host address space). */ | |
5fafdf24 TS |
1884 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
1885 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 1886 | int mmu_idx, int is_softmmu) |
9fa3e853 | 1887 | { |
92e873b9 | 1888 | PhysPageDesc *p; |
4f2ac237 | 1889 | unsigned long pd; |
9fa3e853 | 1890 | unsigned int index; |
4f2ac237 | 1891 | target_ulong address; |
0f459d16 | 1892 | target_ulong code_address; |
108c49b8 | 1893 | target_phys_addr_t addend; |
9fa3e853 | 1894 | int ret; |
84b7b8e7 | 1895 | CPUTLBEntry *te; |
6658ffb8 | 1896 | int i; |
0f459d16 | 1897 | target_phys_addr_t iotlb; |
9fa3e853 | 1898 | |
92e873b9 | 1899 | p = phys_page_find(paddr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1900 | if (!p) { |
1901 | pd = IO_MEM_UNASSIGNED; | |
9fa3e853 FB |
1902 | } else { |
1903 | pd = p->phys_offset; | |
9fa3e853 FB |
1904 | } |
1905 | #if defined(DEBUG_TLB) | |
6ebbf390 JM |
1906 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n", |
1907 | vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd); | |
9fa3e853 FB |
1908 | #endif |
1909 | ||
1910 | ret = 0; | |
0f459d16 PB |
1911 | address = vaddr; |
1912 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { | |
1913 | /* IO memory case (romd handled later) */ | |
1914 | address |= TLB_MMIO; | |
1915 | } | |
1916 | addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK); | |
1917 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) { | |
1918 | /* Normal RAM. */ | |
1919 | iotlb = pd & TARGET_PAGE_MASK; | |
1920 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM) | |
1921 | iotlb |= IO_MEM_NOTDIRTY; | |
1922 | else | |
1923 | iotlb |= IO_MEM_ROM; | |
1924 | } else { | |
1925 | /* IO handlers are currently passed a phsical address. | |
1926 | It would be nice to pass an offset from the base address | |
1927 | of that region. This would avoid having to special case RAM, | |
1928 | and avoid full address decoding in every device. | |
1929 | We can't use the high bits of pd for this because | |
1930 | IO_MEM_ROMD uses these as a ram address. */ | |
1931 | iotlb = (pd & ~TARGET_PAGE_MASK) + paddr; | |
1932 | } | |
1933 | ||
1934 | code_address = address; | |
1935 | /* Make accesses to pages with watchpoints go via the | |
1936 | watchpoint trap routines. */ | |
1937 | for (i = 0; i < env->nb_watchpoints; i++) { | |
1938 | if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) { | |
1939 | iotlb = io_mem_watch + paddr; | |
1940 | /* TODO: The memory case can be optimized by not trapping | |
1941 | reads of pages with a write breakpoint. */ | |
1942 | address |= TLB_MMIO; | |
6658ffb8 | 1943 | } |
0f459d16 | 1944 | } |
d79acba4 | 1945 | |
0f459d16 PB |
1946 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
1947 | env->iotlb[mmu_idx][index] = iotlb - vaddr; | |
1948 | te = &env->tlb_table[mmu_idx][index]; | |
1949 | te->addend = addend - vaddr; | |
1950 | if (prot & PAGE_READ) { | |
1951 | te->addr_read = address; | |
1952 | } else { | |
1953 | te->addr_read = -1; | |
1954 | } | |
5c751e99 | 1955 | |
0f459d16 PB |
1956 | if (prot & PAGE_EXEC) { |
1957 | te->addr_code = code_address; | |
1958 | } else { | |
1959 | te->addr_code = -1; | |
1960 | } | |
1961 | if (prot & PAGE_WRITE) { | |
1962 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || | |
1963 | (pd & IO_MEM_ROMD)) { | |
1964 | /* Write access calls the I/O callback. */ | |
1965 | te->addr_write = address | TLB_MMIO; | |
1966 | } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && | |
1967 | !cpu_physical_memory_is_dirty(pd)) { | |
1968 | te->addr_write = address | TLB_NOTDIRTY; | |
9fa3e853 | 1969 | } else { |
0f459d16 | 1970 | te->addr_write = address; |
9fa3e853 | 1971 | } |
0f459d16 PB |
1972 | } else { |
1973 | te->addr_write = -1; | |
9fa3e853 | 1974 | } |
9fa3e853 FB |
1975 | return ret; |
1976 | } | |
1977 | ||
0124311e FB |
1978 | #else |
1979 | ||
ee8b7021 | 1980 | void tlb_flush(CPUState *env, int flush_global) |
0124311e FB |
1981 | { |
1982 | } | |
1983 | ||
2e12669a | 1984 | void tlb_flush_page(CPUState *env, target_ulong addr) |
0124311e FB |
1985 | { |
1986 | } | |
1987 | ||
5fafdf24 TS |
1988 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
1989 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 1990 | int mmu_idx, int is_softmmu) |
9fa3e853 FB |
1991 | { |
1992 | return 0; | |
1993 | } | |
0124311e | 1994 | |
9fa3e853 FB |
1995 | /* dump memory mappings */ |
1996 | void page_dump(FILE *f) | |
33417e70 | 1997 | { |
9fa3e853 FB |
1998 | unsigned long start, end; |
1999 | int i, j, prot, prot1; | |
2000 | PageDesc *p; | |
33417e70 | 2001 | |
9fa3e853 FB |
2002 | fprintf(f, "%-8s %-8s %-8s %s\n", |
2003 | "start", "end", "size", "prot"); | |
2004 | start = -1; | |
2005 | end = -1; | |
2006 | prot = 0; | |
2007 | for(i = 0; i <= L1_SIZE; i++) { | |
2008 | if (i < L1_SIZE) | |
2009 | p = l1_map[i]; | |
2010 | else | |
2011 | p = NULL; | |
2012 | for(j = 0;j < L2_SIZE; j++) { | |
2013 | if (!p) | |
2014 | prot1 = 0; | |
2015 | else | |
2016 | prot1 = p[j].flags; | |
2017 | if (prot1 != prot) { | |
2018 | end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS); | |
2019 | if (start != -1) { | |
2020 | fprintf(f, "%08lx-%08lx %08lx %c%c%c\n", | |
5fafdf24 | 2021 | start, end, end - start, |
9fa3e853 FB |
2022 | prot & PAGE_READ ? 'r' : '-', |
2023 | prot & PAGE_WRITE ? 'w' : '-', | |
2024 | prot & PAGE_EXEC ? 'x' : '-'); | |
2025 | } | |
2026 | if (prot1 != 0) | |
2027 | start = end; | |
2028 | else | |
2029 | start = -1; | |
2030 | prot = prot1; | |
2031 | } | |
2032 | if (!p) | |
2033 | break; | |
2034 | } | |
33417e70 | 2035 | } |
33417e70 FB |
2036 | } |
2037 | ||
53a5960a | 2038 | int page_get_flags(target_ulong address) |
33417e70 | 2039 | { |
9fa3e853 FB |
2040 | PageDesc *p; |
2041 | ||
2042 | p = page_find(address >> TARGET_PAGE_BITS); | |
33417e70 | 2043 | if (!p) |
9fa3e853 FB |
2044 | return 0; |
2045 | return p->flags; | |
2046 | } | |
2047 | ||
2048 | /* modify the flags of a page and invalidate the code if | |
2049 | necessary. The flag PAGE_WRITE_ORG is positionned automatically | |
2050 | depending on PAGE_WRITE */ | |
53a5960a | 2051 | void page_set_flags(target_ulong start, target_ulong end, int flags) |
9fa3e853 FB |
2052 | { |
2053 | PageDesc *p; | |
53a5960a | 2054 | target_ulong addr; |
9fa3e853 | 2055 | |
c8a706fe | 2056 | /* mmap_lock should already be held. */ |
9fa3e853 FB |
2057 | start = start & TARGET_PAGE_MASK; |
2058 | end = TARGET_PAGE_ALIGN(end); | |
2059 | if (flags & PAGE_WRITE) | |
2060 | flags |= PAGE_WRITE_ORG; | |
9fa3e853 FB |
2061 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2062 | p = page_find_alloc(addr >> TARGET_PAGE_BITS); | |
17e2377a PB |
2063 | /* We may be called for host regions that are outside guest |
2064 | address space. */ | |
2065 | if (!p) | |
2066 | return; | |
9fa3e853 FB |
2067 | /* if the write protection is set, then we invalidate the code |
2068 | inside */ | |
5fafdf24 | 2069 | if (!(p->flags & PAGE_WRITE) && |
9fa3e853 FB |
2070 | (flags & PAGE_WRITE) && |
2071 | p->first_tb) { | |
d720b93d | 2072 | tb_invalidate_phys_page(addr, 0, NULL); |
9fa3e853 FB |
2073 | } |
2074 | p->flags = flags; | |
2075 | } | |
33417e70 FB |
2076 | } |
2077 | ||
3d97b40b TS |
2078 | int page_check_range(target_ulong start, target_ulong len, int flags) |
2079 | { | |
2080 | PageDesc *p; | |
2081 | target_ulong end; | |
2082 | target_ulong addr; | |
2083 | ||
2084 | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */ | |
2085 | start = start & TARGET_PAGE_MASK; | |
2086 | ||
2087 | if( end < start ) | |
2088 | /* we've wrapped around */ | |
2089 | return -1; | |
2090 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { | |
2091 | p = page_find(addr >> TARGET_PAGE_BITS); | |
2092 | if( !p ) | |
2093 | return -1; | |
2094 | if( !(p->flags & PAGE_VALID) ) | |
2095 | return -1; | |
2096 | ||
dae3270c | 2097 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) |
3d97b40b | 2098 | return -1; |
dae3270c FB |
2099 | if (flags & PAGE_WRITE) { |
2100 | if (!(p->flags & PAGE_WRITE_ORG)) | |
2101 | return -1; | |
2102 | /* unprotect the page if it was put read-only because it | |
2103 | contains translated code */ | |
2104 | if (!(p->flags & PAGE_WRITE)) { | |
2105 | if (!page_unprotect(addr, 0, NULL)) | |
2106 | return -1; | |
2107 | } | |
2108 | return 0; | |
2109 | } | |
3d97b40b TS |
2110 | } |
2111 | return 0; | |
2112 | } | |
2113 | ||
9fa3e853 FB |
2114 | /* called from signal handler: invalidate the code and unprotect the |
2115 | page. Return TRUE if the fault was succesfully handled. */ | |
53a5960a | 2116 | int page_unprotect(target_ulong address, unsigned long pc, void *puc) |
9fa3e853 FB |
2117 | { |
2118 | unsigned int page_index, prot, pindex; | |
2119 | PageDesc *p, *p1; | |
53a5960a | 2120 | target_ulong host_start, host_end, addr; |
9fa3e853 | 2121 | |
c8a706fe PB |
2122 | /* Technically this isn't safe inside a signal handler. However we |
2123 | know this only ever happens in a synchronous SEGV handler, so in | |
2124 | practice it seems to be ok. */ | |
2125 | mmap_lock(); | |
2126 | ||
83fb7adf | 2127 | host_start = address & qemu_host_page_mask; |
9fa3e853 FB |
2128 | page_index = host_start >> TARGET_PAGE_BITS; |
2129 | p1 = page_find(page_index); | |
c8a706fe PB |
2130 | if (!p1) { |
2131 | mmap_unlock(); | |
9fa3e853 | 2132 | return 0; |
c8a706fe | 2133 | } |
83fb7adf | 2134 | host_end = host_start + qemu_host_page_size; |
9fa3e853 FB |
2135 | p = p1; |
2136 | prot = 0; | |
2137 | for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) { | |
2138 | prot |= p->flags; | |
2139 | p++; | |
2140 | } | |
2141 | /* if the page was really writable, then we change its | |
2142 | protection back to writable */ | |
2143 | if (prot & PAGE_WRITE_ORG) { | |
2144 | pindex = (address - host_start) >> TARGET_PAGE_BITS; | |
2145 | if (!(p1[pindex].flags & PAGE_WRITE)) { | |
5fafdf24 | 2146 | mprotect((void *)g2h(host_start), qemu_host_page_size, |
9fa3e853 FB |
2147 | (prot & PAGE_BITS) | PAGE_WRITE); |
2148 | p1[pindex].flags |= PAGE_WRITE; | |
2149 | /* and since the content will be modified, we must invalidate | |
2150 | the corresponding translated code. */ | |
d720b93d | 2151 | tb_invalidate_phys_page(address, pc, puc); |
9fa3e853 FB |
2152 | #ifdef DEBUG_TB_CHECK |
2153 | tb_invalidate_check(address); | |
2154 | #endif | |
c8a706fe | 2155 | mmap_unlock(); |
9fa3e853 FB |
2156 | return 1; |
2157 | } | |
2158 | } | |
c8a706fe | 2159 | mmap_unlock(); |
9fa3e853 FB |
2160 | return 0; |
2161 | } | |
2162 | ||
6a00d601 FB |
2163 | static inline void tlb_set_dirty(CPUState *env, |
2164 | unsigned long addr, target_ulong vaddr) | |
1ccde1cb FB |
2165 | { |
2166 | } | |
9fa3e853 FB |
2167 | #endif /* defined(CONFIG_USER_ONLY) */ |
2168 | ||
e2eef170 | 2169 | #if !defined(CONFIG_USER_ONLY) |
db7b5426 | 2170 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
00f82b8a AJ |
2171 | ram_addr_t memory); |
2172 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, | |
2173 | ram_addr_t orig_memory); | |
db7b5426 BS |
2174 | #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \ |
2175 | need_subpage) \ | |
2176 | do { \ | |
2177 | if (addr > start_addr) \ | |
2178 | start_addr2 = 0; \ | |
2179 | else { \ | |
2180 | start_addr2 = start_addr & ~TARGET_PAGE_MASK; \ | |
2181 | if (start_addr2 > 0) \ | |
2182 | need_subpage = 1; \ | |
2183 | } \ | |
2184 | \ | |
49e9fba2 | 2185 | if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \ |
db7b5426 BS |
2186 | end_addr2 = TARGET_PAGE_SIZE - 1; \ |
2187 | else { \ | |
2188 | end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \ | |
2189 | if (end_addr2 < TARGET_PAGE_SIZE - 1) \ | |
2190 | need_subpage = 1; \ | |
2191 | } \ | |
2192 | } while (0) | |
2193 | ||
33417e70 FB |
2194 | /* register physical memory. 'size' must be a multiple of the target |
2195 | page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an | |
2196 | io memory page */ | |
5fafdf24 | 2197 | void cpu_register_physical_memory(target_phys_addr_t start_addr, |
00f82b8a AJ |
2198 | ram_addr_t size, |
2199 | ram_addr_t phys_offset) | |
33417e70 | 2200 | { |
108c49b8 | 2201 | target_phys_addr_t addr, end_addr; |
92e873b9 | 2202 | PhysPageDesc *p; |
9d42037b | 2203 | CPUState *env; |
00f82b8a | 2204 | ram_addr_t orig_size = size; |
db7b5426 | 2205 | void *subpage; |
33417e70 | 2206 | |
da260249 FB |
2207 | #ifdef USE_KQEMU |
2208 | /* XXX: should not depend on cpu context */ | |
2209 | env = first_cpu; | |
2210 | if (env->kqemu_enabled) { | |
2211 | kqemu_set_phys_mem(start_addr, size, phys_offset); | |
2212 | } | |
2213 | #endif | |
5fd386f6 | 2214 | size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK; |
49e9fba2 BS |
2215 | end_addr = start_addr + (target_phys_addr_t)size; |
2216 | for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) { | |
db7b5426 BS |
2217 | p = phys_page_find(addr >> TARGET_PAGE_BITS); |
2218 | if (p && p->phys_offset != IO_MEM_UNASSIGNED) { | |
00f82b8a | 2219 | ram_addr_t orig_memory = p->phys_offset; |
db7b5426 BS |
2220 | target_phys_addr_t start_addr2, end_addr2; |
2221 | int need_subpage = 0; | |
2222 | ||
2223 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, | |
2224 | need_subpage); | |
4254fab8 | 2225 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 BS |
2226 | if (!(orig_memory & IO_MEM_SUBPAGE)) { |
2227 | subpage = subpage_init((addr & TARGET_PAGE_MASK), | |
2228 | &p->phys_offset, orig_memory); | |
2229 | } else { | |
2230 | subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK) | |
2231 | >> IO_MEM_SHIFT]; | |
2232 | } | |
2233 | subpage_register(subpage, start_addr2, end_addr2, phys_offset); | |
2234 | } else { | |
2235 | p->phys_offset = phys_offset; | |
2236 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2237 | (phys_offset & IO_MEM_ROMD)) | |
2238 | phys_offset += TARGET_PAGE_SIZE; | |
2239 | } | |
2240 | } else { | |
2241 | p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
2242 | p->phys_offset = phys_offset; | |
2243 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2244 | (phys_offset & IO_MEM_ROMD)) | |
2245 | phys_offset += TARGET_PAGE_SIZE; | |
2246 | else { | |
2247 | target_phys_addr_t start_addr2, end_addr2; | |
2248 | int need_subpage = 0; | |
2249 | ||
2250 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, | |
2251 | end_addr2, need_subpage); | |
2252 | ||
4254fab8 | 2253 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 BS |
2254 | subpage = subpage_init((addr & TARGET_PAGE_MASK), |
2255 | &p->phys_offset, IO_MEM_UNASSIGNED); | |
2256 | subpage_register(subpage, start_addr2, end_addr2, | |
2257 | phys_offset); | |
2258 | } | |
2259 | } | |
2260 | } | |
33417e70 | 2261 | } |
3b46e624 | 2262 | |
9d42037b FB |
2263 | /* since each CPU stores ram addresses in its TLB cache, we must |
2264 | reset the modified entries */ | |
2265 | /* XXX: slow ! */ | |
2266 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
2267 | tlb_flush(env, 1); | |
2268 | } | |
33417e70 FB |
2269 | } |
2270 | ||
ba863458 | 2271 | /* XXX: temporary until new memory mapping API */ |
00f82b8a | 2272 | ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr) |
ba863458 FB |
2273 | { |
2274 | PhysPageDesc *p; | |
2275 | ||
2276 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2277 | if (!p) | |
2278 | return IO_MEM_UNASSIGNED; | |
2279 | return p->phys_offset; | |
2280 | } | |
2281 | ||
e9a1ab19 | 2282 | /* XXX: better than nothing */ |
00f82b8a | 2283 | ram_addr_t qemu_ram_alloc(ram_addr_t size) |
e9a1ab19 FB |
2284 | { |
2285 | ram_addr_t addr; | |
7fb4fdcf | 2286 | if ((phys_ram_alloc_offset + size) > phys_ram_size) { |
012a7045 | 2287 | fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n", |
ed441467 | 2288 | (uint64_t)size, (uint64_t)phys_ram_size); |
e9a1ab19 FB |
2289 | abort(); |
2290 | } | |
2291 | addr = phys_ram_alloc_offset; | |
2292 | phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size); | |
2293 | return addr; | |
2294 | } | |
2295 | ||
2296 | void qemu_ram_free(ram_addr_t addr) | |
2297 | { | |
2298 | } | |
2299 | ||
a4193c8a | 2300 | static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr) |
33417e70 | 2301 | { |
67d3b957 | 2302 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2303 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); |
b4f0a316 | 2304 | #endif |
e18231a3 BS |
2305 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) |
2306 | do_unassigned_access(addr, 0, 0, 0, 1); | |
2307 | #endif | |
2308 | return 0; | |
2309 | } | |
2310 | ||
2311 | static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr) | |
2312 | { | |
2313 | #ifdef DEBUG_UNASSIGNED | |
2314 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2315 | #endif | |
2316 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) | |
2317 | do_unassigned_access(addr, 0, 0, 0, 2); | |
2318 | #endif | |
2319 | return 0; | |
2320 | } | |
2321 | ||
2322 | static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr) | |
2323 | { | |
2324 | #ifdef DEBUG_UNASSIGNED | |
2325 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2326 | #endif | |
2327 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) | |
2328 | do_unassigned_access(addr, 0, 0, 0, 4); | |
67d3b957 | 2329 | #endif |
33417e70 FB |
2330 | return 0; |
2331 | } | |
2332 | ||
a4193c8a | 2333 | static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) |
33417e70 | 2334 | { |
67d3b957 | 2335 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2336 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); |
67d3b957 | 2337 | #endif |
e18231a3 BS |
2338 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) |
2339 | do_unassigned_access(addr, 1, 0, 0, 1); | |
2340 | #endif | |
2341 | } | |
2342 | ||
2343 | static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2344 | { | |
2345 | #ifdef DEBUG_UNASSIGNED | |
2346 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2347 | #endif | |
2348 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) | |
2349 | do_unassigned_access(addr, 1, 0, 0, 2); | |
2350 | #endif | |
2351 | } | |
2352 | ||
2353 | static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2354 | { | |
2355 | #ifdef DEBUG_UNASSIGNED | |
2356 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2357 | #endif | |
2358 | #if defined(TARGET_SPARC) || defined(TARGET_CRIS) | |
2359 | do_unassigned_access(addr, 1, 0, 0, 4); | |
b4f0a316 | 2360 | #endif |
33417e70 FB |
2361 | } |
2362 | ||
2363 | static CPUReadMemoryFunc *unassigned_mem_read[3] = { | |
2364 | unassigned_mem_readb, | |
e18231a3 BS |
2365 | unassigned_mem_readw, |
2366 | unassigned_mem_readl, | |
33417e70 FB |
2367 | }; |
2368 | ||
2369 | static CPUWriteMemoryFunc *unassigned_mem_write[3] = { | |
2370 | unassigned_mem_writeb, | |
e18231a3 BS |
2371 | unassigned_mem_writew, |
2372 | unassigned_mem_writel, | |
33417e70 FB |
2373 | }; |
2374 | ||
0f459d16 PB |
2375 | static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr, |
2376 | uint32_t val) | |
9fa3e853 | 2377 | { |
3a7d929e | 2378 | int dirty_flags; |
3a7d929e FB |
2379 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2380 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2381 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2382 | tb_invalidate_phys_page_fast(ram_addr, 1); |
2383 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2384 | #endif |
3a7d929e | 2385 | } |
0f459d16 | 2386 | stb_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2387 | #ifdef USE_KQEMU |
2388 | if (cpu_single_env->kqemu_enabled && | |
2389 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2390 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2391 | #endif | |
f23db169 FB |
2392 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2393 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2394 | /* we remove the notdirty callback only if the code has been | |
2395 | flushed */ | |
2396 | if (dirty_flags == 0xff) | |
2e70f6ef | 2397 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2398 | } |
2399 | ||
0f459d16 PB |
2400 | static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr, |
2401 | uint32_t val) | |
9fa3e853 | 2402 | { |
3a7d929e | 2403 | int dirty_flags; |
3a7d929e FB |
2404 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2405 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2406 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2407 | tb_invalidate_phys_page_fast(ram_addr, 2); |
2408 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2409 | #endif |
3a7d929e | 2410 | } |
0f459d16 | 2411 | stw_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2412 | #ifdef USE_KQEMU |
2413 | if (cpu_single_env->kqemu_enabled && | |
2414 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2415 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2416 | #endif | |
f23db169 FB |
2417 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2418 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2419 | /* we remove the notdirty callback only if the code has been | |
2420 | flushed */ | |
2421 | if (dirty_flags == 0xff) | |
2e70f6ef | 2422 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2423 | } |
2424 | ||
0f459d16 PB |
2425 | static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr, |
2426 | uint32_t val) | |
9fa3e853 | 2427 | { |
3a7d929e | 2428 | int dirty_flags; |
3a7d929e FB |
2429 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2430 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2431 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2432 | tb_invalidate_phys_page_fast(ram_addr, 4); |
2433 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2434 | #endif |
3a7d929e | 2435 | } |
0f459d16 | 2436 | stl_p(phys_ram_base + ram_addr, val); |
f32fc648 FB |
2437 | #ifdef USE_KQEMU |
2438 | if (cpu_single_env->kqemu_enabled && | |
2439 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2440 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2441 | #endif | |
f23db169 FB |
2442 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2443 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2444 | /* we remove the notdirty callback only if the code has been | |
2445 | flushed */ | |
2446 | if (dirty_flags == 0xff) | |
2e70f6ef | 2447 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2448 | } |
2449 | ||
3a7d929e | 2450 | static CPUReadMemoryFunc *error_mem_read[3] = { |
9fa3e853 FB |
2451 | NULL, /* never used */ |
2452 | NULL, /* never used */ | |
2453 | NULL, /* never used */ | |
2454 | }; | |
2455 | ||
1ccde1cb FB |
2456 | static CPUWriteMemoryFunc *notdirty_mem_write[3] = { |
2457 | notdirty_mem_writeb, | |
2458 | notdirty_mem_writew, | |
2459 | notdirty_mem_writel, | |
2460 | }; | |
2461 | ||
0f459d16 PB |
2462 | /* Generate a debug exception if a watchpoint has been hit. */ |
2463 | static void check_watchpoint(int offset, int flags) | |
2464 | { | |
2465 | CPUState *env = cpu_single_env; | |
2466 | target_ulong vaddr; | |
2467 | int i; | |
2468 | ||
2e70f6ef | 2469 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
0f459d16 PB |
2470 | for (i = 0; i < env->nb_watchpoints; i++) { |
2471 | if (vaddr == env->watchpoint[i].vaddr | |
2472 | && (env->watchpoint[i].type & flags)) { | |
2473 | env->watchpoint_hit = i + 1; | |
2474 | cpu_interrupt(env, CPU_INTERRUPT_DEBUG); | |
2475 | break; | |
2476 | } | |
2477 | } | |
2478 | } | |
2479 | ||
6658ffb8 PB |
2480 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2481 | so these check for a hit then pass through to the normal out-of-line | |
2482 | phys routines. */ | |
2483 | static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr) | |
2484 | { | |
0f459d16 | 2485 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ); |
6658ffb8 PB |
2486 | return ldub_phys(addr); |
2487 | } | |
2488 | ||
2489 | static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr) | |
2490 | { | |
0f459d16 | 2491 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ); |
6658ffb8 PB |
2492 | return lduw_phys(addr); |
2493 | } | |
2494 | ||
2495 | static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr) | |
2496 | { | |
0f459d16 | 2497 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ); |
6658ffb8 PB |
2498 | return ldl_phys(addr); |
2499 | } | |
2500 | ||
6658ffb8 PB |
2501 | static void watch_mem_writeb(void *opaque, target_phys_addr_t addr, |
2502 | uint32_t val) | |
2503 | { | |
0f459d16 | 2504 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE); |
6658ffb8 PB |
2505 | stb_phys(addr, val); |
2506 | } | |
2507 | ||
2508 | static void watch_mem_writew(void *opaque, target_phys_addr_t addr, | |
2509 | uint32_t val) | |
2510 | { | |
0f459d16 | 2511 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE); |
6658ffb8 PB |
2512 | stw_phys(addr, val); |
2513 | } | |
2514 | ||
2515 | static void watch_mem_writel(void *opaque, target_phys_addr_t addr, | |
2516 | uint32_t val) | |
2517 | { | |
0f459d16 | 2518 | check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE); |
6658ffb8 PB |
2519 | stl_phys(addr, val); |
2520 | } | |
2521 | ||
2522 | static CPUReadMemoryFunc *watch_mem_read[3] = { | |
2523 | watch_mem_readb, | |
2524 | watch_mem_readw, | |
2525 | watch_mem_readl, | |
2526 | }; | |
2527 | ||
2528 | static CPUWriteMemoryFunc *watch_mem_write[3] = { | |
2529 | watch_mem_writeb, | |
2530 | watch_mem_writew, | |
2531 | watch_mem_writel, | |
2532 | }; | |
6658ffb8 | 2533 | |
db7b5426 BS |
2534 | static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr, |
2535 | unsigned int len) | |
2536 | { | |
db7b5426 BS |
2537 | uint32_t ret; |
2538 | unsigned int idx; | |
2539 | ||
2540 | idx = SUBPAGE_IDX(addr - mmio->base); | |
2541 | #if defined(DEBUG_SUBPAGE) | |
2542 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, | |
2543 | mmio, len, addr, idx); | |
2544 | #endif | |
3ee89922 | 2545 | ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr); |
db7b5426 BS |
2546 | |
2547 | return ret; | |
2548 | } | |
2549 | ||
2550 | static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr, | |
2551 | uint32_t value, unsigned int len) | |
2552 | { | |
db7b5426 BS |
2553 | unsigned int idx; |
2554 | ||
2555 | idx = SUBPAGE_IDX(addr - mmio->base); | |
2556 | #if defined(DEBUG_SUBPAGE) | |
2557 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__, | |
2558 | mmio, len, addr, idx, value); | |
2559 | #endif | |
3ee89922 | 2560 | (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value); |
db7b5426 BS |
2561 | } |
2562 | ||
2563 | static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr) | |
2564 | { | |
2565 | #if defined(DEBUG_SUBPAGE) | |
2566 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2567 | #endif | |
2568 | ||
2569 | return subpage_readlen(opaque, addr, 0); | |
2570 | } | |
2571 | ||
2572 | static void subpage_writeb (void *opaque, target_phys_addr_t addr, | |
2573 | uint32_t value) | |
2574 | { | |
2575 | #if defined(DEBUG_SUBPAGE) | |
2576 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2577 | #endif | |
2578 | subpage_writelen(opaque, addr, value, 0); | |
2579 | } | |
2580 | ||
2581 | static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr) | |
2582 | { | |
2583 | #if defined(DEBUG_SUBPAGE) | |
2584 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2585 | #endif | |
2586 | ||
2587 | return subpage_readlen(opaque, addr, 1); | |
2588 | } | |
2589 | ||
2590 | static void subpage_writew (void *opaque, target_phys_addr_t addr, | |
2591 | uint32_t value) | |
2592 | { | |
2593 | #if defined(DEBUG_SUBPAGE) | |
2594 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2595 | #endif | |
2596 | subpage_writelen(opaque, addr, value, 1); | |
2597 | } | |
2598 | ||
2599 | static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr) | |
2600 | { | |
2601 | #if defined(DEBUG_SUBPAGE) | |
2602 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2603 | #endif | |
2604 | ||
2605 | return subpage_readlen(opaque, addr, 2); | |
2606 | } | |
2607 | ||
2608 | static void subpage_writel (void *opaque, | |
2609 | target_phys_addr_t addr, uint32_t value) | |
2610 | { | |
2611 | #if defined(DEBUG_SUBPAGE) | |
2612 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2613 | #endif | |
2614 | subpage_writelen(opaque, addr, value, 2); | |
2615 | } | |
2616 | ||
2617 | static CPUReadMemoryFunc *subpage_read[] = { | |
2618 | &subpage_readb, | |
2619 | &subpage_readw, | |
2620 | &subpage_readl, | |
2621 | }; | |
2622 | ||
2623 | static CPUWriteMemoryFunc *subpage_write[] = { | |
2624 | &subpage_writeb, | |
2625 | &subpage_writew, | |
2626 | &subpage_writel, | |
2627 | }; | |
2628 | ||
2629 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
00f82b8a | 2630 | ram_addr_t memory) |
db7b5426 BS |
2631 | { |
2632 | int idx, eidx; | |
4254fab8 | 2633 | unsigned int i; |
db7b5426 BS |
2634 | |
2635 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2636 | return -1; | |
2637 | idx = SUBPAGE_IDX(start); | |
2638 | eidx = SUBPAGE_IDX(end); | |
2639 | #if defined(DEBUG_SUBPAGE) | |
2640 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__, | |
2641 | mmio, start, end, idx, eidx, memory); | |
2642 | #endif | |
2643 | memory >>= IO_MEM_SHIFT; | |
2644 | for (; idx <= eidx; idx++) { | |
4254fab8 | 2645 | for (i = 0; i < 4; i++) { |
3ee89922 BS |
2646 | if (io_mem_read[memory][i]) { |
2647 | mmio->mem_read[idx][i] = &io_mem_read[memory][i]; | |
2648 | mmio->opaque[idx][0][i] = io_mem_opaque[memory]; | |
2649 | } | |
2650 | if (io_mem_write[memory][i]) { | |
2651 | mmio->mem_write[idx][i] = &io_mem_write[memory][i]; | |
2652 | mmio->opaque[idx][1][i] = io_mem_opaque[memory]; | |
2653 | } | |
4254fab8 | 2654 | } |
db7b5426 BS |
2655 | } |
2656 | ||
2657 | return 0; | |
2658 | } | |
2659 | ||
00f82b8a AJ |
2660 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
2661 | ram_addr_t orig_memory) | |
db7b5426 BS |
2662 | { |
2663 | subpage_t *mmio; | |
2664 | int subpage_memory; | |
2665 | ||
2666 | mmio = qemu_mallocz(sizeof(subpage_t)); | |
2667 | if (mmio != NULL) { | |
2668 | mmio->base = base; | |
2669 | subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio); | |
2670 | #if defined(DEBUG_SUBPAGE) | |
2671 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, | |
2672 | mmio, base, TARGET_PAGE_SIZE, subpage_memory); | |
2673 | #endif | |
2674 | *phys = subpage_memory | IO_MEM_SUBPAGE; | |
2675 | subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory); | |
2676 | } | |
2677 | ||
2678 | return mmio; | |
2679 | } | |
2680 | ||
33417e70 FB |
2681 | static void io_mem_init(void) |
2682 | { | |
3a7d929e | 2683 | cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL); |
a4193c8a | 2684 | cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL); |
3a7d929e | 2685 | cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL); |
1ccde1cb FB |
2686 | io_mem_nb = 5; |
2687 | ||
0f459d16 | 2688 | io_mem_watch = cpu_register_io_memory(0, watch_mem_read, |
6658ffb8 | 2689 | watch_mem_write, NULL); |
1ccde1cb | 2690 | /* alloc dirty bits array */ |
0a962c02 | 2691 | phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS); |
3a7d929e | 2692 | memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS); |
33417e70 FB |
2693 | } |
2694 | ||
2695 | /* mem_read and mem_write are arrays of functions containing the | |
2696 | function to access byte (index 0), word (index 1) and dword (index | |
3ee89922 BS |
2697 | 2). Functions can be omitted with a NULL function pointer. The |
2698 | registered functions may be modified dynamically later. | |
2699 | If io_index is non zero, the corresponding io zone is | |
4254fab8 BS |
2700 | modified. If it is zero, a new io zone is allocated. The return |
2701 | value can be used with cpu_register_physical_memory(). (-1) is | |
2702 | returned if error. */ | |
33417e70 FB |
2703 | int cpu_register_io_memory(int io_index, |
2704 | CPUReadMemoryFunc **mem_read, | |
a4193c8a FB |
2705 | CPUWriteMemoryFunc **mem_write, |
2706 | void *opaque) | |
33417e70 | 2707 | { |
4254fab8 | 2708 | int i, subwidth = 0; |
33417e70 FB |
2709 | |
2710 | if (io_index <= 0) { | |
b5ff1b31 | 2711 | if (io_mem_nb >= IO_MEM_NB_ENTRIES) |
33417e70 FB |
2712 | return -1; |
2713 | io_index = io_mem_nb++; | |
2714 | } else { | |
2715 | if (io_index >= IO_MEM_NB_ENTRIES) | |
2716 | return -1; | |
2717 | } | |
b5ff1b31 | 2718 | |
33417e70 | 2719 | for(i = 0;i < 3; i++) { |
4254fab8 BS |
2720 | if (!mem_read[i] || !mem_write[i]) |
2721 | subwidth = IO_MEM_SUBWIDTH; | |
33417e70 FB |
2722 | io_mem_read[io_index][i] = mem_read[i]; |
2723 | io_mem_write[io_index][i] = mem_write[i]; | |
2724 | } | |
a4193c8a | 2725 | io_mem_opaque[io_index] = opaque; |
4254fab8 | 2726 | return (io_index << IO_MEM_SHIFT) | subwidth; |
33417e70 | 2727 | } |
61382a50 | 2728 | |
8926b517 FB |
2729 | CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index) |
2730 | { | |
2731 | return io_mem_write[io_index >> IO_MEM_SHIFT]; | |
2732 | } | |
2733 | ||
2734 | CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index) | |
2735 | { | |
2736 | return io_mem_read[io_index >> IO_MEM_SHIFT]; | |
2737 | } | |
2738 | ||
e2eef170 PB |
2739 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2740 | ||
13eb76e0 FB |
2741 | /* physical memory access (slow version, mainly for debug) */ |
2742 | #if defined(CONFIG_USER_ONLY) | |
5fafdf24 | 2743 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
2744 | int len, int is_write) |
2745 | { | |
2746 | int l, flags; | |
2747 | target_ulong page; | |
53a5960a | 2748 | void * p; |
13eb76e0 FB |
2749 | |
2750 | while (len > 0) { | |
2751 | page = addr & TARGET_PAGE_MASK; | |
2752 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2753 | if (l > len) | |
2754 | l = len; | |
2755 | flags = page_get_flags(page); | |
2756 | if (!(flags & PAGE_VALID)) | |
2757 | return; | |
2758 | if (is_write) { | |
2759 | if (!(flags & PAGE_WRITE)) | |
2760 | return; | |
579a97f7 | 2761 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2762 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
579a97f7 FB |
2763 | /* FIXME - should this return an error rather than just fail? */ |
2764 | return; | |
72fb7daa AJ |
2765 | memcpy(p, buf, l); |
2766 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2767 | } else { |
2768 | if (!(flags & PAGE_READ)) | |
2769 | return; | |
579a97f7 | 2770 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2771 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
579a97f7 FB |
2772 | /* FIXME - should this return an error rather than just fail? */ |
2773 | return; | |
72fb7daa | 2774 | memcpy(buf, p, l); |
5b257578 | 2775 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2776 | } |
2777 | len -= l; | |
2778 | buf += l; | |
2779 | addr += l; | |
2780 | } | |
2781 | } | |
8df1cd07 | 2782 | |
13eb76e0 | 2783 | #else |
5fafdf24 | 2784 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
2785 | int len, int is_write) |
2786 | { | |
2787 | int l, io_index; | |
2788 | uint8_t *ptr; | |
2789 | uint32_t val; | |
2e12669a FB |
2790 | target_phys_addr_t page; |
2791 | unsigned long pd; | |
92e873b9 | 2792 | PhysPageDesc *p; |
3b46e624 | 2793 | |
13eb76e0 FB |
2794 | while (len > 0) { |
2795 | page = addr & TARGET_PAGE_MASK; | |
2796 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2797 | if (l > len) | |
2798 | l = len; | |
92e873b9 | 2799 | p = phys_page_find(page >> TARGET_PAGE_BITS); |
13eb76e0 FB |
2800 | if (!p) { |
2801 | pd = IO_MEM_UNASSIGNED; | |
2802 | } else { | |
2803 | pd = p->phys_offset; | |
2804 | } | |
3b46e624 | 2805 | |
13eb76e0 | 2806 | if (is_write) { |
3a7d929e | 2807 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
13eb76e0 | 2808 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
6a00d601 FB |
2809 | /* XXX: could force cpu_single_env to NULL to avoid |
2810 | potential bugs */ | |
13eb76e0 | 2811 | if (l >= 4 && ((addr & 3) == 0)) { |
1c213d19 | 2812 | /* 32 bit write access */ |
c27004ec | 2813 | val = ldl_p(buf); |
a4193c8a | 2814 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
13eb76e0 FB |
2815 | l = 4; |
2816 | } else if (l >= 2 && ((addr & 1) == 0)) { | |
1c213d19 | 2817 | /* 16 bit write access */ |
c27004ec | 2818 | val = lduw_p(buf); |
a4193c8a | 2819 | io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val); |
13eb76e0 FB |
2820 | l = 2; |
2821 | } else { | |
1c213d19 | 2822 | /* 8 bit write access */ |
c27004ec | 2823 | val = ldub_p(buf); |
a4193c8a | 2824 | io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val); |
13eb76e0 FB |
2825 | l = 1; |
2826 | } | |
2827 | } else { | |
b448f2f3 FB |
2828 | unsigned long addr1; |
2829 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
13eb76e0 | 2830 | /* RAM case */ |
b448f2f3 | 2831 | ptr = phys_ram_base + addr1; |
13eb76e0 | 2832 | memcpy(ptr, buf, l); |
3a7d929e FB |
2833 | if (!cpu_physical_memory_is_dirty(addr1)) { |
2834 | /* invalidate code */ | |
2835 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
2836 | /* set dirty bit */ | |
5fafdf24 | 2837 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
f23db169 | 2838 | (0xff & ~CODE_DIRTY_FLAG); |
3a7d929e | 2839 | } |
13eb76e0 FB |
2840 | } |
2841 | } else { | |
5fafdf24 | 2842 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 2843 | !(pd & IO_MEM_ROMD)) { |
13eb76e0 FB |
2844 | /* I/O case */ |
2845 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
2846 | if (l >= 4 && ((addr & 3) == 0)) { | |
2847 | /* 32 bit read access */ | |
a4193c8a | 2848 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); |
c27004ec | 2849 | stl_p(buf, val); |
13eb76e0 FB |
2850 | l = 4; |
2851 | } else if (l >= 2 && ((addr & 1) == 0)) { | |
2852 | /* 16 bit read access */ | |
a4193c8a | 2853 | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr); |
c27004ec | 2854 | stw_p(buf, val); |
13eb76e0 FB |
2855 | l = 2; |
2856 | } else { | |
1c213d19 | 2857 | /* 8 bit read access */ |
a4193c8a | 2858 | val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr); |
c27004ec | 2859 | stb_p(buf, val); |
13eb76e0 FB |
2860 | l = 1; |
2861 | } | |
2862 | } else { | |
2863 | /* RAM case */ | |
5fafdf24 | 2864 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
13eb76e0 FB |
2865 | (addr & ~TARGET_PAGE_MASK); |
2866 | memcpy(buf, ptr, l); | |
2867 | } | |
2868 | } | |
2869 | len -= l; | |
2870 | buf += l; | |
2871 | addr += l; | |
2872 | } | |
2873 | } | |
8df1cd07 | 2874 | |
d0ecd2aa | 2875 | /* used for ROM loading : can write in RAM and ROM */ |
5fafdf24 | 2876 | void cpu_physical_memory_write_rom(target_phys_addr_t addr, |
d0ecd2aa FB |
2877 | const uint8_t *buf, int len) |
2878 | { | |
2879 | int l; | |
2880 | uint8_t *ptr; | |
2881 | target_phys_addr_t page; | |
2882 | unsigned long pd; | |
2883 | PhysPageDesc *p; | |
3b46e624 | 2884 | |
d0ecd2aa FB |
2885 | while (len > 0) { |
2886 | page = addr & TARGET_PAGE_MASK; | |
2887 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2888 | if (l > len) | |
2889 | l = len; | |
2890 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
2891 | if (!p) { | |
2892 | pd = IO_MEM_UNASSIGNED; | |
2893 | } else { | |
2894 | pd = p->phys_offset; | |
2895 | } | |
3b46e624 | 2896 | |
d0ecd2aa | 2897 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM && |
2a4188a3 FB |
2898 | (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM && |
2899 | !(pd & IO_MEM_ROMD)) { | |
d0ecd2aa FB |
2900 | /* do nothing */ |
2901 | } else { | |
2902 | unsigned long addr1; | |
2903 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
2904 | /* ROM/RAM case */ | |
2905 | ptr = phys_ram_base + addr1; | |
2906 | memcpy(ptr, buf, l); | |
2907 | } | |
2908 | len -= l; | |
2909 | buf += l; | |
2910 | addr += l; | |
2911 | } | |
2912 | } | |
2913 | ||
2914 | ||
8df1cd07 FB |
2915 | /* warning: addr must be aligned */ |
2916 | uint32_t ldl_phys(target_phys_addr_t addr) | |
2917 | { | |
2918 | int io_index; | |
2919 | uint8_t *ptr; | |
2920 | uint32_t val; | |
2921 | unsigned long pd; | |
2922 | PhysPageDesc *p; | |
2923 | ||
2924 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2925 | if (!p) { | |
2926 | pd = IO_MEM_UNASSIGNED; | |
2927 | } else { | |
2928 | pd = p->phys_offset; | |
2929 | } | |
3b46e624 | 2930 | |
5fafdf24 | 2931 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 2932 | !(pd & IO_MEM_ROMD)) { |
8df1cd07 FB |
2933 | /* I/O case */ |
2934 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
2935 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
2936 | } else { | |
2937 | /* RAM case */ | |
5fafdf24 | 2938 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
8df1cd07 FB |
2939 | (addr & ~TARGET_PAGE_MASK); |
2940 | val = ldl_p(ptr); | |
2941 | } | |
2942 | return val; | |
2943 | } | |
2944 | ||
84b7b8e7 FB |
2945 | /* warning: addr must be aligned */ |
2946 | uint64_t ldq_phys(target_phys_addr_t addr) | |
2947 | { | |
2948 | int io_index; | |
2949 | uint8_t *ptr; | |
2950 | uint64_t val; | |
2951 | unsigned long pd; | |
2952 | PhysPageDesc *p; | |
2953 | ||
2954 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2955 | if (!p) { | |
2956 | pd = IO_MEM_UNASSIGNED; | |
2957 | } else { | |
2958 | pd = p->phys_offset; | |
2959 | } | |
3b46e624 | 2960 | |
2a4188a3 FB |
2961 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2962 | !(pd & IO_MEM_ROMD)) { | |
84b7b8e7 FB |
2963 | /* I/O case */ |
2964 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
2965 | #ifdef TARGET_WORDS_BIGENDIAN | |
2966 | val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32; | |
2967 | val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4); | |
2968 | #else | |
2969 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
2970 | val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32; | |
2971 | #endif | |
2972 | } else { | |
2973 | /* RAM case */ | |
5fafdf24 | 2974 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
84b7b8e7 FB |
2975 | (addr & ~TARGET_PAGE_MASK); |
2976 | val = ldq_p(ptr); | |
2977 | } | |
2978 | return val; | |
2979 | } | |
2980 | ||
aab33094 FB |
2981 | /* XXX: optimize */ |
2982 | uint32_t ldub_phys(target_phys_addr_t addr) | |
2983 | { | |
2984 | uint8_t val; | |
2985 | cpu_physical_memory_read(addr, &val, 1); | |
2986 | return val; | |
2987 | } | |
2988 | ||
2989 | /* XXX: optimize */ | |
2990 | uint32_t lduw_phys(target_phys_addr_t addr) | |
2991 | { | |
2992 | uint16_t val; | |
2993 | cpu_physical_memory_read(addr, (uint8_t *)&val, 2); | |
2994 | return tswap16(val); | |
2995 | } | |
2996 | ||
8df1cd07 FB |
2997 | /* warning: addr must be aligned. The ram page is not masked as dirty |
2998 | and the code inside is not invalidated. It is useful if the dirty | |
2999 | bits are used to track modified PTEs */ | |
3000 | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val) | |
3001 | { | |
3002 | int io_index; | |
3003 | uint8_t *ptr; | |
3004 | unsigned long pd; | |
3005 | PhysPageDesc *p; | |
3006 | ||
3007 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3008 | if (!p) { | |
3009 | pd = IO_MEM_UNASSIGNED; | |
3010 | } else { | |
3011 | pd = p->phys_offset; | |
3012 | } | |
3b46e624 | 3013 | |
3a7d929e | 3014 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 FB |
3015 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
3016 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3017 | } else { | |
74576198 AL |
3018 | unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
3019 | ptr = phys_ram_base + addr1; | |
8df1cd07 | 3020 | stl_p(ptr, val); |
74576198 AL |
3021 | |
3022 | if (unlikely(in_migration)) { | |
3023 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3024 | /* invalidate code */ | |
3025 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3026 | /* set dirty bit */ | |
3027 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3028 | (0xff & ~CODE_DIRTY_FLAG); | |
3029 | } | |
3030 | } | |
8df1cd07 FB |
3031 | } |
3032 | } | |
3033 | ||
bc98a7ef JM |
3034 | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val) |
3035 | { | |
3036 | int io_index; | |
3037 | uint8_t *ptr; | |
3038 | unsigned long pd; | |
3039 | PhysPageDesc *p; | |
3040 | ||
3041 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3042 | if (!p) { | |
3043 | pd = IO_MEM_UNASSIGNED; | |
3044 | } else { | |
3045 | pd = p->phys_offset; | |
3046 | } | |
3b46e624 | 3047 | |
bc98a7ef JM |
3048 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
3049 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
3050 | #ifdef TARGET_WORDS_BIGENDIAN | |
3051 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32); | |
3052 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val); | |
3053 | #else | |
3054 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3055 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32); | |
3056 | #endif | |
3057 | } else { | |
5fafdf24 | 3058 | ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + |
bc98a7ef JM |
3059 | (addr & ~TARGET_PAGE_MASK); |
3060 | stq_p(ptr, val); | |
3061 | } | |
3062 | } | |
3063 | ||
8df1cd07 | 3064 | /* warning: addr must be aligned */ |
8df1cd07 FB |
3065 | void stl_phys(target_phys_addr_t addr, uint32_t val) |
3066 | { | |
3067 | int io_index; | |
3068 | uint8_t *ptr; | |
3069 | unsigned long pd; | |
3070 | PhysPageDesc *p; | |
3071 | ||
3072 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3073 | if (!p) { | |
3074 | pd = IO_MEM_UNASSIGNED; | |
3075 | } else { | |
3076 | pd = p->phys_offset; | |
3077 | } | |
3b46e624 | 3078 | |
3a7d929e | 3079 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 FB |
3080 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
3081 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3082 | } else { | |
3083 | unsigned long addr1; | |
3084 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3085 | /* RAM case */ | |
3086 | ptr = phys_ram_base + addr1; | |
3087 | stl_p(ptr, val); | |
3a7d929e FB |
3088 | if (!cpu_physical_memory_is_dirty(addr1)) { |
3089 | /* invalidate code */ | |
3090 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3091 | /* set dirty bit */ | |
f23db169 FB |
3092 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
3093 | (0xff & ~CODE_DIRTY_FLAG); | |
3a7d929e | 3094 | } |
8df1cd07 FB |
3095 | } |
3096 | } | |
3097 | ||
aab33094 FB |
3098 | /* XXX: optimize */ |
3099 | void stb_phys(target_phys_addr_t addr, uint32_t val) | |
3100 | { | |
3101 | uint8_t v = val; | |
3102 | cpu_physical_memory_write(addr, &v, 1); | |
3103 | } | |
3104 | ||
3105 | /* XXX: optimize */ | |
3106 | void stw_phys(target_phys_addr_t addr, uint32_t val) | |
3107 | { | |
3108 | uint16_t v = tswap16(val); | |
3109 | cpu_physical_memory_write(addr, (const uint8_t *)&v, 2); | |
3110 | } | |
3111 | ||
3112 | /* XXX: optimize */ | |
3113 | void stq_phys(target_phys_addr_t addr, uint64_t val) | |
3114 | { | |
3115 | val = tswap64(val); | |
3116 | cpu_physical_memory_write(addr, (const uint8_t *)&val, 8); | |
3117 | } | |
3118 | ||
13eb76e0 FB |
3119 | #endif |
3120 | ||
3121 | /* virtual memory access for debug */ | |
5fafdf24 | 3122 | int cpu_memory_rw_debug(CPUState *env, target_ulong addr, |
b448f2f3 | 3123 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3124 | { |
3125 | int l; | |
9b3c35e0 JM |
3126 | target_phys_addr_t phys_addr; |
3127 | target_ulong page; | |
13eb76e0 FB |
3128 | |
3129 | while (len > 0) { | |
3130 | page = addr & TARGET_PAGE_MASK; | |
3131 | phys_addr = cpu_get_phys_page_debug(env, page); | |
3132 | /* if no physical page mapped, return an error */ | |
3133 | if (phys_addr == -1) | |
3134 | return -1; | |
3135 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3136 | if (l > len) | |
3137 | l = len; | |
5fafdf24 | 3138 | cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK), |
b448f2f3 | 3139 | buf, l, is_write); |
13eb76e0 FB |
3140 | len -= l; |
3141 | buf += l; | |
3142 | addr += l; | |
3143 | } | |
3144 | return 0; | |
3145 | } | |
3146 | ||
2e70f6ef PB |
3147 | /* in deterministic execution mode, instructions doing device I/Os |
3148 | must be at the end of the TB */ | |
3149 | void cpu_io_recompile(CPUState *env, void *retaddr) | |
3150 | { | |
3151 | TranslationBlock *tb; | |
3152 | uint32_t n, cflags; | |
3153 | target_ulong pc, cs_base; | |
3154 | uint64_t flags; | |
3155 | ||
3156 | tb = tb_find_pc((unsigned long)retaddr); | |
3157 | if (!tb) { | |
3158 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | |
3159 | retaddr); | |
3160 | } | |
3161 | n = env->icount_decr.u16.low + tb->icount; | |
3162 | cpu_restore_state(tb, env, (unsigned long)retaddr, NULL); | |
3163 | /* Calculate how many instructions had been executed before the fault | |
bf20dc07 | 3164 | occurred. */ |
2e70f6ef PB |
3165 | n = n - env->icount_decr.u16.low; |
3166 | /* Generate a new TB ending on the I/O insn. */ | |
3167 | n++; | |
3168 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
3169 | they were already the first instruction in the TB. If this is not | |
bf20dc07 | 3170 | the first instruction in a TB then re-execute the preceding |
2e70f6ef PB |
3171 | branch. */ |
3172 | #if defined(TARGET_MIPS) | |
3173 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
3174 | env->active_tc.PC -= 4; | |
3175 | env->icount_decr.u16.low++; | |
3176 | env->hflags &= ~MIPS_HFLAG_BMASK; | |
3177 | } | |
3178 | #elif defined(TARGET_SH4) | |
3179 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
3180 | && n > 1) { | |
3181 | env->pc -= 2; | |
3182 | env->icount_decr.u16.low++; | |
3183 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | |
3184 | } | |
3185 | #endif | |
3186 | /* This should never happen. */ | |
3187 | if (n > CF_COUNT_MASK) | |
3188 | cpu_abort(env, "TB too big during recompile"); | |
3189 | ||
3190 | cflags = n | CF_LAST_IO; | |
3191 | pc = tb->pc; | |
3192 | cs_base = tb->cs_base; | |
3193 | flags = tb->flags; | |
3194 | tb_phys_invalidate(tb, -1); | |
3195 | /* FIXME: In theory this could raise an exception. In practice | |
3196 | we have already translated the block once so it's probably ok. */ | |
3197 | tb_gen_code(env, pc, cs_base, flags, cflags); | |
bf20dc07 | 3198 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not |
2e70f6ef PB |
3199 | the first in the TB) then we end up generating a whole new TB and |
3200 | repeating the fault, which is horribly inefficient. | |
3201 | Better would be to execute just this insn uncached, or generate a | |
3202 | second new TB. */ | |
3203 | cpu_resume_from_signal(env, NULL); | |
3204 | } | |
3205 | ||
e3db7226 FB |
3206 | void dump_exec_info(FILE *f, |
3207 | int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) | |
3208 | { | |
3209 | int i, target_code_size, max_target_code_size; | |
3210 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
3211 | TranslationBlock *tb; | |
3b46e624 | 3212 | |
e3db7226 FB |
3213 | target_code_size = 0; |
3214 | max_target_code_size = 0; | |
3215 | cross_page = 0; | |
3216 | direct_jmp_count = 0; | |
3217 | direct_jmp2_count = 0; | |
3218 | for(i = 0; i < nb_tbs; i++) { | |
3219 | tb = &tbs[i]; | |
3220 | target_code_size += tb->size; | |
3221 | if (tb->size > max_target_code_size) | |
3222 | max_target_code_size = tb->size; | |
3223 | if (tb->page_addr[1] != -1) | |
3224 | cross_page++; | |
3225 | if (tb->tb_next_offset[0] != 0xffff) { | |
3226 | direct_jmp_count++; | |
3227 | if (tb->tb_next_offset[1] != 0xffff) { | |
3228 | direct_jmp2_count++; | |
3229 | } | |
3230 | } | |
3231 | } | |
3232 | /* XXX: avoid using doubles ? */ | |
57fec1fe | 3233 | cpu_fprintf(f, "Translation buffer state:\n"); |
26a5f13b FB |
3234 | cpu_fprintf(f, "gen code size %ld/%ld\n", |
3235 | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size); | |
3236 | cpu_fprintf(f, "TB count %d/%d\n", | |
3237 | nb_tbs, code_gen_max_blocks); | |
5fafdf24 | 3238 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", |
e3db7226 FB |
3239 | nb_tbs ? target_code_size / nb_tbs : 0, |
3240 | max_target_code_size); | |
5fafdf24 | 3241 | cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n", |
e3db7226 FB |
3242 | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0, |
3243 | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0); | |
5fafdf24 TS |
3244 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", |
3245 | cross_page, | |
e3db7226 FB |
3246 | nb_tbs ? (cross_page * 100) / nb_tbs : 0); |
3247 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", | |
5fafdf24 | 3248 | direct_jmp_count, |
e3db7226 FB |
3249 | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0, |
3250 | direct_jmp2_count, | |
3251 | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0); | |
57fec1fe | 3252 | cpu_fprintf(f, "\nStatistics:\n"); |
e3db7226 FB |
3253 | cpu_fprintf(f, "TB flush count %d\n", tb_flush_count); |
3254 | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count); | |
3255 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); | |
b67d9a52 | 3256 | tcg_dump_info(f, cpu_fprintf); |
e3db7226 FB |
3257 | } |
3258 | ||
5fafdf24 | 3259 | #if !defined(CONFIG_USER_ONLY) |
61382a50 FB |
3260 | |
3261 | #define MMUSUFFIX _cmmu | |
3262 | #define GETPC() NULL | |
3263 | #define env cpu_single_env | |
b769d8fe | 3264 | #define SOFTMMU_CODE_ACCESS |
61382a50 FB |
3265 | |
3266 | #define SHIFT 0 | |
3267 | #include "softmmu_template.h" | |
3268 | ||
3269 | #define SHIFT 1 | |
3270 | #include "softmmu_template.h" | |
3271 | ||
3272 | #define SHIFT 2 | |
3273 | #include "softmmu_template.h" | |
3274 | ||
3275 | #define SHIFT 3 | |
3276 | #include "softmmu_template.h" | |
3277 | ||
3278 | #undef env | |
3279 | ||
3280 | #endif |