]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
fd6ce8f6 | 2 | * virtual page mapping and translated block handling |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
67b915a5 | 19 | #include "config.h" |
d5a8f07c FB |
20 | #ifdef _WIN32 |
21 | #include <windows.h> | |
22 | #else | |
a98d49b1 | 23 | #include <sys/types.h> |
d5a8f07c FB |
24 | #include <sys/mman.h> |
25 | #endif | |
54936004 FB |
26 | #include <stdlib.h> |
27 | #include <stdio.h> | |
28 | #include <stdarg.h> | |
29 | #include <string.h> | |
30 | #include <errno.h> | |
31 | #include <unistd.h> | |
32 | #include <inttypes.h> | |
33 | ||
6180a181 FB |
34 | #include "cpu.h" |
35 | #include "exec-all.h" | |
ca10f867 | 36 | #include "qemu-common.h" |
b67d9a52 | 37 | #include "tcg.h" |
b3c7724c | 38 | #include "hw/hw.h" |
74576198 | 39 | #include "osdep.h" |
7ba1e619 | 40 | #include "kvm.h" |
53a5960a PB |
41 | #if defined(CONFIG_USER_ONLY) |
42 | #include <qemu.h> | |
43 | #endif | |
54936004 | 44 | |
fd6ce8f6 | 45 | //#define DEBUG_TB_INVALIDATE |
66e85a21 | 46 | //#define DEBUG_FLUSH |
9fa3e853 | 47 | //#define DEBUG_TLB |
67d3b957 | 48 | //#define DEBUG_UNASSIGNED |
fd6ce8f6 FB |
49 | |
50 | /* make various TB consistency checks */ | |
5fafdf24 TS |
51 | //#define DEBUG_TB_CHECK |
52 | //#define DEBUG_TLB_CHECK | |
fd6ce8f6 | 53 | |
1196be37 | 54 | //#define DEBUG_IOPORT |
db7b5426 | 55 | //#define DEBUG_SUBPAGE |
1196be37 | 56 | |
99773bd4 PB |
57 | #if !defined(CONFIG_USER_ONLY) |
58 | /* TB consistency checks only implemented for usermode emulation. */ | |
59 | #undef DEBUG_TB_CHECK | |
60 | #endif | |
61 | ||
9fa3e853 FB |
62 | #define SMC_BITMAP_USE_THRESHOLD 10 |
63 | ||
108c49b8 FB |
64 | #if defined(TARGET_SPARC64) |
65 | #define TARGET_PHYS_ADDR_SPACE_BITS 41 | |
5dcb6b91 BS |
66 | #elif defined(TARGET_SPARC) |
67 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 | |
bedb69ea JM |
68 | #elif defined(TARGET_ALPHA) |
69 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
70 | #define TARGET_VIRT_ADDR_SPACE_BITS 42 | |
108c49b8 FB |
71 | #elif defined(TARGET_PPC64) |
72 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 | |
640f42e4 | 73 | #elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU) |
00f82b8a | 74 | #define TARGET_PHYS_ADDR_SPACE_BITS 42 |
640f42e4 | 75 | #elif defined(TARGET_I386) && !defined(CONFIG_KQEMU) |
00f82b8a | 76 | #define TARGET_PHYS_ADDR_SPACE_BITS 36 |
108c49b8 FB |
77 | #else |
78 | /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */ | |
79 | #define TARGET_PHYS_ADDR_SPACE_BITS 32 | |
80 | #endif | |
81 | ||
bdaf78e0 | 82 | static TranslationBlock *tbs; |
26a5f13b | 83 | int code_gen_max_blocks; |
9fa3e853 | 84 | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; |
bdaf78e0 | 85 | static int nb_tbs; |
eb51d102 FB |
86 | /* any access to the tbs or the page table must use this lock */ |
87 | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED; | |
fd6ce8f6 | 88 | |
141ac468 BS |
89 | #if defined(__arm__) || defined(__sparc_v9__) |
90 | /* The prologue must be reachable with a direct jump. ARM and Sparc64 | |
91 | have limited branch ranges (possibly also PPC) so place it in a | |
d03d860b BS |
92 | section close to code segment. */ |
93 | #define code_gen_section \ | |
94 | __attribute__((__section__(".gen_code"))) \ | |
95 | __attribute__((aligned (32))) | |
f8e2af11 SW |
96 | #elif defined(_WIN32) |
97 | /* Maximum alignment for Win32 is 16. */ | |
98 | #define code_gen_section \ | |
99 | __attribute__((aligned (16))) | |
d03d860b BS |
100 | #else |
101 | #define code_gen_section \ | |
102 | __attribute__((aligned (32))) | |
103 | #endif | |
104 | ||
105 | uint8_t code_gen_prologue[1024] code_gen_section; | |
bdaf78e0 BS |
106 | static uint8_t *code_gen_buffer; |
107 | static unsigned long code_gen_buffer_size; | |
26a5f13b | 108 | /* threshold to flush the translated code buffer */ |
bdaf78e0 | 109 | static unsigned long code_gen_buffer_max_size; |
fd6ce8f6 FB |
110 | uint8_t *code_gen_ptr; |
111 | ||
e2eef170 | 112 | #if !defined(CONFIG_USER_ONLY) |
9fa3e853 | 113 | int phys_ram_fd; |
1ccde1cb | 114 | uint8_t *phys_ram_dirty; |
74576198 | 115 | static int in_migration; |
94a6b54f PB |
116 | |
117 | typedef struct RAMBlock { | |
118 | uint8_t *host; | |
119 | ram_addr_t offset; | |
120 | ram_addr_t length; | |
121 | struct RAMBlock *next; | |
122 | } RAMBlock; | |
123 | ||
124 | static RAMBlock *ram_blocks; | |
125 | /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug) | |
ccbb4d44 | 126 | then we can no longer assume contiguous ram offsets, and external uses |
94a6b54f PB |
127 | of this variable will break. */ |
128 | ram_addr_t last_ram_offset; | |
e2eef170 | 129 | #endif |
9fa3e853 | 130 | |
6a00d601 FB |
131 | CPUState *first_cpu; |
132 | /* current CPU in the current thread. It is only valid inside | |
133 | cpu_exec() */ | |
5fafdf24 | 134 | CPUState *cpu_single_env; |
2e70f6ef | 135 | /* 0 = Do not count executed instructions. |
bf20dc07 | 136 | 1 = Precise instruction counting. |
2e70f6ef PB |
137 | 2 = Adaptive rate instruction counting. */ |
138 | int use_icount = 0; | |
139 | /* Current instruction counter. While executing translated code this may | |
140 | include some instructions that have not yet been executed. */ | |
141 | int64_t qemu_icount; | |
6a00d601 | 142 | |
54936004 | 143 | typedef struct PageDesc { |
92e873b9 | 144 | /* list of TBs intersecting this ram page */ |
fd6ce8f6 | 145 | TranslationBlock *first_tb; |
9fa3e853 FB |
146 | /* in order to optimize self modifying code, we count the number |
147 | of lookups we do to a given page to use a bitmap */ | |
148 | unsigned int code_write_count; | |
149 | uint8_t *code_bitmap; | |
150 | #if defined(CONFIG_USER_ONLY) | |
151 | unsigned long flags; | |
152 | #endif | |
54936004 FB |
153 | } PageDesc; |
154 | ||
92e873b9 | 155 | typedef struct PhysPageDesc { |
0f459d16 | 156 | /* offset in host memory of the page + io_index in the low bits */ |
00f82b8a | 157 | ram_addr_t phys_offset; |
8da3ff18 | 158 | ram_addr_t region_offset; |
92e873b9 FB |
159 | } PhysPageDesc; |
160 | ||
54936004 | 161 | #define L2_BITS 10 |
bedb69ea JM |
162 | #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS) |
163 | /* XXX: this is a temporary hack for alpha target. | |
164 | * In the future, this is to be replaced by a multi-level table | |
165 | * to actually be able to handle the complete 64 bits address space. | |
166 | */ | |
167 | #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS) | |
168 | #else | |
03875444 | 169 | #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS) |
bedb69ea | 170 | #endif |
54936004 FB |
171 | |
172 | #define L1_SIZE (1 << L1_BITS) | |
173 | #define L2_SIZE (1 << L2_BITS) | |
174 | ||
83fb7adf FB |
175 | unsigned long qemu_real_host_page_size; |
176 | unsigned long qemu_host_page_bits; | |
177 | unsigned long qemu_host_page_size; | |
178 | unsigned long qemu_host_page_mask; | |
54936004 | 179 | |
92e873b9 | 180 | /* XXX: for system emulation, it could just be an array */ |
54936004 | 181 | static PageDesc *l1_map[L1_SIZE]; |
bdaf78e0 | 182 | static PhysPageDesc **l1_phys_map; |
54936004 | 183 | |
e2eef170 PB |
184 | #if !defined(CONFIG_USER_ONLY) |
185 | static void io_mem_init(void); | |
186 | ||
33417e70 | 187 | /* io memory support */ |
33417e70 FB |
188 | CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; |
189 | CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; | |
a4193c8a | 190 | void *io_mem_opaque[IO_MEM_NB_ENTRIES]; |
511d2b14 | 191 | static char io_mem_used[IO_MEM_NB_ENTRIES]; |
6658ffb8 PB |
192 | static int io_mem_watch; |
193 | #endif | |
33417e70 | 194 | |
34865134 | 195 | /* log support */ |
d9b630fd | 196 | static const char *logfilename = "/tmp/qemu.log"; |
34865134 FB |
197 | FILE *logfile; |
198 | int loglevel; | |
e735b91c | 199 | static int log_append = 0; |
34865134 | 200 | |
e3db7226 FB |
201 | /* statistics */ |
202 | static int tlb_flush_count; | |
203 | static int tb_flush_count; | |
204 | static int tb_phys_invalidate_count; | |
205 | ||
db7b5426 BS |
206 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
207 | typedef struct subpage_t { | |
208 | target_phys_addr_t base; | |
3ee89922 BS |
209 | CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4]; |
210 | CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4]; | |
211 | void *opaque[TARGET_PAGE_SIZE][2][4]; | |
8da3ff18 | 212 | ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4]; |
db7b5426 BS |
213 | } subpage_t; |
214 | ||
7cb69cae FB |
215 | #ifdef _WIN32 |
216 | static void map_exec(void *addr, long size) | |
217 | { | |
218 | DWORD old_protect; | |
219 | VirtualProtect(addr, size, | |
220 | PAGE_EXECUTE_READWRITE, &old_protect); | |
221 | ||
222 | } | |
223 | #else | |
224 | static void map_exec(void *addr, long size) | |
225 | { | |
4369415f | 226 | unsigned long start, end, page_size; |
7cb69cae | 227 | |
4369415f | 228 | page_size = getpagesize(); |
7cb69cae | 229 | start = (unsigned long)addr; |
4369415f | 230 | start &= ~(page_size - 1); |
7cb69cae FB |
231 | |
232 | end = (unsigned long)addr + size; | |
4369415f FB |
233 | end += page_size - 1; |
234 | end &= ~(page_size - 1); | |
7cb69cae FB |
235 | |
236 | mprotect((void *)start, end - start, | |
237 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
238 | } | |
239 | #endif | |
240 | ||
b346ff46 | 241 | static void page_init(void) |
54936004 | 242 | { |
83fb7adf | 243 | /* NOTE: we can always suppose that qemu_host_page_size >= |
54936004 | 244 | TARGET_PAGE_SIZE */ |
c2b48b69 AL |
245 | #ifdef _WIN32 |
246 | { | |
247 | SYSTEM_INFO system_info; | |
248 | ||
249 | GetSystemInfo(&system_info); | |
250 | qemu_real_host_page_size = system_info.dwPageSize; | |
251 | } | |
252 | #else | |
253 | qemu_real_host_page_size = getpagesize(); | |
254 | #endif | |
83fb7adf FB |
255 | if (qemu_host_page_size == 0) |
256 | qemu_host_page_size = qemu_real_host_page_size; | |
257 | if (qemu_host_page_size < TARGET_PAGE_SIZE) | |
258 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
259 | qemu_host_page_bits = 0; | |
260 | while ((1 << qemu_host_page_bits) < qemu_host_page_size) | |
261 | qemu_host_page_bits++; | |
262 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |
108c49b8 FB |
263 | l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *)); |
264 | memset(l1_phys_map, 0, L1_SIZE * sizeof(void *)); | |
50a9569b AZ |
265 | |
266 | #if !defined(_WIN32) && defined(CONFIG_USER_ONLY) | |
267 | { | |
268 | long long startaddr, endaddr; | |
269 | FILE *f; | |
270 | int n; | |
271 | ||
c8a706fe | 272 | mmap_lock(); |
0776590d | 273 | last_brk = (unsigned long)sbrk(0); |
50a9569b AZ |
274 | f = fopen("/proc/self/maps", "r"); |
275 | if (f) { | |
276 | do { | |
277 | n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr); | |
278 | if (n == 2) { | |
e0b8d65a BS |
279 | startaddr = MIN(startaddr, |
280 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
281 | endaddr = MIN(endaddr, | |
282 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1); | |
b5fc909e | 283 | page_set_flags(startaddr & TARGET_PAGE_MASK, |
50a9569b AZ |
284 | TARGET_PAGE_ALIGN(endaddr), |
285 | PAGE_RESERVED); | |
286 | } | |
287 | } while (!feof(f)); | |
288 | fclose(f); | |
289 | } | |
c8a706fe | 290 | mmap_unlock(); |
50a9569b AZ |
291 | } |
292 | #endif | |
54936004 FB |
293 | } |
294 | ||
434929bf | 295 | static inline PageDesc **page_l1_map(target_ulong index) |
54936004 | 296 | { |
17e2377a PB |
297 | #if TARGET_LONG_BITS > 32 |
298 | /* Host memory outside guest VM. For 32-bit targets we have already | |
299 | excluded high addresses. */ | |
d8173e0f | 300 | if (index > ((target_ulong)L2_SIZE * L1_SIZE)) |
17e2377a PB |
301 | return NULL; |
302 | #endif | |
434929bf AL |
303 | return &l1_map[index >> L2_BITS]; |
304 | } | |
305 | ||
306 | static inline PageDesc *page_find_alloc(target_ulong index) | |
307 | { | |
308 | PageDesc **lp, *p; | |
309 | lp = page_l1_map(index); | |
310 | if (!lp) | |
311 | return NULL; | |
312 | ||
54936004 FB |
313 | p = *lp; |
314 | if (!p) { | |
315 | /* allocate if not found */ | |
17e2377a | 316 | #if defined(CONFIG_USER_ONLY) |
17e2377a PB |
317 | size_t len = sizeof(PageDesc) * L2_SIZE; |
318 | /* Don't use qemu_malloc because it may recurse. */ | |
319 | p = mmap(0, len, PROT_READ | PROT_WRITE, | |
320 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
54936004 | 321 | *lp = p; |
fb1c2cd7 AJ |
322 | if (h2g_valid(p)) { |
323 | unsigned long addr = h2g(p); | |
17e2377a PB |
324 | page_set_flags(addr & TARGET_PAGE_MASK, |
325 | TARGET_PAGE_ALIGN(addr + len), | |
326 | PAGE_RESERVED); | |
327 | } | |
328 | #else | |
329 | p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE); | |
330 | *lp = p; | |
331 | #endif | |
54936004 FB |
332 | } |
333 | return p + (index & (L2_SIZE - 1)); | |
334 | } | |
335 | ||
00f82b8a | 336 | static inline PageDesc *page_find(target_ulong index) |
54936004 | 337 | { |
434929bf AL |
338 | PageDesc **lp, *p; |
339 | lp = page_l1_map(index); | |
340 | if (!lp) | |
341 | return NULL; | |
54936004 | 342 | |
434929bf | 343 | p = *lp; |
54936004 FB |
344 | if (!p) |
345 | return 0; | |
fd6ce8f6 FB |
346 | return p + (index & (L2_SIZE - 1)); |
347 | } | |
348 | ||
108c49b8 | 349 | static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc) |
92e873b9 | 350 | { |
108c49b8 | 351 | void **lp, **p; |
e3f4e2a4 | 352 | PhysPageDesc *pd; |
92e873b9 | 353 | |
108c49b8 FB |
354 | p = (void **)l1_phys_map; |
355 | #if TARGET_PHYS_ADDR_SPACE_BITS > 32 | |
356 | ||
357 | #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS) | |
358 | #error unsupported TARGET_PHYS_ADDR_SPACE_BITS | |
359 | #endif | |
360 | lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1)); | |
92e873b9 FB |
361 | p = *lp; |
362 | if (!p) { | |
363 | /* allocate if not found */ | |
108c49b8 FB |
364 | if (!alloc) |
365 | return NULL; | |
366 | p = qemu_vmalloc(sizeof(void *) * L1_SIZE); | |
367 | memset(p, 0, sizeof(void *) * L1_SIZE); | |
368 | *lp = p; | |
369 | } | |
370 | #endif | |
371 | lp = p + ((index >> L2_BITS) & (L1_SIZE - 1)); | |
e3f4e2a4 PB |
372 | pd = *lp; |
373 | if (!pd) { | |
374 | int i; | |
108c49b8 FB |
375 | /* allocate if not found */ |
376 | if (!alloc) | |
377 | return NULL; | |
e3f4e2a4 PB |
378 | pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE); |
379 | *lp = pd; | |
67c4d23c | 380 | for (i = 0; i < L2_SIZE; i++) { |
e3f4e2a4 | 381 | pd[i].phys_offset = IO_MEM_UNASSIGNED; |
67c4d23c PB |
382 | pd[i].region_offset = (index + i) << TARGET_PAGE_BITS; |
383 | } | |
92e873b9 | 384 | } |
e3f4e2a4 | 385 | return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1)); |
92e873b9 FB |
386 | } |
387 | ||
108c49b8 | 388 | static inline PhysPageDesc *phys_page_find(target_phys_addr_t index) |
92e873b9 | 389 | { |
108c49b8 | 390 | return phys_page_find_alloc(index, 0); |
92e873b9 FB |
391 | } |
392 | ||
9fa3e853 | 393 | #if !defined(CONFIG_USER_ONLY) |
6a00d601 | 394 | static void tlb_protect_code(ram_addr_t ram_addr); |
5fafdf24 | 395 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 396 | target_ulong vaddr); |
c8a706fe PB |
397 | #define mmap_lock() do { } while(0) |
398 | #define mmap_unlock() do { } while(0) | |
9fa3e853 | 399 | #endif |
fd6ce8f6 | 400 | |
4369415f FB |
401 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024) |
402 | ||
403 | #if defined(CONFIG_USER_ONLY) | |
ccbb4d44 | 404 | /* Currently it is not recommended to allocate big chunks of data in |
4369415f FB |
405 | user mode. It will change when a dedicated libc will be used */ |
406 | #define USE_STATIC_CODE_GEN_BUFFER | |
407 | #endif | |
408 | ||
409 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
410 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]; | |
411 | #endif | |
412 | ||
8fcd3692 | 413 | static void code_gen_alloc(unsigned long tb_size) |
26a5f13b | 414 | { |
4369415f FB |
415 | #ifdef USE_STATIC_CODE_GEN_BUFFER |
416 | code_gen_buffer = static_code_gen_buffer; | |
417 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
418 | map_exec(code_gen_buffer, code_gen_buffer_size); | |
419 | #else | |
26a5f13b FB |
420 | code_gen_buffer_size = tb_size; |
421 | if (code_gen_buffer_size == 0) { | |
4369415f FB |
422 | #if defined(CONFIG_USER_ONLY) |
423 | /* in user mode, phys_ram_size is not meaningful */ | |
424 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
425 | #else | |
ccbb4d44 | 426 | /* XXX: needs adjustments */ |
94a6b54f | 427 | code_gen_buffer_size = (unsigned long)(ram_size / 4); |
4369415f | 428 | #endif |
26a5f13b FB |
429 | } |
430 | if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE) | |
431 | code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE; | |
432 | /* The code gen buffer location may have constraints depending on | |
433 | the host cpu and OS */ | |
434 | #if defined(__linux__) | |
435 | { | |
436 | int flags; | |
141ac468 BS |
437 | void *start = NULL; |
438 | ||
26a5f13b FB |
439 | flags = MAP_PRIVATE | MAP_ANONYMOUS; |
440 | #if defined(__x86_64__) | |
441 | flags |= MAP_32BIT; | |
442 | /* Cannot map more than that */ | |
443 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
444 | code_gen_buffer_size = (800 * 1024 * 1024); | |
141ac468 BS |
445 | #elif defined(__sparc_v9__) |
446 | // Map the buffer below 2G, so we can use direct calls and branches | |
447 | flags |= MAP_FIXED; | |
448 | start = (void *) 0x60000000UL; | |
449 | if (code_gen_buffer_size > (512 * 1024 * 1024)) | |
450 | code_gen_buffer_size = (512 * 1024 * 1024); | |
1cb0661e | 451 | #elif defined(__arm__) |
63d41246 | 452 | /* Map the buffer below 32M, so we can use direct calls and branches */ |
1cb0661e AZ |
453 | flags |= MAP_FIXED; |
454 | start = (void *) 0x01000000UL; | |
455 | if (code_gen_buffer_size > 16 * 1024 * 1024) | |
456 | code_gen_buffer_size = 16 * 1024 * 1024; | |
26a5f13b | 457 | #endif |
141ac468 BS |
458 | code_gen_buffer = mmap(start, code_gen_buffer_size, |
459 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
26a5f13b FB |
460 | flags, -1, 0); |
461 | if (code_gen_buffer == MAP_FAILED) { | |
462 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
463 | exit(1); | |
464 | } | |
465 | } | |
c5e97233 | 466 | #elif defined(__FreeBSD__) || defined(__DragonFly__) |
06e67a82 AL |
467 | { |
468 | int flags; | |
469 | void *addr = NULL; | |
470 | flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
471 | #if defined(__x86_64__) | |
472 | /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume | |
473 | * 0x40000000 is free */ | |
474 | flags |= MAP_FIXED; | |
475 | addr = (void *)0x40000000; | |
476 | /* Cannot map more than that */ | |
477 | if (code_gen_buffer_size > (800 * 1024 * 1024)) | |
478 | code_gen_buffer_size = (800 * 1024 * 1024); | |
479 | #endif | |
480 | code_gen_buffer = mmap(addr, code_gen_buffer_size, | |
481 | PROT_WRITE | PROT_READ | PROT_EXEC, | |
482 | flags, -1, 0); | |
483 | if (code_gen_buffer == MAP_FAILED) { | |
484 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
485 | exit(1); | |
486 | } | |
487 | } | |
26a5f13b FB |
488 | #else |
489 | code_gen_buffer = qemu_malloc(code_gen_buffer_size); | |
26a5f13b FB |
490 | map_exec(code_gen_buffer, code_gen_buffer_size); |
491 | #endif | |
4369415f | 492 | #endif /* !USE_STATIC_CODE_GEN_BUFFER */ |
26a5f13b FB |
493 | map_exec(code_gen_prologue, sizeof(code_gen_prologue)); |
494 | code_gen_buffer_max_size = code_gen_buffer_size - | |
495 | code_gen_max_block_size(); | |
496 | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; | |
497 | tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock)); | |
498 | } | |
499 | ||
500 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
501 | (in bytes) allocated to the translation buffer. Zero means default | |
502 | size. */ | |
503 | void cpu_exec_init_all(unsigned long tb_size) | |
504 | { | |
26a5f13b FB |
505 | cpu_gen_init(); |
506 | code_gen_alloc(tb_size); | |
507 | code_gen_ptr = code_gen_buffer; | |
4369415f | 508 | page_init(); |
e2eef170 | 509 | #if !defined(CONFIG_USER_ONLY) |
26a5f13b | 510 | io_mem_init(); |
e2eef170 | 511 | #endif |
26a5f13b FB |
512 | } |
513 | ||
9656f324 PB |
514 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
515 | ||
516 | #define CPU_COMMON_SAVE_VERSION 1 | |
517 | ||
518 | static void cpu_common_save(QEMUFile *f, void *opaque) | |
519 | { | |
520 | CPUState *env = opaque; | |
521 | ||
b0a46a33 JK |
522 | cpu_synchronize_state(env, 0); |
523 | ||
9656f324 PB |
524 | qemu_put_be32s(f, &env->halted); |
525 | qemu_put_be32s(f, &env->interrupt_request); | |
526 | } | |
527 | ||
528 | static int cpu_common_load(QEMUFile *f, void *opaque, int version_id) | |
529 | { | |
530 | CPUState *env = opaque; | |
531 | ||
532 | if (version_id != CPU_COMMON_SAVE_VERSION) | |
533 | return -EINVAL; | |
534 | ||
535 | qemu_get_be32s(f, &env->halted); | |
75f482ae | 536 | qemu_get_be32s(f, &env->interrupt_request); |
3098dba0 AJ |
537 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
538 | version_id is increased. */ | |
539 | env->interrupt_request &= ~0x01; | |
9656f324 | 540 | tlb_flush(env, 1); |
b0a46a33 | 541 | cpu_synchronize_state(env, 1); |
9656f324 PB |
542 | |
543 | return 0; | |
544 | } | |
545 | #endif | |
546 | ||
950f1472 GC |
547 | CPUState *qemu_get_cpu(int cpu) |
548 | { | |
549 | CPUState *env = first_cpu; | |
550 | ||
551 | while (env) { | |
552 | if (env->cpu_index == cpu) | |
553 | break; | |
554 | env = env->next_cpu; | |
555 | } | |
556 | ||
557 | return env; | |
558 | } | |
559 | ||
6a00d601 | 560 | void cpu_exec_init(CPUState *env) |
fd6ce8f6 | 561 | { |
6a00d601 FB |
562 | CPUState **penv; |
563 | int cpu_index; | |
564 | ||
c2764719 PB |
565 | #if defined(CONFIG_USER_ONLY) |
566 | cpu_list_lock(); | |
567 | #endif | |
6a00d601 FB |
568 | env->next_cpu = NULL; |
569 | penv = &first_cpu; | |
570 | cpu_index = 0; | |
571 | while (*penv != NULL) { | |
1e9fa730 | 572 | penv = &(*penv)->next_cpu; |
6a00d601 FB |
573 | cpu_index++; |
574 | } | |
575 | env->cpu_index = cpu_index; | |
268a362c | 576 | env->numa_node = 0; |
c0ce998e AL |
577 | TAILQ_INIT(&env->breakpoints); |
578 | TAILQ_INIT(&env->watchpoints); | |
6a00d601 | 579 | *penv = env; |
c2764719 PB |
580 | #if defined(CONFIG_USER_ONLY) |
581 | cpu_list_unlock(); | |
582 | #endif | |
b3c7724c | 583 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
9656f324 PB |
584 | register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION, |
585 | cpu_common_save, cpu_common_load, env); | |
b3c7724c PB |
586 | register_savevm("cpu", cpu_index, CPU_SAVE_VERSION, |
587 | cpu_save, cpu_load, env); | |
588 | #endif | |
fd6ce8f6 FB |
589 | } |
590 | ||
9fa3e853 FB |
591 | static inline void invalidate_page_bitmap(PageDesc *p) |
592 | { | |
593 | if (p->code_bitmap) { | |
59817ccb | 594 | qemu_free(p->code_bitmap); |
9fa3e853 FB |
595 | p->code_bitmap = NULL; |
596 | } | |
597 | p->code_write_count = 0; | |
598 | } | |
599 | ||
fd6ce8f6 FB |
600 | /* set to NULL all the 'first_tb' fields in all PageDescs */ |
601 | static void page_flush_tb(void) | |
602 | { | |
603 | int i, j; | |
604 | PageDesc *p; | |
605 | ||
606 | for(i = 0; i < L1_SIZE; i++) { | |
607 | p = l1_map[i]; | |
608 | if (p) { | |
9fa3e853 FB |
609 | for(j = 0; j < L2_SIZE; j++) { |
610 | p->first_tb = NULL; | |
611 | invalidate_page_bitmap(p); | |
612 | p++; | |
613 | } | |
fd6ce8f6 FB |
614 | } |
615 | } | |
616 | } | |
617 | ||
618 | /* flush all the translation blocks */ | |
d4e8164f | 619 | /* XXX: tb_flush is currently not thread safe */ |
6a00d601 | 620 | void tb_flush(CPUState *env1) |
fd6ce8f6 | 621 | { |
6a00d601 | 622 | CPUState *env; |
0124311e | 623 | #if defined(DEBUG_FLUSH) |
ab3d1727 BS |
624 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", |
625 | (unsigned long)(code_gen_ptr - code_gen_buffer), | |
626 | nb_tbs, nb_tbs > 0 ? | |
627 | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0); | |
fd6ce8f6 | 628 | #endif |
26a5f13b | 629 | if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size) |
a208e54a PB |
630 | cpu_abort(env1, "Internal error: code buffer overflow\n"); |
631 | ||
fd6ce8f6 | 632 | nb_tbs = 0; |
3b46e624 | 633 | |
6a00d601 FB |
634 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
635 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
636 | } | |
9fa3e853 | 637 | |
8a8a608f | 638 | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); |
fd6ce8f6 | 639 | page_flush_tb(); |
9fa3e853 | 640 | |
fd6ce8f6 | 641 | code_gen_ptr = code_gen_buffer; |
d4e8164f FB |
642 | /* XXX: flush processor icache at this point if cache flush is |
643 | expensive */ | |
e3db7226 | 644 | tb_flush_count++; |
fd6ce8f6 FB |
645 | } |
646 | ||
647 | #ifdef DEBUG_TB_CHECK | |
648 | ||
bc98a7ef | 649 | static void tb_invalidate_check(target_ulong address) |
fd6ce8f6 FB |
650 | { |
651 | TranslationBlock *tb; | |
652 | int i; | |
653 | address &= TARGET_PAGE_MASK; | |
99773bd4 PB |
654 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
655 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
656 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || |
657 | address >= tb->pc + tb->size)) { | |
0bf9e31a BS |
658 | printf("ERROR invalidate: address=" TARGET_FMT_lx |
659 | " PC=%08lx size=%04x\n", | |
99773bd4 | 660 | address, (long)tb->pc, tb->size); |
fd6ce8f6 FB |
661 | } |
662 | } | |
663 | } | |
664 | } | |
665 | ||
666 | /* verify that all the pages have correct rights for code */ | |
667 | static void tb_page_check(void) | |
668 | { | |
669 | TranslationBlock *tb; | |
670 | int i, flags1, flags2; | |
3b46e624 | 671 | |
99773bd4 PB |
672 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { |
673 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
fd6ce8f6 FB |
674 | flags1 = page_get_flags(tb->pc); |
675 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
676 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
677 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
99773bd4 | 678 | (long)tb->pc, tb->size, flags1, flags2); |
fd6ce8f6 FB |
679 | } |
680 | } | |
681 | } | |
682 | } | |
683 | ||
684 | #endif | |
685 | ||
686 | /* invalidate one TB */ | |
687 | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb, | |
688 | int next_offset) | |
689 | { | |
690 | TranslationBlock *tb1; | |
691 | for(;;) { | |
692 | tb1 = *ptb; | |
693 | if (tb1 == tb) { | |
694 | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset); | |
695 | break; | |
696 | } | |
697 | ptb = (TranslationBlock **)((char *)tb1 + next_offset); | |
698 | } | |
699 | } | |
700 | ||
9fa3e853 FB |
701 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) |
702 | { | |
703 | TranslationBlock *tb1; | |
704 | unsigned int n1; | |
705 | ||
706 | for(;;) { | |
707 | tb1 = *ptb; | |
708 | n1 = (long)tb1 & 3; | |
709 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
710 | if (tb1 == tb) { | |
711 | *ptb = tb1->page_next[n1]; | |
712 | break; | |
713 | } | |
714 | ptb = &tb1->page_next[n1]; | |
715 | } | |
716 | } | |
717 | ||
d4e8164f FB |
718 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) |
719 | { | |
720 | TranslationBlock *tb1, **ptb; | |
721 | unsigned int n1; | |
722 | ||
723 | ptb = &tb->jmp_next[n]; | |
724 | tb1 = *ptb; | |
725 | if (tb1) { | |
726 | /* find tb(n) in circular list */ | |
727 | for(;;) { | |
728 | tb1 = *ptb; | |
729 | n1 = (long)tb1 & 3; | |
730 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
731 | if (n1 == n && tb1 == tb) | |
732 | break; | |
733 | if (n1 == 2) { | |
734 | ptb = &tb1->jmp_first; | |
735 | } else { | |
736 | ptb = &tb1->jmp_next[n1]; | |
737 | } | |
738 | } | |
739 | /* now we can suppress tb(n) from the list */ | |
740 | *ptb = tb->jmp_next[n]; | |
741 | ||
742 | tb->jmp_next[n] = NULL; | |
743 | } | |
744 | } | |
745 | ||
746 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
747 | another TB */ | |
748 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
749 | { | |
750 | tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n])); | |
751 | } | |
752 | ||
2e70f6ef | 753 | void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr) |
fd6ce8f6 | 754 | { |
6a00d601 | 755 | CPUState *env; |
8a40a180 | 756 | PageDesc *p; |
d4e8164f | 757 | unsigned int h, n1; |
00f82b8a | 758 | target_phys_addr_t phys_pc; |
8a40a180 | 759 | TranslationBlock *tb1, *tb2; |
3b46e624 | 760 | |
8a40a180 FB |
761 | /* remove the TB from the hash list */ |
762 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
763 | h = tb_phys_hash_func(phys_pc); | |
5fafdf24 | 764 | tb_remove(&tb_phys_hash[h], tb, |
8a40a180 FB |
765 | offsetof(TranslationBlock, phys_hash_next)); |
766 | ||
767 | /* remove the TB from the page list */ | |
768 | if (tb->page_addr[0] != page_addr) { | |
769 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
770 | tb_page_remove(&p->first_tb, tb); | |
771 | invalidate_page_bitmap(p); | |
772 | } | |
773 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
774 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
775 | tb_page_remove(&p->first_tb, tb); | |
776 | invalidate_page_bitmap(p); | |
777 | } | |
778 | ||
36bdbe54 | 779 | tb_invalidated_flag = 1; |
59817ccb | 780 | |
fd6ce8f6 | 781 | /* remove the TB from the hash list */ |
8a40a180 | 782 | h = tb_jmp_cache_hash_func(tb->pc); |
6a00d601 FB |
783 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
784 | if (env->tb_jmp_cache[h] == tb) | |
785 | env->tb_jmp_cache[h] = NULL; | |
786 | } | |
d4e8164f FB |
787 | |
788 | /* suppress this TB from the two jump lists */ | |
789 | tb_jmp_remove(tb, 0); | |
790 | tb_jmp_remove(tb, 1); | |
791 | ||
792 | /* suppress any remaining jumps to this TB */ | |
793 | tb1 = tb->jmp_first; | |
794 | for(;;) { | |
795 | n1 = (long)tb1 & 3; | |
796 | if (n1 == 2) | |
797 | break; | |
798 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
799 | tb2 = tb1->jmp_next[n1]; | |
800 | tb_reset_jump(tb1, n1); | |
801 | tb1->jmp_next[n1] = NULL; | |
802 | tb1 = tb2; | |
803 | } | |
804 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */ | |
9fa3e853 | 805 | |
e3db7226 | 806 | tb_phys_invalidate_count++; |
9fa3e853 FB |
807 | } |
808 | ||
809 | static inline void set_bits(uint8_t *tab, int start, int len) | |
810 | { | |
811 | int end, mask, end1; | |
812 | ||
813 | end = start + len; | |
814 | tab += start >> 3; | |
815 | mask = 0xff << (start & 7); | |
816 | if ((start & ~7) == (end & ~7)) { | |
817 | if (start < end) { | |
818 | mask &= ~(0xff << (end & 7)); | |
819 | *tab |= mask; | |
820 | } | |
821 | } else { | |
822 | *tab++ |= mask; | |
823 | start = (start + 8) & ~7; | |
824 | end1 = end & ~7; | |
825 | while (start < end1) { | |
826 | *tab++ = 0xff; | |
827 | start += 8; | |
828 | } | |
829 | if (start < end) { | |
830 | mask = ~(0xff << (end & 7)); | |
831 | *tab |= mask; | |
832 | } | |
833 | } | |
834 | } | |
835 | ||
836 | static void build_page_bitmap(PageDesc *p) | |
837 | { | |
838 | int n, tb_start, tb_end; | |
839 | TranslationBlock *tb; | |
3b46e624 | 840 | |
b2a7081a | 841 | p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8); |
9fa3e853 FB |
842 | |
843 | tb = p->first_tb; | |
844 | while (tb != NULL) { | |
845 | n = (long)tb & 3; | |
846 | tb = (TranslationBlock *)((long)tb & ~3); | |
847 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
848 | if (n == 0) { | |
849 | /* NOTE: tb_end may be after the end of the page, but | |
850 | it is not a problem */ | |
851 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
852 | tb_end = tb_start + tb->size; | |
853 | if (tb_end > TARGET_PAGE_SIZE) | |
854 | tb_end = TARGET_PAGE_SIZE; | |
855 | } else { | |
856 | tb_start = 0; | |
857 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
858 | } | |
859 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |
860 | tb = tb->page_next[n]; | |
861 | } | |
862 | } | |
863 | ||
2e70f6ef PB |
864 | TranslationBlock *tb_gen_code(CPUState *env, |
865 | target_ulong pc, target_ulong cs_base, | |
866 | int flags, int cflags) | |
d720b93d FB |
867 | { |
868 | TranslationBlock *tb; | |
869 | uint8_t *tc_ptr; | |
870 | target_ulong phys_pc, phys_page2, virt_page2; | |
871 | int code_gen_size; | |
872 | ||
c27004ec FB |
873 | phys_pc = get_phys_addr_code(env, pc); |
874 | tb = tb_alloc(pc); | |
d720b93d FB |
875 | if (!tb) { |
876 | /* flush must be done */ | |
877 | tb_flush(env); | |
878 | /* cannot fail at this point */ | |
c27004ec | 879 | tb = tb_alloc(pc); |
2e70f6ef PB |
880 | /* Don't forget to invalidate previous TB info. */ |
881 | tb_invalidated_flag = 1; | |
d720b93d FB |
882 | } |
883 | tc_ptr = code_gen_ptr; | |
884 | tb->tc_ptr = tc_ptr; | |
885 | tb->cs_base = cs_base; | |
886 | tb->flags = flags; | |
887 | tb->cflags = cflags; | |
d07bde88 | 888 | cpu_gen_code(env, tb, &code_gen_size); |
d720b93d | 889 | code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); |
3b46e624 | 890 | |
d720b93d | 891 | /* check next page if needed */ |
c27004ec | 892 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; |
d720b93d | 893 | phys_page2 = -1; |
c27004ec | 894 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { |
d720b93d FB |
895 | phys_page2 = get_phys_addr_code(env, virt_page2); |
896 | } | |
897 | tb_link_phys(tb, phys_pc, phys_page2); | |
2e70f6ef | 898 | return tb; |
d720b93d | 899 | } |
3b46e624 | 900 | |
9fa3e853 FB |
901 | /* invalidate all TBs which intersect with the target physical page |
902 | starting in range [start;end[. NOTE: start and end must refer to | |
d720b93d FB |
903 | the same physical page. 'is_cpu_write_access' should be true if called |
904 | from a real cpu write access: the virtual CPU will exit the current | |
905 | TB if code is modified inside this TB. */ | |
00f82b8a | 906 | void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, |
d720b93d FB |
907 | int is_cpu_write_access) |
908 | { | |
6b917547 | 909 | TranslationBlock *tb, *tb_next, *saved_tb; |
d720b93d | 910 | CPUState *env = cpu_single_env; |
9fa3e853 | 911 | target_ulong tb_start, tb_end; |
6b917547 AL |
912 | PageDesc *p; |
913 | int n; | |
914 | #ifdef TARGET_HAS_PRECISE_SMC | |
915 | int current_tb_not_found = is_cpu_write_access; | |
916 | TranslationBlock *current_tb = NULL; | |
917 | int current_tb_modified = 0; | |
918 | target_ulong current_pc = 0; | |
919 | target_ulong current_cs_base = 0; | |
920 | int current_flags = 0; | |
921 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
922 | |
923 | p = page_find(start >> TARGET_PAGE_BITS); | |
5fafdf24 | 924 | if (!p) |
9fa3e853 | 925 | return; |
5fafdf24 | 926 | if (!p->code_bitmap && |
d720b93d FB |
927 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && |
928 | is_cpu_write_access) { | |
9fa3e853 FB |
929 | /* build code bitmap */ |
930 | build_page_bitmap(p); | |
931 | } | |
932 | ||
933 | /* we remove all the TBs in the range [start, end[ */ | |
934 | /* XXX: see if in some cases it could be faster to invalidate all the code */ | |
935 | tb = p->first_tb; | |
936 | while (tb != NULL) { | |
937 | n = (long)tb & 3; | |
938 | tb = (TranslationBlock *)((long)tb & ~3); | |
939 | tb_next = tb->page_next[n]; | |
940 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
941 | if (n == 0) { | |
942 | /* NOTE: tb_end may be after the end of the page, but | |
943 | it is not a problem */ | |
944 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
945 | tb_end = tb_start + tb->size; | |
946 | } else { | |
947 | tb_start = tb->page_addr[1]; | |
948 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
949 | } | |
950 | if (!(tb_end <= start || tb_start >= end)) { | |
d720b93d FB |
951 | #ifdef TARGET_HAS_PRECISE_SMC |
952 | if (current_tb_not_found) { | |
953 | current_tb_not_found = 0; | |
954 | current_tb = NULL; | |
2e70f6ef | 955 | if (env->mem_io_pc) { |
d720b93d | 956 | /* now we have a real cpu fault */ |
2e70f6ef | 957 | current_tb = tb_find_pc(env->mem_io_pc); |
d720b93d FB |
958 | } |
959 | } | |
960 | if (current_tb == tb && | |
2e70f6ef | 961 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
962 | /* If we are modifying the current TB, we must stop |
963 | its execution. We could be more precise by checking | |
964 | that the modification is after the current PC, but it | |
965 | would require a specialized function to partially | |
966 | restore the CPU state */ | |
3b46e624 | 967 | |
d720b93d | 968 | current_tb_modified = 1; |
5fafdf24 | 969 | cpu_restore_state(current_tb, env, |
2e70f6ef | 970 | env->mem_io_pc, NULL); |
6b917547 AL |
971 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
972 | ¤t_flags); | |
d720b93d FB |
973 | } |
974 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
6f5a9f7e FB |
975 | /* we need to do that to handle the case where a signal |
976 | occurs while doing tb_phys_invalidate() */ | |
977 | saved_tb = NULL; | |
978 | if (env) { | |
979 | saved_tb = env->current_tb; | |
980 | env->current_tb = NULL; | |
981 | } | |
9fa3e853 | 982 | tb_phys_invalidate(tb, -1); |
6f5a9f7e FB |
983 | if (env) { |
984 | env->current_tb = saved_tb; | |
985 | if (env->interrupt_request && env->current_tb) | |
986 | cpu_interrupt(env, env->interrupt_request); | |
987 | } | |
9fa3e853 FB |
988 | } |
989 | tb = tb_next; | |
990 | } | |
991 | #if !defined(CONFIG_USER_ONLY) | |
992 | /* if no code remaining, no need to continue to use slow writes */ | |
993 | if (!p->first_tb) { | |
994 | invalidate_page_bitmap(p); | |
d720b93d | 995 | if (is_cpu_write_access) { |
2e70f6ef | 996 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); |
d720b93d FB |
997 | } |
998 | } | |
999 | #endif | |
1000 | #ifdef TARGET_HAS_PRECISE_SMC | |
1001 | if (current_tb_modified) { | |
1002 | /* we generate a block containing just the instruction | |
1003 | modifying the memory. It will ensure that it cannot modify | |
1004 | itself */ | |
ea1c1802 | 1005 | env->current_tb = NULL; |
2e70f6ef | 1006 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d | 1007 | cpu_resume_from_signal(env, NULL); |
9fa3e853 | 1008 | } |
fd6ce8f6 | 1009 | #endif |
9fa3e853 | 1010 | } |
fd6ce8f6 | 1011 | |
9fa3e853 | 1012 | /* len must be <= 8 and start must be a multiple of len */ |
00f82b8a | 1013 | static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len) |
9fa3e853 FB |
1014 | { |
1015 | PageDesc *p; | |
1016 | int offset, b; | |
59817ccb | 1017 | #if 0 |
a4193c8a | 1018 | if (1) { |
93fcfe39 AL |
1019 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", |
1020 | cpu_single_env->mem_io_vaddr, len, | |
1021 | cpu_single_env->eip, | |
1022 | cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base); | |
59817ccb FB |
1023 | } |
1024 | #endif | |
9fa3e853 | 1025 | p = page_find(start >> TARGET_PAGE_BITS); |
5fafdf24 | 1026 | if (!p) |
9fa3e853 FB |
1027 | return; |
1028 | if (p->code_bitmap) { | |
1029 | offset = start & ~TARGET_PAGE_MASK; | |
1030 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |
1031 | if (b & ((1 << len) - 1)) | |
1032 | goto do_invalidate; | |
1033 | } else { | |
1034 | do_invalidate: | |
d720b93d | 1035 | tb_invalidate_phys_page_range(start, start + len, 1); |
9fa3e853 FB |
1036 | } |
1037 | } | |
1038 | ||
9fa3e853 | 1039 | #if !defined(CONFIG_SOFTMMU) |
00f82b8a | 1040 | static void tb_invalidate_phys_page(target_phys_addr_t addr, |
d720b93d | 1041 | unsigned long pc, void *puc) |
9fa3e853 | 1042 | { |
6b917547 | 1043 | TranslationBlock *tb; |
9fa3e853 | 1044 | PageDesc *p; |
6b917547 | 1045 | int n; |
d720b93d | 1046 | #ifdef TARGET_HAS_PRECISE_SMC |
6b917547 | 1047 | TranslationBlock *current_tb = NULL; |
d720b93d | 1048 | CPUState *env = cpu_single_env; |
6b917547 AL |
1049 | int current_tb_modified = 0; |
1050 | target_ulong current_pc = 0; | |
1051 | target_ulong current_cs_base = 0; | |
1052 | int current_flags = 0; | |
d720b93d | 1053 | #endif |
9fa3e853 FB |
1054 | |
1055 | addr &= TARGET_PAGE_MASK; | |
1056 | p = page_find(addr >> TARGET_PAGE_BITS); | |
5fafdf24 | 1057 | if (!p) |
9fa3e853 FB |
1058 | return; |
1059 | tb = p->first_tb; | |
d720b93d FB |
1060 | #ifdef TARGET_HAS_PRECISE_SMC |
1061 | if (tb && pc != 0) { | |
1062 | current_tb = tb_find_pc(pc); | |
1063 | } | |
1064 | #endif | |
9fa3e853 FB |
1065 | while (tb != NULL) { |
1066 | n = (long)tb & 3; | |
1067 | tb = (TranslationBlock *)((long)tb & ~3); | |
d720b93d FB |
1068 | #ifdef TARGET_HAS_PRECISE_SMC |
1069 | if (current_tb == tb && | |
2e70f6ef | 1070 | (current_tb->cflags & CF_COUNT_MASK) != 1) { |
d720b93d FB |
1071 | /* If we are modifying the current TB, we must stop |
1072 | its execution. We could be more precise by checking | |
1073 | that the modification is after the current PC, but it | |
1074 | would require a specialized function to partially | |
1075 | restore the CPU state */ | |
3b46e624 | 1076 | |
d720b93d FB |
1077 | current_tb_modified = 1; |
1078 | cpu_restore_state(current_tb, env, pc, puc); | |
6b917547 AL |
1079 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1080 | ¤t_flags); | |
d720b93d FB |
1081 | } |
1082 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
9fa3e853 FB |
1083 | tb_phys_invalidate(tb, addr); |
1084 | tb = tb->page_next[n]; | |
1085 | } | |
fd6ce8f6 | 1086 | p->first_tb = NULL; |
d720b93d FB |
1087 | #ifdef TARGET_HAS_PRECISE_SMC |
1088 | if (current_tb_modified) { | |
1089 | /* we generate a block containing just the instruction | |
1090 | modifying the memory. It will ensure that it cannot modify | |
1091 | itself */ | |
ea1c1802 | 1092 | env->current_tb = NULL; |
2e70f6ef | 1093 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); |
d720b93d FB |
1094 | cpu_resume_from_signal(env, puc); |
1095 | } | |
1096 | #endif | |
fd6ce8f6 | 1097 | } |
9fa3e853 | 1098 | #endif |
fd6ce8f6 FB |
1099 | |
1100 | /* add the tb in the target page and protect it if necessary */ | |
5fafdf24 | 1101 | static inline void tb_alloc_page(TranslationBlock *tb, |
53a5960a | 1102 | unsigned int n, target_ulong page_addr) |
fd6ce8f6 FB |
1103 | { |
1104 | PageDesc *p; | |
9fa3e853 FB |
1105 | TranslationBlock *last_first_tb; |
1106 | ||
1107 | tb->page_addr[n] = page_addr; | |
3a7d929e | 1108 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1109 | tb->page_next[n] = p->first_tb; |
1110 | last_first_tb = p->first_tb; | |
1111 | p->first_tb = (TranslationBlock *)((long)tb | n); | |
1112 | invalidate_page_bitmap(p); | |
fd6ce8f6 | 1113 | |
107db443 | 1114 | #if defined(TARGET_HAS_SMC) || 1 |
d720b93d | 1115 | |
9fa3e853 | 1116 | #if defined(CONFIG_USER_ONLY) |
fd6ce8f6 | 1117 | if (p->flags & PAGE_WRITE) { |
53a5960a PB |
1118 | target_ulong addr; |
1119 | PageDesc *p2; | |
9fa3e853 FB |
1120 | int prot; |
1121 | ||
fd6ce8f6 FB |
1122 | /* force the host page as non writable (writes will have a |
1123 | page fault + mprotect overhead) */ | |
53a5960a | 1124 | page_addr &= qemu_host_page_mask; |
fd6ce8f6 | 1125 | prot = 0; |
53a5960a PB |
1126 | for(addr = page_addr; addr < page_addr + qemu_host_page_size; |
1127 | addr += TARGET_PAGE_SIZE) { | |
1128 | ||
1129 | p2 = page_find (addr >> TARGET_PAGE_BITS); | |
1130 | if (!p2) | |
1131 | continue; | |
1132 | prot |= p2->flags; | |
1133 | p2->flags &= ~PAGE_WRITE; | |
1134 | page_get_flags(addr); | |
1135 | } | |
5fafdf24 | 1136 | mprotect(g2h(page_addr), qemu_host_page_size, |
fd6ce8f6 FB |
1137 | (prot & PAGE_BITS) & ~PAGE_WRITE); |
1138 | #ifdef DEBUG_TB_INVALIDATE | |
ab3d1727 | 1139 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", |
53a5960a | 1140 | page_addr); |
fd6ce8f6 | 1141 | #endif |
fd6ce8f6 | 1142 | } |
9fa3e853 FB |
1143 | #else |
1144 | /* if some code is already present, then the pages are already | |
1145 | protected. So we handle the case where only the first TB is | |
1146 | allocated in a physical page */ | |
1147 | if (!last_first_tb) { | |
6a00d601 | 1148 | tlb_protect_code(page_addr); |
9fa3e853 FB |
1149 | } |
1150 | #endif | |
d720b93d FB |
1151 | |
1152 | #endif /* TARGET_HAS_SMC */ | |
fd6ce8f6 FB |
1153 | } |
1154 | ||
1155 | /* Allocate a new translation block. Flush the translation buffer if | |
1156 | too many translation blocks or too much generated code. */ | |
c27004ec | 1157 | TranslationBlock *tb_alloc(target_ulong pc) |
fd6ce8f6 FB |
1158 | { |
1159 | TranslationBlock *tb; | |
fd6ce8f6 | 1160 | |
26a5f13b FB |
1161 | if (nb_tbs >= code_gen_max_blocks || |
1162 | (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size) | |
d4e8164f | 1163 | return NULL; |
fd6ce8f6 FB |
1164 | tb = &tbs[nb_tbs++]; |
1165 | tb->pc = pc; | |
b448f2f3 | 1166 | tb->cflags = 0; |
d4e8164f FB |
1167 | return tb; |
1168 | } | |
1169 | ||
2e70f6ef PB |
1170 | void tb_free(TranslationBlock *tb) |
1171 | { | |
bf20dc07 | 1172 | /* In practice this is mostly used for single use temporary TB |
2e70f6ef PB |
1173 | Ignore the hard cases and just back up if this TB happens to |
1174 | be the last one generated. */ | |
1175 | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) { | |
1176 | code_gen_ptr = tb->tc_ptr; | |
1177 | nb_tbs--; | |
1178 | } | |
1179 | } | |
1180 | ||
9fa3e853 FB |
1181 | /* add a new TB and link it to the physical page tables. phys_page2 is |
1182 | (-1) to indicate that only one page contains the TB. */ | |
5fafdf24 | 1183 | void tb_link_phys(TranslationBlock *tb, |
9fa3e853 | 1184 | target_ulong phys_pc, target_ulong phys_page2) |
d4e8164f | 1185 | { |
9fa3e853 FB |
1186 | unsigned int h; |
1187 | TranslationBlock **ptb; | |
1188 | ||
c8a706fe PB |
1189 | /* Grab the mmap lock to stop another thread invalidating this TB |
1190 | before we are done. */ | |
1191 | mmap_lock(); | |
9fa3e853 FB |
1192 | /* add in the physical hash table */ |
1193 | h = tb_phys_hash_func(phys_pc); | |
1194 | ptb = &tb_phys_hash[h]; | |
1195 | tb->phys_hash_next = *ptb; | |
1196 | *ptb = tb; | |
fd6ce8f6 FB |
1197 | |
1198 | /* add in the page list */ | |
9fa3e853 FB |
1199 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); |
1200 | if (phys_page2 != -1) | |
1201 | tb_alloc_page(tb, 1, phys_page2); | |
1202 | else | |
1203 | tb->page_addr[1] = -1; | |
9fa3e853 | 1204 | |
d4e8164f FB |
1205 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); |
1206 | tb->jmp_next[0] = NULL; | |
1207 | tb->jmp_next[1] = NULL; | |
1208 | ||
1209 | /* init original jump addresses */ | |
1210 | if (tb->tb_next_offset[0] != 0xffff) | |
1211 | tb_reset_jump(tb, 0); | |
1212 | if (tb->tb_next_offset[1] != 0xffff) | |
1213 | tb_reset_jump(tb, 1); | |
8a40a180 FB |
1214 | |
1215 | #ifdef DEBUG_TB_CHECK | |
1216 | tb_page_check(); | |
1217 | #endif | |
c8a706fe | 1218 | mmap_unlock(); |
fd6ce8f6 FB |
1219 | } |
1220 | ||
9fa3e853 FB |
1221 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < |
1222 | tb[1].tc_ptr. Return NULL if not found */ | |
1223 | TranslationBlock *tb_find_pc(unsigned long tc_ptr) | |
fd6ce8f6 | 1224 | { |
9fa3e853 FB |
1225 | int m_min, m_max, m; |
1226 | unsigned long v; | |
1227 | TranslationBlock *tb; | |
a513fe19 FB |
1228 | |
1229 | if (nb_tbs <= 0) | |
1230 | return NULL; | |
1231 | if (tc_ptr < (unsigned long)code_gen_buffer || | |
1232 | tc_ptr >= (unsigned long)code_gen_ptr) | |
1233 | return NULL; | |
1234 | /* binary search (cf Knuth) */ | |
1235 | m_min = 0; | |
1236 | m_max = nb_tbs - 1; | |
1237 | while (m_min <= m_max) { | |
1238 | m = (m_min + m_max) >> 1; | |
1239 | tb = &tbs[m]; | |
1240 | v = (unsigned long)tb->tc_ptr; | |
1241 | if (v == tc_ptr) | |
1242 | return tb; | |
1243 | else if (tc_ptr < v) { | |
1244 | m_max = m - 1; | |
1245 | } else { | |
1246 | m_min = m + 1; | |
1247 | } | |
5fafdf24 | 1248 | } |
a513fe19 FB |
1249 | return &tbs[m_max]; |
1250 | } | |
7501267e | 1251 | |
ea041c0e FB |
1252 | static void tb_reset_jump_recursive(TranslationBlock *tb); |
1253 | ||
1254 | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) | |
1255 | { | |
1256 | TranslationBlock *tb1, *tb_next, **ptb; | |
1257 | unsigned int n1; | |
1258 | ||
1259 | tb1 = tb->jmp_next[n]; | |
1260 | if (tb1 != NULL) { | |
1261 | /* find head of list */ | |
1262 | for(;;) { | |
1263 | n1 = (long)tb1 & 3; | |
1264 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1265 | if (n1 == 2) | |
1266 | break; | |
1267 | tb1 = tb1->jmp_next[n1]; | |
1268 | } | |
1269 | /* we are now sure now that tb jumps to tb1 */ | |
1270 | tb_next = tb1; | |
1271 | ||
1272 | /* remove tb from the jmp_first list */ | |
1273 | ptb = &tb_next->jmp_first; | |
1274 | for(;;) { | |
1275 | tb1 = *ptb; | |
1276 | n1 = (long)tb1 & 3; | |
1277 | tb1 = (TranslationBlock *)((long)tb1 & ~3); | |
1278 | if (n1 == n && tb1 == tb) | |
1279 | break; | |
1280 | ptb = &tb1->jmp_next[n1]; | |
1281 | } | |
1282 | *ptb = tb->jmp_next[n]; | |
1283 | tb->jmp_next[n] = NULL; | |
3b46e624 | 1284 | |
ea041c0e FB |
1285 | /* suppress the jump to next tb in generated code */ |
1286 | tb_reset_jump(tb, n); | |
1287 | ||
0124311e | 1288 | /* suppress jumps in the tb on which we could have jumped */ |
ea041c0e FB |
1289 | tb_reset_jump_recursive(tb_next); |
1290 | } | |
1291 | } | |
1292 | ||
1293 | static void tb_reset_jump_recursive(TranslationBlock *tb) | |
1294 | { | |
1295 | tb_reset_jump_recursive2(tb, 0); | |
1296 | tb_reset_jump_recursive2(tb, 1); | |
1297 | } | |
1298 | ||
1fddef4b | 1299 | #if defined(TARGET_HAS_ICE) |
d720b93d FB |
1300 | static void breakpoint_invalidate(CPUState *env, target_ulong pc) |
1301 | { | |
9b3c35e0 JM |
1302 | target_phys_addr_t addr; |
1303 | target_ulong pd; | |
c2f07f81 PB |
1304 | ram_addr_t ram_addr; |
1305 | PhysPageDesc *p; | |
d720b93d | 1306 | |
c2f07f81 PB |
1307 | addr = cpu_get_phys_page_debug(env, pc); |
1308 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
1309 | if (!p) { | |
1310 | pd = IO_MEM_UNASSIGNED; | |
1311 | } else { | |
1312 | pd = p->phys_offset; | |
1313 | } | |
1314 | ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK); | |
706cd4b5 | 1315 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
d720b93d | 1316 | } |
c27004ec | 1317 | #endif |
d720b93d | 1318 | |
6658ffb8 | 1319 | /* Add a watchpoint. */ |
a1d1bb31 AL |
1320 | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, |
1321 | int flags, CPUWatchpoint **watchpoint) | |
6658ffb8 | 1322 | { |
b4051334 | 1323 | target_ulong len_mask = ~(len - 1); |
c0ce998e | 1324 | CPUWatchpoint *wp; |
6658ffb8 | 1325 | |
b4051334 AL |
1326 | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ |
1327 | if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) { | |
1328 | fprintf(stderr, "qemu: tried to set invalid watchpoint at " | |
1329 | TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len); | |
1330 | return -EINVAL; | |
1331 | } | |
a1d1bb31 | 1332 | wp = qemu_malloc(sizeof(*wp)); |
a1d1bb31 AL |
1333 | |
1334 | wp->vaddr = addr; | |
b4051334 | 1335 | wp->len_mask = len_mask; |
a1d1bb31 AL |
1336 | wp->flags = flags; |
1337 | ||
2dc9f411 | 1338 | /* keep all GDB-injected watchpoints in front */ |
c0ce998e AL |
1339 | if (flags & BP_GDB) |
1340 | TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry); | |
1341 | else | |
1342 | TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry); | |
6658ffb8 | 1343 | |
6658ffb8 | 1344 | tlb_flush_page(env, addr); |
a1d1bb31 AL |
1345 | |
1346 | if (watchpoint) | |
1347 | *watchpoint = wp; | |
1348 | return 0; | |
6658ffb8 PB |
1349 | } |
1350 | ||
a1d1bb31 AL |
1351 | /* Remove a specific watchpoint. */ |
1352 | int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len, | |
1353 | int flags) | |
6658ffb8 | 1354 | { |
b4051334 | 1355 | target_ulong len_mask = ~(len - 1); |
a1d1bb31 | 1356 | CPUWatchpoint *wp; |
6658ffb8 | 1357 | |
c0ce998e | 1358 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
b4051334 | 1359 | if (addr == wp->vaddr && len_mask == wp->len_mask |
6e140f28 | 1360 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
a1d1bb31 | 1361 | cpu_watchpoint_remove_by_ref(env, wp); |
6658ffb8 PB |
1362 | return 0; |
1363 | } | |
1364 | } | |
a1d1bb31 | 1365 | return -ENOENT; |
6658ffb8 PB |
1366 | } |
1367 | ||
a1d1bb31 AL |
1368 | /* Remove a specific watchpoint by reference. */ |
1369 | void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint) | |
1370 | { | |
c0ce998e | 1371 | TAILQ_REMOVE(&env->watchpoints, watchpoint, entry); |
7d03f82f | 1372 | |
a1d1bb31 AL |
1373 | tlb_flush_page(env, watchpoint->vaddr); |
1374 | ||
1375 | qemu_free(watchpoint); | |
1376 | } | |
1377 | ||
1378 | /* Remove all matching watchpoints. */ | |
1379 | void cpu_watchpoint_remove_all(CPUState *env, int mask) | |
1380 | { | |
c0ce998e | 1381 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 1382 | |
c0ce998e | 1383 | TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) { |
a1d1bb31 AL |
1384 | if (wp->flags & mask) |
1385 | cpu_watchpoint_remove_by_ref(env, wp); | |
c0ce998e | 1386 | } |
7d03f82f EI |
1387 | } |
1388 | ||
a1d1bb31 AL |
1389 | /* Add a breakpoint. */ |
1390 | int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags, | |
1391 | CPUBreakpoint **breakpoint) | |
4c3a88a2 | 1392 | { |
1fddef4b | 1393 | #if defined(TARGET_HAS_ICE) |
c0ce998e | 1394 | CPUBreakpoint *bp; |
3b46e624 | 1395 | |
a1d1bb31 | 1396 | bp = qemu_malloc(sizeof(*bp)); |
4c3a88a2 | 1397 | |
a1d1bb31 AL |
1398 | bp->pc = pc; |
1399 | bp->flags = flags; | |
1400 | ||
2dc9f411 | 1401 | /* keep all GDB-injected breakpoints in front */ |
c0ce998e AL |
1402 | if (flags & BP_GDB) |
1403 | TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry); | |
1404 | else | |
1405 | TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry); | |
3b46e624 | 1406 | |
d720b93d | 1407 | breakpoint_invalidate(env, pc); |
a1d1bb31 AL |
1408 | |
1409 | if (breakpoint) | |
1410 | *breakpoint = bp; | |
4c3a88a2 FB |
1411 | return 0; |
1412 | #else | |
a1d1bb31 | 1413 | return -ENOSYS; |
4c3a88a2 FB |
1414 | #endif |
1415 | } | |
1416 | ||
a1d1bb31 AL |
1417 | /* Remove a specific breakpoint. */ |
1418 | int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags) | |
1419 | { | |
7d03f82f | 1420 | #if defined(TARGET_HAS_ICE) |
a1d1bb31 AL |
1421 | CPUBreakpoint *bp; |
1422 | ||
c0ce998e | 1423 | TAILQ_FOREACH(bp, &env->breakpoints, entry) { |
a1d1bb31 AL |
1424 | if (bp->pc == pc && bp->flags == flags) { |
1425 | cpu_breakpoint_remove_by_ref(env, bp); | |
1426 | return 0; | |
1427 | } | |
7d03f82f | 1428 | } |
a1d1bb31 AL |
1429 | return -ENOENT; |
1430 | #else | |
1431 | return -ENOSYS; | |
7d03f82f EI |
1432 | #endif |
1433 | } | |
1434 | ||
a1d1bb31 AL |
1435 | /* Remove a specific breakpoint by reference. */ |
1436 | void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint) | |
4c3a88a2 | 1437 | { |
1fddef4b | 1438 | #if defined(TARGET_HAS_ICE) |
c0ce998e | 1439 | TAILQ_REMOVE(&env->breakpoints, breakpoint, entry); |
d720b93d | 1440 | |
a1d1bb31 AL |
1441 | breakpoint_invalidate(env, breakpoint->pc); |
1442 | ||
1443 | qemu_free(breakpoint); | |
1444 | #endif | |
1445 | } | |
1446 | ||
1447 | /* Remove all matching breakpoints. */ | |
1448 | void cpu_breakpoint_remove_all(CPUState *env, int mask) | |
1449 | { | |
1450 | #if defined(TARGET_HAS_ICE) | |
c0ce998e | 1451 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 1452 | |
c0ce998e | 1453 | TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) { |
a1d1bb31 AL |
1454 | if (bp->flags & mask) |
1455 | cpu_breakpoint_remove_by_ref(env, bp); | |
c0ce998e | 1456 | } |
4c3a88a2 FB |
1457 | #endif |
1458 | } | |
1459 | ||
c33a346e FB |
1460 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
1461 | CPU loop after each instruction */ | |
1462 | void cpu_single_step(CPUState *env, int enabled) | |
1463 | { | |
1fddef4b | 1464 | #if defined(TARGET_HAS_ICE) |
c33a346e FB |
1465 | if (env->singlestep_enabled != enabled) { |
1466 | env->singlestep_enabled = enabled; | |
e22a25c9 AL |
1467 | if (kvm_enabled()) |
1468 | kvm_update_guest_debug(env, 0); | |
1469 | else { | |
ccbb4d44 | 1470 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 AL |
1471 | /* XXX: only flush what is necessary */ |
1472 | tb_flush(env); | |
1473 | } | |
c33a346e FB |
1474 | } |
1475 | #endif | |
1476 | } | |
1477 | ||
34865134 FB |
1478 | /* enable or disable low levels log */ |
1479 | void cpu_set_log(int log_flags) | |
1480 | { | |
1481 | loglevel = log_flags; | |
1482 | if (loglevel && !logfile) { | |
11fcfab4 | 1483 | logfile = fopen(logfilename, log_append ? "a" : "w"); |
34865134 FB |
1484 | if (!logfile) { |
1485 | perror(logfilename); | |
1486 | _exit(1); | |
1487 | } | |
9fa3e853 FB |
1488 | #if !defined(CONFIG_SOFTMMU) |
1489 | /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ | |
1490 | { | |
b55266b5 | 1491 | static char logfile_buf[4096]; |
9fa3e853 FB |
1492 | setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); |
1493 | } | |
bf65f53f FN |
1494 | #elif !defined(_WIN32) |
1495 | /* Win32 doesn't support line-buffering and requires size >= 2 */ | |
34865134 | 1496 | setvbuf(logfile, NULL, _IOLBF, 0); |
9fa3e853 | 1497 | #endif |
e735b91c PB |
1498 | log_append = 1; |
1499 | } | |
1500 | if (!loglevel && logfile) { | |
1501 | fclose(logfile); | |
1502 | logfile = NULL; | |
34865134 FB |
1503 | } |
1504 | } | |
1505 | ||
1506 | void cpu_set_log_filename(const char *filename) | |
1507 | { | |
1508 | logfilename = strdup(filename); | |
e735b91c PB |
1509 | if (logfile) { |
1510 | fclose(logfile); | |
1511 | logfile = NULL; | |
1512 | } | |
1513 | cpu_set_log(loglevel); | |
34865134 | 1514 | } |
c33a346e | 1515 | |
3098dba0 | 1516 | static void cpu_unlink_tb(CPUState *env) |
ea041c0e | 1517 | { |
3098dba0 AJ |
1518 | #if defined(USE_NPTL) |
1519 | /* FIXME: TB unchaining isn't SMP safe. For now just ignore the | |
1520 | problem and hope the cpu will stop of its own accord. For userspace | |
1521 | emulation this often isn't actually as bad as it sounds. Often | |
1522 | signals are used primarily to interrupt blocking syscalls. */ | |
1523 | #else | |
ea041c0e | 1524 | TranslationBlock *tb; |
15a51156 | 1525 | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; |
59817ccb | 1526 | |
3098dba0 AJ |
1527 | tb = env->current_tb; |
1528 | /* if the cpu is currently executing code, we must unlink it and | |
1529 | all the potentially executing TB */ | |
1530 | if (tb && !testandset(&interrupt_lock)) { | |
1531 | env->current_tb = NULL; | |
1532 | tb_reset_jump_recursive(tb); | |
1533 | resetlock(&interrupt_lock); | |
be214e6c | 1534 | } |
3098dba0 AJ |
1535 | #endif |
1536 | } | |
1537 | ||
1538 | /* mask must never be zero, except for A20 change call */ | |
1539 | void cpu_interrupt(CPUState *env, int mask) | |
1540 | { | |
1541 | int old_mask; | |
be214e6c | 1542 | |
2e70f6ef | 1543 | old_mask = env->interrupt_request; |
68a79315 | 1544 | env->interrupt_request |= mask; |
3098dba0 | 1545 | |
8edac960 AL |
1546 | #ifndef CONFIG_USER_ONLY |
1547 | /* | |
1548 | * If called from iothread context, wake the target cpu in | |
1549 | * case its halted. | |
1550 | */ | |
1551 | if (!qemu_cpu_self(env)) { | |
1552 | qemu_cpu_kick(env); | |
1553 | return; | |
1554 | } | |
1555 | #endif | |
1556 | ||
2e70f6ef | 1557 | if (use_icount) { |
266910c4 | 1558 | env->icount_decr.u16.high = 0xffff; |
2e70f6ef | 1559 | #ifndef CONFIG_USER_ONLY |
2e70f6ef | 1560 | if (!can_do_io(env) |
be214e6c | 1561 | && (mask & ~old_mask) != 0) { |
2e70f6ef PB |
1562 | cpu_abort(env, "Raised interrupt while not in I/O function"); |
1563 | } | |
1564 | #endif | |
1565 | } else { | |
3098dba0 | 1566 | cpu_unlink_tb(env); |
ea041c0e FB |
1567 | } |
1568 | } | |
1569 | ||
b54ad049 FB |
1570 | void cpu_reset_interrupt(CPUState *env, int mask) |
1571 | { | |
1572 | env->interrupt_request &= ~mask; | |
1573 | } | |
1574 | ||
3098dba0 AJ |
1575 | void cpu_exit(CPUState *env) |
1576 | { | |
1577 | env->exit_request = 1; | |
1578 | cpu_unlink_tb(env); | |
1579 | } | |
1580 | ||
c7cd6a37 | 1581 | const CPULogItem cpu_log_items[] = { |
5fafdf24 | 1582 | { CPU_LOG_TB_OUT_ASM, "out_asm", |
f193c797 FB |
1583 | "show generated host assembly code for each compiled TB" }, |
1584 | { CPU_LOG_TB_IN_ASM, "in_asm", | |
1585 | "show target assembly code for each compiled TB" }, | |
5fafdf24 | 1586 | { CPU_LOG_TB_OP, "op", |
57fec1fe | 1587 | "show micro ops for each compiled TB" }, |
f193c797 | 1588 | { CPU_LOG_TB_OP_OPT, "op_opt", |
e01a1157 BS |
1589 | "show micro ops " |
1590 | #ifdef TARGET_I386 | |
1591 | "before eflags optimization and " | |
f193c797 | 1592 | #endif |
e01a1157 | 1593 | "after liveness analysis" }, |
f193c797 FB |
1594 | { CPU_LOG_INT, "int", |
1595 | "show interrupts/exceptions in short format" }, | |
1596 | { CPU_LOG_EXEC, "exec", | |
1597 | "show trace before each executed TB (lots of logs)" }, | |
9fddaa0c | 1598 | { CPU_LOG_TB_CPU, "cpu", |
e91c8a77 | 1599 | "show CPU state before block translation" }, |
f193c797 FB |
1600 | #ifdef TARGET_I386 |
1601 | { CPU_LOG_PCALL, "pcall", | |
1602 | "show protected mode far calls/returns/exceptions" }, | |
eca1bdf4 AL |
1603 | { CPU_LOG_RESET, "cpu_reset", |
1604 | "show CPU state before CPU resets" }, | |
f193c797 | 1605 | #endif |
8e3a9fd2 | 1606 | #ifdef DEBUG_IOPORT |
fd872598 FB |
1607 | { CPU_LOG_IOPORT, "ioport", |
1608 | "show all i/o ports accesses" }, | |
8e3a9fd2 | 1609 | #endif |
f193c797 FB |
1610 | { 0, NULL, NULL }, |
1611 | }; | |
1612 | ||
1613 | static int cmp1(const char *s1, int n, const char *s2) | |
1614 | { | |
1615 | if (strlen(s2) != n) | |
1616 | return 0; | |
1617 | return memcmp(s1, s2, n) == 0; | |
1618 | } | |
3b46e624 | 1619 | |
f193c797 FB |
1620 | /* takes a comma separated list of log masks. Return 0 if error. */ |
1621 | int cpu_str_to_log_mask(const char *str) | |
1622 | { | |
c7cd6a37 | 1623 | const CPULogItem *item; |
f193c797 FB |
1624 | int mask; |
1625 | const char *p, *p1; | |
1626 | ||
1627 | p = str; | |
1628 | mask = 0; | |
1629 | for(;;) { | |
1630 | p1 = strchr(p, ','); | |
1631 | if (!p1) | |
1632 | p1 = p + strlen(p); | |
8e3a9fd2 FB |
1633 | if(cmp1(p,p1-p,"all")) { |
1634 | for(item = cpu_log_items; item->mask != 0; item++) { | |
1635 | mask |= item->mask; | |
1636 | } | |
1637 | } else { | |
f193c797 FB |
1638 | for(item = cpu_log_items; item->mask != 0; item++) { |
1639 | if (cmp1(p, p1 - p, item->name)) | |
1640 | goto found; | |
1641 | } | |
1642 | return 0; | |
8e3a9fd2 | 1643 | } |
f193c797 FB |
1644 | found: |
1645 | mask |= item->mask; | |
1646 | if (*p1 != ',') | |
1647 | break; | |
1648 | p = p1 + 1; | |
1649 | } | |
1650 | return mask; | |
1651 | } | |
ea041c0e | 1652 | |
7501267e FB |
1653 | void cpu_abort(CPUState *env, const char *fmt, ...) |
1654 | { | |
1655 | va_list ap; | |
493ae1f0 | 1656 | va_list ap2; |
7501267e FB |
1657 | |
1658 | va_start(ap, fmt); | |
493ae1f0 | 1659 | va_copy(ap2, ap); |
7501267e FB |
1660 | fprintf(stderr, "qemu: fatal: "); |
1661 | vfprintf(stderr, fmt, ap); | |
1662 | fprintf(stderr, "\n"); | |
1663 | #ifdef TARGET_I386 | |
7fe48483 FB |
1664 | cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); |
1665 | #else | |
1666 | cpu_dump_state(env, stderr, fprintf, 0); | |
7501267e | 1667 | #endif |
93fcfe39 AL |
1668 | if (qemu_log_enabled()) { |
1669 | qemu_log("qemu: fatal: "); | |
1670 | qemu_log_vprintf(fmt, ap2); | |
1671 | qemu_log("\n"); | |
f9373291 | 1672 | #ifdef TARGET_I386 |
93fcfe39 | 1673 | log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP); |
f9373291 | 1674 | #else |
93fcfe39 | 1675 | log_cpu_state(env, 0); |
f9373291 | 1676 | #endif |
31b1a7b4 | 1677 | qemu_log_flush(); |
93fcfe39 | 1678 | qemu_log_close(); |
924edcae | 1679 | } |
493ae1f0 | 1680 | va_end(ap2); |
f9373291 | 1681 | va_end(ap); |
7501267e FB |
1682 | abort(); |
1683 | } | |
1684 | ||
c5be9f08 TS |
1685 | CPUState *cpu_copy(CPUState *env) |
1686 | { | |
01ba9816 | 1687 | CPUState *new_env = cpu_init(env->cpu_model_str); |
c5be9f08 TS |
1688 | CPUState *next_cpu = new_env->next_cpu; |
1689 | int cpu_index = new_env->cpu_index; | |
5a38f081 AL |
1690 | #if defined(TARGET_HAS_ICE) |
1691 | CPUBreakpoint *bp; | |
1692 | CPUWatchpoint *wp; | |
1693 | #endif | |
1694 | ||
c5be9f08 | 1695 | memcpy(new_env, env, sizeof(CPUState)); |
5a38f081 AL |
1696 | |
1697 | /* Preserve chaining and index. */ | |
c5be9f08 TS |
1698 | new_env->next_cpu = next_cpu; |
1699 | new_env->cpu_index = cpu_index; | |
5a38f081 AL |
1700 | |
1701 | /* Clone all break/watchpoints. | |
1702 | Note: Once we support ptrace with hw-debug register access, make sure | |
1703 | BP_CPU break/watchpoints are handled correctly on clone. */ | |
1704 | TAILQ_INIT(&env->breakpoints); | |
1705 | TAILQ_INIT(&env->watchpoints); | |
1706 | #if defined(TARGET_HAS_ICE) | |
1707 | TAILQ_FOREACH(bp, &env->breakpoints, entry) { | |
1708 | cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL); | |
1709 | } | |
1710 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
1711 | cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1, | |
1712 | wp->flags, NULL); | |
1713 | } | |
1714 | #endif | |
1715 | ||
c5be9f08 TS |
1716 | return new_env; |
1717 | } | |
1718 | ||
0124311e FB |
1719 | #if !defined(CONFIG_USER_ONLY) |
1720 | ||
5c751e99 EI |
1721 | static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr) |
1722 | { | |
1723 | unsigned int i; | |
1724 | ||
1725 | /* Discard jump cache entries for any tb which might potentially | |
1726 | overlap the flushed page. */ | |
1727 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
1728 | memset (&env->tb_jmp_cache[i], 0, | |
1729 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1730 | ||
1731 | i = tb_jmp_cache_hash_page(addr); | |
1732 | memset (&env->tb_jmp_cache[i], 0, | |
1733 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1734 | } | |
1735 | ||
08738984 IK |
1736 | static CPUTLBEntry s_cputlb_empty_entry = { |
1737 | .addr_read = -1, | |
1738 | .addr_write = -1, | |
1739 | .addr_code = -1, | |
1740 | .addend = -1, | |
1741 | }; | |
1742 | ||
ee8b7021 FB |
1743 | /* NOTE: if flush_global is true, also flush global entries (not |
1744 | implemented yet) */ | |
1745 | void tlb_flush(CPUState *env, int flush_global) | |
33417e70 | 1746 | { |
33417e70 | 1747 | int i; |
0124311e | 1748 | |
9fa3e853 FB |
1749 | #if defined(DEBUG_TLB) |
1750 | printf("tlb_flush:\n"); | |
1751 | #endif | |
0124311e FB |
1752 | /* must reset current TB so that interrupts cannot modify the |
1753 | links while we are modifying them */ | |
1754 | env->current_tb = NULL; | |
1755 | ||
33417e70 | 1756 | for(i = 0; i < CPU_TLB_SIZE; i++) { |
cfde4bd9 IY |
1757 | int mmu_idx; |
1758 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
08738984 | 1759 | env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry; |
cfde4bd9 | 1760 | } |
33417e70 | 1761 | } |
9fa3e853 | 1762 | |
8a40a180 | 1763 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); |
9fa3e853 | 1764 | |
640f42e4 | 1765 | #ifdef CONFIG_KQEMU |
0a962c02 FB |
1766 | if (env->kqemu_enabled) { |
1767 | kqemu_flush(env, flush_global); | |
1768 | } | |
9fa3e853 | 1769 | #endif |
e3db7226 | 1770 | tlb_flush_count++; |
33417e70 FB |
1771 | } |
1772 | ||
274da6b2 | 1773 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) |
61382a50 | 1774 | { |
5fafdf24 | 1775 | if (addr == (tlb_entry->addr_read & |
84b7b8e7 | 1776 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1777 | addr == (tlb_entry->addr_write & |
84b7b8e7 | 1778 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || |
5fafdf24 | 1779 | addr == (tlb_entry->addr_code & |
84b7b8e7 | 1780 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
08738984 | 1781 | *tlb_entry = s_cputlb_empty_entry; |
84b7b8e7 | 1782 | } |
61382a50 FB |
1783 | } |
1784 | ||
2e12669a | 1785 | void tlb_flush_page(CPUState *env, target_ulong addr) |
33417e70 | 1786 | { |
8a40a180 | 1787 | int i; |
cfde4bd9 | 1788 | int mmu_idx; |
0124311e | 1789 | |
9fa3e853 | 1790 | #if defined(DEBUG_TLB) |
108c49b8 | 1791 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); |
9fa3e853 | 1792 | #endif |
0124311e FB |
1793 | /* must reset current TB so that interrupts cannot modify the |
1794 | links while we are modifying them */ | |
1795 | env->current_tb = NULL; | |
61382a50 FB |
1796 | |
1797 | addr &= TARGET_PAGE_MASK; | |
1798 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
cfde4bd9 IY |
1799 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) |
1800 | tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); | |
0124311e | 1801 | |
5c751e99 | 1802 | tlb_flush_jmp_cache(env, addr); |
9fa3e853 | 1803 | |
640f42e4 | 1804 | #ifdef CONFIG_KQEMU |
0a962c02 FB |
1805 | if (env->kqemu_enabled) { |
1806 | kqemu_flush_page(env, addr); | |
1807 | } | |
1808 | #endif | |
9fa3e853 FB |
1809 | } |
1810 | ||
9fa3e853 FB |
1811 | /* update the TLBs so that writes to code in the virtual page 'addr' |
1812 | can be detected */ | |
6a00d601 | 1813 | static void tlb_protect_code(ram_addr_t ram_addr) |
9fa3e853 | 1814 | { |
5fafdf24 | 1815 | cpu_physical_memory_reset_dirty(ram_addr, |
6a00d601 FB |
1816 | ram_addr + TARGET_PAGE_SIZE, |
1817 | CODE_DIRTY_FLAG); | |
9fa3e853 FB |
1818 | } |
1819 | ||
9fa3e853 | 1820 | /* update the TLB so that writes in physical page 'phys_addr' are no longer |
3a7d929e | 1821 | tested for self modifying code */ |
5fafdf24 | 1822 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, |
3a7d929e | 1823 | target_ulong vaddr) |
9fa3e853 | 1824 | { |
3a7d929e | 1825 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG; |
1ccde1cb FB |
1826 | } |
1827 | ||
5fafdf24 | 1828 | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, |
1ccde1cb FB |
1829 | unsigned long start, unsigned long length) |
1830 | { | |
1831 | unsigned long addr; | |
84b7b8e7 FB |
1832 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
1833 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | |
1ccde1cb | 1834 | if ((addr - start) < length) { |
0f459d16 | 1835 | tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY; |
1ccde1cb FB |
1836 | } |
1837 | } | |
1838 | } | |
1839 | ||
5579c7f3 | 1840 | /* Note: start and end must be within the same ram block. */ |
3a7d929e | 1841 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, |
0a962c02 | 1842 | int dirty_flags) |
1ccde1cb FB |
1843 | { |
1844 | CPUState *env; | |
4f2ac237 | 1845 | unsigned long length, start1; |
0a962c02 FB |
1846 | int i, mask, len; |
1847 | uint8_t *p; | |
1ccde1cb FB |
1848 | |
1849 | start &= TARGET_PAGE_MASK; | |
1850 | end = TARGET_PAGE_ALIGN(end); | |
1851 | ||
1852 | length = end - start; | |
1853 | if (length == 0) | |
1854 | return; | |
0a962c02 | 1855 | len = length >> TARGET_PAGE_BITS; |
640f42e4 | 1856 | #ifdef CONFIG_KQEMU |
6a00d601 FB |
1857 | /* XXX: should not depend on cpu context */ |
1858 | env = first_cpu; | |
3a7d929e | 1859 | if (env->kqemu_enabled) { |
f23db169 FB |
1860 | ram_addr_t addr; |
1861 | addr = start; | |
1862 | for(i = 0; i < len; i++) { | |
1863 | kqemu_set_notdirty(env, addr); | |
1864 | addr += TARGET_PAGE_SIZE; | |
1865 | } | |
3a7d929e FB |
1866 | } |
1867 | #endif | |
f23db169 FB |
1868 | mask = ~dirty_flags; |
1869 | p = phys_ram_dirty + (start >> TARGET_PAGE_BITS); | |
1870 | for(i = 0; i < len; i++) | |
1871 | p[i] &= mask; | |
1872 | ||
1ccde1cb FB |
1873 | /* we modify the TLB cache so that the dirty bit will be set again |
1874 | when accessing the range */ | |
5579c7f3 PB |
1875 | start1 = (unsigned long)qemu_get_ram_ptr(start); |
1876 | /* Chek that we don't span multiple blocks - this breaks the | |
1877 | address comparisons below. */ | |
1878 | if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1 | |
1879 | != (end - 1) - start) { | |
1880 | abort(); | |
1881 | } | |
1882 | ||
6a00d601 | 1883 | for(env = first_cpu; env != NULL; env = env->next_cpu) { |
cfde4bd9 IY |
1884 | int mmu_idx; |
1885 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
1886 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1887 | tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], | |
1888 | start1, length); | |
1889 | } | |
6a00d601 | 1890 | } |
1ccde1cb FB |
1891 | } |
1892 | ||
74576198 AL |
1893 | int cpu_physical_memory_set_dirty_tracking(int enable) |
1894 | { | |
1895 | in_migration = enable; | |
b0a46a33 JK |
1896 | if (kvm_enabled()) { |
1897 | return kvm_set_migration_log(enable); | |
1898 | } | |
74576198 AL |
1899 | return 0; |
1900 | } | |
1901 | ||
1902 | int cpu_physical_memory_get_dirty_tracking(void) | |
1903 | { | |
1904 | return in_migration; | |
1905 | } | |
1906 | ||
151f7749 JK |
1907 | int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, |
1908 | target_phys_addr_t end_addr) | |
2bec46dc | 1909 | { |
151f7749 JK |
1910 | int ret = 0; |
1911 | ||
2bec46dc | 1912 | if (kvm_enabled()) |
151f7749 JK |
1913 | ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr); |
1914 | return ret; | |
2bec46dc AL |
1915 | } |
1916 | ||
3a7d929e FB |
1917 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) |
1918 | { | |
1919 | ram_addr_t ram_addr; | |
5579c7f3 | 1920 | void *p; |
3a7d929e | 1921 | |
84b7b8e7 | 1922 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
5579c7f3 PB |
1923 | p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK) |
1924 | + tlb_entry->addend); | |
1925 | ram_addr = qemu_ram_addr_from_host(p); | |
3a7d929e | 1926 | if (!cpu_physical_memory_is_dirty(ram_addr)) { |
0f459d16 | 1927 | tlb_entry->addr_write |= TLB_NOTDIRTY; |
3a7d929e FB |
1928 | } |
1929 | } | |
1930 | } | |
1931 | ||
1932 | /* update the TLB according to the current state of the dirty bits */ | |
1933 | void cpu_tlb_update_dirty(CPUState *env) | |
1934 | { | |
1935 | int i; | |
cfde4bd9 IY |
1936 | int mmu_idx; |
1937 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
1938 | for(i = 0; i < CPU_TLB_SIZE; i++) | |
1939 | tlb_update_dirty(&env->tlb_table[mmu_idx][i]); | |
1940 | } | |
3a7d929e FB |
1941 | } |
1942 | ||
0f459d16 | 1943 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) |
1ccde1cb | 1944 | { |
0f459d16 PB |
1945 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) |
1946 | tlb_entry->addr_write = vaddr; | |
1ccde1cb FB |
1947 | } |
1948 | ||
0f459d16 PB |
1949 | /* update the TLB corresponding to virtual page vaddr |
1950 | so that it is no longer dirty */ | |
1951 | static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr) | |
1ccde1cb | 1952 | { |
1ccde1cb | 1953 | int i; |
cfde4bd9 | 1954 | int mmu_idx; |
1ccde1cb | 1955 | |
0f459d16 | 1956 | vaddr &= TARGET_PAGE_MASK; |
1ccde1cb | 1957 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
cfde4bd9 IY |
1958 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) |
1959 | tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); | |
9fa3e853 FB |
1960 | } |
1961 | ||
59817ccb FB |
1962 | /* add a new TLB entry. At most one entry for a given virtual address |
1963 | is permitted. Return 0 if OK or 2 if the page could not be mapped | |
1964 | (can only happen in non SOFTMMU mode for I/O pages or pages | |
1965 | conflicting with the host address space). */ | |
5fafdf24 TS |
1966 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
1967 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 1968 | int mmu_idx, int is_softmmu) |
9fa3e853 | 1969 | { |
92e873b9 | 1970 | PhysPageDesc *p; |
4f2ac237 | 1971 | unsigned long pd; |
9fa3e853 | 1972 | unsigned int index; |
4f2ac237 | 1973 | target_ulong address; |
0f459d16 | 1974 | target_ulong code_address; |
108c49b8 | 1975 | target_phys_addr_t addend; |
9fa3e853 | 1976 | int ret; |
84b7b8e7 | 1977 | CPUTLBEntry *te; |
a1d1bb31 | 1978 | CPUWatchpoint *wp; |
0f459d16 | 1979 | target_phys_addr_t iotlb; |
9fa3e853 | 1980 | |
92e873b9 | 1981 | p = phys_page_find(paddr >> TARGET_PAGE_BITS); |
9fa3e853 FB |
1982 | if (!p) { |
1983 | pd = IO_MEM_UNASSIGNED; | |
9fa3e853 FB |
1984 | } else { |
1985 | pd = p->phys_offset; | |
9fa3e853 FB |
1986 | } |
1987 | #if defined(DEBUG_TLB) | |
6ebbf390 JM |
1988 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n", |
1989 | vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd); | |
9fa3e853 FB |
1990 | #endif |
1991 | ||
1992 | ret = 0; | |
0f459d16 PB |
1993 | address = vaddr; |
1994 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { | |
1995 | /* IO memory case (romd handled later) */ | |
1996 | address |= TLB_MMIO; | |
1997 | } | |
5579c7f3 | 1998 | addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK); |
0f459d16 PB |
1999 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) { |
2000 | /* Normal RAM. */ | |
2001 | iotlb = pd & TARGET_PAGE_MASK; | |
2002 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM) | |
2003 | iotlb |= IO_MEM_NOTDIRTY; | |
2004 | else | |
2005 | iotlb |= IO_MEM_ROM; | |
2006 | } else { | |
ccbb4d44 | 2007 | /* IO handlers are currently passed a physical address. |
0f459d16 PB |
2008 | It would be nice to pass an offset from the base address |
2009 | of that region. This would avoid having to special case RAM, | |
2010 | and avoid full address decoding in every device. | |
2011 | We can't use the high bits of pd for this because | |
2012 | IO_MEM_ROMD uses these as a ram address. */ | |
8da3ff18 PB |
2013 | iotlb = (pd & ~TARGET_PAGE_MASK); |
2014 | if (p) { | |
8da3ff18 PB |
2015 | iotlb += p->region_offset; |
2016 | } else { | |
2017 | iotlb += paddr; | |
2018 | } | |
0f459d16 PB |
2019 | } |
2020 | ||
2021 | code_address = address; | |
2022 | /* Make accesses to pages with watchpoints go via the | |
2023 | watchpoint trap routines. */ | |
c0ce998e | 2024 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
a1d1bb31 | 2025 | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) { |
0f459d16 PB |
2026 | iotlb = io_mem_watch + paddr; |
2027 | /* TODO: The memory case can be optimized by not trapping | |
2028 | reads of pages with a write breakpoint. */ | |
2029 | address |= TLB_MMIO; | |
6658ffb8 | 2030 | } |
0f459d16 | 2031 | } |
d79acba4 | 2032 | |
0f459d16 PB |
2033 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
2034 | env->iotlb[mmu_idx][index] = iotlb - vaddr; | |
2035 | te = &env->tlb_table[mmu_idx][index]; | |
2036 | te->addend = addend - vaddr; | |
2037 | if (prot & PAGE_READ) { | |
2038 | te->addr_read = address; | |
2039 | } else { | |
2040 | te->addr_read = -1; | |
2041 | } | |
5c751e99 | 2042 | |
0f459d16 PB |
2043 | if (prot & PAGE_EXEC) { |
2044 | te->addr_code = code_address; | |
2045 | } else { | |
2046 | te->addr_code = -1; | |
2047 | } | |
2048 | if (prot & PAGE_WRITE) { | |
2049 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || | |
2050 | (pd & IO_MEM_ROMD)) { | |
2051 | /* Write access calls the I/O callback. */ | |
2052 | te->addr_write = address | TLB_MMIO; | |
2053 | } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && | |
2054 | !cpu_physical_memory_is_dirty(pd)) { | |
2055 | te->addr_write = address | TLB_NOTDIRTY; | |
9fa3e853 | 2056 | } else { |
0f459d16 | 2057 | te->addr_write = address; |
9fa3e853 | 2058 | } |
0f459d16 PB |
2059 | } else { |
2060 | te->addr_write = -1; | |
9fa3e853 | 2061 | } |
9fa3e853 FB |
2062 | return ret; |
2063 | } | |
2064 | ||
0124311e FB |
2065 | #else |
2066 | ||
ee8b7021 | 2067 | void tlb_flush(CPUState *env, int flush_global) |
0124311e FB |
2068 | { |
2069 | } | |
2070 | ||
2e12669a | 2071 | void tlb_flush_page(CPUState *env, target_ulong addr) |
0124311e FB |
2072 | { |
2073 | } | |
2074 | ||
5fafdf24 TS |
2075 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
2076 | target_phys_addr_t paddr, int prot, | |
6ebbf390 | 2077 | int mmu_idx, int is_softmmu) |
9fa3e853 FB |
2078 | { |
2079 | return 0; | |
2080 | } | |
0124311e | 2081 | |
edf8e2af MW |
2082 | /* |
2083 | * Walks guest process memory "regions" one by one | |
2084 | * and calls callback function 'fn' for each region. | |
2085 | */ | |
2086 | int walk_memory_regions(void *priv, | |
2087 | int (*fn)(void *, unsigned long, unsigned long, unsigned long)) | |
33417e70 | 2088 | { |
9fa3e853 | 2089 | unsigned long start, end; |
edf8e2af | 2090 | PageDesc *p = NULL; |
9fa3e853 | 2091 | int i, j, prot, prot1; |
edf8e2af | 2092 | int rc = 0; |
33417e70 | 2093 | |
edf8e2af | 2094 | start = end = -1; |
9fa3e853 | 2095 | prot = 0; |
edf8e2af MW |
2096 | |
2097 | for (i = 0; i <= L1_SIZE; i++) { | |
2098 | p = (i < L1_SIZE) ? l1_map[i] : NULL; | |
2099 | for (j = 0; j < L2_SIZE; j++) { | |
2100 | prot1 = (p == NULL) ? 0 : p[j].flags; | |
2101 | /* | |
2102 | * "region" is one continuous chunk of memory | |
2103 | * that has same protection flags set. | |
2104 | */ | |
9fa3e853 FB |
2105 | if (prot1 != prot) { |
2106 | end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS); | |
2107 | if (start != -1) { | |
edf8e2af MW |
2108 | rc = (*fn)(priv, start, end, prot); |
2109 | /* callback can stop iteration by returning != 0 */ | |
2110 | if (rc != 0) | |
2111 | return (rc); | |
9fa3e853 FB |
2112 | } |
2113 | if (prot1 != 0) | |
2114 | start = end; | |
2115 | else | |
2116 | start = -1; | |
2117 | prot = prot1; | |
2118 | } | |
edf8e2af | 2119 | if (p == NULL) |
9fa3e853 FB |
2120 | break; |
2121 | } | |
33417e70 | 2122 | } |
edf8e2af MW |
2123 | return (rc); |
2124 | } | |
2125 | ||
2126 | static int dump_region(void *priv, unsigned long start, | |
2127 | unsigned long end, unsigned long prot) | |
2128 | { | |
2129 | FILE *f = (FILE *)priv; | |
2130 | ||
2131 | (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n", | |
2132 | start, end, end - start, | |
2133 | ((prot & PAGE_READ) ? 'r' : '-'), | |
2134 | ((prot & PAGE_WRITE) ? 'w' : '-'), | |
2135 | ((prot & PAGE_EXEC) ? 'x' : '-')); | |
2136 | ||
2137 | return (0); | |
2138 | } | |
2139 | ||
2140 | /* dump memory mappings */ | |
2141 | void page_dump(FILE *f) | |
2142 | { | |
2143 | (void) fprintf(f, "%-8s %-8s %-8s %s\n", | |
2144 | "start", "end", "size", "prot"); | |
2145 | walk_memory_regions(f, dump_region); | |
33417e70 FB |
2146 | } |
2147 | ||
53a5960a | 2148 | int page_get_flags(target_ulong address) |
33417e70 | 2149 | { |
9fa3e853 FB |
2150 | PageDesc *p; |
2151 | ||
2152 | p = page_find(address >> TARGET_PAGE_BITS); | |
33417e70 | 2153 | if (!p) |
9fa3e853 FB |
2154 | return 0; |
2155 | return p->flags; | |
2156 | } | |
2157 | ||
2158 | /* modify the flags of a page and invalidate the code if | |
ccbb4d44 | 2159 | necessary. The flag PAGE_WRITE_ORG is positioned automatically |
9fa3e853 | 2160 | depending on PAGE_WRITE */ |
53a5960a | 2161 | void page_set_flags(target_ulong start, target_ulong end, int flags) |
9fa3e853 FB |
2162 | { |
2163 | PageDesc *p; | |
53a5960a | 2164 | target_ulong addr; |
9fa3e853 | 2165 | |
c8a706fe | 2166 | /* mmap_lock should already be held. */ |
9fa3e853 FB |
2167 | start = start & TARGET_PAGE_MASK; |
2168 | end = TARGET_PAGE_ALIGN(end); | |
2169 | if (flags & PAGE_WRITE) | |
2170 | flags |= PAGE_WRITE_ORG; | |
9fa3e853 FB |
2171 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2172 | p = page_find_alloc(addr >> TARGET_PAGE_BITS); | |
17e2377a PB |
2173 | /* We may be called for host regions that are outside guest |
2174 | address space. */ | |
2175 | if (!p) | |
2176 | return; | |
9fa3e853 FB |
2177 | /* if the write protection is set, then we invalidate the code |
2178 | inside */ | |
5fafdf24 | 2179 | if (!(p->flags & PAGE_WRITE) && |
9fa3e853 FB |
2180 | (flags & PAGE_WRITE) && |
2181 | p->first_tb) { | |
d720b93d | 2182 | tb_invalidate_phys_page(addr, 0, NULL); |
9fa3e853 FB |
2183 | } |
2184 | p->flags = flags; | |
2185 | } | |
33417e70 FB |
2186 | } |
2187 | ||
3d97b40b TS |
2188 | int page_check_range(target_ulong start, target_ulong len, int flags) |
2189 | { | |
2190 | PageDesc *p; | |
2191 | target_ulong end; | |
2192 | target_ulong addr; | |
2193 | ||
55f280c9 AZ |
2194 | if (start + len < start) |
2195 | /* we've wrapped around */ | |
2196 | return -1; | |
2197 | ||
3d97b40b TS |
2198 | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */ |
2199 | start = start & TARGET_PAGE_MASK; | |
2200 | ||
3d97b40b TS |
2201 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) { |
2202 | p = page_find(addr >> TARGET_PAGE_BITS); | |
2203 | if( !p ) | |
2204 | return -1; | |
2205 | if( !(p->flags & PAGE_VALID) ) | |
2206 | return -1; | |
2207 | ||
dae3270c | 2208 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) |
3d97b40b | 2209 | return -1; |
dae3270c FB |
2210 | if (flags & PAGE_WRITE) { |
2211 | if (!(p->flags & PAGE_WRITE_ORG)) | |
2212 | return -1; | |
2213 | /* unprotect the page if it was put read-only because it | |
2214 | contains translated code */ | |
2215 | if (!(p->flags & PAGE_WRITE)) { | |
2216 | if (!page_unprotect(addr, 0, NULL)) | |
2217 | return -1; | |
2218 | } | |
2219 | return 0; | |
2220 | } | |
3d97b40b TS |
2221 | } |
2222 | return 0; | |
2223 | } | |
2224 | ||
9fa3e853 | 2225 | /* called from signal handler: invalidate the code and unprotect the |
ccbb4d44 | 2226 | page. Return TRUE if the fault was successfully handled. */ |
53a5960a | 2227 | int page_unprotect(target_ulong address, unsigned long pc, void *puc) |
9fa3e853 FB |
2228 | { |
2229 | unsigned int page_index, prot, pindex; | |
2230 | PageDesc *p, *p1; | |
53a5960a | 2231 | target_ulong host_start, host_end, addr; |
9fa3e853 | 2232 | |
c8a706fe PB |
2233 | /* Technically this isn't safe inside a signal handler. However we |
2234 | know this only ever happens in a synchronous SEGV handler, so in | |
2235 | practice it seems to be ok. */ | |
2236 | mmap_lock(); | |
2237 | ||
83fb7adf | 2238 | host_start = address & qemu_host_page_mask; |
9fa3e853 FB |
2239 | page_index = host_start >> TARGET_PAGE_BITS; |
2240 | p1 = page_find(page_index); | |
c8a706fe PB |
2241 | if (!p1) { |
2242 | mmap_unlock(); | |
9fa3e853 | 2243 | return 0; |
c8a706fe | 2244 | } |
83fb7adf | 2245 | host_end = host_start + qemu_host_page_size; |
9fa3e853 FB |
2246 | p = p1; |
2247 | prot = 0; | |
2248 | for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) { | |
2249 | prot |= p->flags; | |
2250 | p++; | |
2251 | } | |
2252 | /* if the page was really writable, then we change its | |
2253 | protection back to writable */ | |
2254 | if (prot & PAGE_WRITE_ORG) { | |
2255 | pindex = (address - host_start) >> TARGET_PAGE_BITS; | |
2256 | if (!(p1[pindex].flags & PAGE_WRITE)) { | |
5fafdf24 | 2257 | mprotect((void *)g2h(host_start), qemu_host_page_size, |
9fa3e853 FB |
2258 | (prot & PAGE_BITS) | PAGE_WRITE); |
2259 | p1[pindex].flags |= PAGE_WRITE; | |
2260 | /* and since the content will be modified, we must invalidate | |
2261 | the corresponding translated code. */ | |
d720b93d | 2262 | tb_invalidate_phys_page(address, pc, puc); |
9fa3e853 FB |
2263 | #ifdef DEBUG_TB_CHECK |
2264 | tb_invalidate_check(address); | |
2265 | #endif | |
c8a706fe | 2266 | mmap_unlock(); |
9fa3e853 FB |
2267 | return 1; |
2268 | } | |
2269 | } | |
c8a706fe | 2270 | mmap_unlock(); |
9fa3e853 FB |
2271 | return 0; |
2272 | } | |
2273 | ||
6a00d601 FB |
2274 | static inline void tlb_set_dirty(CPUState *env, |
2275 | unsigned long addr, target_ulong vaddr) | |
1ccde1cb FB |
2276 | { |
2277 | } | |
9fa3e853 FB |
2278 | #endif /* defined(CONFIG_USER_ONLY) */ |
2279 | ||
e2eef170 | 2280 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 2281 | |
db7b5426 | 2282 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
8da3ff18 | 2283 | ram_addr_t memory, ram_addr_t region_offset); |
00f82b8a | 2284 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
8da3ff18 | 2285 | ram_addr_t orig_memory, ram_addr_t region_offset); |
db7b5426 BS |
2286 | #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \ |
2287 | need_subpage) \ | |
2288 | do { \ | |
2289 | if (addr > start_addr) \ | |
2290 | start_addr2 = 0; \ | |
2291 | else { \ | |
2292 | start_addr2 = start_addr & ~TARGET_PAGE_MASK; \ | |
2293 | if (start_addr2 > 0) \ | |
2294 | need_subpage = 1; \ | |
2295 | } \ | |
2296 | \ | |
49e9fba2 | 2297 | if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \ |
db7b5426 BS |
2298 | end_addr2 = TARGET_PAGE_SIZE - 1; \ |
2299 | else { \ | |
2300 | end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \ | |
2301 | if (end_addr2 < TARGET_PAGE_SIZE - 1) \ | |
2302 | need_subpage = 1; \ | |
2303 | } \ | |
2304 | } while (0) | |
2305 | ||
33417e70 FB |
2306 | /* register physical memory. 'size' must be a multiple of the target |
2307 | page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an | |
8da3ff18 PB |
2308 | io memory page. The address used when calling the IO function is |
2309 | the offset from the start of the region, plus region_offset. Both | |
ccbb4d44 | 2310 | start_addr and region_offset are rounded down to a page boundary |
8da3ff18 PB |
2311 | before calculating this offset. This should not be a problem unless |
2312 | the low bits of start_addr and region_offset differ. */ | |
2313 | void cpu_register_physical_memory_offset(target_phys_addr_t start_addr, | |
2314 | ram_addr_t size, | |
2315 | ram_addr_t phys_offset, | |
2316 | ram_addr_t region_offset) | |
33417e70 | 2317 | { |
108c49b8 | 2318 | target_phys_addr_t addr, end_addr; |
92e873b9 | 2319 | PhysPageDesc *p; |
9d42037b | 2320 | CPUState *env; |
00f82b8a | 2321 | ram_addr_t orig_size = size; |
db7b5426 | 2322 | void *subpage; |
33417e70 | 2323 | |
640f42e4 | 2324 | #ifdef CONFIG_KQEMU |
da260249 FB |
2325 | /* XXX: should not depend on cpu context */ |
2326 | env = first_cpu; | |
2327 | if (env->kqemu_enabled) { | |
2328 | kqemu_set_phys_mem(start_addr, size, phys_offset); | |
2329 | } | |
2330 | #endif | |
7ba1e619 AL |
2331 | if (kvm_enabled()) |
2332 | kvm_set_phys_mem(start_addr, size, phys_offset); | |
2333 | ||
67c4d23c PB |
2334 | if (phys_offset == IO_MEM_UNASSIGNED) { |
2335 | region_offset = start_addr; | |
2336 | } | |
8da3ff18 | 2337 | region_offset &= TARGET_PAGE_MASK; |
5fd386f6 | 2338 | size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK; |
49e9fba2 BS |
2339 | end_addr = start_addr + (target_phys_addr_t)size; |
2340 | for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) { | |
db7b5426 BS |
2341 | p = phys_page_find(addr >> TARGET_PAGE_BITS); |
2342 | if (p && p->phys_offset != IO_MEM_UNASSIGNED) { | |
00f82b8a | 2343 | ram_addr_t orig_memory = p->phys_offset; |
db7b5426 BS |
2344 | target_phys_addr_t start_addr2, end_addr2; |
2345 | int need_subpage = 0; | |
2346 | ||
2347 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, | |
2348 | need_subpage); | |
4254fab8 | 2349 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 BS |
2350 | if (!(orig_memory & IO_MEM_SUBPAGE)) { |
2351 | subpage = subpage_init((addr & TARGET_PAGE_MASK), | |
8da3ff18 PB |
2352 | &p->phys_offset, orig_memory, |
2353 | p->region_offset); | |
db7b5426 BS |
2354 | } else { |
2355 | subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK) | |
2356 | >> IO_MEM_SHIFT]; | |
2357 | } | |
8da3ff18 PB |
2358 | subpage_register(subpage, start_addr2, end_addr2, phys_offset, |
2359 | region_offset); | |
2360 | p->region_offset = 0; | |
db7b5426 BS |
2361 | } else { |
2362 | p->phys_offset = phys_offset; | |
2363 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | |
2364 | (phys_offset & IO_MEM_ROMD)) | |
2365 | phys_offset += TARGET_PAGE_SIZE; | |
2366 | } | |
2367 | } else { | |
2368 | p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
2369 | p->phys_offset = phys_offset; | |
8da3ff18 | 2370 | p->region_offset = region_offset; |
db7b5426 | 2371 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || |
8da3ff18 | 2372 | (phys_offset & IO_MEM_ROMD)) { |
db7b5426 | 2373 | phys_offset += TARGET_PAGE_SIZE; |
0e8f0967 | 2374 | } else { |
db7b5426 BS |
2375 | target_phys_addr_t start_addr2, end_addr2; |
2376 | int need_subpage = 0; | |
2377 | ||
2378 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, | |
2379 | end_addr2, need_subpage); | |
2380 | ||
4254fab8 | 2381 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) { |
db7b5426 | 2382 | subpage = subpage_init((addr & TARGET_PAGE_MASK), |
8da3ff18 | 2383 | &p->phys_offset, IO_MEM_UNASSIGNED, |
67c4d23c | 2384 | addr & TARGET_PAGE_MASK); |
db7b5426 | 2385 | subpage_register(subpage, start_addr2, end_addr2, |
8da3ff18 PB |
2386 | phys_offset, region_offset); |
2387 | p->region_offset = 0; | |
db7b5426 BS |
2388 | } |
2389 | } | |
2390 | } | |
8da3ff18 | 2391 | region_offset += TARGET_PAGE_SIZE; |
33417e70 | 2392 | } |
3b46e624 | 2393 | |
9d42037b FB |
2394 | /* since each CPU stores ram addresses in its TLB cache, we must |
2395 | reset the modified entries */ | |
2396 | /* XXX: slow ! */ | |
2397 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
2398 | tlb_flush(env, 1); | |
2399 | } | |
33417e70 FB |
2400 | } |
2401 | ||
ba863458 | 2402 | /* XXX: temporary until new memory mapping API */ |
00f82b8a | 2403 | ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr) |
ba863458 FB |
2404 | { |
2405 | PhysPageDesc *p; | |
2406 | ||
2407 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
2408 | if (!p) | |
2409 | return IO_MEM_UNASSIGNED; | |
2410 | return p->phys_offset; | |
2411 | } | |
2412 | ||
f65ed4c1 AL |
2413 | void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) |
2414 | { | |
2415 | if (kvm_enabled()) | |
2416 | kvm_coalesce_mmio_region(addr, size); | |
2417 | } | |
2418 | ||
2419 | void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) | |
2420 | { | |
2421 | if (kvm_enabled()) | |
2422 | kvm_uncoalesce_mmio_region(addr, size); | |
2423 | } | |
2424 | ||
640f42e4 | 2425 | #ifdef CONFIG_KQEMU |
e9a1ab19 | 2426 | /* XXX: better than nothing */ |
94a6b54f | 2427 | static ram_addr_t kqemu_ram_alloc(ram_addr_t size) |
e9a1ab19 FB |
2428 | { |
2429 | ram_addr_t addr; | |
94a6b54f | 2430 | if ((last_ram_offset + size) > kqemu_phys_ram_size) { |
012a7045 | 2431 | fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n", |
94a6b54f | 2432 | (uint64_t)size, (uint64_t)kqemu_phys_ram_size); |
e9a1ab19 FB |
2433 | abort(); |
2434 | } | |
94a6b54f PB |
2435 | addr = last_ram_offset; |
2436 | last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size); | |
e9a1ab19 FB |
2437 | return addr; |
2438 | } | |
94a6b54f PB |
2439 | #endif |
2440 | ||
2441 | ram_addr_t qemu_ram_alloc(ram_addr_t size) | |
2442 | { | |
2443 | RAMBlock *new_block; | |
2444 | ||
640f42e4 | 2445 | #ifdef CONFIG_KQEMU |
94a6b54f PB |
2446 | if (kqemu_phys_ram_base) { |
2447 | return kqemu_ram_alloc(size); | |
2448 | } | |
2449 | #endif | |
2450 | ||
2451 | size = TARGET_PAGE_ALIGN(size); | |
2452 | new_block = qemu_malloc(sizeof(*new_block)); | |
2453 | ||
2454 | new_block->host = qemu_vmalloc(size); | |
2455 | new_block->offset = last_ram_offset; | |
2456 | new_block->length = size; | |
2457 | ||
2458 | new_block->next = ram_blocks; | |
2459 | ram_blocks = new_block; | |
2460 | ||
2461 | phys_ram_dirty = qemu_realloc(phys_ram_dirty, | |
2462 | (last_ram_offset + size) >> TARGET_PAGE_BITS); | |
2463 | memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS), | |
2464 | 0xff, size >> TARGET_PAGE_BITS); | |
2465 | ||
2466 | last_ram_offset += size; | |
2467 | ||
6f0437e8 JK |
2468 | if (kvm_enabled()) |
2469 | kvm_setup_guest_memory(new_block->host, size); | |
2470 | ||
94a6b54f PB |
2471 | return new_block->offset; |
2472 | } | |
e9a1ab19 FB |
2473 | |
2474 | void qemu_ram_free(ram_addr_t addr) | |
2475 | { | |
94a6b54f | 2476 | /* TODO: implement this. */ |
e9a1ab19 FB |
2477 | } |
2478 | ||
dc828ca1 | 2479 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
5579c7f3 PB |
2480 | With the exception of the softmmu code in this file, this should |
2481 | only be used for local memory (e.g. video ram) that the device owns, | |
2482 | and knows it isn't going to access beyond the end of the block. | |
2483 | ||
2484 | It should not be used for general purpose DMA. | |
2485 | Use cpu_physical_memory_map/cpu_physical_memory_rw instead. | |
2486 | */ | |
dc828ca1 PB |
2487 | void *qemu_get_ram_ptr(ram_addr_t addr) |
2488 | { | |
94a6b54f PB |
2489 | RAMBlock *prev; |
2490 | RAMBlock **prevp; | |
2491 | RAMBlock *block; | |
2492 | ||
640f42e4 | 2493 | #ifdef CONFIG_KQEMU |
94a6b54f PB |
2494 | if (kqemu_phys_ram_base) { |
2495 | return kqemu_phys_ram_base + addr; | |
2496 | } | |
2497 | #endif | |
2498 | ||
2499 | prev = NULL; | |
2500 | prevp = &ram_blocks; | |
2501 | block = ram_blocks; | |
2502 | while (block && (block->offset > addr | |
2503 | || block->offset + block->length <= addr)) { | |
2504 | if (prev) | |
2505 | prevp = &prev->next; | |
2506 | prev = block; | |
2507 | block = block->next; | |
2508 | } | |
2509 | if (!block) { | |
2510 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
2511 | abort(); | |
2512 | } | |
2513 | /* Move this entry to to start of the list. */ | |
2514 | if (prev) { | |
2515 | prev->next = block->next; | |
2516 | block->next = *prevp; | |
2517 | *prevp = block; | |
2518 | } | |
2519 | return block->host + (addr - block->offset); | |
dc828ca1 PB |
2520 | } |
2521 | ||
5579c7f3 PB |
2522 | /* Some of the softmmu routines need to translate from a host pointer |
2523 | (typically a TLB entry) back to a ram offset. */ | |
2524 | ram_addr_t qemu_ram_addr_from_host(void *ptr) | |
2525 | { | |
94a6b54f PB |
2526 | RAMBlock *prev; |
2527 | RAMBlock **prevp; | |
2528 | RAMBlock *block; | |
2529 | uint8_t *host = ptr; | |
2530 | ||
640f42e4 | 2531 | #ifdef CONFIG_KQEMU |
94a6b54f PB |
2532 | if (kqemu_phys_ram_base) { |
2533 | return host - kqemu_phys_ram_base; | |
2534 | } | |
2535 | #endif | |
2536 | ||
2537 | prev = NULL; | |
2538 | prevp = &ram_blocks; | |
2539 | block = ram_blocks; | |
2540 | while (block && (block->host > host | |
2541 | || block->host + block->length <= host)) { | |
2542 | if (prev) | |
2543 | prevp = &prev->next; | |
2544 | prev = block; | |
2545 | block = block->next; | |
2546 | } | |
2547 | if (!block) { | |
2548 | fprintf(stderr, "Bad ram pointer %p\n", ptr); | |
2549 | abort(); | |
2550 | } | |
2551 | return block->offset + (host - block->host); | |
5579c7f3 PB |
2552 | } |
2553 | ||
a4193c8a | 2554 | static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr) |
33417e70 | 2555 | { |
67d3b957 | 2556 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2557 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); |
b4f0a316 | 2558 | #endif |
0a6f8a6d | 2559 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2560 | do_unassigned_access(addr, 0, 0, 0, 1); |
2561 | #endif | |
2562 | return 0; | |
2563 | } | |
2564 | ||
2565 | static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr) | |
2566 | { | |
2567 | #ifdef DEBUG_UNASSIGNED | |
2568 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2569 | #endif | |
0a6f8a6d | 2570 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2571 | do_unassigned_access(addr, 0, 0, 0, 2); |
2572 | #endif | |
2573 | return 0; | |
2574 | } | |
2575 | ||
2576 | static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr) | |
2577 | { | |
2578 | #ifdef DEBUG_UNASSIGNED | |
2579 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2580 | #endif | |
0a6f8a6d | 2581 | #if defined(TARGET_SPARC) |
e18231a3 | 2582 | do_unassigned_access(addr, 0, 0, 0, 4); |
67d3b957 | 2583 | #endif |
33417e70 FB |
2584 | return 0; |
2585 | } | |
2586 | ||
a4193c8a | 2587 | static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) |
33417e70 | 2588 | { |
67d3b957 | 2589 | #ifdef DEBUG_UNASSIGNED |
ab3d1727 | 2590 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); |
67d3b957 | 2591 | #endif |
0a6f8a6d | 2592 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2593 | do_unassigned_access(addr, 1, 0, 0, 1); |
2594 | #endif | |
2595 | } | |
2596 | ||
2597 | static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2598 | { | |
2599 | #ifdef DEBUG_UNASSIGNED | |
2600 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2601 | #endif | |
0a6f8a6d | 2602 | #if defined(TARGET_SPARC) |
e18231a3 BS |
2603 | do_unassigned_access(addr, 1, 0, 0, 2); |
2604 | #endif | |
2605 | } | |
2606 | ||
2607 | static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
2608 | { | |
2609 | #ifdef DEBUG_UNASSIGNED | |
2610 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | |
2611 | #endif | |
0a6f8a6d | 2612 | #if defined(TARGET_SPARC) |
e18231a3 | 2613 | do_unassigned_access(addr, 1, 0, 0, 4); |
b4f0a316 | 2614 | #endif |
33417e70 FB |
2615 | } |
2616 | ||
2617 | static CPUReadMemoryFunc *unassigned_mem_read[3] = { | |
2618 | unassigned_mem_readb, | |
e18231a3 BS |
2619 | unassigned_mem_readw, |
2620 | unassigned_mem_readl, | |
33417e70 FB |
2621 | }; |
2622 | ||
2623 | static CPUWriteMemoryFunc *unassigned_mem_write[3] = { | |
2624 | unassigned_mem_writeb, | |
e18231a3 BS |
2625 | unassigned_mem_writew, |
2626 | unassigned_mem_writel, | |
33417e70 FB |
2627 | }; |
2628 | ||
0f459d16 PB |
2629 | static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr, |
2630 | uint32_t val) | |
9fa3e853 | 2631 | { |
3a7d929e | 2632 | int dirty_flags; |
3a7d929e FB |
2633 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2634 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2635 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2636 | tb_invalidate_phys_page_fast(ram_addr, 1); |
2637 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2638 | #endif |
3a7d929e | 2639 | } |
5579c7f3 | 2640 | stb_p(qemu_get_ram_ptr(ram_addr), val); |
640f42e4 | 2641 | #ifdef CONFIG_KQEMU |
f32fc648 FB |
2642 | if (cpu_single_env->kqemu_enabled && |
2643 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2644 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2645 | #endif | |
f23db169 FB |
2646 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2647 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2648 | /* we remove the notdirty callback only if the code has been | |
2649 | flushed */ | |
2650 | if (dirty_flags == 0xff) | |
2e70f6ef | 2651 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2652 | } |
2653 | ||
0f459d16 PB |
2654 | static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr, |
2655 | uint32_t val) | |
9fa3e853 | 2656 | { |
3a7d929e | 2657 | int dirty_flags; |
3a7d929e FB |
2658 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2659 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2660 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2661 | tb_invalidate_phys_page_fast(ram_addr, 2); |
2662 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2663 | #endif |
3a7d929e | 2664 | } |
5579c7f3 | 2665 | stw_p(qemu_get_ram_ptr(ram_addr), val); |
640f42e4 | 2666 | #ifdef CONFIG_KQEMU |
f32fc648 FB |
2667 | if (cpu_single_env->kqemu_enabled && |
2668 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2669 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2670 | #endif | |
f23db169 FB |
2671 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2672 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2673 | /* we remove the notdirty callback only if the code has been | |
2674 | flushed */ | |
2675 | if (dirty_flags == 0xff) | |
2e70f6ef | 2676 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2677 | } |
2678 | ||
0f459d16 PB |
2679 | static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr, |
2680 | uint32_t val) | |
9fa3e853 | 2681 | { |
3a7d929e | 2682 | int dirty_flags; |
3a7d929e FB |
2683 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; |
2684 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
9fa3e853 | 2685 | #if !defined(CONFIG_USER_ONLY) |
3a7d929e FB |
2686 | tb_invalidate_phys_page_fast(ram_addr, 4); |
2687 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; | |
9fa3e853 | 2688 | #endif |
3a7d929e | 2689 | } |
5579c7f3 | 2690 | stl_p(qemu_get_ram_ptr(ram_addr), val); |
640f42e4 | 2691 | #ifdef CONFIG_KQEMU |
f32fc648 FB |
2692 | if (cpu_single_env->kqemu_enabled && |
2693 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) | |
2694 | kqemu_modify_page(cpu_single_env, ram_addr); | |
2695 | #endif | |
f23db169 FB |
2696 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); |
2697 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; | |
2698 | /* we remove the notdirty callback only if the code has been | |
2699 | flushed */ | |
2700 | if (dirty_flags == 0xff) | |
2e70f6ef | 2701 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); |
9fa3e853 FB |
2702 | } |
2703 | ||
3a7d929e | 2704 | static CPUReadMemoryFunc *error_mem_read[3] = { |
9fa3e853 FB |
2705 | NULL, /* never used */ |
2706 | NULL, /* never used */ | |
2707 | NULL, /* never used */ | |
2708 | }; | |
2709 | ||
1ccde1cb FB |
2710 | static CPUWriteMemoryFunc *notdirty_mem_write[3] = { |
2711 | notdirty_mem_writeb, | |
2712 | notdirty_mem_writew, | |
2713 | notdirty_mem_writel, | |
2714 | }; | |
2715 | ||
0f459d16 | 2716 | /* Generate a debug exception if a watchpoint has been hit. */ |
b4051334 | 2717 | static void check_watchpoint(int offset, int len_mask, int flags) |
0f459d16 PB |
2718 | { |
2719 | CPUState *env = cpu_single_env; | |
06d55cc1 AL |
2720 | target_ulong pc, cs_base; |
2721 | TranslationBlock *tb; | |
0f459d16 | 2722 | target_ulong vaddr; |
a1d1bb31 | 2723 | CPUWatchpoint *wp; |
06d55cc1 | 2724 | int cpu_flags; |
0f459d16 | 2725 | |
06d55cc1 AL |
2726 | if (env->watchpoint_hit) { |
2727 | /* We re-entered the check after replacing the TB. Now raise | |
2728 | * the debug interrupt so that is will trigger after the | |
2729 | * current instruction. */ | |
2730 | cpu_interrupt(env, CPU_INTERRUPT_DEBUG); | |
2731 | return; | |
2732 | } | |
2e70f6ef | 2733 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
c0ce998e | 2734 | TAILQ_FOREACH(wp, &env->watchpoints, entry) { |
b4051334 AL |
2735 | if ((vaddr == (wp->vaddr & len_mask) || |
2736 | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { | |
6e140f28 AL |
2737 | wp->flags |= BP_WATCHPOINT_HIT; |
2738 | if (!env->watchpoint_hit) { | |
2739 | env->watchpoint_hit = wp; | |
2740 | tb = tb_find_pc(env->mem_io_pc); | |
2741 | if (!tb) { | |
2742 | cpu_abort(env, "check_watchpoint: could not find TB for " | |
2743 | "pc=%p", (void *)env->mem_io_pc); | |
2744 | } | |
2745 | cpu_restore_state(tb, env, env->mem_io_pc, NULL); | |
2746 | tb_phys_invalidate(tb, -1); | |
2747 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
2748 | env->exception_index = EXCP_DEBUG; | |
2749 | } else { | |
2750 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
2751 | tb_gen_code(env, pc, cs_base, cpu_flags, 1); | |
2752 | } | |
2753 | cpu_resume_from_signal(env, NULL); | |
06d55cc1 | 2754 | } |
6e140f28 AL |
2755 | } else { |
2756 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2757 | } |
2758 | } | |
2759 | } | |
2760 | ||
6658ffb8 PB |
2761 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2762 | so these check for a hit then pass through to the normal out-of-line | |
2763 | phys routines. */ | |
2764 | static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr) | |
2765 | { | |
b4051334 | 2766 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ); |
6658ffb8 PB |
2767 | return ldub_phys(addr); |
2768 | } | |
2769 | ||
2770 | static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr) | |
2771 | { | |
b4051334 | 2772 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ); |
6658ffb8 PB |
2773 | return lduw_phys(addr); |
2774 | } | |
2775 | ||
2776 | static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr) | |
2777 | { | |
b4051334 | 2778 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ); |
6658ffb8 PB |
2779 | return ldl_phys(addr); |
2780 | } | |
2781 | ||
6658ffb8 PB |
2782 | static void watch_mem_writeb(void *opaque, target_phys_addr_t addr, |
2783 | uint32_t val) | |
2784 | { | |
b4051334 | 2785 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE); |
6658ffb8 PB |
2786 | stb_phys(addr, val); |
2787 | } | |
2788 | ||
2789 | static void watch_mem_writew(void *opaque, target_phys_addr_t addr, | |
2790 | uint32_t val) | |
2791 | { | |
b4051334 | 2792 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE); |
6658ffb8 PB |
2793 | stw_phys(addr, val); |
2794 | } | |
2795 | ||
2796 | static void watch_mem_writel(void *opaque, target_phys_addr_t addr, | |
2797 | uint32_t val) | |
2798 | { | |
b4051334 | 2799 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE); |
6658ffb8 PB |
2800 | stl_phys(addr, val); |
2801 | } | |
2802 | ||
2803 | static CPUReadMemoryFunc *watch_mem_read[3] = { | |
2804 | watch_mem_readb, | |
2805 | watch_mem_readw, | |
2806 | watch_mem_readl, | |
2807 | }; | |
2808 | ||
2809 | static CPUWriteMemoryFunc *watch_mem_write[3] = { | |
2810 | watch_mem_writeb, | |
2811 | watch_mem_writew, | |
2812 | watch_mem_writel, | |
2813 | }; | |
6658ffb8 | 2814 | |
db7b5426 BS |
2815 | static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr, |
2816 | unsigned int len) | |
2817 | { | |
db7b5426 BS |
2818 | uint32_t ret; |
2819 | unsigned int idx; | |
2820 | ||
8da3ff18 | 2821 | idx = SUBPAGE_IDX(addr); |
db7b5426 BS |
2822 | #if defined(DEBUG_SUBPAGE) |
2823 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, | |
2824 | mmio, len, addr, idx); | |
2825 | #endif | |
8da3ff18 PB |
2826 | ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], |
2827 | addr + mmio->region_offset[idx][0][len]); | |
db7b5426 BS |
2828 | |
2829 | return ret; | |
2830 | } | |
2831 | ||
2832 | static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr, | |
2833 | uint32_t value, unsigned int len) | |
2834 | { | |
db7b5426 BS |
2835 | unsigned int idx; |
2836 | ||
8da3ff18 | 2837 | idx = SUBPAGE_IDX(addr); |
db7b5426 BS |
2838 | #if defined(DEBUG_SUBPAGE) |
2839 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__, | |
2840 | mmio, len, addr, idx, value); | |
2841 | #endif | |
8da3ff18 PB |
2842 | (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], |
2843 | addr + mmio->region_offset[idx][1][len], | |
2844 | value); | |
db7b5426 BS |
2845 | } |
2846 | ||
2847 | static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr) | |
2848 | { | |
2849 | #if defined(DEBUG_SUBPAGE) | |
2850 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2851 | #endif | |
2852 | ||
2853 | return subpage_readlen(opaque, addr, 0); | |
2854 | } | |
2855 | ||
2856 | static void subpage_writeb (void *opaque, target_phys_addr_t addr, | |
2857 | uint32_t value) | |
2858 | { | |
2859 | #if defined(DEBUG_SUBPAGE) | |
2860 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2861 | #endif | |
2862 | subpage_writelen(opaque, addr, value, 0); | |
2863 | } | |
2864 | ||
2865 | static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr) | |
2866 | { | |
2867 | #if defined(DEBUG_SUBPAGE) | |
2868 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2869 | #endif | |
2870 | ||
2871 | return subpage_readlen(opaque, addr, 1); | |
2872 | } | |
2873 | ||
2874 | static void subpage_writew (void *opaque, target_phys_addr_t addr, | |
2875 | uint32_t value) | |
2876 | { | |
2877 | #if defined(DEBUG_SUBPAGE) | |
2878 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2879 | #endif | |
2880 | subpage_writelen(opaque, addr, value, 1); | |
2881 | } | |
2882 | ||
2883 | static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr) | |
2884 | { | |
2885 | #if defined(DEBUG_SUBPAGE) | |
2886 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); | |
2887 | #endif | |
2888 | ||
2889 | return subpage_readlen(opaque, addr, 2); | |
2890 | } | |
2891 | ||
2892 | static void subpage_writel (void *opaque, | |
2893 | target_phys_addr_t addr, uint32_t value) | |
2894 | { | |
2895 | #if defined(DEBUG_SUBPAGE) | |
2896 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); | |
2897 | #endif | |
2898 | subpage_writelen(opaque, addr, value, 2); | |
2899 | } | |
2900 | ||
2901 | static CPUReadMemoryFunc *subpage_read[] = { | |
2902 | &subpage_readb, | |
2903 | &subpage_readw, | |
2904 | &subpage_readl, | |
2905 | }; | |
2906 | ||
2907 | static CPUWriteMemoryFunc *subpage_write[] = { | |
2908 | &subpage_writeb, | |
2909 | &subpage_writew, | |
2910 | &subpage_writel, | |
2911 | }; | |
2912 | ||
2913 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
8da3ff18 | 2914 | ram_addr_t memory, ram_addr_t region_offset) |
db7b5426 BS |
2915 | { |
2916 | int idx, eidx; | |
4254fab8 | 2917 | unsigned int i; |
db7b5426 BS |
2918 | |
2919 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2920 | return -1; | |
2921 | idx = SUBPAGE_IDX(start); | |
2922 | eidx = SUBPAGE_IDX(end); | |
2923 | #if defined(DEBUG_SUBPAGE) | |
0bf9e31a | 2924 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__, |
db7b5426 BS |
2925 | mmio, start, end, idx, eidx, memory); |
2926 | #endif | |
2927 | memory >>= IO_MEM_SHIFT; | |
2928 | for (; idx <= eidx; idx++) { | |
4254fab8 | 2929 | for (i = 0; i < 4; i++) { |
3ee89922 BS |
2930 | if (io_mem_read[memory][i]) { |
2931 | mmio->mem_read[idx][i] = &io_mem_read[memory][i]; | |
2932 | mmio->opaque[idx][0][i] = io_mem_opaque[memory]; | |
8da3ff18 | 2933 | mmio->region_offset[idx][0][i] = region_offset; |
3ee89922 BS |
2934 | } |
2935 | if (io_mem_write[memory][i]) { | |
2936 | mmio->mem_write[idx][i] = &io_mem_write[memory][i]; | |
2937 | mmio->opaque[idx][1][i] = io_mem_opaque[memory]; | |
8da3ff18 | 2938 | mmio->region_offset[idx][1][i] = region_offset; |
3ee89922 | 2939 | } |
4254fab8 | 2940 | } |
db7b5426 BS |
2941 | } |
2942 | ||
2943 | return 0; | |
2944 | } | |
2945 | ||
00f82b8a | 2946 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys, |
8da3ff18 | 2947 | ram_addr_t orig_memory, ram_addr_t region_offset) |
db7b5426 BS |
2948 | { |
2949 | subpage_t *mmio; | |
2950 | int subpage_memory; | |
2951 | ||
2952 | mmio = qemu_mallocz(sizeof(subpage_t)); | |
1eec614b AL |
2953 | |
2954 | mmio->base = base; | |
1eed09cb | 2955 | subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio); |
db7b5426 | 2956 | #if defined(DEBUG_SUBPAGE) |
1eec614b AL |
2957 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, |
2958 | mmio, base, TARGET_PAGE_SIZE, subpage_memory); | |
db7b5426 | 2959 | #endif |
1eec614b AL |
2960 | *phys = subpage_memory | IO_MEM_SUBPAGE; |
2961 | subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory, | |
8da3ff18 | 2962 | region_offset); |
db7b5426 BS |
2963 | |
2964 | return mmio; | |
2965 | } | |
2966 | ||
88715657 AL |
2967 | static int get_free_io_mem_idx(void) |
2968 | { | |
2969 | int i; | |
2970 | ||
2971 | for (i = 0; i<IO_MEM_NB_ENTRIES; i++) | |
2972 | if (!io_mem_used[i]) { | |
2973 | io_mem_used[i] = 1; | |
2974 | return i; | |
2975 | } | |
2976 | ||
2977 | return -1; | |
2978 | } | |
2979 | ||
33417e70 FB |
2980 | /* mem_read and mem_write are arrays of functions containing the |
2981 | function to access byte (index 0), word (index 1) and dword (index | |
0b4e6e3e | 2982 | 2). Functions can be omitted with a NULL function pointer. |
3ee89922 | 2983 | If io_index is non zero, the corresponding io zone is |
4254fab8 BS |
2984 | modified. If it is zero, a new io zone is allocated. The return |
2985 | value can be used with cpu_register_physical_memory(). (-1) is | |
2986 | returned if error. */ | |
1eed09cb AK |
2987 | static int cpu_register_io_memory_fixed(int io_index, |
2988 | CPUReadMemoryFunc **mem_read, | |
2989 | CPUWriteMemoryFunc **mem_write, | |
2990 | void *opaque) | |
33417e70 | 2991 | { |
4254fab8 | 2992 | int i, subwidth = 0; |
33417e70 FB |
2993 | |
2994 | if (io_index <= 0) { | |
88715657 AL |
2995 | io_index = get_free_io_mem_idx(); |
2996 | if (io_index == -1) | |
2997 | return io_index; | |
33417e70 | 2998 | } else { |
1eed09cb | 2999 | io_index >>= IO_MEM_SHIFT; |
33417e70 FB |
3000 | if (io_index >= IO_MEM_NB_ENTRIES) |
3001 | return -1; | |
3002 | } | |
b5ff1b31 | 3003 | |
33417e70 | 3004 | for(i = 0;i < 3; i++) { |
4254fab8 BS |
3005 | if (!mem_read[i] || !mem_write[i]) |
3006 | subwidth = IO_MEM_SUBWIDTH; | |
33417e70 FB |
3007 | io_mem_read[io_index][i] = mem_read[i]; |
3008 | io_mem_write[io_index][i] = mem_write[i]; | |
3009 | } | |
a4193c8a | 3010 | io_mem_opaque[io_index] = opaque; |
4254fab8 | 3011 | return (io_index << IO_MEM_SHIFT) | subwidth; |
33417e70 | 3012 | } |
61382a50 | 3013 | |
1eed09cb AK |
3014 | int cpu_register_io_memory(CPUReadMemoryFunc **mem_read, |
3015 | CPUWriteMemoryFunc **mem_write, | |
3016 | void *opaque) | |
3017 | { | |
3018 | return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque); | |
3019 | } | |
3020 | ||
88715657 AL |
3021 | void cpu_unregister_io_memory(int io_table_address) |
3022 | { | |
3023 | int i; | |
3024 | int io_index = io_table_address >> IO_MEM_SHIFT; | |
3025 | ||
3026 | for (i=0;i < 3; i++) { | |
3027 | io_mem_read[io_index][i] = unassigned_mem_read[i]; | |
3028 | io_mem_write[io_index][i] = unassigned_mem_write[i]; | |
3029 | } | |
3030 | io_mem_opaque[io_index] = NULL; | |
3031 | io_mem_used[io_index] = 0; | |
3032 | } | |
3033 | ||
e9179ce1 AK |
3034 | static void io_mem_init(void) |
3035 | { | |
3036 | int i; | |
3037 | ||
3038 | cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL); | |
3039 | cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL); | |
3040 | cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL); | |
3041 | for (i=0; i<5; i++) | |
3042 | io_mem_used[i] = 1; | |
3043 | ||
3044 | io_mem_watch = cpu_register_io_memory(watch_mem_read, | |
3045 | watch_mem_write, NULL); | |
3046 | #ifdef CONFIG_KQEMU | |
3047 | if (kqemu_phys_ram_base) { | |
3048 | /* alloc dirty bits array */ | |
3049 | phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS); | |
3050 | memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS); | |
3051 | } | |
3052 | #endif | |
3053 | } | |
3054 | ||
e2eef170 PB |
3055 | #endif /* !defined(CONFIG_USER_ONLY) */ |
3056 | ||
13eb76e0 FB |
3057 | /* physical memory access (slow version, mainly for debug) */ |
3058 | #if defined(CONFIG_USER_ONLY) | |
5fafdf24 | 3059 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
3060 | int len, int is_write) |
3061 | { | |
3062 | int l, flags; | |
3063 | target_ulong page; | |
53a5960a | 3064 | void * p; |
13eb76e0 FB |
3065 | |
3066 | while (len > 0) { | |
3067 | page = addr & TARGET_PAGE_MASK; | |
3068 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3069 | if (l > len) | |
3070 | l = len; | |
3071 | flags = page_get_flags(page); | |
3072 | if (!(flags & PAGE_VALID)) | |
3073 | return; | |
3074 | if (is_write) { | |
3075 | if (!(flags & PAGE_WRITE)) | |
3076 | return; | |
579a97f7 | 3077 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 3078 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
579a97f7 FB |
3079 | /* FIXME - should this return an error rather than just fail? */ |
3080 | return; | |
72fb7daa AJ |
3081 | memcpy(p, buf, l); |
3082 | unlock_user(p, addr, l); | |
13eb76e0 FB |
3083 | } else { |
3084 | if (!(flags & PAGE_READ)) | |
3085 | return; | |
579a97f7 | 3086 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 3087 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
579a97f7 FB |
3088 | /* FIXME - should this return an error rather than just fail? */ |
3089 | return; | |
72fb7daa | 3090 | memcpy(buf, p, l); |
5b257578 | 3091 | unlock_user(p, addr, 0); |
13eb76e0 FB |
3092 | } |
3093 | len -= l; | |
3094 | buf += l; | |
3095 | addr += l; | |
3096 | } | |
3097 | } | |
8df1cd07 | 3098 | |
13eb76e0 | 3099 | #else |
5fafdf24 | 3100 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, |
13eb76e0 FB |
3101 | int len, int is_write) |
3102 | { | |
3103 | int l, io_index; | |
3104 | uint8_t *ptr; | |
3105 | uint32_t val; | |
2e12669a FB |
3106 | target_phys_addr_t page; |
3107 | unsigned long pd; | |
92e873b9 | 3108 | PhysPageDesc *p; |
3b46e624 | 3109 | |
13eb76e0 FB |
3110 | while (len > 0) { |
3111 | page = addr & TARGET_PAGE_MASK; | |
3112 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3113 | if (l > len) | |
3114 | l = len; | |
92e873b9 | 3115 | p = phys_page_find(page >> TARGET_PAGE_BITS); |
13eb76e0 FB |
3116 | if (!p) { |
3117 | pd = IO_MEM_UNASSIGNED; | |
3118 | } else { | |
3119 | pd = p->phys_offset; | |
3120 | } | |
3b46e624 | 3121 | |
13eb76e0 | 3122 | if (is_write) { |
3a7d929e | 3123 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
6c2934db | 3124 | target_phys_addr_t addr1 = addr; |
13eb76e0 | 3125 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 | 3126 | if (p) |
6c2934db | 3127 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
6a00d601 FB |
3128 | /* XXX: could force cpu_single_env to NULL to avoid |
3129 | potential bugs */ | |
6c2934db | 3130 | if (l >= 4 && ((addr1 & 3) == 0)) { |
1c213d19 | 3131 | /* 32 bit write access */ |
c27004ec | 3132 | val = ldl_p(buf); |
6c2934db | 3133 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val); |
13eb76e0 | 3134 | l = 4; |
6c2934db | 3135 | } else if (l >= 2 && ((addr1 & 1) == 0)) { |
1c213d19 | 3136 | /* 16 bit write access */ |
c27004ec | 3137 | val = lduw_p(buf); |
6c2934db | 3138 | io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val); |
13eb76e0 FB |
3139 | l = 2; |
3140 | } else { | |
1c213d19 | 3141 | /* 8 bit write access */ |
c27004ec | 3142 | val = ldub_p(buf); |
6c2934db | 3143 | io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val); |
13eb76e0 FB |
3144 | l = 1; |
3145 | } | |
3146 | } else { | |
b448f2f3 FB |
3147 | unsigned long addr1; |
3148 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
13eb76e0 | 3149 | /* RAM case */ |
5579c7f3 | 3150 | ptr = qemu_get_ram_ptr(addr1); |
13eb76e0 | 3151 | memcpy(ptr, buf, l); |
3a7d929e FB |
3152 | if (!cpu_physical_memory_is_dirty(addr1)) { |
3153 | /* invalidate code */ | |
3154 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
3155 | /* set dirty bit */ | |
5fafdf24 | 3156 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
f23db169 | 3157 | (0xff & ~CODE_DIRTY_FLAG); |
3a7d929e | 3158 | } |
13eb76e0 FB |
3159 | } |
3160 | } else { | |
5fafdf24 | 3161 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 3162 | !(pd & IO_MEM_ROMD)) { |
6c2934db | 3163 | target_phys_addr_t addr1 = addr; |
13eb76e0 FB |
3164 | /* I/O case */ |
3165 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 | 3166 | if (p) |
6c2934db AJ |
3167 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
3168 | if (l >= 4 && ((addr1 & 3) == 0)) { | |
13eb76e0 | 3169 | /* 32 bit read access */ |
6c2934db | 3170 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1); |
c27004ec | 3171 | stl_p(buf, val); |
13eb76e0 | 3172 | l = 4; |
6c2934db | 3173 | } else if (l >= 2 && ((addr1 & 1) == 0)) { |
13eb76e0 | 3174 | /* 16 bit read access */ |
6c2934db | 3175 | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1); |
c27004ec | 3176 | stw_p(buf, val); |
13eb76e0 FB |
3177 | l = 2; |
3178 | } else { | |
1c213d19 | 3179 | /* 8 bit read access */ |
6c2934db | 3180 | val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1); |
c27004ec | 3181 | stb_p(buf, val); |
13eb76e0 FB |
3182 | l = 1; |
3183 | } | |
3184 | } else { | |
3185 | /* RAM case */ | |
5579c7f3 | 3186 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + |
13eb76e0 FB |
3187 | (addr & ~TARGET_PAGE_MASK); |
3188 | memcpy(buf, ptr, l); | |
3189 | } | |
3190 | } | |
3191 | len -= l; | |
3192 | buf += l; | |
3193 | addr += l; | |
3194 | } | |
3195 | } | |
8df1cd07 | 3196 | |
d0ecd2aa | 3197 | /* used for ROM loading : can write in RAM and ROM */ |
5fafdf24 | 3198 | void cpu_physical_memory_write_rom(target_phys_addr_t addr, |
d0ecd2aa FB |
3199 | const uint8_t *buf, int len) |
3200 | { | |
3201 | int l; | |
3202 | uint8_t *ptr; | |
3203 | target_phys_addr_t page; | |
3204 | unsigned long pd; | |
3205 | PhysPageDesc *p; | |
3b46e624 | 3206 | |
d0ecd2aa FB |
3207 | while (len > 0) { |
3208 | page = addr & TARGET_PAGE_MASK; | |
3209 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3210 | if (l > len) | |
3211 | l = len; | |
3212 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
3213 | if (!p) { | |
3214 | pd = IO_MEM_UNASSIGNED; | |
3215 | } else { | |
3216 | pd = p->phys_offset; | |
3217 | } | |
3b46e624 | 3218 | |
d0ecd2aa | 3219 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM && |
2a4188a3 FB |
3220 | (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM && |
3221 | !(pd & IO_MEM_ROMD)) { | |
d0ecd2aa FB |
3222 | /* do nothing */ |
3223 | } else { | |
3224 | unsigned long addr1; | |
3225 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3226 | /* ROM/RAM case */ | |
5579c7f3 | 3227 | ptr = qemu_get_ram_ptr(addr1); |
d0ecd2aa FB |
3228 | memcpy(ptr, buf, l); |
3229 | } | |
3230 | len -= l; | |
3231 | buf += l; | |
3232 | addr += l; | |
3233 | } | |
3234 | } | |
3235 | ||
6d16c2f8 AL |
3236 | typedef struct { |
3237 | void *buffer; | |
3238 | target_phys_addr_t addr; | |
3239 | target_phys_addr_t len; | |
3240 | } BounceBuffer; | |
3241 | ||
3242 | static BounceBuffer bounce; | |
3243 | ||
ba223c29 AL |
3244 | typedef struct MapClient { |
3245 | void *opaque; | |
3246 | void (*callback)(void *opaque); | |
3247 | LIST_ENTRY(MapClient) link; | |
3248 | } MapClient; | |
3249 | ||
3250 | static LIST_HEAD(map_client_list, MapClient) map_client_list | |
3251 | = LIST_HEAD_INITIALIZER(map_client_list); | |
3252 | ||
3253 | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)) | |
3254 | { | |
3255 | MapClient *client = qemu_malloc(sizeof(*client)); | |
3256 | ||
3257 | client->opaque = opaque; | |
3258 | client->callback = callback; | |
3259 | LIST_INSERT_HEAD(&map_client_list, client, link); | |
3260 | return client; | |
3261 | } | |
3262 | ||
3263 | void cpu_unregister_map_client(void *_client) | |
3264 | { | |
3265 | MapClient *client = (MapClient *)_client; | |
3266 | ||
3267 | LIST_REMOVE(client, link); | |
34d5e948 | 3268 | qemu_free(client); |
ba223c29 AL |
3269 | } |
3270 | ||
3271 | static void cpu_notify_map_clients(void) | |
3272 | { | |
3273 | MapClient *client; | |
3274 | ||
3275 | while (!LIST_EMPTY(&map_client_list)) { | |
3276 | client = LIST_FIRST(&map_client_list); | |
3277 | client->callback(client->opaque); | |
34d5e948 | 3278 | cpu_unregister_map_client(client); |
ba223c29 AL |
3279 | } |
3280 | } | |
3281 | ||
6d16c2f8 AL |
3282 | /* Map a physical memory region into a host virtual address. |
3283 | * May map a subset of the requested range, given by and returned in *plen. | |
3284 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3285 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
3286 | * Use cpu_register_map_client() to know when retrying the map operation is |
3287 | * likely to succeed. | |
6d16c2f8 AL |
3288 | */ |
3289 | void *cpu_physical_memory_map(target_phys_addr_t addr, | |
3290 | target_phys_addr_t *plen, | |
3291 | int is_write) | |
3292 | { | |
3293 | target_phys_addr_t len = *plen; | |
3294 | target_phys_addr_t done = 0; | |
3295 | int l; | |
3296 | uint8_t *ret = NULL; | |
3297 | uint8_t *ptr; | |
3298 | target_phys_addr_t page; | |
3299 | unsigned long pd; | |
3300 | PhysPageDesc *p; | |
3301 | unsigned long addr1; | |
3302 | ||
3303 | while (len > 0) { | |
3304 | page = addr & TARGET_PAGE_MASK; | |
3305 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3306 | if (l > len) | |
3307 | l = len; | |
3308 | p = phys_page_find(page >> TARGET_PAGE_BITS); | |
3309 | if (!p) { | |
3310 | pd = IO_MEM_UNASSIGNED; | |
3311 | } else { | |
3312 | pd = p->phys_offset; | |
3313 | } | |
3314 | ||
3315 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | |
3316 | if (done || bounce.buffer) { | |
3317 | break; | |
3318 | } | |
3319 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); | |
3320 | bounce.addr = addr; | |
3321 | bounce.len = l; | |
3322 | if (!is_write) { | |
3323 | cpu_physical_memory_rw(addr, bounce.buffer, l, 0); | |
3324 | } | |
3325 | ptr = bounce.buffer; | |
3326 | } else { | |
3327 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
5579c7f3 | 3328 | ptr = qemu_get_ram_ptr(addr1); |
6d16c2f8 AL |
3329 | } |
3330 | if (!done) { | |
3331 | ret = ptr; | |
3332 | } else if (ret + done != ptr) { | |
3333 | break; | |
3334 | } | |
3335 | ||
3336 | len -= l; | |
3337 | addr += l; | |
3338 | done += l; | |
3339 | } | |
3340 | *plen = done; | |
3341 | return ret; | |
3342 | } | |
3343 | ||
3344 | /* Unmaps a memory region previously mapped by cpu_physical_memory_map(). | |
3345 | * Will also mark the memory as dirty if is_write == 1. access_len gives | |
3346 | * the amount of memory that was actually read or written by the caller. | |
3347 | */ | |
3348 | void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len, | |
3349 | int is_write, target_phys_addr_t access_len) | |
3350 | { | |
3351 | if (buffer != bounce.buffer) { | |
3352 | if (is_write) { | |
5579c7f3 | 3353 | ram_addr_t addr1 = qemu_ram_addr_from_host(buffer); |
6d16c2f8 AL |
3354 | while (access_len) { |
3355 | unsigned l; | |
3356 | l = TARGET_PAGE_SIZE; | |
3357 | if (l > access_len) | |
3358 | l = access_len; | |
3359 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3360 | /* invalidate code */ | |
3361 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | |
3362 | /* set dirty bit */ | |
3363 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3364 | (0xff & ~CODE_DIRTY_FLAG); | |
3365 | } | |
3366 | addr1 += l; | |
3367 | access_len -= l; | |
3368 | } | |
3369 | } | |
3370 | return; | |
3371 | } | |
3372 | if (is_write) { | |
3373 | cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len); | |
3374 | } | |
3375 | qemu_free(bounce.buffer); | |
3376 | bounce.buffer = NULL; | |
ba223c29 | 3377 | cpu_notify_map_clients(); |
6d16c2f8 | 3378 | } |
d0ecd2aa | 3379 | |
8df1cd07 FB |
3380 | /* warning: addr must be aligned */ |
3381 | uint32_t ldl_phys(target_phys_addr_t addr) | |
3382 | { | |
3383 | int io_index; | |
3384 | uint8_t *ptr; | |
3385 | uint32_t val; | |
3386 | unsigned long pd; | |
3387 | PhysPageDesc *p; | |
3388 | ||
3389 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3390 | if (!p) { | |
3391 | pd = IO_MEM_UNASSIGNED; | |
3392 | } else { | |
3393 | pd = p->phys_offset; | |
3394 | } | |
3b46e624 | 3395 | |
5fafdf24 | 3396 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
2a4188a3 | 3397 | !(pd & IO_MEM_ROMD)) { |
8df1cd07 FB |
3398 | /* I/O case */ |
3399 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3400 | if (p) |
3401 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3402 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); |
3403 | } else { | |
3404 | /* RAM case */ | |
5579c7f3 | 3405 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + |
8df1cd07 FB |
3406 | (addr & ~TARGET_PAGE_MASK); |
3407 | val = ldl_p(ptr); | |
3408 | } | |
3409 | return val; | |
3410 | } | |
3411 | ||
84b7b8e7 FB |
3412 | /* warning: addr must be aligned */ |
3413 | uint64_t ldq_phys(target_phys_addr_t addr) | |
3414 | { | |
3415 | int io_index; | |
3416 | uint8_t *ptr; | |
3417 | uint64_t val; | |
3418 | unsigned long pd; | |
3419 | PhysPageDesc *p; | |
3420 | ||
3421 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3422 | if (!p) { | |
3423 | pd = IO_MEM_UNASSIGNED; | |
3424 | } else { | |
3425 | pd = p->phys_offset; | |
3426 | } | |
3b46e624 | 3427 | |
2a4188a3 FB |
3428 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
3429 | !(pd & IO_MEM_ROMD)) { | |
84b7b8e7 FB |
3430 | /* I/O case */ |
3431 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3432 | if (p) |
3433 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
84b7b8e7 FB |
3434 | #ifdef TARGET_WORDS_BIGENDIAN |
3435 | val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32; | |
3436 | val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4); | |
3437 | #else | |
3438 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | |
3439 | val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32; | |
3440 | #endif | |
3441 | } else { | |
3442 | /* RAM case */ | |
5579c7f3 | 3443 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + |
84b7b8e7 FB |
3444 | (addr & ~TARGET_PAGE_MASK); |
3445 | val = ldq_p(ptr); | |
3446 | } | |
3447 | return val; | |
3448 | } | |
3449 | ||
aab33094 FB |
3450 | /* XXX: optimize */ |
3451 | uint32_t ldub_phys(target_phys_addr_t addr) | |
3452 | { | |
3453 | uint8_t val; | |
3454 | cpu_physical_memory_read(addr, &val, 1); | |
3455 | return val; | |
3456 | } | |
3457 | ||
3458 | /* XXX: optimize */ | |
3459 | uint32_t lduw_phys(target_phys_addr_t addr) | |
3460 | { | |
3461 | uint16_t val; | |
3462 | cpu_physical_memory_read(addr, (uint8_t *)&val, 2); | |
3463 | return tswap16(val); | |
3464 | } | |
3465 | ||
8df1cd07 FB |
3466 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3467 | and the code inside is not invalidated. It is useful if the dirty | |
3468 | bits are used to track modified PTEs */ | |
3469 | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val) | |
3470 | { | |
3471 | int io_index; | |
3472 | uint8_t *ptr; | |
3473 | unsigned long pd; | |
3474 | PhysPageDesc *p; | |
3475 | ||
3476 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3477 | if (!p) { | |
3478 | pd = IO_MEM_UNASSIGNED; | |
3479 | } else { | |
3480 | pd = p->phys_offset; | |
3481 | } | |
3b46e624 | 3482 | |
3a7d929e | 3483 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 | 3484 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 PB |
3485 | if (p) |
3486 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3487 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
3488 | } else { | |
74576198 | 3489 | unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
5579c7f3 | 3490 | ptr = qemu_get_ram_ptr(addr1); |
8df1cd07 | 3491 | stl_p(ptr, val); |
74576198 AL |
3492 | |
3493 | if (unlikely(in_migration)) { | |
3494 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3495 | /* invalidate code */ | |
3496 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3497 | /* set dirty bit */ | |
3498 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= | |
3499 | (0xff & ~CODE_DIRTY_FLAG); | |
3500 | } | |
3501 | } | |
8df1cd07 FB |
3502 | } |
3503 | } | |
3504 | ||
bc98a7ef JM |
3505 | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val) |
3506 | { | |
3507 | int io_index; | |
3508 | uint8_t *ptr; | |
3509 | unsigned long pd; | |
3510 | PhysPageDesc *p; | |
3511 | ||
3512 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3513 | if (!p) { | |
3514 | pd = IO_MEM_UNASSIGNED; | |
3515 | } else { | |
3516 | pd = p->phys_offset; | |
3517 | } | |
3b46e624 | 3518 | |
bc98a7ef JM |
3519 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
3520 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | |
8da3ff18 PB |
3521 | if (p) |
3522 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
bc98a7ef JM |
3523 | #ifdef TARGET_WORDS_BIGENDIAN |
3524 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32); | |
3525 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val); | |
3526 | #else | |
3527 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | |
3528 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32); | |
3529 | #endif | |
3530 | } else { | |
5579c7f3 | 3531 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + |
bc98a7ef JM |
3532 | (addr & ~TARGET_PAGE_MASK); |
3533 | stq_p(ptr, val); | |
3534 | } | |
3535 | } | |
3536 | ||
8df1cd07 | 3537 | /* warning: addr must be aligned */ |
8df1cd07 FB |
3538 | void stl_phys(target_phys_addr_t addr, uint32_t val) |
3539 | { | |
3540 | int io_index; | |
3541 | uint8_t *ptr; | |
3542 | unsigned long pd; | |
3543 | PhysPageDesc *p; | |
3544 | ||
3545 | p = phys_page_find(addr >> TARGET_PAGE_BITS); | |
3546 | if (!p) { | |
3547 | pd = IO_MEM_UNASSIGNED; | |
3548 | } else { | |
3549 | pd = p->phys_offset; | |
3550 | } | |
3b46e624 | 3551 | |
3a7d929e | 3552 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
8df1cd07 | 3553 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
8da3ff18 PB |
3554 | if (p) |
3555 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | |
8df1cd07 FB |
3556 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); |
3557 | } else { | |
3558 | unsigned long addr1; | |
3559 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | |
3560 | /* RAM case */ | |
5579c7f3 | 3561 | ptr = qemu_get_ram_ptr(addr1); |
8df1cd07 | 3562 | stl_p(ptr, val); |
3a7d929e FB |
3563 | if (!cpu_physical_memory_is_dirty(addr1)) { |
3564 | /* invalidate code */ | |
3565 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3566 | /* set dirty bit */ | |
f23db169 FB |
3567 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= |
3568 | (0xff & ~CODE_DIRTY_FLAG); | |
3a7d929e | 3569 | } |
8df1cd07 FB |
3570 | } |
3571 | } | |
3572 | ||
aab33094 FB |
3573 | /* XXX: optimize */ |
3574 | void stb_phys(target_phys_addr_t addr, uint32_t val) | |
3575 | { | |
3576 | uint8_t v = val; | |
3577 | cpu_physical_memory_write(addr, &v, 1); | |
3578 | } | |
3579 | ||
3580 | /* XXX: optimize */ | |
3581 | void stw_phys(target_phys_addr_t addr, uint32_t val) | |
3582 | { | |
3583 | uint16_t v = tswap16(val); | |
3584 | cpu_physical_memory_write(addr, (const uint8_t *)&v, 2); | |
3585 | } | |
3586 | ||
3587 | /* XXX: optimize */ | |
3588 | void stq_phys(target_phys_addr_t addr, uint64_t val) | |
3589 | { | |
3590 | val = tswap64(val); | |
3591 | cpu_physical_memory_write(addr, (const uint8_t *)&val, 8); | |
3592 | } | |
3593 | ||
13eb76e0 FB |
3594 | #endif |
3595 | ||
5e2972fd | 3596 | /* virtual memory access for debug (includes writing to ROM) */ |
5fafdf24 | 3597 | int cpu_memory_rw_debug(CPUState *env, target_ulong addr, |
b448f2f3 | 3598 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3599 | { |
3600 | int l; | |
9b3c35e0 JM |
3601 | target_phys_addr_t phys_addr; |
3602 | target_ulong page; | |
13eb76e0 FB |
3603 | |
3604 | while (len > 0) { | |
3605 | page = addr & TARGET_PAGE_MASK; | |
3606 | phys_addr = cpu_get_phys_page_debug(env, page); | |
3607 | /* if no physical page mapped, return an error */ | |
3608 | if (phys_addr == -1) | |
3609 | return -1; | |
3610 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3611 | if (l > len) | |
3612 | l = len; | |
5e2972fd AL |
3613 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
3614 | #if !defined(CONFIG_USER_ONLY) | |
3615 | if (is_write) | |
3616 | cpu_physical_memory_write_rom(phys_addr, buf, l); | |
3617 | else | |
3618 | #endif | |
3619 | cpu_physical_memory_rw(phys_addr, buf, l, is_write); | |
13eb76e0 FB |
3620 | len -= l; |
3621 | buf += l; | |
3622 | addr += l; | |
3623 | } | |
3624 | return 0; | |
3625 | } | |
3626 | ||
2e70f6ef PB |
3627 | /* in deterministic execution mode, instructions doing device I/Os |
3628 | must be at the end of the TB */ | |
3629 | void cpu_io_recompile(CPUState *env, void *retaddr) | |
3630 | { | |
3631 | TranslationBlock *tb; | |
3632 | uint32_t n, cflags; | |
3633 | target_ulong pc, cs_base; | |
3634 | uint64_t flags; | |
3635 | ||
3636 | tb = tb_find_pc((unsigned long)retaddr); | |
3637 | if (!tb) { | |
3638 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | |
3639 | retaddr); | |
3640 | } | |
3641 | n = env->icount_decr.u16.low + tb->icount; | |
3642 | cpu_restore_state(tb, env, (unsigned long)retaddr, NULL); | |
3643 | /* Calculate how many instructions had been executed before the fault | |
bf20dc07 | 3644 | occurred. */ |
2e70f6ef PB |
3645 | n = n - env->icount_decr.u16.low; |
3646 | /* Generate a new TB ending on the I/O insn. */ | |
3647 | n++; | |
3648 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
3649 | they were already the first instruction in the TB. If this is not | |
bf20dc07 | 3650 | the first instruction in a TB then re-execute the preceding |
2e70f6ef PB |
3651 | branch. */ |
3652 | #if defined(TARGET_MIPS) | |
3653 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
3654 | env->active_tc.PC -= 4; | |
3655 | env->icount_decr.u16.low++; | |
3656 | env->hflags &= ~MIPS_HFLAG_BMASK; | |
3657 | } | |
3658 | #elif defined(TARGET_SH4) | |
3659 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
3660 | && n > 1) { | |
3661 | env->pc -= 2; | |
3662 | env->icount_decr.u16.low++; | |
3663 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | |
3664 | } | |
3665 | #endif | |
3666 | /* This should never happen. */ | |
3667 | if (n > CF_COUNT_MASK) | |
3668 | cpu_abort(env, "TB too big during recompile"); | |
3669 | ||
3670 | cflags = n | CF_LAST_IO; | |
3671 | pc = tb->pc; | |
3672 | cs_base = tb->cs_base; | |
3673 | flags = tb->flags; | |
3674 | tb_phys_invalidate(tb, -1); | |
3675 | /* FIXME: In theory this could raise an exception. In practice | |
3676 | we have already translated the block once so it's probably ok. */ | |
3677 | tb_gen_code(env, pc, cs_base, flags, cflags); | |
bf20dc07 | 3678 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not |
2e70f6ef PB |
3679 | the first in the TB) then we end up generating a whole new TB and |
3680 | repeating the fault, which is horribly inefficient. | |
3681 | Better would be to execute just this insn uncached, or generate a | |
3682 | second new TB. */ | |
3683 | cpu_resume_from_signal(env, NULL); | |
3684 | } | |
3685 | ||
e3db7226 FB |
3686 | void dump_exec_info(FILE *f, |
3687 | int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) | |
3688 | { | |
3689 | int i, target_code_size, max_target_code_size; | |
3690 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
3691 | TranslationBlock *tb; | |
3b46e624 | 3692 | |
e3db7226 FB |
3693 | target_code_size = 0; |
3694 | max_target_code_size = 0; | |
3695 | cross_page = 0; | |
3696 | direct_jmp_count = 0; | |
3697 | direct_jmp2_count = 0; | |
3698 | for(i = 0; i < nb_tbs; i++) { | |
3699 | tb = &tbs[i]; | |
3700 | target_code_size += tb->size; | |
3701 | if (tb->size > max_target_code_size) | |
3702 | max_target_code_size = tb->size; | |
3703 | if (tb->page_addr[1] != -1) | |
3704 | cross_page++; | |
3705 | if (tb->tb_next_offset[0] != 0xffff) { | |
3706 | direct_jmp_count++; | |
3707 | if (tb->tb_next_offset[1] != 0xffff) { | |
3708 | direct_jmp2_count++; | |
3709 | } | |
3710 | } | |
3711 | } | |
3712 | /* XXX: avoid using doubles ? */ | |
57fec1fe | 3713 | cpu_fprintf(f, "Translation buffer state:\n"); |
26a5f13b FB |
3714 | cpu_fprintf(f, "gen code size %ld/%ld\n", |
3715 | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size); | |
3716 | cpu_fprintf(f, "TB count %d/%d\n", | |
3717 | nb_tbs, code_gen_max_blocks); | |
5fafdf24 | 3718 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", |
e3db7226 FB |
3719 | nb_tbs ? target_code_size / nb_tbs : 0, |
3720 | max_target_code_size); | |
5fafdf24 | 3721 | cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n", |
e3db7226 FB |
3722 | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0, |
3723 | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0); | |
5fafdf24 TS |
3724 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", |
3725 | cross_page, | |
e3db7226 FB |
3726 | nb_tbs ? (cross_page * 100) / nb_tbs : 0); |
3727 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", | |
5fafdf24 | 3728 | direct_jmp_count, |
e3db7226 FB |
3729 | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0, |
3730 | direct_jmp2_count, | |
3731 | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0); | |
57fec1fe | 3732 | cpu_fprintf(f, "\nStatistics:\n"); |
e3db7226 FB |
3733 | cpu_fprintf(f, "TB flush count %d\n", tb_flush_count); |
3734 | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count); | |
3735 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); | |
b67d9a52 | 3736 | tcg_dump_info(f, cpu_fprintf); |
e3db7226 FB |
3737 | } |
3738 | ||
5fafdf24 | 3739 | #if !defined(CONFIG_USER_ONLY) |
61382a50 FB |
3740 | |
3741 | #define MMUSUFFIX _cmmu | |
3742 | #define GETPC() NULL | |
3743 | #define env cpu_single_env | |
b769d8fe | 3744 | #define SOFTMMU_CODE_ACCESS |
61382a50 FB |
3745 | |
3746 | #define SHIFT 0 | |
3747 | #include "softmmu_template.h" | |
3748 | ||
3749 | #define SHIFT 1 | |
3750 | #include "softmmu_template.h" | |
3751 | ||
3752 | #define SHIFT 2 | |
3753 | #include "softmmu_template.h" | |
3754 | ||
3755 | #define SHIFT 3 | |
3756 | #include "softmmu_template.h" | |
3757 | ||
3758 | #undef env | |
3759 | ||
3760 | #endif |