]>
Commit | Line | Data |
---|---|---|
45aba42f KW |
1 | /* |
2 | * Block driver for the QCOW version 2 format | |
3 | * | |
4 | * Copyright (c) 2004-2006 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
80c71a24 | 25 | #include "qemu/osdep.h" |
45aba42f KW |
26 | #include <zlib.h> |
27 | ||
da34e65c | 28 | #include "qapi/error.h" |
45aba42f | 29 | #include "qemu-common.h" |
737e150e | 30 | #include "block/block_int.h" |
45aba42f | 31 | #include "block/qcow2.h" |
58369e22 | 32 | #include "qemu/bswap.h" |
3cce16f4 | 33 | #include "trace.h" |
45aba42f | 34 | |
2cf7cfa1 KW |
35 | int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, |
36 | bool exact_size) | |
45aba42f | 37 | { |
ff99129a | 38 | BDRVQcow2State *s = bs->opaque; |
2cf7cfa1 | 39 | int new_l1_size2, ret, i; |
45aba42f | 40 | uint64_t *new_l1_table; |
fda74f82 | 41 | int64_t old_l1_table_offset, old_l1_size; |
2cf7cfa1 | 42 | int64_t new_l1_table_offset, new_l1_size; |
45aba42f KW |
43 | uint8_t data[12]; |
44 | ||
72893756 | 45 | if (min_size <= s->l1_size) |
45aba42f | 46 | return 0; |
72893756 | 47 | |
b93f9950 HR |
48 | /* Do a sanity check on min_size before trying to calculate new_l1_size |
49 | * (this prevents overflows during the while loop for the calculation of | |
50 | * new_l1_size) */ | |
51 | if (min_size > INT_MAX / sizeof(uint64_t)) { | |
52 | return -EFBIG; | |
53 | } | |
54 | ||
72893756 SH |
55 | if (exact_size) { |
56 | new_l1_size = min_size; | |
57 | } else { | |
58 | /* Bump size up to reduce the number of times we have to grow */ | |
59 | new_l1_size = s->l1_size; | |
60 | if (new_l1_size == 0) { | |
61 | new_l1_size = 1; | |
62 | } | |
63 | while (min_size > new_l1_size) { | |
64 | new_l1_size = (new_l1_size * 3 + 1) / 2; | |
65 | } | |
45aba42f | 66 | } |
72893756 | 67 | |
cab60de9 | 68 | if (new_l1_size > INT_MAX / sizeof(uint64_t)) { |
2cf7cfa1 KW |
69 | return -EFBIG; |
70 | } | |
71 | ||
45aba42f | 72 | #ifdef DEBUG_ALLOC2 |
2cf7cfa1 KW |
73 | fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", |
74 | s->l1_size, new_l1_size); | |
45aba42f KW |
75 | #endif |
76 | ||
77 | new_l1_size2 = sizeof(uint64_t) * new_l1_size; | |
9a4f4c31 | 78 | new_l1_table = qemu_try_blockalign(bs->file->bs, |
de82815d KW |
79 | align_offset(new_l1_size2, 512)); |
80 | if (new_l1_table == NULL) { | |
81 | return -ENOMEM; | |
82 | } | |
83 | memset(new_l1_table, 0, align_offset(new_l1_size2, 512)); | |
84 | ||
45aba42f KW |
85 | memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); |
86 | ||
87 | /* write new table (align to cluster) */ | |
66f82cee | 88 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); |
ed6ccf0f | 89 | new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); |
5d757b56 | 90 | if (new_l1_table_offset < 0) { |
de82815d | 91 | qemu_vfree(new_l1_table); |
5d757b56 KW |
92 | return new_l1_table_offset; |
93 | } | |
29c1a730 KW |
94 | |
95 | ret = qcow2_cache_flush(bs, s->refcount_block_cache); | |
96 | if (ret < 0) { | |
80fa3341 | 97 | goto fail; |
29c1a730 | 98 | } |
45aba42f | 99 | |
cf93980e HR |
100 | /* the L1 position has not yet been updated, so these clusters must |
101 | * indeed be completely free */ | |
231bb267 HR |
102 | ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, |
103 | new_l1_size2); | |
cf93980e HR |
104 | if (ret < 0) { |
105 | goto fail; | |
106 | } | |
107 | ||
66f82cee | 108 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); |
45aba42f KW |
109 | for(i = 0; i < s->l1_size; i++) |
110 | new_l1_table[i] = cpu_to_be64(new_l1_table[i]); | |
9a4f4c31 KW |
111 | ret = bdrv_pwrite_sync(bs->file->bs, new_l1_table_offset, |
112 | new_l1_table, new_l1_size2); | |
8b3b7206 | 113 | if (ret < 0) |
45aba42f KW |
114 | goto fail; |
115 | for(i = 0; i < s->l1_size; i++) | |
116 | new_l1_table[i] = be64_to_cpu(new_l1_table[i]); | |
117 | ||
118 | /* set new table */ | |
66f82cee | 119 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); |
45aba42f | 120 | cpu_to_be32w((uint32_t*)data, new_l1_size); |
e4ef9f46 | 121 | stq_be_p(data + 4, new_l1_table_offset); |
9a4f4c31 KW |
122 | ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader, l1_size), |
123 | data, sizeof(data)); | |
8b3b7206 | 124 | if (ret < 0) { |
45aba42f | 125 | goto fail; |
fb8fa77c | 126 | } |
de82815d | 127 | qemu_vfree(s->l1_table); |
fda74f82 | 128 | old_l1_table_offset = s->l1_table_offset; |
45aba42f KW |
129 | s->l1_table_offset = new_l1_table_offset; |
130 | s->l1_table = new_l1_table; | |
fda74f82 | 131 | old_l1_size = s->l1_size; |
45aba42f | 132 | s->l1_size = new_l1_size; |
fda74f82 HR |
133 | qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), |
134 | QCOW2_DISCARD_OTHER); | |
45aba42f KW |
135 | return 0; |
136 | fail: | |
de82815d | 137 | qemu_vfree(new_l1_table); |
6cfcb9b8 KW |
138 | qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, |
139 | QCOW2_DISCARD_OTHER); | |
8b3b7206 | 140 | return ret; |
45aba42f KW |
141 | } |
142 | ||
45aba42f KW |
143 | /* |
144 | * l2_load | |
145 | * | |
146 | * Loads a L2 table into memory. If the table is in the cache, the cache | |
147 | * is used; otherwise the L2 table is loaded from the image file. | |
148 | * | |
149 | * Returns a pointer to the L2 table on success, or NULL if the read from | |
150 | * the image file failed. | |
151 | */ | |
152 | ||
55c17e98 KW |
153 | static int l2_load(BlockDriverState *bs, uint64_t l2_offset, |
154 | uint64_t **l2_table) | |
45aba42f | 155 | { |
ff99129a | 156 | BDRVQcow2State *s = bs->opaque; |
55c17e98 | 157 | int ret; |
45aba42f | 158 | |
29c1a730 | 159 | ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); |
45aba42f | 160 | |
29c1a730 | 161 | return ret; |
45aba42f KW |
162 | } |
163 | ||
6583e3c7 KW |
164 | /* |
165 | * Writes one sector of the L1 table to the disk (can't update single entries | |
166 | * and we really don't want bdrv_pread to perform a read-modify-write) | |
167 | */ | |
168 | #define L1_ENTRIES_PER_SECTOR (512 / 8) | |
e23e400e | 169 | int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) |
6583e3c7 | 170 | { |
ff99129a | 171 | BDRVQcow2State *s = bs->opaque; |
a1391444 | 172 | uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 }; |
6583e3c7 | 173 | int l1_start_index; |
f7defcb6 | 174 | int i, ret; |
6583e3c7 KW |
175 | |
176 | l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); | |
a1391444 HR |
177 | for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size; |
178 | i++) | |
179 | { | |
6583e3c7 KW |
180 | buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); |
181 | } | |
182 | ||
231bb267 | 183 | ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, |
cf93980e HR |
184 | s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); |
185 | if (ret < 0) { | |
186 | return ret; | |
187 | } | |
188 | ||
66f82cee | 189 | BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); |
9a4f4c31 KW |
190 | ret = bdrv_pwrite_sync(bs->file->bs, |
191 | s->l1_table_offset + 8 * l1_start_index, | |
192 | buf, sizeof(buf)); | |
f7defcb6 KW |
193 | if (ret < 0) { |
194 | return ret; | |
6583e3c7 KW |
195 | } |
196 | ||
197 | return 0; | |
198 | } | |
199 | ||
45aba42f KW |
200 | /* |
201 | * l2_allocate | |
202 | * | |
203 | * Allocate a new l2 entry in the file. If l1_index points to an already | |
204 | * used entry in the L2 table (i.e. we are doing a copy on write for the L2 | |
205 | * table) copy the contents of the old L2 table into the newly allocated one. | |
206 | * Otherwise the new table is initialized with zeros. | |
207 | * | |
208 | */ | |
209 | ||
c46e1167 | 210 | static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) |
45aba42f | 211 | { |
ff99129a | 212 | BDRVQcow2State *s = bs->opaque; |
6583e3c7 | 213 | uint64_t old_l2_offset; |
8585afd8 | 214 | uint64_t *l2_table = NULL; |
f4f0d391 | 215 | int64_t l2_offset; |
c46e1167 | 216 | int ret; |
45aba42f KW |
217 | |
218 | old_l2_offset = s->l1_table[l1_index]; | |
219 | ||
3cce16f4 KW |
220 | trace_qcow2_l2_allocate(bs, l1_index); |
221 | ||
45aba42f KW |
222 | /* allocate a new l2 entry */ |
223 | ||
ed6ccf0f | 224 | l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); |
5d757b56 | 225 | if (l2_offset < 0) { |
be0b742e HR |
226 | ret = l2_offset; |
227 | goto fail; | |
5d757b56 | 228 | } |
29c1a730 KW |
229 | |
230 | ret = qcow2_cache_flush(bs, s->refcount_block_cache); | |
231 | if (ret < 0) { | |
232 | goto fail; | |
233 | } | |
45aba42f | 234 | |
45aba42f KW |
235 | /* allocate a new entry in the l2 cache */ |
236 | ||
3cce16f4 | 237 | trace_qcow2_l2_allocate_get_empty(bs, l1_index); |
29c1a730 KW |
238 | ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); |
239 | if (ret < 0) { | |
be0b742e | 240 | goto fail; |
29c1a730 KW |
241 | } |
242 | ||
243 | l2_table = *table; | |
45aba42f | 244 | |
8e37f681 | 245 | if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { |
45aba42f KW |
246 | /* if there was no old l2 table, clear the new table */ |
247 | memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); | |
248 | } else { | |
29c1a730 KW |
249 | uint64_t* old_table; |
250 | ||
45aba42f | 251 | /* if there was an old l2 table, read it from the disk */ |
66f82cee | 252 | BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); |
8e37f681 KW |
253 | ret = qcow2_cache_get(bs, s->l2_table_cache, |
254 | old_l2_offset & L1E_OFFSET_MASK, | |
29c1a730 KW |
255 | (void**) &old_table); |
256 | if (ret < 0) { | |
257 | goto fail; | |
258 | } | |
259 | ||
260 | memcpy(l2_table, old_table, s->cluster_size); | |
261 | ||
a3f1afb4 | 262 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table); |
45aba42f | 263 | } |
29c1a730 | 264 | |
45aba42f | 265 | /* write the l2 table to the file */ |
66f82cee | 266 | BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); |
29c1a730 | 267 | |
3cce16f4 | 268 | trace_qcow2_l2_allocate_write_l2(bs, l1_index); |
72e80b89 | 269 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
29c1a730 | 270 | ret = qcow2_cache_flush(bs, s->l2_table_cache); |
c46e1167 | 271 | if (ret < 0) { |
175e1152 KW |
272 | goto fail; |
273 | } | |
274 | ||
275 | /* update the L1 entry */ | |
3cce16f4 | 276 | trace_qcow2_l2_allocate_write_l1(bs, l1_index); |
175e1152 | 277 | s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; |
e23e400e | 278 | ret = qcow2_write_l1_entry(bs, l1_index); |
175e1152 KW |
279 | if (ret < 0) { |
280 | goto fail; | |
c46e1167 | 281 | } |
45aba42f | 282 | |
c46e1167 | 283 | *table = l2_table; |
3cce16f4 | 284 | trace_qcow2_l2_allocate_done(bs, l1_index, 0); |
c46e1167 | 285 | return 0; |
175e1152 KW |
286 | |
287 | fail: | |
3cce16f4 | 288 | trace_qcow2_l2_allocate_done(bs, l1_index, ret); |
8585afd8 HR |
289 | if (l2_table != NULL) { |
290 | qcow2_cache_put(bs, s->l2_table_cache, (void**) table); | |
291 | } | |
68dba0bf | 292 | s->l1_table[l1_index] = old_l2_offset; |
e3b21ef9 HR |
293 | if (l2_offset > 0) { |
294 | qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), | |
295 | QCOW2_DISCARD_ALWAYS); | |
296 | } | |
175e1152 | 297 | return ret; |
45aba42f KW |
298 | } |
299 | ||
2bfcc4a0 KW |
300 | /* |
301 | * Checks how many clusters in a given L2 table are contiguous in the image | |
302 | * file. As soon as one of the flags in the bitmask stop_flags changes compared | |
303 | * to the first cluster, the search is stopped and the cluster is not counted | |
304 | * as contiguous. (This allows it, for example, to stop at the first compressed | |
305 | * cluster which may require a different handling) | |
306 | */ | |
b6d36def | 307 | static int count_contiguous_clusters(int nb_clusters, int cluster_size, |
61653008 | 308 | uint64_t *l2_table, uint64_t stop_flags) |
45aba42f KW |
309 | { |
310 | int i; | |
78a52ad5 | 311 | uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; |
15684a47 HR |
312 | uint64_t first_entry = be64_to_cpu(l2_table[0]); |
313 | uint64_t offset = first_entry & mask; | |
45aba42f KW |
314 | |
315 | if (!offset) | |
316 | return 0; | |
317 | ||
a99dfb45 | 318 | assert(qcow2_get_cluster_type(first_entry) == QCOW2_CLUSTER_NORMAL); |
15684a47 | 319 | |
61653008 | 320 | for (i = 0; i < nb_clusters; i++) { |
2bfcc4a0 KW |
321 | uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; |
322 | if (offset + (uint64_t) i * cluster_size != l2_entry) { | |
45aba42f | 323 | break; |
2bfcc4a0 KW |
324 | } |
325 | } | |
45aba42f | 326 | |
61653008 | 327 | return i; |
45aba42f KW |
328 | } |
329 | ||
a99dfb45 KW |
330 | static int count_contiguous_clusters_by_type(int nb_clusters, |
331 | uint64_t *l2_table, | |
332 | int wanted_type) | |
45aba42f | 333 | { |
2bfcc4a0 KW |
334 | int i; |
335 | ||
336 | for (i = 0; i < nb_clusters; i++) { | |
337 | int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); | |
45aba42f | 338 | |
a99dfb45 | 339 | if (type != wanted_type) { |
2bfcc4a0 KW |
340 | break; |
341 | } | |
342 | } | |
45aba42f KW |
343 | |
344 | return i; | |
345 | } | |
346 | ||
347 | /* The crypt function is compatible with the linux cryptoloop | |
348 | algorithm for < 4 GB images. NOTE: out_buf == in_buf is | |
349 | supported */ | |
ff99129a | 350 | int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num, |
f6fa64f6 DB |
351 | uint8_t *out_buf, const uint8_t *in_buf, |
352 | int nb_sectors, bool enc, | |
353 | Error **errp) | |
45aba42f KW |
354 | { |
355 | union { | |
356 | uint64_t ll[2]; | |
357 | uint8_t b[16]; | |
358 | } ivec; | |
359 | int i; | |
f6fa64f6 | 360 | int ret; |
45aba42f KW |
361 | |
362 | for(i = 0; i < nb_sectors; i++) { | |
363 | ivec.ll[0] = cpu_to_le64(sector_num); | |
364 | ivec.ll[1] = 0; | |
f6fa64f6 DB |
365 | if (qcrypto_cipher_setiv(s->cipher, |
366 | ivec.b, G_N_ELEMENTS(ivec.b), | |
367 | errp) < 0) { | |
368 | return -1; | |
369 | } | |
370 | if (enc) { | |
371 | ret = qcrypto_cipher_encrypt(s->cipher, | |
372 | in_buf, | |
373 | out_buf, | |
374 | 512, | |
375 | errp); | |
376 | } else { | |
377 | ret = qcrypto_cipher_decrypt(s->cipher, | |
378 | in_buf, | |
379 | out_buf, | |
380 | 512, | |
381 | errp); | |
382 | } | |
383 | if (ret < 0) { | |
384 | return -1; | |
385 | } | |
45aba42f KW |
386 | sector_num++; |
387 | in_buf += 512; | |
388 | out_buf += 512; | |
389 | } | |
f6fa64f6 | 390 | return 0; |
45aba42f KW |
391 | } |
392 | ||
aef4acb6 SH |
393 | static int coroutine_fn copy_sectors(BlockDriverState *bs, |
394 | uint64_t start_sect, | |
395 | uint64_t cluster_offset, | |
396 | int n_start, int n_end) | |
45aba42f | 397 | { |
ff99129a | 398 | BDRVQcow2State *s = bs->opaque; |
aef4acb6 SH |
399 | QEMUIOVector qiov; |
400 | struct iovec iov; | |
45aba42f | 401 | int n, ret; |
1b9f1491 | 402 | |
45aba42f | 403 | n = n_end - n_start; |
1b9f1491 | 404 | if (n <= 0) { |
45aba42f | 405 | return 0; |
1b9f1491 KW |
406 | } |
407 | ||
aef4acb6 | 408 | iov.iov_len = n * BDRV_SECTOR_SIZE; |
de82815d KW |
409 | iov.iov_base = qemu_try_blockalign(bs, iov.iov_len); |
410 | if (iov.iov_base == NULL) { | |
411 | return -ENOMEM; | |
412 | } | |
aef4acb6 SH |
413 | |
414 | qemu_iovec_init_external(&qiov, &iov, 1); | |
1b9f1491 | 415 | |
66f82cee | 416 | BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); |
aef4acb6 | 417 | |
dba28555 | 418 | if (!bs->drv) { |
bd604369 KW |
419 | ret = -ENOMEDIUM; |
420 | goto out; | |
dba28555 HR |
421 | } |
422 | ||
aef4acb6 SH |
423 | /* Call .bdrv_co_readv() directly instead of using the public block-layer |
424 | * interface. This avoids double I/O throttling and request tracking, | |
425 | * which can lead to deadlock when block layer copy-on-read is enabled. | |
426 | */ | |
427 | ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov); | |
1b9f1491 KW |
428 | if (ret < 0) { |
429 | goto out; | |
430 | } | |
431 | ||
8336aafa | 432 | if (bs->encrypted) { |
f6fa64f6 DB |
433 | Error *err = NULL; |
434 | assert(s->cipher); | |
435 | if (qcow2_encrypt_sectors(s, start_sect + n_start, | |
436 | iov.iov_base, iov.iov_base, n, | |
437 | true, &err) < 0) { | |
438 | ret = -EIO; | |
439 | error_free(err); | |
440 | goto out; | |
441 | } | |
45aba42f | 442 | } |
1b9f1491 | 443 | |
231bb267 | 444 | ret = qcow2_pre_write_overlap_check(bs, 0, |
cf93980e HR |
445 | cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE); |
446 | if (ret < 0) { | |
447 | goto out; | |
448 | } | |
449 | ||
66f82cee | 450 | BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); |
9a4f4c31 KW |
451 | ret = bdrv_co_writev(bs->file->bs, (cluster_offset >> 9) + n_start, n, |
452 | &qiov); | |
1b9f1491 KW |
453 | if (ret < 0) { |
454 | goto out; | |
455 | } | |
456 | ||
457 | ret = 0; | |
458 | out: | |
aef4acb6 | 459 | qemu_vfree(iov.iov_base); |
1b9f1491 | 460 | return ret; |
45aba42f KW |
461 | } |
462 | ||
463 | ||
464 | /* | |
465 | * get_cluster_offset | |
466 | * | |
1c46efaa KW |
467 | * For a given offset of the disk image, find the cluster offset in |
468 | * qcow2 file. The offset is stored in *cluster_offset. | |
45aba42f | 469 | * |
d57237f2 | 470 | * on entry, *num is the number of contiguous sectors we'd like to |
45aba42f KW |
471 | * access following offset. |
472 | * | |
d57237f2 | 473 | * on exit, *num is the number of contiguous sectors we can read. |
45aba42f | 474 | * |
68d000a3 KW |
475 | * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error |
476 | * cases. | |
45aba42f | 477 | */ |
1c46efaa KW |
478 | int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, |
479 | int *num, uint64_t *cluster_offset) | |
45aba42f | 480 | { |
ff99129a | 481 | BDRVQcow2State *s = bs->opaque; |
2cf7cfa1 KW |
482 | unsigned int l2_index; |
483 | uint64_t l1_index, l2_offset, *l2_table; | |
45aba42f | 484 | int l1_bits, c; |
80ee15a6 KW |
485 | unsigned int index_in_cluster, nb_clusters; |
486 | uint64_t nb_available, nb_needed; | |
55c17e98 | 487 | int ret; |
45aba42f KW |
488 | |
489 | index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); | |
490 | nb_needed = *num + index_in_cluster; | |
491 | ||
492 | l1_bits = s->l2_bits + s->cluster_bits; | |
493 | ||
494 | /* compute how many bytes there are between the offset and | |
495 | * the end of the l1 entry | |
496 | */ | |
497 | ||
80ee15a6 | 498 | nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); |
45aba42f KW |
499 | |
500 | /* compute the number of available sectors */ | |
501 | ||
502 | nb_available = (nb_available >> 9) + index_in_cluster; | |
503 | ||
504 | if (nb_needed > nb_available) { | |
505 | nb_needed = nb_available; | |
506 | } | |
b6d36def | 507 | assert(nb_needed <= INT_MAX); |
45aba42f | 508 | |
1c46efaa | 509 | *cluster_offset = 0; |
45aba42f | 510 | |
b6af0975 | 511 | /* seek to the l2 offset in the l1 table */ |
45aba42f KW |
512 | |
513 | l1_index = offset >> l1_bits; | |
68d000a3 KW |
514 | if (l1_index >= s->l1_size) { |
515 | ret = QCOW2_CLUSTER_UNALLOCATED; | |
45aba42f | 516 | goto out; |
68d000a3 | 517 | } |
45aba42f | 518 | |
68d000a3 KW |
519 | l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; |
520 | if (!l2_offset) { | |
521 | ret = QCOW2_CLUSTER_UNALLOCATED; | |
45aba42f | 522 | goto out; |
68d000a3 | 523 | } |
45aba42f | 524 | |
a97c67ee HR |
525 | if (offset_into_cluster(s, l2_offset)) { |
526 | qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 | |
527 | " unaligned (L1 index: %#" PRIx64 ")", | |
528 | l2_offset, l1_index); | |
529 | return -EIO; | |
530 | } | |
531 | ||
45aba42f KW |
532 | /* load the l2 table in memory */ |
533 | ||
55c17e98 KW |
534 | ret = l2_load(bs, l2_offset, &l2_table); |
535 | if (ret < 0) { | |
536 | return ret; | |
1c46efaa | 537 | } |
45aba42f KW |
538 | |
539 | /* find the cluster offset for the given disk offset */ | |
540 | ||
541 | l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); | |
1c46efaa | 542 | *cluster_offset = be64_to_cpu(l2_table[l2_index]); |
b6d36def HR |
543 | |
544 | /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */ | |
45aba42f KW |
545 | nb_clusters = size_to_clusters(s, nb_needed << 9); |
546 | ||
68d000a3 KW |
547 | ret = qcow2_get_cluster_type(*cluster_offset); |
548 | switch (ret) { | |
549 | case QCOW2_CLUSTER_COMPRESSED: | |
550 | /* Compressed clusters can only be processed one by one */ | |
551 | c = 1; | |
552 | *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; | |
553 | break; | |
6377af48 | 554 | case QCOW2_CLUSTER_ZERO: |
381b487d | 555 | if (s->qcow_version < 3) { |
a97c67ee HR |
556 | qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found" |
557 | " in pre-v3 image (L2 offset: %#" PRIx64 | |
558 | ", L2 index: %#x)", l2_offset, l2_index); | |
559 | ret = -EIO; | |
560 | goto fail; | |
381b487d | 561 | } |
a99dfb45 KW |
562 | c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index], |
563 | QCOW2_CLUSTER_ZERO); | |
6377af48 KW |
564 | *cluster_offset = 0; |
565 | break; | |
68d000a3 | 566 | case QCOW2_CLUSTER_UNALLOCATED: |
45aba42f | 567 | /* how many empty clusters ? */ |
a99dfb45 KW |
568 | c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index], |
569 | QCOW2_CLUSTER_UNALLOCATED); | |
68d000a3 KW |
570 | *cluster_offset = 0; |
571 | break; | |
572 | case QCOW2_CLUSTER_NORMAL: | |
45aba42f KW |
573 | /* how many allocated clusters ? */ |
574 | c = count_contiguous_clusters(nb_clusters, s->cluster_size, | |
61653008 | 575 | &l2_table[l2_index], QCOW_OFLAG_ZERO); |
68d000a3 | 576 | *cluster_offset &= L2E_OFFSET_MASK; |
a97c67ee HR |
577 | if (offset_into_cluster(s, *cluster_offset)) { |
578 | qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#" | |
579 | PRIx64 " unaligned (L2 offset: %#" PRIx64 | |
580 | ", L2 index: %#x)", *cluster_offset, | |
581 | l2_offset, l2_index); | |
582 | ret = -EIO; | |
583 | goto fail; | |
584 | } | |
68d000a3 | 585 | break; |
1417d7e4 KW |
586 | default: |
587 | abort(); | |
45aba42f KW |
588 | } |
589 | ||
29c1a730 KW |
590 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
591 | ||
68d000a3 KW |
592 | nb_available = (c * s->cluster_sectors); |
593 | ||
45aba42f KW |
594 | out: |
595 | if (nb_available > nb_needed) | |
596 | nb_available = nb_needed; | |
597 | ||
598 | *num = nb_available - index_in_cluster; | |
599 | ||
68d000a3 | 600 | return ret; |
a97c67ee HR |
601 | |
602 | fail: | |
603 | qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); | |
604 | return ret; | |
45aba42f KW |
605 | } |
606 | ||
607 | /* | |
608 | * get_cluster_table | |
609 | * | |
610 | * for a given disk offset, load (and allocate if needed) | |
611 | * the l2 table. | |
612 | * | |
613 | * the l2 table offset in the qcow2 file and the cluster index | |
614 | * in the l2 table are given to the caller. | |
615 | * | |
1e3e8f1a | 616 | * Returns 0 on success, -errno in failure case |
45aba42f | 617 | */ |
45aba42f KW |
618 | static int get_cluster_table(BlockDriverState *bs, uint64_t offset, |
619 | uint64_t **new_l2_table, | |
45aba42f KW |
620 | int *new_l2_index) |
621 | { | |
ff99129a | 622 | BDRVQcow2State *s = bs->opaque; |
2cf7cfa1 KW |
623 | unsigned int l2_index; |
624 | uint64_t l1_index, l2_offset; | |
c46e1167 | 625 | uint64_t *l2_table = NULL; |
80ee15a6 | 626 | int ret; |
45aba42f | 627 | |
b6af0975 | 628 | /* seek to the l2 offset in the l1 table */ |
45aba42f KW |
629 | |
630 | l1_index = offset >> (s->l2_bits + s->cluster_bits); | |
631 | if (l1_index >= s->l1_size) { | |
72893756 | 632 | ret = qcow2_grow_l1_table(bs, l1_index + 1, false); |
1e3e8f1a KW |
633 | if (ret < 0) { |
634 | return ret; | |
635 | } | |
45aba42f | 636 | } |
8e37f681 | 637 | |
2cf7cfa1 | 638 | assert(l1_index < s->l1_size); |
8e37f681 | 639 | l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; |
a97c67ee HR |
640 | if (offset_into_cluster(s, l2_offset)) { |
641 | qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64 | |
642 | " unaligned (L1 index: %#" PRIx64 ")", | |
643 | l2_offset, l1_index); | |
644 | return -EIO; | |
645 | } | |
45aba42f KW |
646 | |
647 | /* seek the l2 table of the given l2 offset */ | |
648 | ||
8e37f681 | 649 | if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { |
45aba42f | 650 | /* load the l2 table in memory */ |
55c17e98 KW |
651 | ret = l2_load(bs, l2_offset, &l2_table); |
652 | if (ret < 0) { | |
653 | return ret; | |
1e3e8f1a | 654 | } |
45aba42f | 655 | } else { |
16fde5f2 | 656 | /* First allocate a new L2 table (and do COW if needed) */ |
c46e1167 KW |
657 | ret = l2_allocate(bs, l1_index, &l2_table); |
658 | if (ret < 0) { | |
659 | return ret; | |
1e3e8f1a | 660 | } |
16fde5f2 KW |
661 | |
662 | /* Then decrease the refcount of the old table */ | |
663 | if (l2_offset) { | |
6cfcb9b8 KW |
664 | qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), |
665 | QCOW2_DISCARD_OTHER); | |
16fde5f2 | 666 | } |
45aba42f KW |
667 | } |
668 | ||
669 | /* find the cluster offset for the given disk offset */ | |
670 | ||
671 | l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); | |
672 | ||
673 | *new_l2_table = l2_table; | |
45aba42f KW |
674 | *new_l2_index = l2_index; |
675 | ||
1e3e8f1a | 676 | return 0; |
45aba42f KW |
677 | } |
678 | ||
679 | /* | |
680 | * alloc_compressed_cluster_offset | |
681 | * | |
682 | * For a given offset of the disk image, return cluster offset in | |
683 | * qcow2 file. | |
684 | * | |
685 | * If the offset is not found, allocate a new compressed cluster. | |
686 | * | |
687 | * Return the cluster offset if successful, | |
688 | * Return 0, otherwise. | |
689 | * | |
690 | */ | |
691 | ||
ed6ccf0f KW |
692 | uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, |
693 | uint64_t offset, | |
694 | int compressed_size) | |
45aba42f | 695 | { |
ff99129a | 696 | BDRVQcow2State *s = bs->opaque; |
45aba42f | 697 | int l2_index, ret; |
3948d1d4 | 698 | uint64_t *l2_table; |
f4f0d391 | 699 | int64_t cluster_offset; |
45aba42f KW |
700 | int nb_csectors; |
701 | ||
3948d1d4 | 702 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); |
1e3e8f1a | 703 | if (ret < 0) { |
45aba42f | 704 | return 0; |
1e3e8f1a | 705 | } |
45aba42f | 706 | |
b0b6862e KW |
707 | /* Compression can't overwrite anything. Fail if the cluster was already |
708 | * allocated. */ | |
45aba42f | 709 | cluster_offset = be64_to_cpu(l2_table[l2_index]); |
b0b6862e | 710 | if (cluster_offset & L2E_OFFSET_MASK) { |
8f1efd00 KW |
711 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
712 | return 0; | |
713 | } | |
45aba42f | 714 | |
ed6ccf0f | 715 | cluster_offset = qcow2_alloc_bytes(bs, compressed_size); |
5d757b56 | 716 | if (cluster_offset < 0) { |
29c1a730 | 717 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
5d757b56 KW |
718 | return 0; |
719 | } | |
720 | ||
45aba42f KW |
721 | nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - |
722 | (cluster_offset >> 9); | |
723 | ||
724 | cluster_offset |= QCOW_OFLAG_COMPRESSED | | |
725 | ((uint64_t)nb_csectors << s->csize_shift); | |
726 | ||
727 | /* update L2 table */ | |
728 | ||
729 | /* compressed clusters never have the copied flag */ | |
730 | ||
66f82cee | 731 | BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); |
72e80b89 | 732 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
45aba42f | 733 | l2_table[l2_index] = cpu_to_be64(cluster_offset); |
a3f1afb4 | 734 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
4c1612d9 | 735 | |
29c1a730 | 736 | return cluster_offset; |
4c1612d9 KW |
737 | } |
738 | ||
593fb83c KW |
739 | static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) |
740 | { | |
ff99129a | 741 | BDRVQcow2State *s = bs->opaque; |
593fb83c KW |
742 | int ret; |
743 | ||
744 | if (r->nb_sectors == 0) { | |
745 | return 0; | |
746 | } | |
747 | ||
748 | qemu_co_mutex_unlock(&s->lock); | |
749 | ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset, | |
750 | r->offset / BDRV_SECTOR_SIZE, | |
751 | r->offset / BDRV_SECTOR_SIZE + r->nb_sectors); | |
752 | qemu_co_mutex_lock(&s->lock); | |
753 | ||
754 | if (ret < 0) { | |
755 | return ret; | |
756 | } | |
757 | ||
758 | /* | |
759 | * Before we update the L2 table to actually point to the new cluster, we | |
760 | * need to be sure that the refcounts have been increased and COW was | |
761 | * handled. | |
762 | */ | |
763 | qcow2_cache_depends_on_flush(s->l2_table_cache); | |
764 | ||
765 | return 0; | |
766 | } | |
767 | ||
148da7ea | 768 | int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) |
45aba42f | 769 | { |
ff99129a | 770 | BDRVQcow2State *s = bs->opaque; |
45aba42f | 771 | int i, j = 0, l2_index, ret; |
593fb83c | 772 | uint64_t *old_cluster, *l2_table; |
250196f1 | 773 | uint64_t cluster_offset = m->alloc_offset; |
45aba42f | 774 | |
3cce16f4 | 775 | trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); |
f50f88b9 | 776 | assert(m->nb_clusters > 0); |
45aba42f | 777 | |
5839e53b | 778 | old_cluster = g_try_new(uint64_t, m->nb_clusters); |
de82815d KW |
779 | if (old_cluster == NULL) { |
780 | ret = -ENOMEM; | |
781 | goto err; | |
782 | } | |
45aba42f KW |
783 | |
784 | /* copy content of unmodified sectors */ | |
593fb83c KW |
785 | ret = perform_cow(bs, m, &m->cow_start); |
786 | if (ret < 0) { | |
787 | goto err; | |
45aba42f KW |
788 | } |
789 | ||
593fb83c KW |
790 | ret = perform_cow(bs, m, &m->cow_end); |
791 | if (ret < 0) { | |
792 | goto err; | |
29c1a730 KW |
793 | } |
794 | ||
593fb83c | 795 | /* Update L2 table. */ |
74c4510a | 796 | if (s->use_lazy_refcounts) { |
280d3735 KW |
797 | qcow2_mark_dirty(bs); |
798 | } | |
bfe8043e SH |
799 | if (qcow2_need_accurate_refcounts(s)) { |
800 | qcow2_cache_set_dependency(bs, s->l2_table_cache, | |
801 | s->refcount_block_cache); | |
802 | } | |
280d3735 | 803 | |
3948d1d4 | 804 | ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); |
1e3e8f1a | 805 | if (ret < 0) { |
45aba42f | 806 | goto err; |
1e3e8f1a | 807 | } |
72e80b89 | 808 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
45aba42f | 809 | |
c01dbccb | 810 | assert(l2_index + m->nb_clusters <= s->l2_size); |
45aba42f KW |
811 | for (i = 0; i < m->nb_clusters; i++) { |
812 | /* if two concurrent writes happen to the same unallocated cluster | |
813 | * each write allocates separate cluster and writes data concurrently. | |
814 | * The first one to complete updates l2 table with pointer to its | |
815 | * cluster the second one has to do RMW (which is done above by | |
816 | * copy_sectors()), update l2 table with its cluster pointer and free | |
817 | * old cluster. This is what this loop does */ | |
818 | if(l2_table[l2_index + i] != 0) | |
819 | old_cluster[j++] = l2_table[l2_index + i]; | |
820 | ||
821 | l2_table[l2_index + i] = cpu_to_be64((cluster_offset + | |
822 | (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); | |
823 | } | |
824 | ||
9f8e668e | 825 | |
a3f1afb4 | 826 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
45aba42f | 827 | |
7ec5e6a4 KW |
828 | /* |
829 | * If this was a COW, we need to decrease the refcount of the old cluster. | |
6cfcb9b8 KW |
830 | * |
831 | * Don't discard clusters that reach a refcount of 0 (e.g. compressed | |
832 | * clusters), the next write will reuse them anyway. | |
7ec5e6a4 KW |
833 | */ |
834 | if (j != 0) { | |
7ec5e6a4 | 835 | for (i = 0; i < j; i++) { |
6cfcb9b8 KW |
836 | qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, |
837 | QCOW2_DISCARD_NEVER); | |
7ec5e6a4 KW |
838 | } |
839 | } | |
45aba42f KW |
840 | |
841 | ret = 0; | |
842 | err: | |
7267c094 | 843 | g_free(old_cluster); |
45aba42f KW |
844 | return ret; |
845 | } | |
846 | ||
bf319ece KW |
847 | /* |
848 | * Returns the number of contiguous clusters that can be used for an allocating | |
849 | * write, but require COW to be performed (this includes yet unallocated space, | |
850 | * which must copy from the backing file) | |
851 | */ | |
ff99129a | 852 | static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters, |
bf319ece KW |
853 | uint64_t *l2_table, int l2_index) |
854 | { | |
143550a8 | 855 | int i; |
bf319ece | 856 | |
143550a8 KW |
857 | for (i = 0; i < nb_clusters; i++) { |
858 | uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); | |
859 | int cluster_type = qcow2_get_cluster_type(l2_entry); | |
860 | ||
861 | switch(cluster_type) { | |
862 | case QCOW2_CLUSTER_NORMAL: | |
863 | if (l2_entry & QCOW_OFLAG_COPIED) { | |
864 | goto out; | |
865 | } | |
bf319ece | 866 | break; |
143550a8 KW |
867 | case QCOW2_CLUSTER_UNALLOCATED: |
868 | case QCOW2_CLUSTER_COMPRESSED: | |
6377af48 | 869 | case QCOW2_CLUSTER_ZERO: |
bf319ece | 870 | break; |
143550a8 KW |
871 | default: |
872 | abort(); | |
873 | } | |
bf319ece KW |
874 | } |
875 | ||
143550a8 | 876 | out: |
bf319ece KW |
877 | assert(i <= nb_clusters); |
878 | return i; | |
879 | } | |
880 | ||
250196f1 | 881 | /* |
226c3c26 KW |
882 | * Check if there already is an AIO write request in flight which allocates |
883 | * the same cluster. In this case we need to wait until the previous | |
884 | * request has completed and updated the L2 table accordingly. | |
65eb2e35 KW |
885 | * |
886 | * Returns: | |
887 | * 0 if there was no dependency. *cur_bytes indicates the number of | |
888 | * bytes from guest_offset that can be read before the next | |
889 | * dependency must be processed (or the request is complete) | |
890 | * | |
891 | * -EAGAIN if we had to wait for another request, previously gathered | |
892 | * information on cluster allocation may be invalid now. The caller | |
893 | * must start over anyway, so consider *cur_bytes undefined. | |
250196f1 | 894 | */ |
226c3c26 | 895 | static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, |
ecdd5333 | 896 | uint64_t *cur_bytes, QCowL2Meta **m) |
250196f1 | 897 | { |
ff99129a | 898 | BDRVQcow2State *s = bs->opaque; |
250196f1 | 899 | QCowL2Meta *old_alloc; |
65eb2e35 | 900 | uint64_t bytes = *cur_bytes; |
250196f1 | 901 | |
250196f1 KW |
902 | QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { |
903 | ||
65eb2e35 KW |
904 | uint64_t start = guest_offset; |
905 | uint64_t end = start + bytes; | |
906 | uint64_t old_start = l2meta_cow_start(old_alloc); | |
907 | uint64_t old_end = l2meta_cow_end(old_alloc); | |
250196f1 | 908 | |
d9d74f41 | 909 | if (end <= old_start || start >= old_end) { |
250196f1 KW |
910 | /* No intersection */ |
911 | } else { | |
912 | if (start < old_start) { | |
913 | /* Stop at the start of a running allocation */ | |
65eb2e35 | 914 | bytes = old_start - start; |
250196f1 | 915 | } else { |
65eb2e35 | 916 | bytes = 0; |
250196f1 KW |
917 | } |
918 | ||
ecdd5333 KW |
919 | /* Stop if already an l2meta exists. After yielding, it wouldn't |
920 | * be valid any more, so we'd have to clean up the old L2Metas | |
921 | * and deal with requests depending on them before starting to | |
922 | * gather new ones. Not worth the trouble. */ | |
923 | if (bytes == 0 && *m) { | |
924 | *cur_bytes = 0; | |
925 | return 0; | |
926 | } | |
927 | ||
65eb2e35 | 928 | if (bytes == 0) { |
250196f1 KW |
929 | /* Wait for the dependency to complete. We need to recheck |
930 | * the free/allocated clusters when we continue. */ | |
931 | qemu_co_mutex_unlock(&s->lock); | |
932 | qemu_co_queue_wait(&old_alloc->dependent_requests); | |
933 | qemu_co_mutex_lock(&s->lock); | |
934 | return -EAGAIN; | |
935 | } | |
936 | } | |
937 | } | |
938 | ||
65eb2e35 KW |
939 | /* Make sure that existing clusters and new allocations are only used up to |
940 | * the next dependency if we shortened the request above */ | |
941 | *cur_bytes = bytes; | |
250196f1 | 942 | |
226c3c26 KW |
943 | return 0; |
944 | } | |
945 | ||
0af729ec KW |
946 | /* |
947 | * Checks how many already allocated clusters that don't require a copy on | |
948 | * write there are at the given guest_offset (up to *bytes). If | |
949 | * *host_offset is not zero, only physically contiguous clusters beginning at | |
950 | * this host offset are counted. | |
951 | * | |
411d62b0 KW |
952 | * Note that guest_offset may not be cluster aligned. In this case, the |
953 | * returned *host_offset points to exact byte referenced by guest_offset and | |
954 | * therefore isn't cluster aligned as well. | |
0af729ec KW |
955 | * |
956 | * Returns: | |
957 | * 0: if no allocated clusters are available at the given offset. | |
958 | * *bytes is normally unchanged. It is set to 0 if the cluster | |
959 | * is allocated and doesn't need COW, but doesn't have the right | |
960 | * physical offset. | |
961 | * | |
962 | * 1: if allocated clusters that don't require a COW are available at | |
963 | * the requested offset. *bytes may have decreased and describes | |
964 | * the length of the area that can be written to. | |
965 | * | |
966 | * -errno: in error cases | |
0af729ec KW |
967 | */ |
968 | static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, | |
c53ede9f | 969 | uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) |
0af729ec | 970 | { |
ff99129a | 971 | BDRVQcow2State *s = bs->opaque; |
0af729ec KW |
972 | int l2_index; |
973 | uint64_t cluster_offset; | |
974 | uint64_t *l2_table; | |
b6d36def | 975 | uint64_t nb_clusters; |
c53ede9f | 976 | unsigned int keep_clusters; |
a3f1afb4 | 977 | int ret; |
0af729ec KW |
978 | |
979 | trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, | |
980 | *bytes); | |
0af729ec | 981 | |
411d62b0 KW |
982 | assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) |
983 | == offset_into_cluster(s, *host_offset)); | |
984 | ||
acb0467f KW |
985 | /* |
986 | * Calculate the number of clusters to look for. We stop at L2 table | |
987 | * boundaries to keep things simple. | |
988 | */ | |
989 | nb_clusters = | |
990 | size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); | |
991 | ||
992 | l2_index = offset_to_l2_index(s, guest_offset); | |
993 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
b6d36def | 994 | assert(nb_clusters <= INT_MAX); |
acb0467f | 995 | |
0af729ec KW |
996 | /* Find L2 entry for the first involved cluster */ |
997 | ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); | |
998 | if (ret < 0) { | |
999 | return ret; | |
1000 | } | |
1001 | ||
1002 | cluster_offset = be64_to_cpu(l2_table[l2_index]); | |
1003 | ||
1004 | /* Check how many clusters are already allocated and don't need COW */ | |
1005 | if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL | |
1006 | && (cluster_offset & QCOW_OFLAG_COPIED)) | |
1007 | { | |
e62daaf6 KW |
1008 | /* If a specific host_offset is required, check it */ |
1009 | bool offset_matches = | |
1010 | (cluster_offset & L2E_OFFSET_MASK) == *host_offset; | |
1011 | ||
a97c67ee HR |
1012 | if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) { |
1013 | qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " | |
1014 | "%#llx unaligned (guest offset: %#" PRIx64 | |
1015 | ")", cluster_offset & L2E_OFFSET_MASK, | |
1016 | guest_offset); | |
1017 | ret = -EIO; | |
1018 | goto out; | |
1019 | } | |
1020 | ||
e62daaf6 KW |
1021 | if (*host_offset != 0 && !offset_matches) { |
1022 | *bytes = 0; | |
1023 | ret = 0; | |
1024 | goto out; | |
1025 | } | |
1026 | ||
0af729ec | 1027 | /* We keep all QCOW_OFLAG_COPIED clusters */ |
c53ede9f | 1028 | keep_clusters = |
acb0467f | 1029 | count_contiguous_clusters(nb_clusters, s->cluster_size, |
61653008 | 1030 | &l2_table[l2_index], |
0af729ec | 1031 | QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); |
c53ede9f KW |
1032 | assert(keep_clusters <= nb_clusters); |
1033 | ||
1034 | *bytes = MIN(*bytes, | |
1035 | keep_clusters * s->cluster_size | |
1036 | - offset_into_cluster(s, guest_offset)); | |
0af729ec KW |
1037 | |
1038 | ret = 1; | |
1039 | } else { | |
0af729ec KW |
1040 | ret = 0; |
1041 | } | |
1042 | ||
0af729ec | 1043 | /* Cleanup */ |
e62daaf6 | 1044 | out: |
a3f1afb4 | 1045 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
0af729ec | 1046 | |
e62daaf6 KW |
1047 | /* Only return a host offset if we actually made progress. Otherwise we |
1048 | * would make requirements for handle_alloc() that it can't fulfill */ | |
a97c67ee | 1049 | if (ret > 0) { |
411d62b0 KW |
1050 | *host_offset = (cluster_offset & L2E_OFFSET_MASK) |
1051 | + offset_into_cluster(s, guest_offset); | |
e62daaf6 KW |
1052 | } |
1053 | ||
0af729ec KW |
1054 | return ret; |
1055 | } | |
1056 | ||
226c3c26 KW |
1057 | /* |
1058 | * Allocates new clusters for the given guest_offset. | |
1059 | * | |
1060 | * At most *nb_clusters are allocated, and on return *nb_clusters is updated to | |
1061 | * contain the number of clusters that have been allocated and are contiguous | |
1062 | * in the image file. | |
1063 | * | |
1064 | * If *host_offset is non-zero, it specifies the offset in the image file at | |
1065 | * which the new clusters must start. *nb_clusters can be 0 on return in this | |
1066 | * case if the cluster at host_offset is already in use. If *host_offset is | |
1067 | * zero, the clusters can be allocated anywhere in the image file. | |
1068 | * | |
1069 | * *host_offset is updated to contain the offset into the image file at which | |
1070 | * the first allocated cluster starts. | |
1071 | * | |
1072 | * Return 0 on success and -errno in error cases. -EAGAIN means that the | |
1073 | * function has been waiting for another request and the allocation must be | |
1074 | * restarted, but the whole request should not be failed. | |
1075 | */ | |
1076 | static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, | |
b6d36def | 1077 | uint64_t *host_offset, uint64_t *nb_clusters) |
226c3c26 | 1078 | { |
ff99129a | 1079 | BDRVQcow2State *s = bs->opaque; |
226c3c26 KW |
1080 | |
1081 | trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, | |
1082 | *host_offset, *nb_clusters); | |
1083 | ||
250196f1 KW |
1084 | /* Allocate new clusters */ |
1085 | trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); | |
1086 | if (*host_offset == 0) { | |
df021791 KW |
1087 | int64_t cluster_offset = |
1088 | qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); | |
1089 | if (cluster_offset < 0) { | |
1090 | return cluster_offset; | |
1091 | } | |
1092 | *host_offset = cluster_offset; | |
1093 | return 0; | |
250196f1 | 1094 | } else { |
b6d36def | 1095 | int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); |
df021791 KW |
1096 | if (ret < 0) { |
1097 | return ret; | |
1098 | } | |
1099 | *nb_clusters = ret; | |
1100 | return 0; | |
250196f1 | 1101 | } |
250196f1 KW |
1102 | } |
1103 | ||
10f0ed8b KW |
1104 | /* |
1105 | * Allocates new clusters for an area that either is yet unallocated or needs a | |
1106 | * copy on write. If *host_offset is non-zero, clusters are only allocated if | |
1107 | * the new allocation can match the specified host offset. | |
1108 | * | |
411d62b0 KW |
1109 | * Note that guest_offset may not be cluster aligned. In this case, the |
1110 | * returned *host_offset points to exact byte referenced by guest_offset and | |
1111 | * therefore isn't cluster aligned as well. | |
10f0ed8b KW |
1112 | * |
1113 | * Returns: | |
1114 | * 0: if no clusters could be allocated. *bytes is set to 0, | |
1115 | * *host_offset is left unchanged. | |
1116 | * | |
1117 | * 1: if new clusters were allocated. *bytes may be decreased if the | |
1118 | * new allocation doesn't cover all of the requested area. | |
1119 | * *host_offset is updated to contain the host offset of the first | |
1120 | * newly allocated cluster. | |
1121 | * | |
1122 | * -errno: in error cases | |
10f0ed8b KW |
1123 | */ |
1124 | static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, | |
c37f4cd7 | 1125 | uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) |
10f0ed8b | 1126 | { |
ff99129a | 1127 | BDRVQcow2State *s = bs->opaque; |
10f0ed8b KW |
1128 | int l2_index; |
1129 | uint64_t *l2_table; | |
1130 | uint64_t entry; | |
b6d36def | 1131 | uint64_t nb_clusters; |
10f0ed8b KW |
1132 | int ret; |
1133 | ||
10f0ed8b | 1134 | uint64_t alloc_cluster_offset; |
10f0ed8b KW |
1135 | |
1136 | trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, | |
1137 | *bytes); | |
1138 | assert(*bytes > 0); | |
1139 | ||
f5bc6350 KW |
1140 | /* |
1141 | * Calculate the number of clusters to look for. We stop at L2 table | |
1142 | * boundaries to keep things simple. | |
1143 | */ | |
c37f4cd7 KW |
1144 | nb_clusters = |
1145 | size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); | |
1146 | ||
f5bc6350 | 1147 | l2_index = offset_to_l2_index(s, guest_offset); |
c37f4cd7 | 1148 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); |
b6d36def | 1149 | assert(nb_clusters <= INT_MAX); |
f5bc6350 | 1150 | |
10f0ed8b KW |
1151 | /* Find L2 entry for the first involved cluster */ |
1152 | ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); | |
1153 | if (ret < 0) { | |
1154 | return ret; | |
1155 | } | |
1156 | ||
3b8e2e26 | 1157 | entry = be64_to_cpu(l2_table[l2_index]); |
10f0ed8b KW |
1158 | |
1159 | /* For the moment, overwrite compressed clusters one by one */ | |
1160 | if (entry & QCOW_OFLAG_COMPRESSED) { | |
1161 | nb_clusters = 1; | |
1162 | } else { | |
3b8e2e26 | 1163 | nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); |
10f0ed8b KW |
1164 | } |
1165 | ||
ecdd5333 KW |
1166 | /* This function is only called when there were no non-COW clusters, so if |
1167 | * we can't find any unallocated or COW clusters either, something is | |
1168 | * wrong with our code. */ | |
1169 | assert(nb_clusters > 0); | |
1170 | ||
a3f1afb4 | 1171 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
10f0ed8b | 1172 | |
10f0ed8b | 1173 | /* Allocate, if necessary at a given offset in the image file */ |
411d62b0 | 1174 | alloc_cluster_offset = start_of_cluster(s, *host_offset); |
83baa9a4 | 1175 | ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, |
10f0ed8b KW |
1176 | &nb_clusters); |
1177 | if (ret < 0) { | |
1178 | goto fail; | |
1179 | } | |
1180 | ||
83baa9a4 KW |
1181 | /* Can't extend contiguous allocation */ |
1182 | if (nb_clusters == 0) { | |
10f0ed8b KW |
1183 | *bytes = 0; |
1184 | return 0; | |
1185 | } | |
1186 | ||
ff52aab2 HR |
1187 | /* !*host_offset would overwrite the image header and is reserved for "no |
1188 | * host offset preferred". If 0 was a valid host offset, it'd trigger the | |
1189 | * following overlap check; do that now to avoid having an invalid value in | |
1190 | * *host_offset. */ | |
1191 | if (!alloc_cluster_offset) { | |
1192 | ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset, | |
1193 | nb_clusters * s->cluster_size); | |
1194 | assert(ret < 0); | |
1195 | goto fail; | |
1196 | } | |
1197 | ||
83baa9a4 KW |
1198 | /* |
1199 | * Save info needed for meta data update. | |
1200 | * | |
1201 | * requested_sectors: Number of sectors from the start of the first | |
1202 | * newly allocated cluster to the end of the (possibly shortened | |
1203 | * before) write request. | |
1204 | * | |
1205 | * avail_sectors: Number of sectors from the start of the first | |
1206 | * newly allocated to the end of the last newly allocated cluster. | |
1207 | * | |
1208 | * nb_sectors: The number of sectors from the start of the first | |
1209 | * newly allocated cluster to the end of the area that the write | |
1210 | * request actually writes to (excluding COW at the end) | |
1211 | */ | |
1212 | int requested_sectors = | |
1213 | (*bytes + offset_into_cluster(s, guest_offset)) | |
1214 | >> BDRV_SECTOR_BITS; | |
1215 | int avail_sectors = nb_clusters | |
1216 | << (s->cluster_bits - BDRV_SECTOR_BITS); | |
1217 | int alloc_n_start = offset_into_cluster(s, guest_offset) | |
1218 | >> BDRV_SECTOR_BITS; | |
1219 | int nb_sectors = MIN(requested_sectors, avail_sectors); | |
88c6588c | 1220 | QCowL2Meta *old_m = *m; |
83baa9a4 | 1221 | |
83baa9a4 KW |
1222 | *m = g_malloc0(sizeof(**m)); |
1223 | ||
1224 | **m = (QCowL2Meta) { | |
88c6588c KW |
1225 | .next = old_m, |
1226 | ||
411d62b0 | 1227 | .alloc_offset = alloc_cluster_offset, |
83baa9a4 KW |
1228 | .offset = start_of_cluster(s, guest_offset), |
1229 | .nb_clusters = nb_clusters, | |
1230 | .nb_available = nb_sectors, | |
1231 | ||
1232 | .cow_start = { | |
1233 | .offset = 0, | |
1234 | .nb_sectors = alloc_n_start, | |
1235 | }, | |
1236 | .cow_end = { | |
1237 | .offset = nb_sectors * BDRV_SECTOR_SIZE, | |
1238 | .nb_sectors = avail_sectors - nb_sectors, | |
1239 | }, | |
1240 | }; | |
1241 | qemu_co_queue_init(&(*m)->dependent_requests); | |
1242 | QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); | |
1243 | ||
411d62b0 | 1244 | *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); |
83baa9a4 KW |
1245 | *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE) |
1246 | - offset_into_cluster(s, guest_offset)); | |
1247 | assert(*bytes != 0); | |
1248 | ||
10f0ed8b KW |
1249 | return 1; |
1250 | ||
1251 | fail: | |
1252 | if (*m && (*m)->nb_clusters > 0) { | |
1253 | QLIST_REMOVE(*m, next_in_flight); | |
1254 | } | |
1255 | return ret; | |
1256 | } | |
1257 | ||
45aba42f KW |
1258 | /* |
1259 | * alloc_cluster_offset | |
1260 | * | |
250196f1 KW |
1261 | * For a given offset on the virtual disk, find the cluster offset in qcow2 |
1262 | * file. If the offset is not found, allocate a new cluster. | |
45aba42f | 1263 | * |
250196f1 | 1264 | * If the cluster was already allocated, m->nb_clusters is set to 0 and |
a7912369 | 1265 | * other fields in m are meaningless. |
148da7ea KW |
1266 | * |
1267 | * If the cluster is newly allocated, m->nb_clusters is set to the number of | |
68d100e9 KW |
1268 | * contiguous clusters that have been allocated. In this case, the other |
1269 | * fields of m are valid and contain information about the first allocated | |
1270 | * cluster. | |
45aba42f | 1271 | * |
68d100e9 KW |
1272 | * If the request conflicts with another write request in flight, the coroutine |
1273 | * is queued and will be reentered when the dependency has completed. | |
148da7ea KW |
1274 | * |
1275 | * Return 0 on success and -errno in error cases | |
45aba42f | 1276 | */ |
f4f0d391 | 1277 | int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, |
16f0587e | 1278 | int *num, uint64_t *host_offset, QCowL2Meta **m) |
45aba42f | 1279 | { |
ff99129a | 1280 | BDRVQcow2State *s = bs->opaque; |
710c2496 | 1281 | uint64_t start, remaining; |
250196f1 | 1282 | uint64_t cluster_offset; |
65eb2e35 | 1283 | uint64_t cur_bytes; |
710c2496 | 1284 | int ret; |
45aba42f | 1285 | |
16f0587e | 1286 | trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num); |
3cce16f4 | 1287 | |
16f0587e | 1288 | assert((offset & ~BDRV_SECTOR_MASK) == 0); |
710c2496 | 1289 | |
72424114 | 1290 | again: |
16f0587e | 1291 | start = offset; |
11c89769 | 1292 | remaining = (uint64_t)*num << BDRV_SECTOR_BITS; |
0af729ec KW |
1293 | cluster_offset = 0; |
1294 | *host_offset = 0; | |
ecdd5333 KW |
1295 | cur_bytes = 0; |
1296 | *m = NULL; | |
0af729ec | 1297 | |
2c3b32d2 | 1298 | while (true) { |
ecdd5333 KW |
1299 | |
1300 | if (!*host_offset) { | |
1301 | *host_offset = start_of_cluster(s, cluster_offset); | |
1302 | } | |
1303 | ||
1304 | assert(remaining >= cur_bytes); | |
1305 | ||
1306 | start += cur_bytes; | |
1307 | remaining -= cur_bytes; | |
1308 | cluster_offset += cur_bytes; | |
1309 | ||
1310 | if (remaining == 0) { | |
1311 | break; | |
1312 | } | |
1313 | ||
1314 | cur_bytes = remaining; | |
1315 | ||
2c3b32d2 KW |
1316 | /* |
1317 | * Now start gathering as many contiguous clusters as possible: | |
1318 | * | |
1319 | * 1. Check for overlaps with in-flight allocations | |
1320 | * | |
1321 | * a) Overlap not in the first cluster -> shorten this request and | |
1322 | * let the caller handle the rest in its next loop iteration. | |
1323 | * | |
1324 | * b) Real overlaps of two requests. Yield and restart the search | |
1325 | * for contiguous clusters (the situation could have changed | |
1326 | * while we were sleeping) | |
1327 | * | |
1328 | * c) TODO: Request starts in the same cluster as the in-flight | |
1329 | * allocation ends. Shorten the COW of the in-fight allocation, | |
1330 | * set cluster_offset to write to the same cluster and set up | |
1331 | * the right synchronisation between the in-flight request and | |
1332 | * the new one. | |
1333 | */ | |
ecdd5333 | 1334 | ret = handle_dependencies(bs, start, &cur_bytes, m); |
2c3b32d2 | 1335 | if (ret == -EAGAIN) { |
ecdd5333 KW |
1336 | /* Currently handle_dependencies() doesn't yield if we already had |
1337 | * an allocation. If it did, we would have to clean up the L2Meta | |
1338 | * structs before starting over. */ | |
1339 | assert(*m == NULL); | |
2c3b32d2 KW |
1340 | goto again; |
1341 | } else if (ret < 0) { | |
1342 | return ret; | |
ecdd5333 KW |
1343 | } else if (cur_bytes == 0) { |
1344 | break; | |
2c3b32d2 KW |
1345 | } else { |
1346 | /* handle_dependencies() may have decreased cur_bytes (shortened | |
1347 | * the allocations below) so that the next dependency is processed | |
1348 | * correctly during the next loop iteration. */ | |
0af729ec | 1349 | } |
710c2496 | 1350 | |
2c3b32d2 KW |
1351 | /* |
1352 | * 2. Count contiguous COPIED clusters. | |
1353 | */ | |
1354 | ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); | |
1355 | if (ret < 0) { | |
1356 | return ret; | |
1357 | } else if (ret) { | |
ecdd5333 | 1358 | continue; |
2c3b32d2 KW |
1359 | } else if (cur_bytes == 0) { |
1360 | break; | |
1361 | } | |
060bee89 | 1362 | |
2c3b32d2 KW |
1363 | /* |
1364 | * 3. If the request still hasn't completed, allocate new clusters, | |
1365 | * considering any cluster_offset of steps 1c or 2. | |
1366 | */ | |
1367 | ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); | |
1368 | if (ret < 0) { | |
1369 | return ret; | |
1370 | } else if (ret) { | |
ecdd5333 | 1371 | continue; |
2c3b32d2 KW |
1372 | } else { |
1373 | assert(cur_bytes == 0); | |
1374 | break; | |
1375 | } | |
f5bc6350 | 1376 | } |
10f0ed8b | 1377 | |
16f0587e | 1378 | *num -= remaining >> BDRV_SECTOR_BITS; |
710c2496 KW |
1379 | assert(*num > 0); |
1380 | assert(*host_offset != 0); | |
45aba42f | 1381 | |
148da7ea | 1382 | return 0; |
45aba42f KW |
1383 | } |
1384 | ||
1385 | static int decompress_buffer(uint8_t *out_buf, int out_buf_size, | |
1386 | const uint8_t *buf, int buf_size) | |
1387 | { | |
1388 | z_stream strm1, *strm = &strm1; | |
1389 | int ret, out_len; | |
1390 | ||
1391 | memset(strm, 0, sizeof(*strm)); | |
1392 | ||
1393 | strm->next_in = (uint8_t *)buf; | |
1394 | strm->avail_in = buf_size; | |
1395 | strm->next_out = out_buf; | |
1396 | strm->avail_out = out_buf_size; | |
1397 | ||
1398 | ret = inflateInit2(strm, -12); | |
1399 | if (ret != Z_OK) | |
1400 | return -1; | |
1401 | ret = inflate(strm, Z_FINISH); | |
1402 | out_len = strm->next_out - out_buf; | |
1403 | if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || | |
1404 | out_len != out_buf_size) { | |
1405 | inflateEnd(strm); | |
1406 | return -1; | |
1407 | } | |
1408 | inflateEnd(strm); | |
1409 | return 0; | |
1410 | } | |
1411 | ||
66f82cee | 1412 | int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) |
45aba42f | 1413 | { |
ff99129a | 1414 | BDRVQcow2State *s = bs->opaque; |
45aba42f KW |
1415 | int ret, csize, nb_csectors, sector_offset; |
1416 | uint64_t coffset; | |
1417 | ||
1418 | coffset = cluster_offset & s->cluster_offset_mask; | |
1419 | if (s->cluster_cache_offset != coffset) { | |
1420 | nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; | |
1421 | sector_offset = coffset & 511; | |
1422 | csize = nb_csectors * 512 - sector_offset; | |
66f82cee | 1423 | BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); |
9a4f4c31 KW |
1424 | ret = bdrv_read(bs->file->bs, coffset >> 9, s->cluster_data, |
1425 | nb_csectors); | |
45aba42f | 1426 | if (ret < 0) { |
8af36488 | 1427 | return ret; |
45aba42f KW |
1428 | } |
1429 | if (decompress_buffer(s->cluster_cache, s->cluster_size, | |
1430 | s->cluster_data + sector_offset, csize) < 0) { | |
8af36488 | 1431 | return -EIO; |
45aba42f KW |
1432 | } |
1433 | s->cluster_cache_offset = coffset; | |
1434 | } | |
1435 | return 0; | |
1436 | } | |
5ea929e3 KW |
1437 | |
1438 | /* | |
1439 | * This discards as many clusters of nb_clusters as possible at once (i.e. | |
1440 | * all clusters in the same L2 table) and returns the number of discarded | |
1441 | * clusters. | |
1442 | */ | |
1443 | static int discard_single_l2(BlockDriverState *bs, uint64_t offset, | |
b6d36def HR |
1444 | uint64_t nb_clusters, enum qcow2_discard_type type, |
1445 | bool full_discard) | |
5ea929e3 | 1446 | { |
ff99129a | 1447 | BDRVQcow2State *s = bs->opaque; |
3948d1d4 | 1448 | uint64_t *l2_table; |
5ea929e3 KW |
1449 | int l2_index; |
1450 | int ret; | |
1451 | int i; | |
1452 | ||
3948d1d4 | 1453 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); |
5ea929e3 KW |
1454 | if (ret < 0) { |
1455 | return ret; | |
1456 | } | |
1457 | ||
1458 | /* Limit nb_clusters to one L2 table */ | |
1459 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
b6d36def | 1460 | assert(nb_clusters <= INT_MAX); |
5ea929e3 KW |
1461 | |
1462 | for (i = 0; i < nb_clusters; i++) { | |
c883db0d | 1463 | uint64_t old_l2_entry; |
5ea929e3 | 1464 | |
c883db0d | 1465 | old_l2_entry = be64_to_cpu(l2_table[l2_index + i]); |
a71835a0 KW |
1466 | |
1467 | /* | |
808c4b6f HR |
1468 | * If full_discard is false, make sure that a discarded area reads back |
1469 | * as zeroes for v3 images (we cannot do it for v2 without actually | |
1470 | * writing a zero-filled buffer). We can skip the operation if the | |
1471 | * cluster is already marked as zero, or if it's unallocated and we | |
1472 | * don't have a backing file. | |
a71835a0 KW |
1473 | * |
1474 | * TODO We might want to use bdrv_get_block_status(bs) here, but we're | |
1475 | * holding s->lock, so that doesn't work today. | |
808c4b6f HR |
1476 | * |
1477 | * If full_discard is true, the sector should not read back as zeroes, | |
1478 | * but rather fall through to the backing file. | |
a71835a0 | 1479 | */ |
c883db0d HR |
1480 | switch (qcow2_get_cluster_type(old_l2_entry)) { |
1481 | case QCOW2_CLUSTER_UNALLOCATED: | |
760e0063 | 1482 | if (full_discard || !bs->backing) { |
c883db0d HR |
1483 | continue; |
1484 | } | |
1485 | break; | |
1486 | ||
1487 | case QCOW2_CLUSTER_ZERO: | |
808c4b6f HR |
1488 | if (!full_discard) { |
1489 | continue; | |
1490 | } | |
1491 | break; | |
c883db0d HR |
1492 | |
1493 | case QCOW2_CLUSTER_NORMAL: | |
1494 | case QCOW2_CLUSTER_COMPRESSED: | |
1495 | break; | |
1496 | ||
1497 | default: | |
1498 | abort(); | |
5ea929e3 KW |
1499 | } |
1500 | ||
1501 | /* First remove L2 entries */ | |
72e80b89 | 1502 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
808c4b6f | 1503 | if (!full_discard && s->qcow_version >= 3) { |
a71835a0 KW |
1504 | l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); |
1505 | } else { | |
1506 | l2_table[l2_index + i] = cpu_to_be64(0); | |
1507 | } | |
5ea929e3 KW |
1508 | |
1509 | /* Then decrease the refcount */ | |
c883db0d | 1510 | qcow2_free_any_clusters(bs, old_l2_entry, 1, type); |
5ea929e3 KW |
1511 | } |
1512 | ||
a3f1afb4 | 1513 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
5ea929e3 KW |
1514 | |
1515 | return nb_clusters; | |
1516 | } | |
1517 | ||
1518 | int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, | |
808c4b6f | 1519 | int nb_sectors, enum qcow2_discard_type type, bool full_discard) |
5ea929e3 | 1520 | { |
ff99129a | 1521 | BDRVQcow2State *s = bs->opaque; |
5ea929e3 | 1522 | uint64_t end_offset; |
b6d36def | 1523 | uint64_t nb_clusters; |
5ea929e3 KW |
1524 | int ret; |
1525 | ||
1526 | end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); | |
1527 | ||
1528 | /* Round start up and end down */ | |
1529 | offset = align_offset(offset, s->cluster_size); | |
ac95acdb | 1530 | end_offset = start_of_cluster(s, end_offset); |
5ea929e3 KW |
1531 | |
1532 | if (offset > end_offset) { | |
1533 | return 0; | |
1534 | } | |
1535 | ||
1536 | nb_clusters = size_to_clusters(s, end_offset - offset); | |
1537 | ||
0b919fae KW |
1538 | s->cache_discards = true; |
1539 | ||
5ea929e3 KW |
1540 | /* Each L2 table is handled by its own loop iteration */ |
1541 | while (nb_clusters > 0) { | |
808c4b6f | 1542 | ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard); |
5ea929e3 | 1543 | if (ret < 0) { |
0b919fae | 1544 | goto fail; |
5ea929e3 KW |
1545 | } |
1546 | ||
1547 | nb_clusters -= ret; | |
1548 | offset += (ret * s->cluster_size); | |
1549 | } | |
1550 | ||
0b919fae KW |
1551 | ret = 0; |
1552 | fail: | |
1553 | s->cache_discards = false; | |
1554 | qcow2_process_discards(bs, ret); | |
1555 | ||
1556 | return ret; | |
5ea929e3 | 1557 | } |
621f0589 KW |
1558 | |
1559 | /* | |
1560 | * This zeroes as many clusters of nb_clusters as possible at once (i.e. | |
1561 | * all clusters in the same L2 table) and returns the number of zeroed | |
1562 | * clusters. | |
1563 | */ | |
1564 | static int zero_single_l2(BlockDriverState *bs, uint64_t offset, | |
b6d36def | 1565 | uint64_t nb_clusters) |
621f0589 | 1566 | { |
ff99129a | 1567 | BDRVQcow2State *s = bs->opaque; |
621f0589 KW |
1568 | uint64_t *l2_table; |
1569 | int l2_index; | |
1570 | int ret; | |
1571 | int i; | |
1572 | ||
1573 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); | |
1574 | if (ret < 0) { | |
1575 | return ret; | |
1576 | } | |
1577 | ||
1578 | /* Limit nb_clusters to one L2 table */ | |
1579 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
b6d36def | 1580 | assert(nb_clusters <= INT_MAX); |
621f0589 KW |
1581 | |
1582 | for (i = 0; i < nb_clusters; i++) { | |
1583 | uint64_t old_offset; | |
1584 | ||
1585 | old_offset = be64_to_cpu(l2_table[l2_index + i]); | |
1586 | ||
1587 | /* Update L2 entries */ | |
72e80b89 | 1588 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
621f0589 KW |
1589 | if (old_offset & QCOW_OFLAG_COMPRESSED) { |
1590 | l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); | |
6cfcb9b8 | 1591 | qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); |
621f0589 KW |
1592 | } else { |
1593 | l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); | |
1594 | } | |
1595 | } | |
1596 | ||
a3f1afb4 | 1597 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
621f0589 KW |
1598 | |
1599 | return nb_clusters; | |
1600 | } | |
1601 | ||
1602 | int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) | |
1603 | { | |
ff99129a | 1604 | BDRVQcow2State *s = bs->opaque; |
b6d36def | 1605 | uint64_t nb_clusters; |
621f0589 KW |
1606 | int ret; |
1607 | ||
1608 | /* The zero flag is only supported by version 3 and newer */ | |
1609 | if (s->qcow_version < 3) { | |
1610 | return -ENOTSUP; | |
1611 | } | |
1612 | ||
1613 | /* Each L2 table is handled by its own loop iteration */ | |
1614 | nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); | |
1615 | ||
0b919fae KW |
1616 | s->cache_discards = true; |
1617 | ||
621f0589 KW |
1618 | while (nb_clusters > 0) { |
1619 | ret = zero_single_l2(bs, offset, nb_clusters); | |
1620 | if (ret < 0) { | |
0b919fae | 1621 | goto fail; |
621f0589 KW |
1622 | } |
1623 | ||
1624 | nb_clusters -= ret; | |
1625 | offset += (ret * s->cluster_size); | |
1626 | } | |
1627 | ||
0b919fae KW |
1628 | ret = 0; |
1629 | fail: | |
1630 | s->cache_discards = false; | |
1631 | qcow2_process_discards(bs, ret); | |
1632 | ||
1633 | return ret; | |
621f0589 | 1634 | } |
32b6444d HR |
1635 | |
1636 | /* | |
1637 | * Expands all zero clusters in a specific L1 table (or deallocates them, for | |
1638 | * non-backed non-pre-allocated zero clusters). | |
1639 | * | |
4057a2b2 HR |
1640 | * l1_entries and *visited_l1_entries are used to keep track of progress for |
1641 | * status_cb(). l1_entries contains the total number of L1 entries and | |
1642 | * *visited_l1_entries counts all visited L1 entries. | |
32b6444d HR |
1643 | */ |
1644 | static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, | |
ecf58777 | 1645 | int l1_size, int64_t *visited_l1_entries, |
4057a2b2 | 1646 | int64_t l1_entries, |
8b13976d HR |
1647 | BlockDriverAmendStatusCB *status_cb, |
1648 | void *cb_opaque) | |
32b6444d | 1649 | { |
ff99129a | 1650 | BDRVQcow2State *s = bs->opaque; |
32b6444d HR |
1651 | bool is_active_l1 = (l1_table == s->l1_table); |
1652 | uint64_t *l2_table = NULL; | |
1653 | int ret; | |
1654 | int i, j; | |
1655 | ||
1656 | if (!is_active_l1) { | |
1657 | /* inactive L2 tables require a buffer to be stored in when loading | |
1658 | * them from disk */ | |
9a4f4c31 | 1659 | l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size); |
de82815d KW |
1660 | if (l2_table == NULL) { |
1661 | return -ENOMEM; | |
1662 | } | |
32b6444d HR |
1663 | } |
1664 | ||
1665 | for (i = 0; i < l1_size; i++) { | |
1666 | uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; | |
1667 | bool l2_dirty = false; | |
0e06528e | 1668 | uint64_t l2_refcount; |
32b6444d HR |
1669 | |
1670 | if (!l2_offset) { | |
1671 | /* unallocated */ | |
4057a2b2 HR |
1672 | (*visited_l1_entries)++; |
1673 | if (status_cb) { | |
8b13976d | 1674 | status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); |
4057a2b2 | 1675 | } |
32b6444d HR |
1676 | continue; |
1677 | } | |
1678 | ||
8dd93d93 HR |
1679 | if (offset_into_cluster(s, l2_offset)) { |
1680 | qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" | |
1681 | PRIx64 " unaligned (L1 index: %#x)", | |
1682 | l2_offset, i); | |
1683 | ret = -EIO; | |
1684 | goto fail; | |
1685 | } | |
1686 | ||
32b6444d HR |
1687 | if (is_active_l1) { |
1688 | /* get active L2 tables from cache */ | |
1689 | ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, | |
1690 | (void **)&l2_table); | |
1691 | } else { | |
1692 | /* load inactive L2 tables from disk */ | |
9a4f4c31 KW |
1693 | ret = bdrv_read(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE, |
1694 | (void *)l2_table, s->cluster_sectors); | |
32b6444d HR |
1695 | } |
1696 | if (ret < 0) { | |
1697 | goto fail; | |
1698 | } | |
1699 | ||
7324c10f HR |
1700 | ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits, |
1701 | &l2_refcount); | |
1702 | if (ret < 0) { | |
ecf58777 HR |
1703 | goto fail; |
1704 | } | |
1705 | ||
32b6444d HR |
1706 | for (j = 0; j < s->l2_size; j++) { |
1707 | uint64_t l2_entry = be64_to_cpu(l2_table[j]); | |
ecf58777 | 1708 | int64_t offset = l2_entry & L2E_OFFSET_MASK; |
32b6444d | 1709 | int cluster_type = qcow2_get_cluster_type(l2_entry); |
320c7066 | 1710 | bool preallocated = offset != 0; |
32b6444d | 1711 | |
ecf58777 | 1712 | if (cluster_type != QCOW2_CLUSTER_ZERO) { |
32b6444d HR |
1713 | continue; |
1714 | } | |
1715 | ||
320c7066 | 1716 | if (!preallocated) { |
760e0063 | 1717 | if (!bs->backing) { |
32b6444d HR |
1718 | /* not backed; therefore we can simply deallocate the |
1719 | * cluster */ | |
1720 | l2_table[j] = 0; | |
1721 | l2_dirty = true; | |
1722 | continue; | |
1723 | } | |
1724 | ||
1725 | offset = qcow2_alloc_clusters(bs, s->cluster_size); | |
1726 | if (offset < 0) { | |
1727 | ret = offset; | |
1728 | goto fail; | |
1729 | } | |
ecf58777 HR |
1730 | |
1731 | if (l2_refcount > 1) { | |
1732 | /* For shared L2 tables, set the refcount accordingly (it is | |
1733 | * already 1 and needs to be l2_refcount) */ | |
1734 | ret = qcow2_update_cluster_refcount(bs, | |
2aabe7c7 HR |
1735 | offset >> s->cluster_bits, |
1736 | refcount_diff(1, l2_refcount), false, | |
ecf58777 HR |
1737 | QCOW2_DISCARD_OTHER); |
1738 | if (ret < 0) { | |
1739 | qcow2_free_clusters(bs, offset, s->cluster_size, | |
1740 | QCOW2_DISCARD_OTHER); | |
1741 | goto fail; | |
1742 | } | |
1743 | } | |
32b6444d HR |
1744 | } |
1745 | ||
8dd93d93 HR |
1746 | if (offset_into_cluster(s, offset)) { |
1747 | qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset " | |
1748 | "%#" PRIx64 " unaligned (L2 offset: %#" | |
1749 | PRIx64 ", L2 index: %#x)", offset, | |
1750 | l2_offset, j); | |
1751 | if (!preallocated) { | |
1752 | qcow2_free_clusters(bs, offset, s->cluster_size, | |
1753 | QCOW2_DISCARD_ALWAYS); | |
1754 | } | |
1755 | ret = -EIO; | |
1756 | goto fail; | |
1757 | } | |
1758 | ||
231bb267 | 1759 | ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); |
32b6444d | 1760 | if (ret < 0) { |
320c7066 HR |
1761 | if (!preallocated) { |
1762 | qcow2_free_clusters(bs, offset, s->cluster_size, | |
1763 | QCOW2_DISCARD_ALWAYS); | |
1764 | } | |
32b6444d HR |
1765 | goto fail; |
1766 | } | |
1767 | ||
9a4f4c31 | 1768 | ret = bdrv_write_zeroes(bs->file->bs, offset / BDRV_SECTOR_SIZE, |
aa7bfbff | 1769 | s->cluster_sectors, 0); |
32b6444d | 1770 | if (ret < 0) { |
320c7066 HR |
1771 | if (!preallocated) { |
1772 | qcow2_free_clusters(bs, offset, s->cluster_size, | |
1773 | QCOW2_DISCARD_ALWAYS); | |
1774 | } | |
32b6444d HR |
1775 | goto fail; |
1776 | } | |
1777 | ||
ecf58777 HR |
1778 | if (l2_refcount == 1) { |
1779 | l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); | |
1780 | } else { | |
1781 | l2_table[j] = cpu_to_be64(offset); | |
e390cf5a | 1782 | } |
ecf58777 | 1783 | l2_dirty = true; |
32b6444d HR |
1784 | } |
1785 | ||
1786 | if (is_active_l1) { | |
1787 | if (l2_dirty) { | |
72e80b89 | 1788 | qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table); |
32b6444d HR |
1789 | qcow2_cache_depends_on_flush(s->l2_table_cache); |
1790 | } | |
a3f1afb4 | 1791 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
32b6444d HR |
1792 | } else { |
1793 | if (l2_dirty) { | |
231bb267 HR |
1794 | ret = qcow2_pre_write_overlap_check(bs, |
1795 | QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset, | |
32b6444d HR |
1796 | s->cluster_size); |
1797 | if (ret < 0) { | |
1798 | goto fail; | |
1799 | } | |
1800 | ||
9a4f4c31 KW |
1801 | ret = bdrv_write(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE, |
1802 | (void *)l2_table, s->cluster_sectors); | |
32b6444d HR |
1803 | if (ret < 0) { |
1804 | goto fail; | |
1805 | } | |
1806 | } | |
1807 | } | |
4057a2b2 HR |
1808 | |
1809 | (*visited_l1_entries)++; | |
1810 | if (status_cb) { | |
8b13976d | 1811 | status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque); |
4057a2b2 | 1812 | } |
32b6444d HR |
1813 | } |
1814 | ||
1815 | ret = 0; | |
1816 | ||
1817 | fail: | |
1818 | if (l2_table) { | |
1819 | if (!is_active_l1) { | |
1820 | qemu_vfree(l2_table); | |
1821 | } else { | |
a3f1afb4 | 1822 | qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table); |
32b6444d HR |
1823 | } |
1824 | } | |
1825 | return ret; | |
1826 | } | |
1827 | ||
1828 | /* | |
1829 | * For backed images, expands all zero clusters on the image. For non-backed | |
1830 | * images, deallocates all non-pre-allocated zero clusters (and claims the | |
1831 | * allocation for pre-allocated ones). This is important for downgrading to a | |
1832 | * qcow2 version which doesn't yet support metadata zero clusters. | |
1833 | */ | |
4057a2b2 | 1834 | int qcow2_expand_zero_clusters(BlockDriverState *bs, |
8b13976d HR |
1835 | BlockDriverAmendStatusCB *status_cb, |
1836 | void *cb_opaque) | |
32b6444d | 1837 | { |
ff99129a | 1838 | BDRVQcow2State *s = bs->opaque; |
32b6444d | 1839 | uint64_t *l1_table = NULL; |
4057a2b2 | 1840 | int64_t l1_entries = 0, visited_l1_entries = 0; |
32b6444d HR |
1841 | int ret; |
1842 | int i, j; | |
1843 | ||
4057a2b2 HR |
1844 | if (status_cb) { |
1845 | l1_entries = s->l1_size; | |
1846 | for (i = 0; i < s->nb_snapshots; i++) { | |
1847 | l1_entries += s->snapshots[i].l1_size; | |
1848 | } | |
1849 | } | |
1850 | ||
32b6444d | 1851 | ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, |
4057a2b2 | 1852 | &visited_l1_entries, l1_entries, |
8b13976d | 1853 | status_cb, cb_opaque); |
32b6444d HR |
1854 | if (ret < 0) { |
1855 | goto fail; | |
1856 | } | |
1857 | ||
1858 | /* Inactive L1 tables may point to active L2 tables - therefore it is | |
1859 | * necessary to flush the L2 table cache before trying to access the L2 | |
1860 | * tables pointed to by inactive L1 entries (else we might try to expand | |
1861 | * zero clusters that have already been expanded); furthermore, it is also | |
1862 | * necessary to empty the L2 table cache, since it may contain tables which | |
1863 | * are now going to be modified directly on disk, bypassing the cache. | |
1864 | * qcow2_cache_empty() does both for us. */ | |
1865 | ret = qcow2_cache_empty(bs, s->l2_table_cache); | |
1866 | if (ret < 0) { | |
1867 | goto fail; | |
1868 | } | |
1869 | ||
1870 | for (i = 0; i < s->nb_snapshots; i++) { | |
1871 | int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) + | |
1872 | BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE; | |
1873 | ||
1874 | l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE); | |
1875 | ||
9a4f4c31 KW |
1876 | ret = bdrv_read(bs->file->bs, |
1877 | s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE, | |
1878 | (void *)l1_table, l1_sectors); | |
32b6444d HR |
1879 | if (ret < 0) { |
1880 | goto fail; | |
1881 | } | |
1882 | ||
1883 | for (j = 0; j < s->snapshots[i].l1_size; j++) { | |
1884 | be64_to_cpus(&l1_table[j]); | |
1885 | } | |
1886 | ||
1887 | ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, | |
4057a2b2 | 1888 | &visited_l1_entries, l1_entries, |
8b13976d | 1889 | status_cb, cb_opaque); |
32b6444d HR |
1890 | if (ret < 0) { |
1891 | goto fail; | |
1892 | } | |
1893 | } | |
1894 | ||
1895 | ret = 0; | |
1896 | ||
1897 | fail: | |
32b6444d HR |
1898 | g_free(l1_table); |
1899 | return ret; | |
1900 | } |