]>
Commit | Line | Data |
---|---|---|
31e31b8a | 1 | /* This is the Linux kernel elf-loading code, ported into user space */ |
edf8e2af MW |
2 | #include <sys/time.h> |
3 | #include <sys/param.h> | |
31e31b8a FB |
4 | |
5 | #include <stdio.h> | |
6 | #include <sys/types.h> | |
7 | #include <fcntl.h> | |
31e31b8a FB |
8 | #include <errno.h> |
9 | #include <unistd.h> | |
10 | #include <sys/mman.h> | |
edf8e2af | 11 | #include <sys/resource.h> |
31e31b8a FB |
12 | #include <stdlib.h> |
13 | #include <string.h> | |
edf8e2af | 14 | #include <time.h> |
31e31b8a | 15 | |
3ef693a0 | 16 | #include "qemu.h" |
689f936f | 17 | #include "disas.h" |
31e31b8a | 18 | |
e58ffeb3 | 19 | #ifdef _ARCH_PPC64 |
a6cc84f4 | 20 | #undef ARCH_DLINFO |
21 | #undef ELF_PLATFORM | |
22 | #undef ELF_HWCAP | |
23 | #undef ELF_CLASS | |
24 | #undef ELF_DATA | |
25 | #undef ELF_ARCH | |
26 | #endif | |
27 | ||
edf8e2af MW |
28 | #define ELF_OSABI ELFOSABI_SYSV |
29 | ||
cb33da57 BS |
30 | /* from personality.h */ |
31 | ||
32 | /* | |
33 | * Flags for bug emulation. | |
34 | * | |
35 | * These occupy the top three bytes. | |
36 | */ | |
37 | enum { | |
d97ef72e RH |
38 | ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ |
39 | FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to | |
40 | descriptors (signal handling) */ | |
41 | MMAP_PAGE_ZERO = 0x0100000, | |
42 | ADDR_COMPAT_LAYOUT = 0x0200000, | |
43 | READ_IMPLIES_EXEC = 0x0400000, | |
44 | ADDR_LIMIT_32BIT = 0x0800000, | |
45 | SHORT_INODE = 0x1000000, | |
46 | WHOLE_SECONDS = 0x2000000, | |
47 | STICKY_TIMEOUTS = 0x4000000, | |
48 | ADDR_LIMIT_3GB = 0x8000000, | |
cb33da57 BS |
49 | }; |
50 | ||
51 | /* | |
52 | * Personality types. | |
53 | * | |
54 | * These go in the low byte. Avoid using the top bit, it will | |
55 | * conflict with error returns. | |
56 | */ | |
57 | enum { | |
d97ef72e RH |
58 | PER_LINUX = 0x0000, |
59 | PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, | |
60 | PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, | |
61 | PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | |
62 | PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, | |
63 | PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, | |
64 | PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, | |
65 | PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, | |
66 | PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, | |
67 | PER_BSD = 0x0006, | |
68 | PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, | |
69 | PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, | |
70 | PER_LINUX32 = 0x0008, | |
71 | PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, | |
72 | PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ | |
73 | PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ | |
74 | PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ | |
75 | PER_RISCOS = 0x000c, | |
76 | PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, | |
77 | PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | |
78 | PER_OSF4 = 0x000f, /* OSF/1 v4 */ | |
79 | PER_HPUX = 0x0010, | |
80 | PER_MASK = 0x00ff, | |
cb33da57 BS |
81 | }; |
82 | ||
83 | /* | |
84 | * Return the base personality without flags. | |
85 | */ | |
d97ef72e | 86 | #define personality(pers) (pers & PER_MASK) |
cb33da57 | 87 | |
83fb7adf FB |
88 | /* this flag is uneffective under linux too, should be deleted */ |
89 | #ifndef MAP_DENYWRITE | |
90 | #define MAP_DENYWRITE 0 | |
91 | #endif | |
92 | ||
93 | /* should probably go in elf.h */ | |
94 | #ifndef ELIBBAD | |
95 | #define ELIBBAD 80 | |
96 | #endif | |
97 | ||
28490231 RH |
98 | #ifdef TARGET_WORDS_BIGENDIAN |
99 | #define ELF_DATA ELFDATA2MSB | |
100 | #else | |
101 | #define ELF_DATA ELFDATA2LSB | |
102 | #endif | |
103 | ||
d97ef72e | 104 | typedef target_ulong target_elf_greg_t; |
21e807fa | 105 | #ifdef USE_UID16 |
d97ef72e RH |
106 | typedef uint16_t target_uid_t; |
107 | typedef uint16_t target_gid_t; | |
21e807fa | 108 | #else |
d97ef72e RH |
109 | typedef uint32_t target_uid_t; |
110 | typedef uint32_t target_gid_t; | |
21e807fa | 111 | #endif |
d97ef72e | 112 | typedef int32_t target_pid_t; |
21e807fa | 113 | |
30ac07d4 FB |
114 | #ifdef TARGET_I386 |
115 | ||
15338fd7 FB |
116 | #define ELF_PLATFORM get_elf_platform() |
117 | ||
118 | static const char *get_elf_platform(void) | |
119 | { | |
120 | static char elf_platform[] = "i386"; | |
d5975363 | 121 | int family = (thread_env->cpuid_version >> 8) & 0xff; |
15338fd7 FB |
122 | if (family > 6) |
123 | family = 6; | |
124 | if (family >= 3) | |
125 | elf_platform[1] = '0' + family; | |
126 | return elf_platform; | |
127 | } | |
128 | ||
129 | #define ELF_HWCAP get_elf_hwcap() | |
130 | ||
131 | static uint32_t get_elf_hwcap(void) | |
132 | { | |
d97ef72e | 133 | return thread_env->cpuid_features; |
15338fd7 FB |
134 | } |
135 | ||
84409ddb JM |
136 | #ifdef TARGET_X86_64 |
137 | #define ELF_START_MMAP 0x2aaaaab000ULL | |
138 | #define elf_check_arch(x) ( ((x) == ELF_ARCH) ) | |
139 | ||
140 | #define ELF_CLASS ELFCLASS64 | |
84409ddb JM |
141 | #define ELF_ARCH EM_X86_64 |
142 | ||
143 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
144 | { | |
145 | regs->rax = 0; | |
146 | regs->rsp = infop->start_stack; | |
147 | regs->rip = infop->entry; | |
148 | } | |
149 | ||
9edc5d79 | 150 | #define ELF_NREG 27 |
c227f099 | 151 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
9edc5d79 MW |
152 | |
153 | /* | |
154 | * Note that ELF_NREG should be 29 as there should be place for | |
155 | * TRAPNO and ERR "registers" as well but linux doesn't dump | |
156 | * those. | |
157 | * | |
158 | * See linux kernel: arch/x86/include/asm/elf.h | |
159 | */ | |
c227f099 | 160 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) |
9edc5d79 MW |
161 | { |
162 | (*regs)[0] = env->regs[15]; | |
163 | (*regs)[1] = env->regs[14]; | |
164 | (*regs)[2] = env->regs[13]; | |
165 | (*regs)[3] = env->regs[12]; | |
166 | (*regs)[4] = env->regs[R_EBP]; | |
167 | (*regs)[5] = env->regs[R_EBX]; | |
168 | (*regs)[6] = env->regs[11]; | |
169 | (*regs)[7] = env->regs[10]; | |
170 | (*regs)[8] = env->regs[9]; | |
171 | (*regs)[9] = env->regs[8]; | |
172 | (*regs)[10] = env->regs[R_EAX]; | |
173 | (*regs)[11] = env->regs[R_ECX]; | |
174 | (*regs)[12] = env->regs[R_EDX]; | |
175 | (*regs)[13] = env->regs[R_ESI]; | |
176 | (*regs)[14] = env->regs[R_EDI]; | |
177 | (*regs)[15] = env->regs[R_EAX]; /* XXX */ | |
178 | (*regs)[16] = env->eip; | |
179 | (*regs)[17] = env->segs[R_CS].selector & 0xffff; | |
180 | (*regs)[18] = env->eflags; | |
181 | (*regs)[19] = env->regs[R_ESP]; | |
182 | (*regs)[20] = env->segs[R_SS].selector & 0xffff; | |
183 | (*regs)[21] = env->segs[R_FS].selector & 0xffff; | |
184 | (*regs)[22] = env->segs[R_GS].selector & 0xffff; | |
185 | (*regs)[23] = env->segs[R_DS].selector & 0xffff; | |
186 | (*regs)[24] = env->segs[R_ES].selector & 0xffff; | |
187 | (*regs)[25] = env->segs[R_FS].selector & 0xffff; | |
188 | (*regs)[26] = env->segs[R_GS].selector & 0xffff; | |
189 | } | |
190 | ||
84409ddb JM |
191 | #else |
192 | ||
30ac07d4 FB |
193 | #define ELF_START_MMAP 0x80000000 |
194 | ||
30ac07d4 FB |
195 | /* |
196 | * This is used to ensure we don't load something for the wrong architecture. | |
197 | */ | |
198 | #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) | |
199 | ||
200 | /* | |
201 | * These are used to set parameters in the core dumps. | |
202 | */ | |
d97ef72e | 203 | #define ELF_CLASS ELFCLASS32 |
d97ef72e | 204 | #define ELF_ARCH EM_386 |
30ac07d4 | 205 | |
d97ef72e RH |
206 | static inline void init_thread(struct target_pt_regs *regs, |
207 | struct image_info *infop) | |
b346ff46 FB |
208 | { |
209 | regs->esp = infop->start_stack; | |
210 | regs->eip = infop->entry; | |
e5fe0c52 PB |
211 | |
212 | /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program | |
213 | starts %edx contains a pointer to a function which might be | |
214 | registered using `atexit'. This provides a mean for the | |
215 | dynamic linker to call DT_FINI functions for shared libraries | |
216 | that have been loaded before the code runs. | |
217 | ||
218 | A value of 0 tells we have no such handler. */ | |
219 | regs->edx = 0; | |
b346ff46 | 220 | } |
9edc5d79 | 221 | |
9edc5d79 | 222 | #define ELF_NREG 17 |
c227f099 | 223 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
9edc5d79 MW |
224 | |
225 | /* | |
226 | * Note that ELF_NREG should be 19 as there should be place for | |
227 | * TRAPNO and ERR "registers" as well but linux doesn't dump | |
228 | * those. | |
229 | * | |
230 | * See linux kernel: arch/x86/include/asm/elf.h | |
231 | */ | |
c227f099 | 232 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) |
9edc5d79 MW |
233 | { |
234 | (*regs)[0] = env->regs[R_EBX]; | |
235 | (*regs)[1] = env->regs[R_ECX]; | |
236 | (*regs)[2] = env->regs[R_EDX]; | |
237 | (*regs)[3] = env->regs[R_ESI]; | |
238 | (*regs)[4] = env->regs[R_EDI]; | |
239 | (*regs)[5] = env->regs[R_EBP]; | |
240 | (*regs)[6] = env->regs[R_EAX]; | |
241 | (*regs)[7] = env->segs[R_DS].selector & 0xffff; | |
242 | (*regs)[8] = env->segs[R_ES].selector & 0xffff; | |
243 | (*regs)[9] = env->segs[R_FS].selector & 0xffff; | |
244 | (*regs)[10] = env->segs[R_GS].selector & 0xffff; | |
245 | (*regs)[11] = env->regs[R_EAX]; /* XXX */ | |
246 | (*regs)[12] = env->eip; | |
247 | (*regs)[13] = env->segs[R_CS].selector & 0xffff; | |
248 | (*regs)[14] = env->eflags; | |
249 | (*regs)[15] = env->regs[R_ESP]; | |
250 | (*regs)[16] = env->segs[R_SS].selector & 0xffff; | |
251 | } | |
84409ddb | 252 | #endif |
b346ff46 | 253 | |
9edc5d79 | 254 | #define USE_ELF_CORE_DUMP |
d97ef72e | 255 | #define ELF_EXEC_PAGESIZE 4096 |
b346ff46 FB |
256 | |
257 | #endif | |
258 | ||
259 | #ifdef TARGET_ARM | |
260 | ||
261 | #define ELF_START_MMAP 0x80000000 | |
262 | ||
263 | #define elf_check_arch(x) ( (x) == EM_ARM ) | |
264 | ||
d97ef72e | 265 | #define ELF_CLASS ELFCLASS32 |
d97ef72e | 266 | #define ELF_ARCH EM_ARM |
b346ff46 | 267 | |
d97ef72e RH |
268 | static inline void init_thread(struct target_pt_regs *regs, |
269 | struct image_info *infop) | |
b346ff46 | 270 | { |
992f48a0 | 271 | abi_long stack = infop->start_stack; |
b346ff46 FB |
272 | memset(regs, 0, sizeof(*regs)); |
273 | regs->ARM_cpsr = 0x10; | |
0240ded8 | 274 | if (infop->entry & 1) |
d97ef72e | 275 | regs->ARM_cpsr |= CPSR_T; |
0240ded8 | 276 | regs->ARM_pc = infop->entry & 0xfffffffe; |
b346ff46 | 277 | regs->ARM_sp = infop->start_stack; |
2f619698 FB |
278 | /* FIXME - what to for failure of get_user()? */ |
279 | get_user_ual(regs->ARM_r2, stack + 8); /* envp */ | |
280 | get_user_ual(regs->ARM_r1, stack + 4); /* envp */ | |
a1516e92 | 281 | /* XXX: it seems that r0 is zeroed after ! */ |
e5fe0c52 PB |
282 | regs->ARM_r0 = 0; |
283 | /* For uClinux PIC binaries. */ | |
863cf0b7 | 284 | /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ |
e5fe0c52 | 285 | regs->ARM_r10 = infop->start_data; |
b346ff46 FB |
286 | } |
287 | ||
edf8e2af | 288 | #define ELF_NREG 18 |
c227f099 | 289 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
edf8e2af | 290 | |
c227f099 | 291 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) |
edf8e2af | 292 | { |
d049e626 NF |
293 | (*regs)[0] = tswapl(env->regs[0]); |
294 | (*regs)[1] = tswapl(env->regs[1]); | |
295 | (*regs)[2] = tswapl(env->regs[2]); | |
296 | (*regs)[3] = tswapl(env->regs[3]); | |
297 | (*regs)[4] = tswapl(env->regs[4]); | |
298 | (*regs)[5] = tswapl(env->regs[5]); | |
299 | (*regs)[6] = tswapl(env->regs[6]); | |
300 | (*regs)[7] = tswapl(env->regs[7]); | |
301 | (*regs)[8] = tswapl(env->regs[8]); | |
302 | (*regs)[9] = tswapl(env->regs[9]); | |
303 | (*regs)[10] = tswapl(env->regs[10]); | |
304 | (*regs)[11] = tswapl(env->regs[11]); | |
305 | (*regs)[12] = tswapl(env->regs[12]); | |
306 | (*regs)[13] = tswapl(env->regs[13]); | |
307 | (*regs)[14] = tswapl(env->regs[14]); | |
308 | (*regs)[15] = tswapl(env->regs[15]); | |
309 | ||
310 | (*regs)[16] = tswapl(cpsr_read((CPUState *)env)); | |
311 | (*regs)[17] = tswapl(env->regs[0]); /* XXX */ | |
edf8e2af MW |
312 | } |
313 | ||
30ac07d4 | 314 | #define USE_ELF_CORE_DUMP |
d97ef72e | 315 | #define ELF_EXEC_PAGESIZE 4096 |
30ac07d4 | 316 | |
afce2927 FB |
317 | enum |
318 | { | |
d97ef72e RH |
319 | ARM_HWCAP_ARM_SWP = 1 << 0, |
320 | ARM_HWCAP_ARM_HALF = 1 << 1, | |
321 | ARM_HWCAP_ARM_THUMB = 1 << 2, | |
322 | ARM_HWCAP_ARM_26BIT = 1 << 3, | |
323 | ARM_HWCAP_ARM_FAST_MULT = 1 << 4, | |
324 | ARM_HWCAP_ARM_FPA = 1 << 5, | |
325 | ARM_HWCAP_ARM_VFP = 1 << 6, | |
326 | ARM_HWCAP_ARM_EDSP = 1 << 7, | |
327 | ARM_HWCAP_ARM_JAVA = 1 << 8, | |
328 | ARM_HWCAP_ARM_IWMMXT = 1 << 9, | |
329 | ARM_HWCAP_ARM_THUMBEE = 1 << 10, | |
330 | ARM_HWCAP_ARM_NEON = 1 << 11, | |
331 | ARM_HWCAP_ARM_VFPv3 = 1 << 12, | |
332 | ARM_HWCAP_ARM_VFPv3D16 = 1 << 13, | |
afce2927 FB |
333 | }; |
334 | ||
d97ef72e RH |
335 | #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \ |
336 | | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \ | |
337 | | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \ | |
338 | | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 ) | |
afce2927 | 339 | |
30ac07d4 FB |
340 | #endif |
341 | ||
853d6f7a | 342 | #ifdef TARGET_SPARC |
a315a145 | 343 | #ifdef TARGET_SPARC64 |
853d6f7a FB |
344 | |
345 | #define ELF_START_MMAP 0x80000000 | |
346 | ||
992f48a0 | 347 | #ifndef TARGET_ABI32 |
cb33da57 | 348 | #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) |
992f48a0 BS |
349 | #else |
350 | #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) | |
351 | #endif | |
853d6f7a | 352 | |
a315a145 | 353 | #define ELF_CLASS ELFCLASS64 |
5ef54116 FB |
354 | #define ELF_ARCH EM_SPARCV9 |
355 | ||
d97ef72e | 356 | #define STACK_BIAS 2047 |
a315a145 | 357 | |
d97ef72e RH |
358 | static inline void init_thread(struct target_pt_regs *regs, |
359 | struct image_info *infop) | |
a315a145 | 360 | { |
992f48a0 | 361 | #ifndef TARGET_ABI32 |
a315a145 | 362 | regs->tstate = 0; |
992f48a0 | 363 | #endif |
a315a145 FB |
364 | regs->pc = infop->entry; |
365 | regs->npc = regs->pc + 4; | |
366 | regs->y = 0; | |
992f48a0 BS |
367 | #ifdef TARGET_ABI32 |
368 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
369 | #else | |
cb33da57 BS |
370 | if (personality(infop->personality) == PER_LINUX32) |
371 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
372 | else | |
373 | regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; | |
992f48a0 | 374 | #endif |
a315a145 FB |
375 | } |
376 | ||
377 | #else | |
378 | #define ELF_START_MMAP 0x80000000 | |
379 | ||
380 | #define elf_check_arch(x) ( (x) == EM_SPARC ) | |
381 | ||
853d6f7a | 382 | #define ELF_CLASS ELFCLASS32 |
853d6f7a FB |
383 | #define ELF_ARCH EM_SPARC |
384 | ||
d97ef72e RH |
385 | static inline void init_thread(struct target_pt_regs *regs, |
386 | struct image_info *infop) | |
853d6f7a | 387 | { |
f5155289 FB |
388 | regs->psr = 0; |
389 | regs->pc = infop->entry; | |
390 | regs->npc = regs->pc + 4; | |
391 | regs->y = 0; | |
392 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
853d6f7a FB |
393 | } |
394 | ||
a315a145 | 395 | #endif |
853d6f7a FB |
396 | #endif |
397 | ||
67867308 FB |
398 | #ifdef TARGET_PPC |
399 | ||
400 | #define ELF_START_MMAP 0x80000000 | |
401 | ||
e85e7c6e | 402 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
84409ddb JM |
403 | |
404 | #define elf_check_arch(x) ( (x) == EM_PPC64 ) | |
405 | ||
d97ef72e | 406 | #define ELF_CLASS ELFCLASS64 |
84409ddb JM |
407 | |
408 | #else | |
409 | ||
67867308 FB |
410 | #define elf_check_arch(x) ( (x) == EM_PPC ) |
411 | ||
d97ef72e | 412 | #define ELF_CLASS ELFCLASS32 |
84409ddb JM |
413 | |
414 | #endif | |
415 | ||
d97ef72e | 416 | #define ELF_ARCH EM_PPC |
67867308 | 417 | |
df84e4f3 NF |
418 | /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). |
419 | See arch/powerpc/include/asm/cputable.h. */ | |
420 | enum { | |
3efa9a67 | 421 | QEMU_PPC_FEATURE_32 = 0x80000000, |
422 | QEMU_PPC_FEATURE_64 = 0x40000000, | |
423 | QEMU_PPC_FEATURE_601_INSTR = 0x20000000, | |
424 | QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, | |
425 | QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, | |
426 | QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, | |
427 | QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, | |
428 | QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, | |
429 | QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, | |
430 | QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, | |
431 | QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, | |
432 | QEMU_PPC_FEATURE_NO_TB = 0x00100000, | |
433 | QEMU_PPC_FEATURE_POWER4 = 0x00080000, | |
434 | QEMU_PPC_FEATURE_POWER5 = 0x00040000, | |
435 | QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, | |
436 | QEMU_PPC_FEATURE_CELL = 0x00010000, | |
437 | QEMU_PPC_FEATURE_BOOKE = 0x00008000, | |
438 | QEMU_PPC_FEATURE_SMT = 0x00004000, | |
439 | QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, | |
440 | QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, | |
441 | QEMU_PPC_FEATURE_PA6T = 0x00000800, | |
442 | QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, | |
443 | QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, | |
444 | QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, | |
445 | QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, | |
446 | QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, | |
447 | ||
448 | QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, | |
449 | QEMU_PPC_FEATURE_PPC_LE = 0x00000001, | |
df84e4f3 NF |
450 | }; |
451 | ||
452 | #define ELF_HWCAP get_elf_hwcap() | |
453 | ||
454 | static uint32_t get_elf_hwcap(void) | |
455 | { | |
456 | CPUState *e = thread_env; | |
457 | uint32_t features = 0; | |
458 | ||
459 | /* We don't have to be terribly complete here; the high points are | |
460 | Altivec/FP/SPE support. Anything else is just a bonus. */ | |
d97ef72e | 461 | #define GET_FEATURE(flag, feature) \ |
df84e4f3 | 462 | do {if (e->insns_flags & flag) features |= feature; } while(0) |
3efa9a67 | 463 | GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); |
464 | GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); | |
465 | GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); | |
466 | GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); | |
467 | GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); | |
468 | GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); | |
469 | GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); | |
470 | GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); | |
df84e4f3 NF |
471 | #undef GET_FEATURE |
472 | ||
473 | return features; | |
474 | } | |
475 | ||
f5155289 FB |
476 | /* |
477 | * The requirements here are: | |
478 | * - keep the final alignment of sp (sp & 0xf) | |
479 | * - make sure the 32-bit value at the first 16 byte aligned position of | |
480 | * AUXV is greater than 16 for glibc compatibility. | |
481 | * AT_IGNOREPPC is used for that. | |
482 | * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, | |
483 | * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. | |
484 | */ | |
0bccf03d | 485 | #define DLINFO_ARCH_ITEMS 5 |
d97ef72e RH |
486 | #define ARCH_DLINFO \ |
487 | do { \ | |
488 | NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \ | |
489 | NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \ | |
490 | NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ | |
491 | /* \ | |
492 | * Now handle glibc compatibility. \ | |
493 | */ \ | |
494 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ | |
495 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ | |
496 | } while (0) | |
f5155289 | 497 | |
67867308 FB |
498 | static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) |
499 | { | |
67867308 | 500 | _regs->gpr[1] = infop->start_stack; |
e85e7c6e | 501 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
7983f435 RL |
502 | _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_addr; |
503 | infop->entry = ldq_raw(infop->entry) + infop->load_addr; | |
84409ddb | 504 | #endif |
67867308 FB |
505 | _regs->nip = infop->entry; |
506 | } | |
507 | ||
e2f3e741 NF |
508 | /* See linux kernel: arch/powerpc/include/asm/elf.h. */ |
509 | #define ELF_NREG 48 | |
510 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
511 | ||
512 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) | |
513 | { | |
514 | int i; | |
515 | target_ulong ccr = 0; | |
516 | ||
517 | for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { | |
518 | (*regs)[i] = tswapl(env->gpr[i]); | |
519 | } | |
520 | ||
521 | (*regs)[32] = tswapl(env->nip); | |
522 | (*regs)[33] = tswapl(env->msr); | |
523 | (*regs)[35] = tswapl(env->ctr); | |
524 | (*regs)[36] = tswapl(env->lr); | |
525 | (*regs)[37] = tswapl(env->xer); | |
526 | ||
527 | for (i = 0; i < ARRAY_SIZE(env->crf); i++) { | |
528 | ccr |= env->crf[i] << (32 - ((i + 1) * 4)); | |
529 | } | |
530 | (*regs)[38] = tswapl(ccr); | |
531 | } | |
532 | ||
533 | #define USE_ELF_CORE_DUMP | |
d97ef72e | 534 | #define ELF_EXEC_PAGESIZE 4096 |
67867308 FB |
535 | |
536 | #endif | |
537 | ||
048f6b4d FB |
538 | #ifdef TARGET_MIPS |
539 | ||
540 | #define ELF_START_MMAP 0x80000000 | |
541 | ||
542 | #define elf_check_arch(x) ( (x) == EM_MIPS ) | |
543 | ||
388bb21a TS |
544 | #ifdef TARGET_MIPS64 |
545 | #define ELF_CLASS ELFCLASS64 | |
546 | #else | |
048f6b4d | 547 | #define ELF_CLASS ELFCLASS32 |
388bb21a | 548 | #endif |
048f6b4d FB |
549 | #define ELF_ARCH EM_MIPS |
550 | ||
d97ef72e RH |
551 | static inline void init_thread(struct target_pt_regs *regs, |
552 | struct image_info *infop) | |
048f6b4d | 553 | { |
623a930e | 554 | regs->cp0_status = 2 << CP0St_KSU; |
048f6b4d FB |
555 | regs->cp0_epc = infop->entry; |
556 | regs->regs[29] = infop->start_stack; | |
557 | } | |
558 | ||
51e52606 NF |
559 | /* See linux kernel: arch/mips/include/asm/elf.h. */ |
560 | #define ELF_NREG 45 | |
561 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
562 | ||
563 | /* See linux kernel: arch/mips/include/asm/reg.h. */ | |
564 | enum { | |
565 | #ifdef TARGET_MIPS64 | |
566 | TARGET_EF_R0 = 0, | |
567 | #else | |
568 | TARGET_EF_R0 = 6, | |
569 | #endif | |
570 | TARGET_EF_R26 = TARGET_EF_R0 + 26, | |
571 | TARGET_EF_R27 = TARGET_EF_R0 + 27, | |
572 | TARGET_EF_LO = TARGET_EF_R0 + 32, | |
573 | TARGET_EF_HI = TARGET_EF_R0 + 33, | |
574 | TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, | |
575 | TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, | |
576 | TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, | |
577 | TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 | |
578 | }; | |
579 | ||
580 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
581 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) | |
582 | { | |
583 | int i; | |
584 | ||
585 | for (i = 0; i < TARGET_EF_R0; i++) { | |
586 | (*regs)[i] = 0; | |
587 | } | |
588 | (*regs)[TARGET_EF_R0] = 0; | |
589 | ||
590 | for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { | |
591 | (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]); | |
592 | } | |
593 | ||
594 | (*regs)[TARGET_EF_R26] = 0; | |
595 | (*regs)[TARGET_EF_R27] = 0; | |
596 | (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]); | |
597 | (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]); | |
598 | (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC); | |
599 | (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr); | |
600 | (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status); | |
601 | (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause); | |
602 | } | |
603 | ||
604 | #define USE_ELF_CORE_DUMP | |
388bb21a TS |
605 | #define ELF_EXEC_PAGESIZE 4096 |
606 | ||
048f6b4d FB |
607 | #endif /* TARGET_MIPS */ |
608 | ||
b779e29e EI |
609 | #ifdef TARGET_MICROBLAZE |
610 | ||
611 | #define ELF_START_MMAP 0x80000000 | |
612 | ||
0d5d4699 | 613 | #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) |
b779e29e EI |
614 | |
615 | #define ELF_CLASS ELFCLASS32 | |
0d5d4699 | 616 | #define ELF_ARCH EM_MICROBLAZE |
b779e29e | 617 | |
d97ef72e RH |
618 | static inline void init_thread(struct target_pt_regs *regs, |
619 | struct image_info *infop) | |
b779e29e EI |
620 | { |
621 | regs->pc = infop->entry; | |
622 | regs->r1 = infop->start_stack; | |
623 | ||
624 | } | |
625 | ||
b779e29e EI |
626 | #define ELF_EXEC_PAGESIZE 4096 |
627 | ||
e4cbd44d EI |
628 | #define USE_ELF_CORE_DUMP |
629 | #define ELF_NREG 38 | |
630 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
631 | ||
632 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
633 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) | |
634 | { | |
635 | int i, pos = 0; | |
636 | ||
637 | for (i = 0; i < 32; i++) { | |
638 | (*regs)[pos++] = tswapl(env->regs[i]); | |
639 | } | |
640 | ||
641 | for (i = 0; i < 6; i++) { | |
642 | (*regs)[pos++] = tswapl(env->sregs[i]); | |
643 | } | |
644 | } | |
645 | ||
b779e29e EI |
646 | #endif /* TARGET_MICROBLAZE */ |
647 | ||
fdf9b3e8 FB |
648 | #ifdef TARGET_SH4 |
649 | ||
650 | #define ELF_START_MMAP 0x80000000 | |
651 | ||
652 | #define elf_check_arch(x) ( (x) == EM_SH ) | |
653 | ||
654 | #define ELF_CLASS ELFCLASS32 | |
fdf9b3e8 FB |
655 | #define ELF_ARCH EM_SH |
656 | ||
d97ef72e RH |
657 | static inline void init_thread(struct target_pt_regs *regs, |
658 | struct image_info *infop) | |
fdf9b3e8 | 659 | { |
d97ef72e RH |
660 | /* Check other registers XXXXX */ |
661 | regs->pc = infop->entry; | |
662 | regs->regs[15] = infop->start_stack; | |
fdf9b3e8 FB |
663 | } |
664 | ||
7631c97e NF |
665 | /* See linux kernel: arch/sh/include/asm/elf.h. */ |
666 | #define ELF_NREG 23 | |
667 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
668 | ||
669 | /* See linux kernel: arch/sh/include/asm/ptrace.h. */ | |
670 | enum { | |
671 | TARGET_REG_PC = 16, | |
672 | TARGET_REG_PR = 17, | |
673 | TARGET_REG_SR = 18, | |
674 | TARGET_REG_GBR = 19, | |
675 | TARGET_REG_MACH = 20, | |
676 | TARGET_REG_MACL = 21, | |
677 | TARGET_REG_SYSCALL = 22 | |
678 | }; | |
679 | ||
d97ef72e RH |
680 | static inline void elf_core_copy_regs(target_elf_gregset_t *regs, |
681 | const CPUState *env) | |
7631c97e NF |
682 | { |
683 | int i; | |
684 | ||
685 | for (i = 0; i < 16; i++) { | |
686 | (*regs[i]) = tswapl(env->gregs[i]); | |
687 | } | |
688 | ||
689 | (*regs)[TARGET_REG_PC] = tswapl(env->pc); | |
690 | (*regs)[TARGET_REG_PR] = tswapl(env->pr); | |
691 | (*regs)[TARGET_REG_SR] = tswapl(env->sr); | |
692 | (*regs)[TARGET_REG_GBR] = tswapl(env->gbr); | |
693 | (*regs)[TARGET_REG_MACH] = tswapl(env->mach); | |
694 | (*regs)[TARGET_REG_MACL] = tswapl(env->macl); | |
695 | (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ | |
696 | } | |
697 | ||
698 | #define USE_ELF_CORE_DUMP | |
fdf9b3e8 FB |
699 | #define ELF_EXEC_PAGESIZE 4096 |
700 | ||
701 | #endif | |
702 | ||
48733d19 TS |
703 | #ifdef TARGET_CRIS |
704 | ||
705 | #define ELF_START_MMAP 0x80000000 | |
706 | ||
707 | #define elf_check_arch(x) ( (x) == EM_CRIS ) | |
708 | ||
709 | #define ELF_CLASS ELFCLASS32 | |
48733d19 TS |
710 | #define ELF_ARCH EM_CRIS |
711 | ||
d97ef72e RH |
712 | static inline void init_thread(struct target_pt_regs *regs, |
713 | struct image_info *infop) | |
48733d19 | 714 | { |
d97ef72e | 715 | regs->erp = infop->entry; |
48733d19 TS |
716 | } |
717 | ||
48733d19 TS |
718 | #define ELF_EXEC_PAGESIZE 8192 |
719 | ||
720 | #endif | |
721 | ||
e6e5906b PB |
722 | #ifdef TARGET_M68K |
723 | ||
724 | #define ELF_START_MMAP 0x80000000 | |
725 | ||
726 | #define elf_check_arch(x) ( (x) == EM_68K ) | |
727 | ||
d97ef72e | 728 | #define ELF_CLASS ELFCLASS32 |
d97ef72e | 729 | #define ELF_ARCH EM_68K |
e6e5906b PB |
730 | |
731 | /* ??? Does this need to do anything? | |
d97ef72e | 732 | #define ELF_PLAT_INIT(_r) */ |
e6e5906b | 733 | |
d97ef72e RH |
734 | static inline void init_thread(struct target_pt_regs *regs, |
735 | struct image_info *infop) | |
e6e5906b PB |
736 | { |
737 | regs->usp = infop->start_stack; | |
738 | regs->sr = 0; | |
739 | regs->pc = infop->entry; | |
740 | } | |
741 | ||
7a93cc55 NF |
742 | /* See linux kernel: arch/m68k/include/asm/elf.h. */ |
743 | #define ELF_NREG 20 | |
744 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
745 | ||
746 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) | |
747 | { | |
748 | (*regs)[0] = tswapl(env->dregs[1]); | |
749 | (*regs)[1] = tswapl(env->dregs[2]); | |
750 | (*regs)[2] = tswapl(env->dregs[3]); | |
751 | (*regs)[3] = tswapl(env->dregs[4]); | |
752 | (*regs)[4] = tswapl(env->dregs[5]); | |
753 | (*regs)[5] = tswapl(env->dregs[6]); | |
754 | (*regs)[6] = tswapl(env->dregs[7]); | |
755 | (*regs)[7] = tswapl(env->aregs[0]); | |
756 | (*regs)[8] = tswapl(env->aregs[1]); | |
757 | (*regs)[9] = tswapl(env->aregs[2]); | |
758 | (*regs)[10] = tswapl(env->aregs[3]); | |
759 | (*regs)[11] = tswapl(env->aregs[4]); | |
760 | (*regs)[12] = tswapl(env->aregs[5]); | |
761 | (*regs)[13] = tswapl(env->aregs[6]); | |
762 | (*regs)[14] = tswapl(env->dregs[0]); | |
763 | (*regs)[15] = tswapl(env->aregs[7]); | |
764 | (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */ | |
765 | (*regs)[17] = tswapl(env->sr); | |
766 | (*regs)[18] = tswapl(env->pc); | |
767 | (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ | |
768 | } | |
769 | ||
770 | #define USE_ELF_CORE_DUMP | |
d97ef72e | 771 | #define ELF_EXEC_PAGESIZE 8192 |
e6e5906b PB |
772 | |
773 | #endif | |
774 | ||
7a3148a9 JM |
775 | #ifdef TARGET_ALPHA |
776 | ||
777 | #define ELF_START_MMAP (0x30000000000ULL) | |
778 | ||
779 | #define elf_check_arch(x) ( (x) == ELF_ARCH ) | |
780 | ||
781 | #define ELF_CLASS ELFCLASS64 | |
7a3148a9 JM |
782 | #define ELF_ARCH EM_ALPHA |
783 | ||
d97ef72e RH |
784 | static inline void init_thread(struct target_pt_regs *regs, |
785 | struct image_info *infop) | |
7a3148a9 JM |
786 | { |
787 | regs->pc = infop->entry; | |
788 | regs->ps = 8; | |
789 | regs->usp = infop->start_stack; | |
7a3148a9 JM |
790 | } |
791 | ||
7a3148a9 JM |
792 | #define ELF_EXEC_PAGESIZE 8192 |
793 | ||
794 | #endif /* TARGET_ALPHA */ | |
795 | ||
15338fd7 FB |
796 | #ifndef ELF_PLATFORM |
797 | #define ELF_PLATFORM (NULL) | |
798 | #endif | |
799 | ||
800 | #ifndef ELF_HWCAP | |
801 | #define ELF_HWCAP 0 | |
802 | #endif | |
803 | ||
992f48a0 | 804 | #ifdef TARGET_ABI32 |
cb33da57 | 805 | #undef ELF_CLASS |
992f48a0 | 806 | #define ELF_CLASS ELFCLASS32 |
cb33da57 BS |
807 | #undef bswaptls |
808 | #define bswaptls(ptr) bswap32s(ptr) | |
809 | #endif | |
810 | ||
31e31b8a | 811 | #include "elf.h" |
09bfb054 | 812 | |
09bfb054 FB |
813 | struct exec |
814 | { | |
d97ef72e RH |
815 | unsigned int a_info; /* Use macros N_MAGIC, etc for access */ |
816 | unsigned int a_text; /* length of text, in bytes */ | |
817 | unsigned int a_data; /* length of data, in bytes */ | |
818 | unsigned int a_bss; /* length of uninitialized data area, in bytes */ | |
819 | unsigned int a_syms; /* length of symbol table data in file, in bytes */ | |
820 | unsigned int a_entry; /* start address */ | |
821 | unsigned int a_trsize; /* length of relocation info for text, in bytes */ | |
822 | unsigned int a_drsize; /* length of relocation info for data, in bytes */ | |
09bfb054 FB |
823 | }; |
824 | ||
825 | ||
826 | #define N_MAGIC(exec) ((exec).a_info & 0xffff) | |
827 | #define OMAGIC 0407 | |
828 | #define NMAGIC 0410 | |
829 | #define ZMAGIC 0413 | |
830 | #define QMAGIC 0314 | |
831 | ||
31e31b8a | 832 | /* Necessary parameters */ |
54936004 FB |
833 | #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE |
834 | #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1)) | |
835 | #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) | |
31e31b8a | 836 | |
15338fd7 | 837 | #define DLINFO_ITEMS 12 |
31e31b8a | 838 | |
09bfb054 FB |
839 | static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) |
840 | { | |
d97ef72e | 841 | memcpy(to, from, n); |
09bfb054 | 842 | } |
d691f669 | 843 | |
31e31b8a | 844 | #ifdef BSWAP_NEEDED |
92a31b1f | 845 | static void bswap_ehdr(struct elfhdr *ehdr) |
31e31b8a | 846 | { |
d97ef72e RH |
847 | bswap16s(&ehdr->e_type); /* Object file type */ |
848 | bswap16s(&ehdr->e_machine); /* Architecture */ | |
849 | bswap32s(&ehdr->e_version); /* Object file version */ | |
850 | bswaptls(&ehdr->e_entry); /* Entry point virtual address */ | |
851 | bswaptls(&ehdr->e_phoff); /* Program header table file offset */ | |
852 | bswaptls(&ehdr->e_shoff); /* Section header table file offset */ | |
853 | bswap32s(&ehdr->e_flags); /* Processor-specific flags */ | |
854 | bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ | |
855 | bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ | |
856 | bswap16s(&ehdr->e_phnum); /* Program header table entry count */ | |
857 | bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ | |
858 | bswap16s(&ehdr->e_shnum); /* Section header table entry count */ | |
859 | bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ | |
31e31b8a FB |
860 | } |
861 | ||
991f8f0c | 862 | static void bswap_phdr(struct elf_phdr *phdr, int phnum) |
31e31b8a | 863 | { |
991f8f0c RH |
864 | int i; |
865 | for (i = 0; i < phnum; ++i, ++phdr) { | |
866 | bswap32s(&phdr->p_type); /* Segment type */ | |
867 | bswap32s(&phdr->p_flags); /* Segment flags */ | |
868 | bswaptls(&phdr->p_offset); /* Segment file offset */ | |
869 | bswaptls(&phdr->p_vaddr); /* Segment virtual address */ | |
870 | bswaptls(&phdr->p_paddr); /* Segment physical address */ | |
871 | bswaptls(&phdr->p_filesz); /* Segment size in file */ | |
872 | bswaptls(&phdr->p_memsz); /* Segment size in memory */ | |
873 | bswaptls(&phdr->p_align); /* Segment alignment */ | |
874 | } | |
31e31b8a | 875 | } |
689f936f | 876 | |
991f8f0c | 877 | static void bswap_shdr(struct elf_shdr *shdr, int shnum) |
689f936f | 878 | { |
991f8f0c RH |
879 | int i; |
880 | for (i = 0; i < shnum; ++i, ++shdr) { | |
881 | bswap32s(&shdr->sh_name); | |
882 | bswap32s(&shdr->sh_type); | |
883 | bswaptls(&shdr->sh_flags); | |
884 | bswaptls(&shdr->sh_addr); | |
885 | bswaptls(&shdr->sh_offset); | |
886 | bswaptls(&shdr->sh_size); | |
887 | bswap32s(&shdr->sh_link); | |
888 | bswap32s(&shdr->sh_info); | |
889 | bswaptls(&shdr->sh_addralign); | |
890 | bswaptls(&shdr->sh_entsize); | |
891 | } | |
689f936f FB |
892 | } |
893 | ||
7a3148a9 | 894 | static void bswap_sym(struct elf_sym *sym) |
689f936f FB |
895 | { |
896 | bswap32s(&sym->st_name); | |
7a3148a9 JM |
897 | bswaptls(&sym->st_value); |
898 | bswaptls(&sym->st_size); | |
689f936f FB |
899 | bswap16s(&sym->st_shndx); |
900 | } | |
991f8f0c RH |
901 | #else |
902 | static inline void bswap_ehdr(struct elfhdr *ehdr) { } | |
903 | static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } | |
904 | static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } | |
905 | static inline void bswap_sym(struct elf_sym *sym) { } | |
31e31b8a FB |
906 | #endif |
907 | ||
edf8e2af MW |
908 | #ifdef USE_ELF_CORE_DUMP |
909 | static int elf_core_dump(int, const CPUState *); | |
edf8e2af | 910 | #endif /* USE_ELF_CORE_DUMP */ |
682674b8 | 911 | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); |
edf8e2af | 912 | |
9058abdd RH |
913 | /* Verify the portions of EHDR within E_IDENT for the target. |
914 | This can be performed before bswapping the entire header. */ | |
915 | static bool elf_check_ident(struct elfhdr *ehdr) | |
916 | { | |
917 | return (ehdr->e_ident[EI_MAG0] == ELFMAG0 | |
918 | && ehdr->e_ident[EI_MAG1] == ELFMAG1 | |
919 | && ehdr->e_ident[EI_MAG2] == ELFMAG2 | |
920 | && ehdr->e_ident[EI_MAG3] == ELFMAG3 | |
921 | && ehdr->e_ident[EI_CLASS] == ELF_CLASS | |
922 | && ehdr->e_ident[EI_DATA] == ELF_DATA | |
923 | && ehdr->e_ident[EI_VERSION] == EV_CURRENT); | |
924 | } | |
925 | ||
926 | /* Verify the portions of EHDR outside of E_IDENT for the target. | |
927 | This has to wait until after bswapping the header. */ | |
928 | static bool elf_check_ehdr(struct elfhdr *ehdr) | |
929 | { | |
930 | return (elf_check_arch(ehdr->e_machine) | |
931 | && ehdr->e_ehsize == sizeof(struct elfhdr) | |
932 | && ehdr->e_phentsize == sizeof(struct elf_phdr) | |
933 | && ehdr->e_shentsize == sizeof(struct elf_shdr) | |
934 | && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); | |
935 | } | |
936 | ||
31e31b8a | 937 | /* |
e5fe0c52 | 938 | * 'copy_elf_strings()' copies argument/envelope strings from user |
31e31b8a FB |
939 | * memory to free pages in kernel mem. These are in a format ready |
940 | * to be put directly into the top of new user memory. | |
941 | * | |
942 | */ | |
992f48a0 BS |
943 | static abi_ulong copy_elf_strings(int argc,char ** argv, void **page, |
944 | abi_ulong p) | |
31e31b8a FB |
945 | { |
946 | char *tmp, *tmp1, *pag = NULL; | |
947 | int len, offset = 0; | |
948 | ||
949 | if (!p) { | |
d97ef72e | 950 | return 0; /* bullet-proofing */ |
31e31b8a FB |
951 | } |
952 | while (argc-- > 0) { | |
edf779ff FB |
953 | tmp = argv[argc]; |
954 | if (!tmp) { | |
d97ef72e RH |
955 | fprintf(stderr, "VFS: argc is wrong"); |
956 | exit(-1); | |
957 | } | |
edf779ff | 958 | tmp1 = tmp; |
d97ef72e RH |
959 | while (*tmp++); |
960 | len = tmp - tmp1; | |
961 | if (p < len) { /* this shouldn't happen - 128kB */ | |
962 | return 0; | |
963 | } | |
964 | while (len) { | |
965 | --p; --tmp; --len; | |
966 | if (--offset < 0) { | |
967 | offset = p % TARGET_PAGE_SIZE; | |
53a5960a | 968 | pag = (char *)page[p/TARGET_PAGE_SIZE]; |
44a91cae | 969 | if (!pag) { |
53a5960a | 970 | pag = (char *)malloc(TARGET_PAGE_SIZE); |
4118a970 | 971 | memset(pag, 0, TARGET_PAGE_SIZE); |
53a5960a | 972 | page[p/TARGET_PAGE_SIZE] = pag; |
44a91cae FB |
973 | if (!pag) |
974 | return 0; | |
d97ef72e RH |
975 | } |
976 | } | |
977 | if (len == 0 || offset == 0) { | |
978 | *(pag + offset) = *tmp; | |
979 | } | |
980 | else { | |
981 | int bytes_to_copy = (len > offset) ? offset : len; | |
982 | tmp -= bytes_to_copy; | |
983 | p -= bytes_to_copy; | |
984 | offset -= bytes_to_copy; | |
985 | len -= bytes_to_copy; | |
986 | memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); | |
987 | } | |
988 | } | |
31e31b8a FB |
989 | } |
990 | return p; | |
991 | } | |
992 | ||
992f48a0 BS |
993 | static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm, |
994 | struct image_info *info) | |
53a5960a | 995 | { |
60dcbcb5 | 996 | abi_ulong stack_base, size, error, guard; |
31e31b8a | 997 | int i; |
31e31b8a | 998 | |
09bfb054 | 999 | /* Create enough stack to hold everything. If we don't use |
60dcbcb5 | 1000 | it for args, we'll use it for something else. */ |
703e0e89 | 1001 | size = guest_stack_size; |
60dcbcb5 | 1002 | if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) { |
54936004 | 1003 | size = MAX_ARG_PAGES*TARGET_PAGE_SIZE; |
60dcbcb5 RH |
1004 | } |
1005 | guard = TARGET_PAGE_SIZE; | |
1006 | if (guard < qemu_real_host_page_size) { | |
1007 | guard = qemu_real_host_page_size; | |
1008 | } | |
1009 | ||
1010 | error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, | |
1011 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
09bfb054 | 1012 | if (error == -1) { |
60dcbcb5 | 1013 | perror("mmap stack"); |
09bfb054 FB |
1014 | exit(-1); |
1015 | } | |
31e31b8a | 1016 | |
60dcbcb5 RH |
1017 | /* We reserve one extra page at the top of the stack as guard. */ |
1018 | target_mprotect(error, guard, PROT_NONE); | |
1019 | ||
1020 | info->stack_limit = error + guard; | |
1021 | stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE; | |
31e31b8a | 1022 | p += stack_base; |
09bfb054 | 1023 | |
31e31b8a | 1024 | for (i = 0 ; i < MAX_ARG_PAGES ; i++) { |
d97ef72e RH |
1025 | if (bprm->page[i]) { |
1026 | info->rss++; | |
579a97f7 | 1027 | /* FIXME - check return value of memcpy_to_target() for failure */ |
d97ef72e RH |
1028 | memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE); |
1029 | free(bprm->page[i]); | |
1030 | } | |
53a5960a | 1031 | stack_base += TARGET_PAGE_SIZE; |
31e31b8a FB |
1032 | } |
1033 | return p; | |
1034 | } | |
1035 | ||
cf129f3a RH |
1036 | /* Map and zero the bss. We need to explicitly zero any fractional pages |
1037 | after the data section (i.e. bss). */ | |
1038 | static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) | |
31e31b8a | 1039 | { |
cf129f3a RH |
1040 | uintptr_t host_start, host_map_start, host_end; |
1041 | ||
1042 | last_bss = TARGET_PAGE_ALIGN(last_bss); | |
1043 | ||
1044 | /* ??? There is confusion between qemu_real_host_page_size and | |
1045 | qemu_host_page_size here and elsewhere in target_mmap, which | |
1046 | may lead to the end of the data section mapping from the file | |
1047 | not being mapped. At least there was an explicit test and | |
1048 | comment for that here, suggesting that "the file size must | |
1049 | be known". The comment probably pre-dates the introduction | |
1050 | of the fstat system call in target_mmap which does in fact | |
1051 | find out the size. What isn't clear is if the workaround | |
1052 | here is still actually needed. For now, continue with it, | |
1053 | but merge it with the "normal" mmap that would allocate the bss. */ | |
1054 | ||
1055 | host_start = (uintptr_t) g2h(elf_bss); | |
1056 | host_end = (uintptr_t) g2h(last_bss); | |
1057 | host_map_start = (host_start + qemu_real_host_page_size - 1); | |
1058 | host_map_start &= -qemu_real_host_page_size; | |
1059 | ||
1060 | if (host_map_start < host_end) { | |
1061 | void *p = mmap((void *)host_map_start, host_end - host_map_start, | |
1062 | prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
1063 | if (p == MAP_FAILED) { | |
1064 | perror("cannot mmap brk"); | |
1065 | exit(-1); | |
853d6f7a FB |
1066 | } |
1067 | ||
cf129f3a RH |
1068 | /* Since we didn't use target_mmap, make sure to record |
1069 | the validity of the pages with qemu. */ | |
1070 | page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID); | |
1071 | } | |
31e31b8a | 1072 | |
cf129f3a RH |
1073 | if (host_start < host_map_start) { |
1074 | memset((void *)host_start, 0, host_map_start - host_start); | |
1075 | } | |
1076 | } | |
53a5960a | 1077 | |
992f48a0 | 1078 | static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, |
8e62a717 RH |
1079 | struct elfhdr *exec, |
1080 | struct image_info *info, | |
1081 | struct image_info *interp_info) | |
31e31b8a | 1082 | { |
d97ef72e RH |
1083 | abi_ulong sp; |
1084 | int size; | |
1085 | abi_ulong u_platform; | |
1086 | const char *k_platform; | |
1087 | const int n = sizeof(elf_addr_t); | |
1088 | ||
1089 | sp = p; | |
1090 | u_platform = 0; | |
1091 | k_platform = ELF_PLATFORM; | |
1092 | if (k_platform) { | |
1093 | size_t len = strlen(k_platform) + 1; | |
1094 | sp -= (len + n - 1) & ~(n - 1); | |
1095 | u_platform = sp; | |
1096 | /* FIXME - check return value of memcpy_to_target() for failure */ | |
1097 | memcpy_to_target(sp, k_platform, len); | |
1098 | } | |
1099 | /* | |
1100 | * Force 16 byte _final_ alignment here for generality. | |
1101 | */ | |
1102 | sp = sp &~ (abi_ulong)15; | |
1103 | size = (DLINFO_ITEMS + 1) * 2; | |
1104 | if (k_platform) | |
1105 | size += 2; | |
f5155289 | 1106 | #ifdef DLINFO_ARCH_ITEMS |
d97ef72e | 1107 | size += DLINFO_ARCH_ITEMS * 2; |
f5155289 | 1108 | #endif |
d97ef72e | 1109 | size += envc + argc + 2; |
b9329d4b | 1110 | size += 1; /* argc itself */ |
d97ef72e RH |
1111 | size *= n; |
1112 | if (size & 15) | |
1113 | sp -= 16 - (size & 15); | |
1114 | ||
1115 | /* This is correct because Linux defines | |
1116 | * elf_addr_t as Elf32_Off / Elf64_Off | |
1117 | */ | |
1118 | #define NEW_AUX_ENT(id, val) do { \ | |
1119 | sp -= n; put_user_ual(val, sp); \ | |
1120 | sp -= n; put_user_ual(id, sp); \ | |
1121 | } while(0) | |
1122 | ||
1123 | NEW_AUX_ENT (AT_NULL, 0); | |
1124 | ||
1125 | /* There must be exactly DLINFO_ITEMS entries here. */ | |
8e62a717 | 1126 | NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); |
d97ef72e RH |
1127 | NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); |
1128 | NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); | |
1129 | NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); | |
8e62a717 | 1130 | NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); |
d97ef72e | 1131 | NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); |
8e62a717 | 1132 | NEW_AUX_ENT(AT_ENTRY, info->entry); |
d97ef72e RH |
1133 | NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); |
1134 | NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); | |
1135 | NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); | |
1136 | NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); | |
1137 | NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); | |
1138 | NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); | |
1139 | if (k_platform) | |
1140 | NEW_AUX_ENT(AT_PLATFORM, u_platform); | |
f5155289 | 1141 | #ifdef ARCH_DLINFO |
d97ef72e RH |
1142 | /* |
1143 | * ARCH_DLINFO must come last so platform specific code can enforce | |
1144 | * special alignment requirements on the AUXV if necessary (eg. PPC). | |
1145 | */ | |
1146 | ARCH_DLINFO; | |
f5155289 FB |
1147 | #endif |
1148 | #undef NEW_AUX_ENT | |
1149 | ||
d97ef72e | 1150 | info->saved_auxv = sp; |
edf8e2af | 1151 | |
b9329d4b | 1152 | sp = loader_build_argptr(envc, argc, sp, p, 0); |
d97ef72e | 1153 | return sp; |
31e31b8a FB |
1154 | } |
1155 | ||
8e62a717 | 1156 | /* Load an ELF image into the address space. |
31e31b8a | 1157 | |
8e62a717 RH |
1158 | IMAGE_NAME is the filename of the image, to use in error messages. |
1159 | IMAGE_FD is the open file descriptor for the image. | |
1160 | ||
1161 | BPRM_BUF is a copy of the beginning of the file; this of course | |
1162 | contains the elf file header at offset 0. It is assumed that this | |
1163 | buffer is sufficiently aligned to present no problems to the host | |
1164 | in accessing data at aligned offsets within the buffer. | |
1165 | ||
1166 | On return: INFO values will be filled in, as necessary or available. */ | |
1167 | ||
1168 | static void load_elf_image(const char *image_name, int image_fd, | |
bf858897 | 1169 | struct image_info *info, char **pinterp_name, |
8e62a717 | 1170 | char bprm_buf[BPRM_BUF_SIZE]) |
31e31b8a | 1171 | { |
8e62a717 RH |
1172 | struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; |
1173 | struct elf_phdr *phdr; | |
1174 | abi_ulong load_addr, load_bias, loaddr, hiaddr, error; | |
1175 | int i, retval; | |
1176 | const char *errmsg; | |
5fafdf24 | 1177 | |
8e62a717 RH |
1178 | /* First of all, some simple consistency checks */ |
1179 | errmsg = "Invalid ELF image for this architecture"; | |
1180 | if (!elf_check_ident(ehdr)) { | |
1181 | goto exit_errmsg; | |
1182 | } | |
1183 | bswap_ehdr(ehdr); | |
1184 | if (!elf_check_ehdr(ehdr)) { | |
1185 | goto exit_errmsg; | |
d97ef72e | 1186 | } |
5fafdf24 | 1187 | |
8e62a717 RH |
1188 | i = ehdr->e_phnum * sizeof(struct elf_phdr); |
1189 | if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { | |
1190 | phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); | |
9955ffac | 1191 | } else { |
8e62a717 RH |
1192 | phdr = (struct elf_phdr *) alloca(i); |
1193 | retval = pread(image_fd, phdr, i, ehdr->e_phoff); | |
9955ffac | 1194 | if (retval != i) { |
8e62a717 | 1195 | goto exit_read; |
9955ffac | 1196 | } |
d97ef72e | 1197 | } |
8e62a717 | 1198 | bswap_phdr(phdr, ehdr->e_phnum); |
09bfb054 | 1199 | |
682674b8 RH |
1200 | /* Find the maximum size of the image and allocate an appropriate |
1201 | amount of memory to handle that. */ | |
1202 | loaddr = -1, hiaddr = 0; | |
8e62a717 RH |
1203 | for (i = 0; i < ehdr->e_phnum; ++i) { |
1204 | if (phdr[i].p_type == PT_LOAD) { | |
1205 | abi_ulong a = phdr[i].p_vaddr; | |
682674b8 RH |
1206 | if (a < loaddr) { |
1207 | loaddr = a; | |
1208 | } | |
8e62a717 | 1209 | a += phdr[i].p_memsz; |
682674b8 RH |
1210 | if (a > hiaddr) { |
1211 | hiaddr = a; | |
1212 | } | |
1213 | } | |
1214 | } | |
1215 | ||
1216 | load_addr = loaddr; | |
8e62a717 | 1217 | if (ehdr->e_type == ET_DYN) { |
682674b8 RH |
1218 | /* The image indicates that it can be loaded anywhere. Find a |
1219 | location that can hold the memory space required. If the | |
1220 | image is pre-linked, LOADDR will be non-zero. Since we do | |
1221 | not supply MAP_FIXED here we'll use that address if and | |
1222 | only if it remains available. */ | |
1223 | load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, | |
1224 | MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, | |
1225 | -1, 0); | |
1226 | if (load_addr == -1) { | |
8e62a717 | 1227 | goto exit_perror; |
d97ef72e | 1228 | } |
bf858897 RH |
1229 | } else if (pinterp_name != NULL) { |
1230 | /* This is the main executable. Make sure that the low | |
1231 | address does not conflict with MMAP_MIN_ADDR or the | |
1232 | QEMU application itself. */ | |
1233 | #if defined(CONFIG_USE_GUEST_BASE) | |
1234 | /* | |
1235 | * In case where user has not explicitly set the guest_base, we | |
1236 | * probe here that should we set it automatically. | |
1237 | */ | |
1238 | if (!have_guest_base && !reserved_va) { | |
1239 | unsigned long host_start, real_start, host_size; | |
1240 | ||
1241 | /* Round addresses to page boundaries. */ | |
1242 | loaddr &= qemu_host_page_mask; | |
1243 | hiaddr = HOST_PAGE_ALIGN(hiaddr); | |
1244 | ||
1245 | if (loaddr < mmap_min_addr) { | |
1246 | host_start = HOST_PAGE_ALIGN(mmap_min_addr); | |
1247 | } else { | |
1248 | host_start = loaddr; | |
1249 | if (host_start != loaddr) { | |
1250 | errmsg = "Address overflow loading ELF binary"; | |
1251 | goto exit_errmsg; | |
1252 | } | |
1253 | } | |
1254 | host_size = hiaddr - loaddr; | |
1255 | while (1) { | |
1256 | /* Do not use mmap_find_vma here because that is limited to the | |
1257 | guest address space. We are going to make the | |
1258 | guest address space fit whatever we're given. */ | |
1259 | real_start = (unsigned long) | |
1260 | mmap((void *)host_start, host_size, PROT_NONE, | |
1261 | MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0); | |
1262 | if (real_start == (unsigned long)-1) { | |
1263 | goto exit_perror; | |
1264 | } | |
1265 | if (real_start == host_start) { | |
1266 | break; | |
1267 | } | |
1268 | /* That address didn't work. Unmap and try a different one. | |
1269 | The address the host picked because is typically right at | |
1270 | the top of the host address space and leaves the guest with | |
1271 | no usable address space. Resort to a linear search. We | |
1272 | already compensated for mmap_min_addr, so this should not | |
1273 | happen often. Probably means we got unlucky and host | |
1274 | address space randomization put a shared library somewhere | |
1275 | inconvenient. */ | |
1276 | munmap((void *)real_start, host_size); | |
1277 | host_start += qemu_host_page_size; | |
1278 | if (host_start == loaddr) { | |
1279 | /* Theoretically possible if host doesn't have any suitably | |
1280 | aligned areas. Normally the first mmap will fail. */ | |
1281 | errmsg = "Unable to find space for application"; | |
1282 | goto exit_errmsg; | |
1283 | } | |
1284 | } | |
1285 | qemu_log("Relocating guest address space from 0x" | |
1286 | TARGET_ABI_FMT_lx " to 0x%lx\n", loaddr, real_start); | |
1287 | guest_base = real_start - loaddr; | |
1288 | } | |
1289 | #endif | |
d97ef72e | 1290 | } |
682674b8 | 1291 | load_bias = load_addr - loaddr; |
d97ef72e | 1292 | |
8e62a717 RH |
1293 | info->load_bias = load_bias; |
1294 | info->load_addr = load_addr; | |
1295 | info->entry = ehdr->e_entry + load_bias; | |
1296 | info->start_code = -1; | |
1297 | info->end_code = 0; | |
1298 | info->start_data = -1; | |
1299 | info->end_data = 0; | |
1300 | info->brk = 0; | |
1301 | ||
1302 | for (i = 0; i < ehdr->e_phnum; i++) { | |
1303 | struct elf_phdr *eppnt = phdr + i; | |
d97ef72e | 1304 | if (eppnt->p_type == PT_LOAD) { |
682674b8 | 1305 | abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; |
d97ef72e | 1306 | int elf_prot = 0; |
d97ef72e RH |
1307 | |
1308 | if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; | |
1309 | if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; | |
1310 | if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; | |
d97ef72e | 1311 | |
682674b8 RH |
1312 | vaddr = load_bias + eppnt->p_vaddr; |
1313 | vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); | |
1314 | vaddr_ps = TARGET_ELF_PAGESTART(vaddr); | |
1315 | ||
1316 | error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, | |
1317 | elf_prot, MAP_PRIVATE | MAP_FIXED, | |
8e62a717 | 1318 | image_fd, eppnt->p_offset - vaddr_po); |
09bfb054 | 1319 | if (error == -1) { |
8e62a717 | 1320 | goto exit_perror; |
09bfb054 | 1321 | } |
09bfb054 | 1322 | |
682674b8 RH |
1323 | vaddr_ef = vaddr + eppnt->p_filesz; |
1324 | vaddr_em = vaddr + eppnt->p_memsz; | |
31e31b8a | 1325 | |
cf129f3a | 1326 | /* If the load segment requests extra zeros (e.g. bss), map it. */ |
682674b8 RH |
1327 | if (vaddr_ef < vaddr_em) { |
1328 | zero_bss(vaddr_ef, vaddr_em, elf_prot); | |
cf129f3a | 1329 | } |
8e62a717 RH |
1330 | |
1331 | /* Find the full program boundaries. */ | |
1332 | if (elf_prot & PROT_EXEC) { | |
1333 | if (vaddr < info->start_code) { | |
1334 | info->start_code = vaddr; | |
1335 | } | |
1336 | if (vaddr_ef > info->end_code) { | |
1337 | info->end_code = vaddr_ef; | |
1338 | } | |
1339 | } | |
1340 | if (elf_prot & PROT_WRITE) { | |
1341 | if (vaddr < info->start_data) { | |
1342 | info->start_data = vaddr; | |
1343 | } | |
1344 | if (vaddr_ef > info->end_data) { | |
1345 | info->end_data = vaddr_ef; | |
1346 | } | |
1347 | if (vaddr_em > info->brk) { | |
1348 | info->brk = vaddr_em; | |
1349 | } | |
1350 | } | |
bf858897 RH |
1351 | } else if (eppnt->p_type == PT_INTERP && pinterp_name) { |
1352 | char *interp_name; | |
1353 | ||
1354 | if (*pinterp_name) { | |
1355 | errmsg = "Multiple PT_INTERP entries"; | |
1356 | goto exit_errmsg; | |
1357 | } | |
1358 | interp_name = malloc(eppnt->p_filesz); | |
1359 | if (!interp_name) { | |
1360 | goto exit_perror; | |
1361 | } | |
1362 | ||
1363 | if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { | |
1364 | memcpy(interp_name, bprm_buf + eppnt->p_offset, | |
1365 | eppnt->p_filesz); | |
1366 | } else { | |
1367 | retval = pread(image_fd, interp_name, eppnt->p_filesz, | |
1368 | eppnt->p_offset); | |
1369 | if (retval != eppnt->p_filesz) { | |
1370 | goto exit_perror; | |
1371 | } | |
1372 | } | |
1373 | if (interp_name[eppnt->p_filesz - 1] != 0) { | |
1374 | errmsg = "Invalid PT_INTERP entry"; | |
1375 | goto exit_errmsg; | |
1376 | } | |
1377 | *pinterp_name = interp_name; | |
d97ef72e | 1378 | } |
682674b8 | 1379 | } |
5fafdf24 | 1380 | |
8e62a717 RH |
1381 | if (info->end_data == 0) { |
1382 | info->start_data = info->end_code; | |
1383 | info->end_data = info->end_code; | |
1384 | info->brk = info->end_code; | |
1385 | } | |
1386 | ||
682674b8 | 1387 | if (qemu_log_enabled()) { |
8e62a717 | 1388 | load_symbols(ehdr, image_fd, load_bias); |
682674b8 | 1389 | } |
31e31b8a | 1390 | |
8e62a717 RH |
1391 | close(image_fd); |
1392 | return; | |
1393 | ||
1394 | exit_read: | |
1395 | if (retval >= 0) { | |
1396 | errmsg = "Incomplete read of file header"; | |
1397 | goto exit_errmsg; | |
1398 | } | |
1399 | exit_perror: | |
1400 | errmsg = strerror(errno); | |
1401 | exit_errmsg: | |
1402 | fprintf(stderr, "%s: %s\n", image_name, errmsg); | |
1403 | exit(-1); | |
1404 | } | |
1405 | ||
1406 | static void load_elf_interp(const char *filename, struct image_info *info, | |
1407 | char bprm_buf[BPRM_BUF_SIZE]) | |
1408 | { | |
1409 | int fd, retval; | |
1410 | ||
1411 | fd = open(path(filename), O_RDONLY); | |
1412 | if (fd < 0) { | |
1413 | goto exit_perror; | |
1414 | } | |
31e31b8a | 1415 | |
8e62a717 RH |
1416 | retval = read(fd, bprm_buf, BPRM_BUF_SIZE); |
1417 | if (retval < 0) { | |
1418 | goto exit_perror; | |
1419 | } | |
1420 | if (retval < BPRM_BUF_SIZE) { | |
1421 | memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); | |
1422 | } | |
1423 | ||
bf858897 | 1424 | load_elf_image(filename, fd, info, NULL, bprm_buf); |
8e62a717 RH |
1425 | return; |
1426 | ||
1427 | exit_perror: | |
1428 | fprintf(stderr, "%s: %s\n", filename, strerror(errno)); | |
1429 | exit(-1); | |
31e31b8a FB |
1430 | } |
1431 | ||
49918a75 PB |
1432 | static int symfind(const void *s0, const void *s1) |
1433 | { | |
1434 | struct elf_sym *key = (struct elf_sym *)s0; | |
1435 | struct elf_sym *sym = (struct elf_sym *)s1; | |
1436 | int result = 0; | |
1437 | if (key->st_value < sym->st_value) { | |
1438 | result = -1; | |
ec822001 | 1439 | } else if (key->st_value >= sym->st_value + sym->st_size) { |
49918a75 PB |
1440 | result = 1; |
1441 | } | |
1442 | return result; | |
1443 | } | |
1444 | ||
1445 | static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) | |
1446 | { | |
1447 | #if ELF_CLASS == ELFCLASS32 | |
1448 | struct elf_sym *syms = s->disas_symtab.elf32; | |
1449 | #else | |
1450 | struct elf_sym *syms = s->disas_symtab.elf64; | |
1451 | #endif | |
1452 | ||
1453 | // binary search | |
1454 | struct elf_sym key; | |
1455 | struct elf_sym *sym; | |
1456 | ||
1457 | key.st_value = orig_addr; | |
1458 | ||
1459 | sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind); | |
7cba04f6 | 1460 | if (sym != NULL) { |
49918a75 PB |
1461 | return s->disas_strtab + sym->st_name; |
1462 | } | |
1463 | ||
1464 | return ""; | |
1465 | } | |
1466 | ||
1467 | /* FIXME: This should use elf_ops.h */ | |
1468 | static int symcmp(const void *s0, const void *s1) | |
1469 | { | |
1470 | struct elf_sym *sym0 = (struct elf_sym *)s0; | |
1471 | struct elf_sym *sym1 = (struct elf_sym *)s1; | |
1472 | return (sym0->st_value < sym1->st_value) | |
1473 | ? -1 | |
1474 | : ((sym0->st_value > sym1->st_value) ? 1 : 0); | |
1475 | } | |
1476 | ||
689f936f | 1477 | /* Best attempt to load symbols from this ELF object. */ |
682674b8 | 1478 | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) |
689f936f | 1479 | { |
682674b8 RH |
1480 | int i, shnum, nsyms, sym_idx = 0, str_idx = 0; |
1481 | struct elf_shdr *shdr; | |
689f936f | 1482 | char *strings; |
e80cfcfc | 1483 | struct syminfo *s; |
49918a75 | 1484 | struct elf_sym *syms; |
689f936f | 1485 | |
682674b8 RH |
1486 | shnum = hdr->e_shnum; |
1487 | i = shnum * sizeof(struct elf_shdr); | |
1488 | shdr = (struct elf_shdr *)alloca(i); | |
1489 | if (pread(fd, shdr, i, hdr->e_shoff) != i) { | |
1490 | return; | |
1491 | } | |
1492 | ||
1493 | bswap_shdr(shdr, shnum); | |
1494 | for (i = 0; i < shnum; ++i) { | |
1495 | if (shdr[i].sh_type == SHT_SYMTAB) { | |
1496 | sym_idx = i; | |
1497 | str_idx = shdr[i].sh_link; | |
49918a75 PB |
1498 | goto found; |
1499 | } | |
689f936f | 1500 | } |
682674b8 RH |
1501 | |
1502 | /* There will be no symbol table if the file was stripped. */ | |
1503 | return; | |
689f936f FB |
1504 | |
1505 | found: | |
682674b8 | 1506 | /* Now know where the strtab and symtab are. Snarf them. */ |
e80cfcfc | 1507 | s = malloc(sizeof(*s)); |
682674b8 | 1508 | if (!s) { |
49918a75 | 1509 | return; |
682674b8 | 1510 | } |
5fafdf24 | 1511 | |
682674b8 RH |
1512 | i = shdr[str_idx].sh_size; |
1513 | s->disas_strtab = strings = malloc(i); | |
1514 | if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { | |
1515 | free(s); | |
1516 | free(strings); | |
49918a75 | 1517 | return; |
682674b8 | 1518 | } |
49918a75 | 1519 | |
682674b8 RH |
1520 | i = shdr[sym_idx].sh_size; |
1521 | syms = malloc(i); | |
1522 | if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { | |
1523 | free(s); | |
1524 | free(strings); | |
1525 | free(syms); | |
1526 | return; | |
1527 | } | |
31e31b8a | 1528 | |
682674b8 RH |
1529 | nsyms = i / sizeof(struct elf_sym); |
1530 | for (i = 0; i < nsyms; ) { | |
49918a75 | 1531 | bswap_sym(syms + i); |
682674b8 RH |
1532 | /* Throw away entries which we do not need. */ |
1533 | if (syms[i].st_shndx == SHN_UNDEF | |
1534 | || syms[i].st_shndx >= SHN_LORESERVE | |
1535 | || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { | |
1536 | if (i < --nsyms) { | |
49918a75 PB |
1537 | syms[i] = syms[nsyms]; |
1538 | } | |
682674b8 | 1539 | } else { |
49918a75 | 1540 | #if defined(TARGET_ARM) || defined (TARGET_MIPS) |
682674b8 RH |
1541 | /* The bottom address bit marks a Thumb or MIPS16 symbol. */ |
1542 | syms[i].st_value &= ~(target_ulong)1; | |
0774bed1 | 1543 | #endif |
682674b8 RH |
1544 | syms[i].st_value += load_bias; |
1545 | i++; | |
1546 | } | |
0774bed1 | 1547 | } |
49918a75 | 1548 | |
5d5c9930 RH |
1549 | /* Attempt to free the storage associated with the local symbols |
1550 | that we threw away. Whether or not this has any effect on the | |
1551 | memory allocation depends on the malloc implementation and how | |
1552 | many symbols we managed to discard. */ | |
682674b8 | 1553 | syms = realloc(syms, nsyms * sizeof(*syms)); |
5d5c9930 RH |
1554 | if (syms == NULL) { |
1555 | free(s); | |
1556 | free(strings); | |
1557 | return; | |
1558 | } | |
1559 | ||
49918a75 | 1560 | qsort(syms, nsyms, sizeof(*syms), symcmp); |
689f936f | 1561 | |
49918a75 PB |
1562 | s->disas_num_syms = nsyms; |
1563 | #if ELF_CLASS == ELFCLASS32 | |
1564 | s->disas_symtab.elf32 = syms; | |
49918a75 PB |
1565 | #else |
1566 | s->disas_symtab.elf64 = syms; | |
49918a75 | 1567 | #endif |
682674b8 | 1568 | s->lookup_symbol = lookup_symbolxx; |
e80cfcfc FB |
1569 | s->next = syminfos; |
1570 | syminfos = s; | |
689f936f | 1571 | } |
31e31b8a | 1572 | |
e5fe0c52 PB |
1573 | int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, |
1574 | struct image_info * info) | |
31e31b8a | 1575 | { |
8e62a717 | 1576 | struct image_info interp_info; |
31e31b8a | 1577 | struct elfhdr elf_ex; |
8e62a717 | 1578 | char *elf_interpreter = NULL; |
31e31b8a | 1579 | |
bf858897 RH |
1580 | info->start_mmap = (abi_ulong)ELF_START_MMAP; |
1581 | info->mmap = 0; | |
1582 | info->rss = 0; | |
1583 | ||
1584 | load_elf_image(bprm->filename, bprm->fd, info, | |
1585 | &elf_interpreter, bprm->buf); | |
31e31b8a | 1586 | |
bf858897 RH |
1587 | /* ??? We need a copy of the elf header for passing to create_elf_tables. |
1588 | If we do nothing, we'll have overwritten this when we re-use bprm->buf | |
1589 | when we load the interpreter. */ | |
1590 | elf_ex = *(struct elfhdr *)bprm->buf; | |
31e31b8a | 1591 | |
e5fe0c52 PB |
1592 | bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); |
1593 | bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p); | |
1594 | bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p); | |
1595 | if (!bprm->p) { | |
bf858897 RH |
1596 | fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); |
1597 | exit(-1); | |
379f6698 | 1598 | } |
379f6698 | 1599 | |
31e31b8a FB |
1600 | /* Do this so that we can load the interpreter, if need be. We will |
1601 | change some of these later */ | |
31e31b8a | 1602 | bprm->p = setup_arg_pages(bprm->p, bprm, info); |
31e31b8a | 1603 | |
8e62a717 RH |
1604 | if (elf_interpreter) { |
1605 | load_elf_interp(elf_interpreter, &interp_info, bprm->buf); | |
31e31b8a | 1606 | |
8e62a717 RH |
1607 | /* If the program interpreter is one of these two, then assume |
1608 | an iBCS2 image. Otherwise assume a native linux image. */ | |
1609 | ||
1610 | if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 | |
1611 | || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { | |
1612 | info->personality = PER_SVR4; | |
31e31b8a | 1613 | |
8e62a717 RH |
1614 | /* Why this, you ask??? Well SVr4 maps page 0 as read-only, |
1615 | and some applications "depend" upon this behavior. Since | |
1616 | we do not have the power to recompile these, we emulate | |
1617 | the SVr4 behavior. Sigh. */ | |
1618 | target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, | |
1619 | MAP_FIXED | MAP_PRIVATE, -1, 0); | |
1620 | } | |
31e31b8a FB |
1621 | } |
1622 | ||
8e62a717 RH |
1623 | bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, |
1624 | info, (elf_interpreter ? &interp_info : NULL)); | |
1625 | info->start_stack = bprm->p; | |
1626 | ||
1627 | /* If we have an interpreter, set that as the program's entry point. | |
1628 | Copy the load_addr as well, to help PPC64 interpret the entry | |
1629 | point as a function descriptor. Do this after creating elf tables | |
1630 | so that we copy the original program entry point into the AUXV. */ | |
1631 | if (elf_interpreter) { | |
1632 | info->load_addr = interp_info.load_addr; | |
1633 | info->entry = interp_info.entry; | |
bf858897 | 1634 | free(elf_interpreter); |
8e62a717 | 1635 | } |
31e31b8a | 1636 | |
edf8e2af MW |
1637 | #ifdef USE_ELF_CORE_DUMP |
1638 | bprm->core_dump = &elf_core_dump; | |
1639 | #endif | |
1640 | ||
31e31b8a FB |
1641 | return 0; |
1642 | } | |
1643 | ||
edf8e2af | 1644 | #ifdef USE_ELF_CORE_DUMP |
edf8e2af MW |
1645 | /* |
1646 | * Definitions to generate Intel SVR4-like core files. | |
a2547a13 | 1647 | * These mostly have the same names as the SVR4 types with "target_elf_" |
edf8e2af MW |
1648 | * tacked on the front to prevent clashes with linux definitions, |
1649 | * and the typedef forms have been avoided. This is mostly like | |
1650 | * the SVR4 structure, but more Linuxy, with things that Linux does | |
1651 | * not support and which gdb doesn't really use excluded. | |
1652 | * | |
1653 | * Fields we don't dump (their contents is zero) in linux-user qemu | |
1654 | * are marked with XXX. | |
1655 | * | |
1656 | * Core dump code is copied from linux kernel (fs/binfmt_elf.c). | |
1657 | * | |
1658 | * Porting ELF coredump for target is (quite) simple process. First you | |
dd0a3651 | 1659 | * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for |
edf8e2af MW |
1660 | * the target resides): |
1661 | * | |
1662 | * #define USE_ELF_CORE_DUMP | |
1663 | * | |
1664 | * Next you define type of register set used for dumping. ELF specification | |
1665 | * says that it needs to be array of elf_greg_t that has size of ELF_NREG. | |
1666 | * | |
c227f099 | 1667 | * typedef <target_regtype> target_elf_greg_t; |
edf8e2af | 1668 | * #define ELF_NREG <number of registers> |
c227f099 | 1669 | * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
edf8e2af | 1670 | * |
edf8e2af MW |
1671 | * Last step is to implement target specific function that copies registers |
1672 | * from given cpu into just specified register set. Prototype is: | |
1673 | * | |
c227f099 | 1674 | * static void elf_core_copy_regs(taret_elf_gregset_t *regs, |
a2547a13 | 1675 | * const CPUState *env); |
edf8e2af MW |
1676 | * |
1677 | * Parameters: | |
1678 | * regs - copy register values into here (allocated and zeroed by caller) | |
1679 | * env - copy registers from here | |
1680 | * | |
1681 | * Example for ARM target is provided in this file. | |
1682 | */ | |
1683 | ||
1684 | /* An ELF note in memory */ | |
1685 | struct memelfnote { | |
1686 | const char *name; | |
1687 | size_t namesz; | |
1688 | size_t namesz_rounded; | |
1689 | int type; | |
1690 | size_t datasz; | |
1691 | void *data; | |
1692 | size_t notesz; | |
1693 | }; | |
1694 | ||
a2547a13 | 1695 | struct target_elf_siginfo { |
edf8e2af MW |
1696 | int si_signo; /* signal number */ |
1697 | int si_code; /* extra code */ | |
1698 | int si_errno; /* errno */ | |
1699 | }; | |
1700 | ||
a2547a13 LD |
1701 | struct target_elf_prstatus { |
1702 | struct target_elf_siginfo pr_info; /* Info associated with signal */ | |
edf8e2af MW |
1703 | short pr_cursig; /* Current signal */ |
1704 | target_ulong pr_sigpend; /* XXX */ | |
1705 | target_ulong pr_sighold; /* XXX */ | |
c227f099 AL |
1706 | target_pid_t pr_pid; |
1707 | target_pid_t pr_ppid; | |
1708 | target_pid_t pr_pgrp; | |
1709 | target_pid_t pr_sid; | |
edf8e2af MW |
1710 | struct target_timeval pr_utime; /* XXX User time */ |
1711 | struct target_timeval pr_stime; /* XXX System time */ | |
1712 | struct target_timeval pr_cutime; /* XXX Cumulative user time */ | |
1713 | struct target_timeval pr_cstime; /* XXX Cumulative system time */ | |
c227f099 | 1714 | target_elf_gregset_t pr_reg; /* GP registers */ |
edf8e2af MW |
1715 | int pr_fpvalid; /* XXX */ |
1716 | }; | |
1717 | ||
1718 | #define ELF_PRARGSZ (80) /* Number of chars for args */ | |
1719 | ||
a2547a13 | 1720 | struct target_elf_prpsinfo { |
edf8e2af MW |
1721 | char pr_state; /* numeric process state */ |
1722 | char pr_sname; /* char for pr_state */ | |
1723 | char pr_zomb; /* zombie */ | |
1724 | char pr_nice; /* nice val */ | |
1725 | target_ulong pr_flag; /* flags */ | |
c227f099 AL |
1726 | target_uid_t pr_uid; |
1727 | target_gid_t pr_gid; | |
1728 | target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; | |
edf8e2af MW |
1729 | /* Lots missing */ |
1730 | char pr_fname[16]; /* filename of executable */ | |
1731 | char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ | |
1732 | }; | |
1733 | ||
1734 | /* Here is the structure in which status of each thread is captured. */ | |
1735 | struct elf_thread_status { | |
72cf2d4f | 1736 | QTAILQ_ENTRY(elf_thread_status) ets_link; |
a2547a13 | 1737 | struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ |
edf8e2af MW |
1738 | #if 0 |
1739 | elf_fpregset_t fpu; /* NT_PRFPREG */ | |
1740 | struct task_struct *thread; | |
1741 | elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ | |
1742 | #endif | |
1743 | struct memelfnote notes[1]; | |
1744 | int num_notes; | |
1745 | }; | |
1746 | ||
1747 | struct elf_note_info { | |
1748 | struct memelfnote *notes; | |
a2547a13 LD |
1749 | struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ |
1750 | struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ | |
edf8e2af | 1751 | |
72cf2d4f | 1752 | QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; |
edf8e2af MW |
1753 | #if 0 |
1754 | /* | |
1755 | * Current version of ELF coredump doesn't support | |
1756 | * dumping fp regs etc. | |
1757 | */ | |
1758 | elf_fpregset_t *fpu; | |
1759 | elf_fpxregset_t *xfpu; | |
1760 | int thread_status_size; | |
1761 | #endif | |
1762 | int notes_size; | |
1763 | int numnote; | |
1764 | }; | |
1765 | ||
1766 | struct vm_area_struct { | |
1767 | abi_ulong vma_start; /* start vaddr of memory region */ | |
1768 | abi_ulong vma_end; /* end vaddr of memory region */ | |
1769 | abi_ulong vma_flags; /* protection etc. flags for the region */ | |
72cf2d4f | 1770 | QTAILQ_ENTRY(vm_area_struct) vma_link; |
edf8e2af MW |
1771 | }; |
1772 | ||
1773 | struct mm_struct { | |
72cf2d4f | 1774 | QTAILQ_HEAD(, vm_area_struct) mm_mmap; |
edf8e2af MW |
1775 | int mm_count; /* number of mappings */ |
1776 | }; | |
1777 | ||
1778 | static struct mm_struct *vma_init(void); | |
1779 | static void vma_delete(struct mm_struct *); | |
1780 | static int vma_add_mapping(struct mm_struct *, abi_ulong, | |
d97ef72e | 1781 | abi_ulong, abi_ulong); |
edf8e2af MW |
1782 | static int vma_get_mapping_count(const struct mm_struct *); |
1783 | static struct vm_area_struct *vma_first(const struct mm_struct *); | |
1784 | static struct vm_area_struct *vma_next(struct vm_area_struct *); | |
1785 | static abi_ulong vma_dump_size(const struct vm_area_struct *); | |
b480d9b7 | 1786 | static int vma_walker(void *priv, abi_ulong start, abi_ulong end, |
d97ef72e | 1787 | unsigned long flags); |
edf8e2af MW |
1788 | |
1789 | static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); | |
1790 | static void fill_note(struct memelfnote *, const char *, int, | |
d97ef72e | 1791 | unsigned int, void *); |
a2547a13 LD |
1792 | static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); |
1793 | static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); | |
edf8e2af MW |
1794 | static void fill_auxv_note(struct memelfnote *, const TaskState *); |
1795 | static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); | |
1796 | static size_t note_size(const struct memelfnote *); | |
1797 | static void free_note_info(struct elf_note_info *); | |
1798 | static int fill_note_info(struct elf_note_info *, long, const CPUState *); | |
1799 | static void fill_thread_info(struct elf_note_info *, const CPUState *); | |
1800 | static int core_dump_filename(const TaskState *, char *, size_t); | |
1801 | ||
1802 | static int dump_write(int, const void *, size_t); | |
1803 | static int write_note(struct memelfnote *, int); | |
1804 | static int write_note_info(struct elf_note_info *, int); | |
1805 | ||
1806 | #ifdef BSWAP_NEEDED | |
a2547a13 | 1807 | static void bswap_prstatus(struct target_elf_prstatus *prstatus) |
edf8e2af MW |
1808 | { |
1809 | prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo); | |
1810 | prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code); | |
1811 | prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno); | |
1812 | prstatus->pr_cursig = tswap16(prstatus->pr_cursig); | |
1813 | prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend); | |
1814 | prstatus->pr_sighold = tswapl(prstatus->pr_sighold); | |
1815 | prstatus->pr_pid = tswap32(prstatus->pr_pid); | |
1816 | prstatus->pr_ppid = tswap32(prstatus->pr_ppid); | |
1817 | prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); | |
1818 | prstatus->pr_sid = tswap32(prstatus->pr_sid); | |
1819 | /* cpu times are not filled, so we skip them */ | |
1820 | /* regs should be in correct format already */ | |
1821 | prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); | |
1822 | } | |
1823 | ||
a2547a13 | 1824 | static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) |
edf8e2af MW |
1825 | { |
1826 | psinfo->pr_flag = tswapl(psinfo->pr_flag); | |
1827 | psinfo->pr_uid = tswap16(psinfo->pr_uid); | |
1828 | psinfo->pr_gid = tswap16(psinfo->pr_gid); | |
1829 | psinfo->pr_pid = tswap32(psinfo->pr_pid); | |
1830 | psinfo->pr_ppid = tswap32(psinfo->pr_ppid); | |
1831 | psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); | |
1832 | psinfo->pr_sid = tswap32(psinfo->pr_sid); | |
1833 | } | |
991f8f0c RH |
1834 | |
1835 | static void bswap_note(struct elf_note *en) | |
1836 | { | |
1837 | bswap32s(&en->n_namesz); | |
1838 | bswap32s(&en->n_descsz); | |
1839 | bswap32s(&en->n_type); | |
1840 | } | |
1841 | #else | |
1842 | static inline void bswap_prstatus(struct target_elf_prstatus *p) { } | |
1843 | static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} | |
1844 | static inline void bswap_note(struct elf_note *en) { } | |
edf8e2af MW |
1845 | #endif /* BSWAP_NEEDED */ |
1846 | ||
1847 | /* | |
1848 | * Minimal support for linux memory regions. These are needed | |
1849 | * when we are finding out what memory exactly belongs to | |
1850 | * emulated process. No locks needed here, as long as | |
1851 | * thread that received the signal is stopped. | |
1852 | */ | |
1853 | ||
1854 | static struct mm_struct *vma_init(void) | |
1855 | { | |
1856 | struct mm_struct *mm; | |
1857 | ||
1858 | if ((mm = qemu_malloc(sizeof (*mm))) == NULL) | |
1859 | return (NULL); | |
1860 | ||
1861 | mm->mm_count = 0; | |
72cf2d4f | 1862 | QTAILQ_INIT(&mm->mm_mmap); |
edf8e2af MW |
1863 | |
1864 | return (mm); | |
1865 | } | |
1866 | ||
1867 | static void vma_delete(struct mm_struct *mm) | |
1868 | { | |
1869 | struct vm_area_struct *vma; | |
1870 | ||
1871 | while ((vma = vma_first(mm)) != NULL) { | |
72cf2d4f | 1872 | QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); |
edf8e2af MW |
1873 | qemu_free(vma); |
1874 | } | |
1875 | qemu_free(mm); | |
1876 | } | |
1877 | ||
1878 | static int vma_add_mapping(struct mm_struct *mm, abi_ulong start, | |
d97ef72e | 1879 | abi_ulong end, abi_ulong flags) |
edf8e2af MW |
1880 | { |
1881 | struct vm_area_struct *vma; | |
1882 | ||
1883 | if ((vma = qemu_mallocz(sizeof (*vma))) == NULL) | |
1884 | return (-1); | |
1885 | ||
1886 | vma->vma_start = start; | |
1887 | vma->vma_end = end; | |
1888 | vma->vma_flags = flags; | |
1889 | ||
72cf2d4f | 1890 | QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); |
edf8e2af MW |
1891 | mm->mm_count++; |
1892 | ||
1893 | return (0); | |
1894 | } | |
1895 | ||
1896 | static struct vm_area_struct *vma_first(const struct mm_struct *mm) | |
1897 | { | |
72cf2d4f | 1898 | return (QTAILQ_FIRST(&mm->mm_mmap)); |
edf8e2af MW |
1899 | } |
1900 | ||
1901 | static struct vm_area_struct *vma_next(struct vm_area_struct *vma) | |
1902 | { | |
72cf2d4f | 1903 | return (QTAILQ_NEXT(vma, vma_link)); |
edf8e2af MW |
1904 | } |
1905 | ||
1906 | static int vma_get_mapping_count(const struct mm_struct *mm) | |
1907 | { | |
1908 | return (mm->mm_count); | |
1909 | } | |
1910 | ||
1911 | /* | |
1912 | * Calculate file (dump) size of given memory region. | |
1913 | */ | |
1914 | static abi_ulong vma_dump_size(const struct vm_area_struct *vma) | |
1915 | { | |
1916 | /* if we cannot even read the first page, skip it */ | |
1917 | if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) | |
1918 | return (0); | |
1919 | ||
1920 | /* | |
1921 | * Usually we don't dump executable pages as they contain | |
1922 | * non-writable code that debugger can read directly from | |
1923 | * target library etc. However, thread stacks are marked | |
1924 | * also executable so we read in first page of given region | |
1925 | * and check whether it contains elf header. If there is | |
1926 | * no elf header, we dump it. | |
1927 | */ | |
1928 | if (vma->vma_flags & PROT_EXEC) { | |
1929 | char page[TARGET_PAGE_SIZE]; | |
1930 | ||
1931 | copy_from_user(page, vma->vma_start, sizeof (page)); | |
1932 | if ((page[EI_MAG0] == ELFMAG0) && | |
1933 | (page[EI_MAG1] == ELFMAG1) && | |
1934 | (page[EI_MAG2] == ELFMAG2) && | |
1935 | (page[EI_MAG3] == ELFMAG3)) { | |
1936 | /* | |
1937 | * Mappings are possibly from ELF binary. Don't dump | |
1938 | * them. | |
1939 | */ | |
1940 | return (0); | |
1941 | } | |
1942 | } | |
1943 | ||
1944 | return (vma->vma_end - vma->vma_start); | |
1945 | } | |
1946 | ||
b480d9b7 | 1947 | static int vma_walker(void *priv, abi_ulong start, abi_ulong end, |
d97ef72e | 1948 | unsigned long flags) |
edf8e2af MW |
1949 | { |
1950 | struct mm_struct *mm = (struct mm_struct *)priv; | |
1951 | ||
edf8e2af MW |
1952 | vma_add_mapping(mm, start, end, flags); |
1953 | return (0); | |
1954 | } | |
1955 | ||
1956 | static void fill_note(struct memelfnote *note, const char *name, int type, | |
d97ef72e | 1957 | unsigned int sz, void *data) |
edf8e2af MW |
1958 | { |
1959 | unsigned int namesz; | |
1960 | ||
1961 | namesz = strlen(name) + 1; | |
1962 | note->name = name; | |
1963 | note->namesz = namesz; | |
1964 | note->namesz_rounded = roundup(namesz, sizeof (int32_t)); | |
1965 | note->type = type; | |
1966 | note->datasz = roundup(sz, sizeof (int32_t));; | |
1967 | note->data = data; | |
1968 | ||
1969 | /* | |
1970 | * We calculate rounded up note size here as specified by | |
1971 | * ELF document. | |
1972 | */ | |
1973 | note->notesz = sizeof (struct elf_note) + | |
1974 | note->namesz_rounded + note->datasz; | |
1975 | } | |
1976 | ||
1977 | static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, | |
d97ef72e | 1978 | uint32_t flags) |
edf8e2af MW |
1979 | { |
1980 | (void) memset(elf, 0, sizeof(*elf)); | |
1981 | ||
1982 | (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); | |
1983 | elf->e_ident[EI_CLASS] = ELF_CLASS; | |
1984 | elf->e_ident[EI_DATA] = ELF_DATA; | |
1985 | elf->e_ident[EI_VERSION] = EV_CURRENT; | |
1986 | elf->e_ident[EI_OSABI] = ELF_OSABI; | |
1987 | ||
1988 | elf->e_type = ET_CORE; | |
1989 | elf->e_machine = machine; | |
1990 | elf->e_version = EV_CURRENT; | |
1991 | elf->e_phoff = sizeof(struct elfhdr); | |
1992 | elf->e_flags = flags; | |
1993 | elf->e_ehsize = sizeof(struct elfhdr); | |
1994 | elf->e_phentsize = sizeof(struct elf_phdr); | |
1995 | elf->e_phnum = segs; | |
1996 | ||
edf8e2af | 1997 | bswap_ehdr(elf); |
edf8e2af MW |
1998 | } |
1999 | ||
2000 | static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) | |
2001 | { | |
2002 | phdr->p_type = PT_NOTE; | |
2003 | phdr->p_offset = offset; | |
2004 | phdr->p_vaddr = 0; | |
2005 | phdr->p_paddr = 0; | |
2006 | phdr->p_filesz = sz; | |
2007 | phdr->p_memsz = 0; | |
2008 | phdr->p_flags = 0; | |
2009 | phdr->p_align = 0; | |
2010 | ||
991f8f0c | 2011 | bswap_phdr(phdr, 1); |
edf8e2af MW |
2012 | } |
2013 | ||
2014 | static size_t note_size(const struct memelfnote *note) | |
2015 | { | |
2016 | return (note->notesz); | |
2017 | } | |
2018 | ||
a2547a13 | 2019 | static void fill_prstatus(struct target_elf_prstatus *prstatus, |
d97ef72e | 2020 | const TaskState *ts, int signr) |
edf8e2af MW |
2021 | { |
2022 | (void) memset(prstatus, 0, sizeof (*prstatus)); | |
2023 | prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; | |
2024 | prstatus->pr_pid = ts->ts_tid; | |
2025 | prstatus->pr_ppid = getppid(); | |
2026 | prstatus->pr_pgrp = getpgrp(); | |
2027 | prstatus->pr_sid = getsid(0); | |
2028 | ||
edf8e2af | 2029 | bswap_prstatus(prstatus); |
edf8e2af MW |
2030 | } |
2031 | ||
a2547a13 | 2032 | static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) |
edf8e2af MW |
2033 | { |
2034 | char *filename, *base_filename; | |
2035 | unsigned int i, len; | |
2036 | ||
2037 | (void) memset(psinfo, 0, sizeof (*psinfo)); | |
2038 | ||
2039 | len = ts->info->arg_end - ts->info->arg_start; | |
2040 | if (len >= ELF_PRARGSZ) | |
2041 | len = ELF_PRARGSZ - 1; | |
2042 | if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) | |
2043 | return -EFAULT; | |
2044 | for (i = 0; i < len; i++) | |
2045 | if (psinfo->pr_psargs[i] == 0) | |
2046 | psinfo->pr_psargs[i] = ' '; | |
2047 | psinfo->pr_psargs[len] = 0; | |
2048 | ||
2049 | psinfo->pr_pid = getpid(); | |
2050 | psinfo->pr_ppid = getppid(); | |
2051 | psinfo->pr_pgrp = getpgrp(); | |
2052 | psinfo->pr_sid = getsid(0); | |
2053 | psinfo->pr_uid = getuid(); | |
2054 | psinfo->pr_gid = getgid(); | |
2055 | ||
2056 | filename = strdup(ts->bprm->filename); | |
2057 | base_filename = strdup(basename(filename)); | |
2058 | (void) strncpy(psinfo->pr_fname, base_filename, | |
d97ef72e | 2059 | sizeof(psinfo->pr_fname)); |
edf8e2af MW |
2060 | free(base_filename); |
2061 | free(filename); | |
2062 | ||
edf8e2af | 2063 | bswap_psinfo(psinfo); |
edf8e2af MW |
2064 | return (0); |
2065 | } | |
2066 | ||
2067 | static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) | |
2068 | { | |
2069 | elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; | |
2070 | elf_addr_t orig_auxv = auxv; | |
2071 | abi_ulong val; | |
2072 | void *ptr; | |
2073 | int i, len; | |
2074 | ||
2075 | /* | |
2076 | * Auxiliary vector is stored in target process stack. It contains | |
2077 | * {type, value} pairs that we need to dump into note. This is not | |
2078 | * strictly necessary but we do it here for sake of completeness. | |
2079 | */ | |
2080 | ||
2081 | /* find out lenght of the vector, AT_NULL is terminator */ | |
2082 | i = len = 0; | |
2083 | do { | |
2084 | get_user_ual(val, auxv); | |
2085 | i += 2; | |
2086 | auxv += 2 * sizeof (elf_addr_t); | |
2087 | } while (val != AT_NULL); | |
2088 | len = i * sizeof (elf_addr_t); | |
2089 | ||
2090 | /* read in whole auxv vector and copy it to memelfnote */ | |
2091 | ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); | |
2092 | if (ptr != NULL) { | |
2093 | fill_note(note, "CORE", NT_AUXV, len, ptr); | |
2094 | unlock_user(ptr, auxv, len); | |
2095 | } | |
2096 | } | |
2097 | ||
2098 | /* | |
2099 | * Constructs name of coredump file. We have following convention | |
2100 | * for the name: | |
2101 | * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core | |
2102 | * | |
2103 | * Returns 0 in case of success, -1 otherwise (errno is set). | |
2104 | */ | |
2105 | static int core_dump_filename(const TaskState *ts, char *buf, | |
d97ef72e | 2106 | size_t bufsize) |
edf8e2af MW |
2107 | { |
2108 | char timestamp[64]; | |
2109 | char *filename = NULL; | |
2110 | char *base_filename = NULL; | |
2111 | struct timeval tv; | |
2112 | struct tm tm; | |
2113 | ||
2114 | assert(bufsize >= PATH_MAX); | |
2115 | ||
2116 | if (gettimeofday(&tv, NULL) < 0) { | |
2117 | (void) fprintf(stderr, "unable to get current timestamp: %s", | |
d97ef72e | 2118 | strerror(errno)); |
edf8e2af MW |
2119 | return (-1); |
2120 | } | |
2121 | ||
2122 | filename = strdup(ts->bprm->filename); | |
2123 | base_filename = strdup(basename(filename)); | |
2124 | (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", | |
d97ef72e | 2125 | localtime_r(&tv.tv_sec, &tm)); |
edf8e2af | 2126 | (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", |
d97ef72e | 2127 | base_filename, timestamp, (int)getpid()); |
edf8e2af MW |
2128 | free(base_filename); |
2129 | free(filename); | |
2130 | ||
2131 | return (0); | |
2132 | } | |
2133 | ||
2134 | static int dump_write(int fd, const void *ptr, size_t size) | |
2135 | { | |
2136 | const char *bufp = (const char *)ptr; | |
2137 | ssize_t bytes_written, bytes_left; | |
2138 | struct rlimit dumpsize; | |
2139 | off_t pos; | |
2140 | ||
2141 | bytes_written = 0; | |
2142 | getrlimit(RLIMIT_CORE, &dumpsize); | |
2143 | if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { | |
2144 | if (errno == ESPIPE) { /* not a seekable stream */ | |
2145 | bytes_left = size; | |
2146 | } else { | |
2147 | return pos; | |
2148 | } | |
2149 | } else { | |
2150 | if (dumpsize.rlim_cur <= pos) { | |
2151 | return -1; | |
2152 | } else if (dumpsize.rlim_cur == RLIM_INFINITY) { | |
2153 | bytes_left = size; | |
2154 | } else { | |
2155 | size_t limit_left=dumpsize.rlim_cur - pos; | |
2156 | bytes_left = limit_left >= size ? size : limit_left ; | |
2157 | } | |
2158 | } | |
2159 | ||
2160 | /* | |
2161 | * In normal conditions, single write(2) should do but | |
2162 | * in case of socket etc. this mechanism is more portable. | |
2163 | */ | |
2164 | do { | |
2165 | bytes_written = write(fd, bufp, bytes_left); | |
2166 | if (bytes_written < 0) { | |
2167 | if (errno == EINTR) | |
2168 | continue; | |
2169 | return (-1); | |
2170 | } else if (bytes_written == 0) { /* eof */ | |
2171 | return (-1); | |
2172 | } | |
2173 | bufp += bytes_written; | |
2174 | bytes_left -= bytes_written; | |
2175 | } while (bytes_left > 0); | |
2176 | ||
2177 | return (0); | |
2178 | } | |
2179 | ||
2180 | static int write_note(struct memelfnote *men, int fd) | |
2181 | { | |
2182 | struct elf_note en; | |
2183 | ||
2184 | en.n_namesz = men->namesz; | |
2185 | en.n_type = men->type; | |
2186 | en.n_descsz = men->datasz; | |
2187 | ||
edf8e2af | 2188 | bswap_note(&en); |
edf8e2af MW |
2189 | |
2190 | if (dump_write(fd, &en, sizeof(en)) != 0) | |
2191 | return (-1); | |
2192 | if (dump_write(fd, men->name, men->namesz_rounded) != 0) | |
2193 | return (-1); | |
2194 | if (dump_write(fd, men->data, men->datasz) != 0) | |
2195 | return (-1); | |
2196 | ||
2197 | return (0); | |
2198 | } | |
2199 | ||
2200 | static void fill_thread_info(struct elf_note_info *info, const CPUState *env) | |
2201 | { | |
2202 | TaskState *ts = (TaskState *)env->opaque; | |
2203 | struct elf_thread_status *ets; | |
2204 | ||
2205 | ets = qemu_mallocz(sizeof (*ets)); | |
2206 | ets->num_notes = 1; /* only prstatus is dumped */ | |
2207 | fill_prstatus(&ets->prstatus, ts, 0); | |
2208 | elf_core_copy_regs(&ets->prstatus.pr_reg, env); | |
2209 | fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), | |
d97ef72e | 2210 | &ets->prstatus); |
edf8e2af | 2211 | |
72cf2d4f | 2212 | QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); |
edf8e2af MW |
2213 | |
2214 | info->notes_size += note_size(&ets->notes[0]); | |
2215 | } | |
2216 | ||
2217 | static int fill_note_info(struct elf_note_info *info, | |
d97ef72e | 2218 | long signr, const CPUState *env) |
edf8e2af MW |
2219 | { |
2220 | #define NUMNOTES 3 | |
2221 | CPUState *cpu = NULL; | |
2222 | TaskState *ts = (TaskState *)env->opaque; | |
2223 | int i; | |
2224 | ||
2225 | (void) memset(info, 0, sizeof (*info)); | |
2226 | ||
72cf2d4f | 2227 | QTAILQ_INIT(&info->thread_list); |
edf8e2af MW |
2228 | |
2229 | info->notes = qemu_mallocz(NUMNOTES * sizeof (struct memelfnote)); | |
2230 | if (info->notes == NULL) | |
2231 | return (-ENOMEM); | |
2232 | info->prstatus = qemu_mallocz(sizeof (*info->prstatus)); | |
2233 | if (info->prstatus == NULL) | |
2234 | return (-ENOMEM); | |
2235 | info->psinfo = qemu_mallocz(sizeof (*info->psinfo)); | |
2236 | if (info->prstatus == NULL) | |
2237 | return (-ENOMEM); | |
2238 | ||
2239 | /* | |
2240 | * First fill in status (and registers) of current thread | |
2241 | * including process info & aux vector. | |
2242 | */ | |
2243 | fill_prstatus(info->prstatus, ts, signr); | |
2244 | elf_core_copy_regs(&info->prstatus->pr_reg, env); | |
2245 | fill_note(&info->notes[0], "CORE", NT_PRSTATUS, | |
d97ef72e | 2246 | sizeof (*info->prstatus), info->prstatus); |
edf8e2af MW |
2247 | fill_psinfo(info->psinfo, ts); |
2248 | fill_note(&info->notes[1], "CORE", NT_PRPSINFO, | |
d97ef72e | 2249 | sizeof (*info->psinfo), info->psinfo); |
edf8e2af MW |
2250 | fill_auxv_note(&info->notes[2], ts); |
2251 | info->numnote = 3; | |
2252 | ||
2253 | info->notes_size = 0; | |
2254 | for (i = 0; i < info->numnote; i++) | |
2255 | info->notes_size += note_size(&info->notes[i]); | |
2256 | ||
2257 | /* read and fill status of all threads */ | |
2258 | cpu_list_lock(); | |
2259 | for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) { | |
2260 | if (cpu == thread_env) | |
2261 | continue; | |
2262 | fill_thread_info(info, cpu); | |
2263 | } | |
2264 | cpu_list_unlock(); | |
2265 | ||
2266 | return (0); | |
2267 | } | |
2268 | ||
2269 | static void free_note_info(struct elf_note_info *info) | |
2270 | { | |
2271 | struct elf_thread_status *ets; | |
2272 | ||
72cf2d4f BS |
2273 | while (!QTAILQ_EMPTY(&info->thread_list)) { |
2274 | ets = QTAILQ_FIRST(&info->thread_list); | |
2275 | QTAILQ_REMOVE(&info->thread_list, ets, ets_link); | |
edf8e2af MW |
2276 | qemu_free(ets); |
2277 | } | |
2278 | ||
2279 | qemu_free(info->prstatus); | |
2280 | qemu_free(info->psinfo); | |
2281 | qemu_free(info->notes); | |
2282 | } | |
2283 | ||
2284 | static int write_note_info(struct elf_note_info *info, int fd) | |
2285 | { | |
2286 | struct elf_thread_status *ets; | |
2287 | int i, error = 0; | |
2288 | ||
2289 | /* write prstatus, psinfo and auxv for current thread */ | |
2290 | for (i = 0; i < info->numnote; i++) | |
2291 | if ((error = write_note(&info->notes[i], fd)) != 0) | |
2292 | return (error); | |
2293 | ||
2294 | /* write prstatus for each thread */ | |
2295 | for (ets = info->thread_list.tqh_first; ets != NULL; | |
d97ef72e | 2296 | ets = ets->ets_link.tqe_next) { |
edf8e2af MW |
2297 | if ((error = write_note(&ets->notes[0], fd)) != 0) |
2298 | return (error); | |
2299 | } | |
2300 | ||
2301 | return (0); | |
2302 | } | |
2303 | ||
2304 | /* | |
2305 | * Write out ELF coredump. | |
2306 | * | |
2307 | * See documentation of ELF object file format in: | |
2308 | * http://www.caldera.com/developers/devspecs/gabi41.pdf | |
2309 | * | |
2310 | * Coredump format in linux is following: | |
2311 | * | |
2312 | * 0 +----------------------+ \ | |
2313 | * | ELF header | ET_CORE | | |
2314 | * +----------------------+ | | |
2315 | * | ELF program headers | |--- headers | |
2316 | * | - NOTE section | | | |
2317 | * | - PT_LOAD sections | | | |
2318 | * +----------------------+ / | |
2319 | * | NOTEs: | | |
2320 | * | - NT_PRSTATUS | | |
2321 | * | - NT_PRSINFO | | |
2322 | * | - NT_AUXV | | |
2323 | * +----------------------+ <-- aligned to target page | |
2324 | * | Process memory dump | | |
2325 | * : : | |
2326 | * . . | |
2327 | * : : | |
2328 | * | | | |
2329 | * +----------------------+ | |
2330 | * | |
2331 | * NT_PRSTATUS -> struct elf_prstatus (per thread) | |
2332 | * NT_PRSINFO -> struct elf_prpsinfo | |
2333 | * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). | |
2334 | * | |
2335 | * Format follows System V format as close as possible. Current | |
2336 | * version limitations are as follows: | |
2337 | * - no floating point registers are dumped | |
2338 | * | |
2339 | * Function returns 0 in case of success, negative errno otherwise. | |
2340 | * | |
2341 | * TODO: make this work also during runtime: it should be | |
2342 | * possible to force coredump from running process and then | |
2343 | * continue processing. For example qemu could set up SIGUSR2 | |
2344 | * handler (provided that target process haven't registered | |
2345 | * handler for that) that does the dump when signal is received. | |
2346 | */ | |
2347 | static int elf_core_dump(int signr, const CPUState *env) | |
2348 | { | |
2349 | const TaskState *ts = (const TaskState *)env->opaque; | |
2350 | struct vm_area_struct *vma = NULL; | |
2351 | char corefile[PATH_MAX]; | |
2352 | struct elf_note_info info; | |
2353 | struct elfhdr elf; | |
2354 | struct elf_phdr phdr; | |
2355 | struct rlimit dumpsize; | |
2356 | struct mm_struct *mm = NULL; | |
2357 | off_t offset = 0, data_offset = 0; | |
2358 | int segs = 0; | |
2359 | int fd = -1; | |
2360 | ||
2361 | errno = 0; | |
2362 | getrlimit(RLIMIT_CORE, &dumpsize); | |
2363 | if (dumpsize.rlim_cur == 0) | |
d97ef72e | 2364 | return 0; |
edf8e2af MW |
2365 | |
2366 | if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) | |
2367 | return (-errno); | |
2368 | ||
2369 | if ((fd = open(corefile, O_WRONLY | O_CREAT, | |
d97ef72e | 2370 | S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) |
edf8e2af MW |
2371 | return (-errno); |
2372 | ||
2373 | /* | |
2374 | * Walk through target process memory mappings and | |
2375 | * set up structure containing this information. After | |
2376 | * this point vma_xxx functions can be used. | |
2377 | */ | |
2378 | if ((mm = vma_init()) == NULL) | |
2379 | goto out; | |
2380 | ||
2381 | walk_memory_regions(mm, vma_walker); | |
2382 | segs = vma_get_mapping_count(mm); | |
2383 | ||
2384 | /* | |
2385 | * Construct valid coredump ELF header. We also | |
2386 | * add one more segment for notes. | |
2387 | */ | |
2388 | fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); | |
2389 | if (dump_write(fd, &elf, sizeof (elf)) != 0) | |
2390 | goto out; | |
2391 | ||
2392 | /* fill in in-memory version of notes */ | |
2393 | if (fill_note_info(&info, signr, env) < 0) | |
2394 | goto out; | |
2395 | ||
2396 | offset += sizeof (elf); /* elf header */ | |
2397 | offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ | |
2398 | ||
2399 | /* write out notes program header */ | |
2400 | fill_elf_note_phdr(&phdr, info.notes_size, offset); | |
2401 | ||
2402 | offset += info.notes_size; | |
2403 | if (dump_write(fd, &phdr, sizeof (phdr)) != 0) | |
2404 | goto out; | |
2405 | ||
2406 | /* | |
2407 | * ELF specification wants data to start at page boundary so | |
2408 | * we align it here. | |
2409 | */ | |
2410 | offset = roundup(offset, ELF_EXEC_PAGESIZE); | |
2411 | ||
2412 | /* | |
2413 | * Write program headers for memory regions mapped in | |
2414 | * the target process. | |
2415 | */ | |
2416 | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { | |
2417 | (void) memset(&phdr, 0, sizeof (phdr)); | |
2418 | ||
2419 | phdr.p_type = PT_LOAD; | |
2420 | phdr.p_offset = offset; | |
2421 | phdr.p_vaddr = vma->vma_start; | |
2422 | phdr.p_paddr = 0; | |
2423 | phdr.p_filesz = vma_dump_size(vma); | |
2424 | offset += phdr.p_filesz; | |
2425 | phdr.p_memsz = vma->vma_end - vma->vma_start; | |
2426 | phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; | |
2427 | if (vma->vma_flags & PROT_WRITE) | |
2428 | phdr.p_flags |= PF_W; | |
2429 | if (vma->vma_flags & PROT_EXEC) | |
2430 | phdr.p_flags |= PF_X; | |
2431 | phdr.p_align = ELF_EXEC_PAGESIZE; | |
2432 | ||
2433 | dump_write(fd, &phdr, sizeof (phdr)); | |
2434 | } | |
2435 | ||
2436 | /* | |
2437 | * Next we write notes just after program headers. No | |
2438 | * alignment needed here. | |
2439 | */ | |
2440 | if (write_note_info(&info, fd) < 0) | |
2441 | goto out; | |
2442 | ||
2443 | /* align data to page boundary */ | |
2444 | data_offset = lseek(fd, 0, SEEK_CUR); | |
2445 | data_offset = TARGET_PAGE_ALIGN(data_offset); | |
2446 | if (lseek(fd, data_offset, SEEK_SET) != data_offset) | |
2447 | goto out; | |
2448 | ||
2449 | /* | |
2450 | * Finally we can dump process memory into corefile as well. | |
2451 | */ | |
2452 | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { | |
2453 | abi_ulong addr; | |
2454 | abi_ulong end; | |
2455 | ||
2456 | end = vma->vma_start + vma_dump_size(vma); | |
2457 | ||
2458 | for (addr = vma->vma_start; addr < end; | |
d97ef72e | 2459 | addr += TARGET_PAGE_SIZE) { |
edf8e2af MW |
2460 | char page[TARGET_PAGE_SIZE]; |
2461 | int error; | |
2462 | ||
2463 | /* | |
2464 | * Read in page from target process memory and | |
2465 | * write it to coredump file. | |
2466 | */ | |
2467 | error = copy_from_user(page, addr, sizeof (page)); | |
2468 | if (error != 0) { | |
49995e17 | 2469 | (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", |
d97ef72e | 2470 | addr); |
edf8e2af MW |
2471 | errno = -error; |
2472 | goto out; | |
2473 | } | |
2474 | if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) | |
2475 | goto out; | |
2476 | } | |
2477 | } | |
2478 | ||
d97ef72e | 2479 | out: |
edf8e2af MW |
2480 | free_note_info(&info); |
2481 | if (mm != NULL) | |
2482 | vma_delete(mm); | |
2483 | (void) close(fd); | |
2484 | ||
2485 | if (errno != 0) | |
2486 | return (-errno); | |
2487 | return (0); | |
2488 | } | |
edf8e2af MW |
2489 | #endif /* USE_ELF_CORE_DUMP */ |
2490 | ||
e5fe0c52 PB |
2491 | void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) |
2492 | { | |
2493 | init_thread(regs, infop); | |
2494 | } |